1/*
2 * jcphuff.c
3 *
4 * Copyright (C) 1995-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy encoding routines for progressive JPEG.
9 *
10 * We do not support output suspension in this module, since the library
11 * currently does not allow multiple-scan files to be written with output
12 * suspension.
13 */
14
15#define JPEG_INTERNALS
16#include "jinclude.h"
17#include "jpeglib.h"
18#include "jchuff.h"		/* Declarations shared with jchuff.c */
19
20#ifdef C_PROGRESSIVE_SUPPORTED
21
22/* Expanded entropy encoder object for progressive Huffman encoding. */
23
24typedef struct {
25  struct jpeg_entropy_encoder pub; /* public fields */
26
27  /* Mode flag: TRUE for optimization, FALSE for actual data output */
28  boolean gather_statistics;
29
30  /* Bit-level coding status.
31   * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
32   */
33  JOCTET * next_output_byte;	/* => next byte to write in buffer */
34  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
35  INT32 put_buffer;		/* current bit-accumulation buffer */
36  int put_bits;			/* # of bits now in it */
37  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
38
39  /* Coding status for DC components */
40  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
42  /* Coding status for AC components */
43  int ac_tbl_no;		/* the table number of the single component */
44  unsigned int EOBRUN;		/* run length of EOBs */
45  unsigned int BE;		/* # of buffered correction bits before MCU */
46  char * bit_buffer;		/* buffer for correction bits (1 per char) */
47  /* packing correction bits tightly would save some space but cost time... */
48
49  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
50  int next_restart_num;		/* next restart number to write (0-7) */
51
52  /* Pointers to derived tables (these workspaces have image lifespan).
53   * Since any one scan codes only DC or only AC, we only need one set
54   * of tables, not one for DC and one for AC.
55   */
56  c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
57
58  /* Statistics tables for optimization; again, one set is enough */
59  long * count_ptrs[NUM_HUFF_TBLS];
60} phuff_entropy_encoder;
61
62typedef phuff_entropy_encoder * phuff_entropy_ptr;
63
64/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
65 * buffer can hold.  Larger sizes may slightly improve compression, but
66 * 1000 is already well into the realm of overkill.
67 * The minimum safe size is 64 bits.
68 */
69
70#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
71
72/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
73 * We assume that int right shift is unsigned if INT32 right shift is,
74 * which should be safe.
75 */
76
77#ifdef RIGHT_SHIFT_IS_UNSIGNED
78#define ISHIFT_TEMPS	int ishift_temp;
79#define IRIGHT_SHIFT(x,shft)  \
80	((ishift_temp = (x)) < 0 ? \
81	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
82	 (ishift_temp >> (shft)))
83#else
84#define ISHIFT_TEMPS
85#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
86#endif
87
88/* Forward declarations */
89METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
90					    JBLOCKROW *MCU_data));
91METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
92					    JBLOCKROW *MCU_data));
93METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
94					     JBLOCKROW *MCU_data));
95METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
96					     JBLOCKROW *MCU_data));
97METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
98METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
99
100
101/*
102 * Initialize for a Huffman-compressed scan using progressive JPEG.
103 */
104
105METHODDEF(void)
106start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
107{
108  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
109  boolean is_DC_band;
110  int ci, tbl;
111  jpeg_component_info * compptr;
112
113  entropy->cinfo = cinfo;
114  entropy->gather_statistics = gather_statistics;
115
116  is_DC_band = (cinfo->Ss == 0);
117
118  /* We assume jcmaster.c already validated the scan parameters. */
119
120  /* Select execution routines */
121  if (cinfo->Ah == 0) {
122    if (is_DC_band)
123      entropy->pub.encode_mcu = encode_mcu_DC_first;
124    else
125      entropy->pub.encode_mcu = encode_mcu_AC_first;
126  } else {
127    if (is_DC_band)
128      entropy->pub.encode_mcu = encode_mcu_DC_refine;
129    else {
130      entropy->pub.encode_mcu = encode_mcu_AC_refine;
131      /* AC refinement needs a correction bit buffer */
132      if (entropy->bit_buffer == NULL)
133	entropy->bit_buffer = (char *)
134	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
135				      MAX_CORR_BITS * SIZEOF(char));
136    }
137  }
138  if (gather_statistics)
139    entropy->pub.finish_pass = finish_pass_gather_phuff;
140  else
141    entropy->pub.finish_pass = finish_pass_phuff;
142
143  /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
144   * for AC coefficients.
145   */
146  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
147    compptr = cinfo->cur_comp_info[ci];
148    /* Initialize DC predictions to 0 */
149    entropy->last_dc_val[ci] = 0;
150    /* Get table index */
151    if (is_DC_band) {
152      if (cinfo->Ah != 0)	/* DC refinement needs no table */
153	continue;
154      tbl = compptr->dc_tbl_no;
155    } else {
156      entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
157    }
158    if (gather_statistics) {
159      /* Check for invalid table index */
160      /* (make_c_derived_tbl does this in the other path) */
161      if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
162        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
163      /* Allocate and zero the statistics tables */
164      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
165      if (entropy->count_ptrs[tbl] == NULL)
166	entropy->count_ptrs[tbl] = (long *)
167	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
168				      257 * SIZEOF(long));
169      MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
170    } else {
171      /* Compute derived values for Huffman table */
172      /* We may do this more than once for a table, but it's not expensive */
173      jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
174			      & entropy->derived_tbls[tbl]);
175    }
176  }
177
178  /* Initialize AC stuff */
179  entropy->EOBRUN = 0;
180  entropy->BE = 0;
181
182  /* Initialize bit buffer to empty */
183  entropy->put_buffer = 0;
184  entropy->put_bits = 0;
185
186  /* Initialize restart stuff */
187  entropy->restarts_to_go = cinfo->restart_interval;
188  entropy->next_restart_num = 0;
189}
190
191
192/* Outputting bytes to the file.
193 * NB: these must be called only when actually outputting,
194 * that is, entropy->gather_statistics == FALSE.
195 */
196
197/* Emit a byte */
198#define emit_byte(entropy,val)  \
199	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
200	  if (--(entropy)->free_in_buffer == 0)  \
201	    dump_buffer(entropy); }
202
203
204LOCAL(void)
205dump_buffer (phuff_entropy_ptr entropy)
206/* Empty the output buffer; we do not support suspension in this module. */
207{
208  struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
209
210  if (! (*dest->empty_output_buffer) (entropy->cinfo))
211    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
212  /* After a successful buffer dump, must reset buffer pointers */
213  entropy->next_output_byte = dest->next_output_byte;
214  entropy->free_in_buffer = dest->free_in_buffer;
215}
216
217
218/* Outputting bits to the file */
219
220/* Only the right 24 bits of put_buffer are used; the valid bits are
221 * left-justified in this part.  At most 16 bits can be passed to emit_bits
222 * in one call, and we never retain more than 7 bits in put_buffer
223 * between calls, so 24 bits are sufficient.
224 */
225
226LOCAL(void)
227emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
228/* Emit some bits, unless we are in gather mode */
229{
230  /* This routine is heavily used, so it's worth coding tightly. */
231  register INT32 put_buffer = (INT32) code;
232  register int put_bits = entropy->put_bits;
233
234  /* if size is 0, caller used an invalid Huffman table entry */
235  if (size == 0)
236    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
237
238  if (entropy->gather_statistics)
239    return;			/* do nothing if we're only getting stats */
240
241  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
242
243  put_bits += size;		/* new number of bits in buffer */
244
245  put_buffer <<= 24 - put_bits; /* align incoming bits */
246
247  put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
248
249  while (put_bits >= 8) {
250    int c = (int) ((put_buffer >> 16) & 0xFF);
251
252    emit_byte(entropy, c);
253    if (c == 0xFF) {		/* need to stuff a zero byte? */
254      emit_byte(entropy, 0);
255    }
256    put_buffer <<= 8;
257    put_bits -= 8;
258  }
259
260  entropy->put_buffer = put_buffer; /* update variables */
261  entropy->put_bits = put_bits;
262}
263
264
265LOCAL(void)
266flush_bits (phuff_entropy_ptr entropy)
267{
268  emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
269  entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
270  entropy->put_bits = 0;
271}
272
273
274/*
275 * Emit (or just count) a Huffman symbol.
276 */
277
278LOCAL(void)
279emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
280{
281  if (entropy->gather_statistics)
282    entropy->count_ptrs[tbl_no][symbol]++;
283  else {
284    c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
285    emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
286  }
287}
288
289
290/*
291 * Emit bits from a correction bit buffer.
292 */
293
294LOCAL(void)
295emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
296		    unsigned int nbits)
297{
298  if (entropy->gather_statistics)
299    return;			/* no real work */
300
301  while (nbits > 0) {
302    emit_bits(entropy, (unsigned int) (*bufstart), 1);
303    bufstart++;
304    nbits--;
305  }
306}
307
308
309/*
310 * Emit any pending EOBRUN symbol.
311 */
312
313LOCAL(void)
314emit_eobrun (phuff_entropy_ptr entropy)
315{
316  register int temp, nbits;
317
318  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
319    temp = entropy->EOBRUN;
320    nbits = 0;
321    while ((temp >>= 1))
322      nbits++;
323    /* safety check: shouldn't happen given limited correction-bit buffer */
324    if (nbits > 14)
325      ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
326
327    emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
328    if (nbits)
329      emit_bits(entropy, entropy->EOBRUN, nbits);
330
331    entropy->EOBRUN = 0;
332
333    /* Emit any buffered correction bits */
334    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
335    entropy->BE = 0;
336  }
337}
338
339
340/*
341 * Emit a restart marker & resynchronize predictions.
342 */
343
344LOCAL(void)
345emit_restart (phuff_entropy_ptr entropy, int restart_num)
346{
347  int ci;
348
349  emit_eobrun(entropy);
350
351  if (! entropy->gather_statistics) {
352    flush_bits(entropy);
353    emit_byte(entropy, 0xFF);
354    emit_byte(entropy, JPEG_RST0 + restart_num);
355  }
356
357  if (entropy->cinfo->Ss == 0) {
358    /* Re-initialize DC predictions to 0 */
359    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
360      entropy->last_dc_val[ci] = 0;
361  } else {
362    /* Re-initialize all AC-related fields to 0 */
363    entropy->EOBRUN = 0;
364    entropy->BE = 0;
365  }
366}
367
368
369/*
370 * MCU encoding for DC initial scan (either spectral selection,
371 * or first pass of successive approximation).
372 */
373
374METHODDEF(boolean)
375encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
376{
377  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
378  register int temp, temp2;
379  register int nbits;
380  int blkn, ci;
381  int Al = cinfo->Al;
382  JBLOCKROW block;
383  jpeg_component_info * compptr;
384  ISHIFT_TEMPS
385
386  entropy->next_output_byte = cinfo->dest->next_output_byte;
387  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
388
389  /* Emit restart marker if needed */
390  if (cinfo->restart_interval)
391    if (entropy->restarts_to_go == 0)
392      emit_restart(entropy, entropy->next_restart_num);
393
394  /* Encode the MCU data blocks */
395  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
396    block = MCU_data[blkn];
397    ci = cinfo->MCU_membership[blkn];
398    compptr = cinfo->cur_comp_info[ci];
399
400    /* Compute the DC value after the required point transform by Al.
401     * This is simply an arithmetic right shift.
402     */
403    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
404
405    /* DC differences are figured on the point-transformed values. */
406    temp = temp2 - entropy->last_dc_val[ci];
407    entropy->last_dc_val[ci] = temp2;
408
409    /* Encode the DC coefficient difference per section G.1.2.1 */
410    temp2 = temp;
411    if (temp < 0) {
412      temp = -temp;		/* temp is abs value of input */
413      /* For a negative input, want temp2 = bitwise complement of abs(input) */
414      /* This code assumes we are on a two's complement machine */
415      temp2--;
416    }
417
418    /* Find the number of bits needed for the magnitude of the coefficient */
419    nbits = 0;
420    while (temp) {
421      nbits++;
422      temp >>= 1;
423    }
424    /* Check for out-of-range coefficient values.
425     * Since we're encoding a difference, the range limit is twice as much.
426     */
427    if (nbits > MAX_COEF_BITS+1)
428      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
429
430    /* Count/emit the Huffman-coded symbol for the number of bits */
431    emit_symbol(entropy, compptr->dc_tbl_no, nbits);
432
433    /* Emit that number of bits of the value, if positive, */
434    /* or the complement of its magnitude, if negative. */
435    if (nbits)			/* emit_bits rejects calls with size 0 */
436      emit_bits(entropy, (unsigned int) temp2, nbits);
437  }
438
439  cinfo->dest->next_output_byte = entropy->next_output_byte;
440  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
441
442  /* Update restart-interval state too */
443  if (cinfo->restart_interval) {
444    if (entropy->restarts_to_go == 0) {
445      entropy->restarts_to_go = cinfo->restart_interval;
446      entropy->next_restart_num++;
447      entropy->next_restart_num &= 7;
448    }
449    entropy->restarts_to_go--;
450  }
451
452  return TRUE;
453}
454
455
456/*
457 * MCU encoding for AC initial scan (either spectral selection,
458 * or first pass of successive approximation).
459 */
460
461METHODDEF(boolean)
462encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
463{
464  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
465  register int temp, temp2;
466  register int nbits;
467  register int r, k;
468  int Se = cinfo->Se;
469  int Al = cinfo->Al;
470  JBLOCKROW block;
471
472  entropy->next_output_byte = cinfo->dest->next_output_byte;
473  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
474
475  /* Emit restart marker if needed */
476  if (cinfo->restart_interval)
477    if (entropy->restarts_to_go == 0)
478      emit_restart(entropy, entropy->next_restart_num);
479
480  /* Encode the MCU data block */
481  block = MCU_data[0];
482
483  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
484
485  r = 0;			/* r = run length of zeros */
486
487  for (k = cinfo->Ss; k <= Se; k++) {
488    if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
489      r++;
490      continue;
491    }
492    /* We must apply the point transform by Al.  For AC coefficients this
493     * is an integer division with rounding towards 0.  To do this portably
494     * in C, we shift after obtaining the absolute value; so the code is
495     * interwoven with finding the abs value (temp) and output bits (temp2).
496     */
497    if (temp < 0) {
498      temp = -temp;		/* temp is abs value of input */
499      temp >>= Al;		/* apply the point transform */
500      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
501      temp2 = ~temp;
502    } else {
503      temp >>= Al;		/* apply the point transform */
504      temp2 = temp;
505    }
506    /* Watch out for case that nonzero coef is zero after point transform */
507    if (temp == 0) {
508      r++;
509      continue;
510    }
511
512    /* Emit any pending EOBRUN */
513    if (entropy->EOBRUN > 0)
514      emit_eobrun(entropy);
515    /* if run length > 15, must emit special run-length-16 codes (0xF0) */
516    while (r > 15) {
517      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
518      r -= 16;
519    }
520
521    /* Find the number of bits needed for the magnitude of the coefficient */
522    nbits = 1;			/* there must be at least one 1 bit */
523    while ((temp >>= 1))
524      nbits++;
525    /* Check for out-of-range coefficient values */
526    if (nbits > MAX_COEF_BITS)
527      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
528
529    /* Count/emit Huffman symbol for run length / number of bits */
530    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
531
532    /* Emit that number of bits of the value, if positive, */
533    /* or the complement of its magnitude, if negative. */
534    emit_bits(entropy, (unsigned int) temp2, nbits);
535
536    r = 0;			/* reset zero run length */
537  }
538
539  if (r > 0) {			/* If there are trailing zeroes, */
540    entropy->EOBRUN++;		/* count an EOB */
541    if (entropy->EOBRUN == 0x7FFF)
542      emit_eobrun(entropy);	/* force it out to avoid overflow */
543  }
544
545  cinfo->dest->next_output_byte = entropy->next_output_byte;
546  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
547
548  /* Update restart-interval state too */
549  if (cinfo->restart_interval) {
550    if (entropy->restarts_to_go == 0) {
551      entropy->restarts_to_go = cinfo->restart_interval;
552      entropy->next_restart_num++;
553      entropy->next_restart_num &= 7;
554    }
555    entropy->restarts_to_go--;
556  }
557
558  return TRUE;
559}
560
561
562/*
563 * MCU encoding for DC successive approximation refinement scan.
564 * Note: we assume such scans can be multi-component, although the spec
565 * is not very clear on the point.
566 */
567
568METHODDEF(boolean)
569encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
570{
571  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
572  register int temp;
573  int blkn;
574  int Al = cinfo->Al;
575  JBLOCKROW block;
576
577  entropy->next_output_byte = cinfo->dest->next_output_byte;
578  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
579
580  /* Emit restart marker if needed */
581  if (cinfo->restart_interval)
582    if (entropy->restarts_to_go == 0)
583      emit_restart(entropy, entropy->next_restart_num);
584
585  /* Encode the MCU data blocks */
586  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
587    block = MCU_data[blkn];
588
589    /* We simply emit the Al'th bit of the DC coefficient value. */
590    temp = (*block)[0];
591    emit_bits(entropy, (unsigned int) (temp >> Al), 1);
592  }
593
594  cinfo->dest->next_output_byte = entropy->next_output_byte;
595  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
596
597  /* Update restart-interval state too */
598  if (cinfo->restart_interval) {
599    if (entropy->restarts_to_go == 0) {
600      entropy->restarts_to_go = cinfo->restart_interval;
601      entropy->next_restart_num++;
602      entropy->next_restart_num &= 7;
603    }
604    entropy->restarts_to_go--;
605  }
606
607  return TRUE;
608}
609
610
611/*
612 * MCU encoding for AC successive approximation refinement scan.
613 */
614
615METHODDEF(boolean)
616encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
617{
618  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
619  register int temp;
620  register int r, k;
621  int EOB;
622  char *BR_buffer;
623  unsigned int BR;
624  int Se = cinfo->Se;
625  int Al = cinfo->Al;
626  JBLOCKROW block;
627  int absvalues[DCTSIZE2];
628
629  entropy->next_output_byte = cinfo->dest->next_output_byte;
630  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
631
632  /* Emit restart marker if needed */
633  if (cinfo->restart_interval)
634    if (entropy->restarts_to_go == 0)
635      emit_restart(entropy, entropy->next_restart_num);
636
637  /* Encode the MCU data block */
638  block = MCU_data[0];
639
640  /* It is convenient to make a pre-pass to determine the transformed
641   * coefficients' absolute values and the EOB position.
642   */
643  EOB = 0;
644  for (k = cinfo->Ss; k <= Se; k++) {
645    temp = (*block)[jpeg_natural_order[k]];
646    /* We must apply the point transform by Al.  For AC coefficients this
647     * is an integer division with rounding towards 0.  To do this portably
648     * in C, we shift after obtaining the absolute value.
649     */
650    if (temp < 0)
651      temp = -temp;		/* temp is abs value of input */
652    temp >>= Al;		/* apply the point transform */
653    absvalues[k] = temp;	/* save abs value for main pass */
654    if (temp == 1)
655      EOB = k;			/* EOB = index of last newly-nonzero coef */
656  }
657
658  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
659
660  r = 0;			/* r = run length of zeros */
661  BR = 0;			/* BR = count of buffered bits added now */
662  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
663
664  for (k = cinfo->Ss; k <= Se; k++) {
665    if ((temp = absvalues[k]) == 0) {
666      r++;
667      continue;
668    }
669
670    /* Emit any required ZRLs, but not if they can be folded into EOB */
671    while (r > 15 && k <= EOB) {
672      /* emit any pending EOBRUN and the BE correction bits */
673      emit_eobrun(entropy);
674      /* Emit ZRL */
675      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
676      r -= 16;
677      /* Emit buffered correction bits that must be associated with ZRL */
678      emit_buffered_bits(entropy, BR_buffer, BR);
679      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
680      BR = 0;
681    }
682
683    /* If the coef was previously nonzero, it only needs a correction bit.
684     * NOTE: a straight translation of the spec's figure G.7 would suggest
685     * that we also need to test r > 15.  But if r > 15, we can only get here
686     * if k > EOB, which implies that this coefficient is not 1.
687     */
688    if (temp > 1) {
689      /* The correction bit is the next bit of the absolute value. */
690      BR_buffer[BR++] = (char) (temp & 1);
691      continue;
692    }
693
694    /* Emit any pending EOBRUN and the BE correction bits */
695    emit_eobrun(entropy);
696
697    /* Count/emit Huffman symbol for run length / number of bits */
698    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
699
700    /* Emit output bit for newly-nonzero coef */
701    temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
702    emit_bits(entropy, (unsigned int) temp, 1);
703
704    /* Emit buffered correction bits that must be associated with this code */
705    emit_buffered_bits(entropy, BR_buffer, BR);
706    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
707    BR = 0;
708    r = 0;			/* reset zero run length */
709  }
710
711  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
712    entropy->EOBRUN++;		/* count an EOB */
713    entropy->BE += BR;		/* concat my correction bits to older ones */
714    /* We force out the EOB if we risk either:
715     * 1. overflow of the EOB counter;
716     * 2. overflow of the correction bit buffer during the next MCU.
717     */
718    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
719      emit_eobrun(entropy);
720  }
721
722  cinfo->dest->next_output_byte = entropy->next_output_byte;
723  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
724
725  /* Update restart-interval state too */
726  if (cinfo->restart_interval) {
727    if (entropy->restarts_to_go == 0) {
728      entropy->restarts_to_go = cinfo->restart_interval;
729      entropy->next_restart_num++;
730      entropy->next_restart_num &= 7;
731    }
732    entropy->restarts_to_go--;
733  }
734
735  return TRUE;
736}
737
738
739/*
740 * Finish up at the end of a Huffman-compressed progressive scan.
741 */
742
743METHODDEF(void)
744finish_pass_phuff (j_compress_ptr cinfo)
745{
746  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
747
748  entropy->next_output_byte = cinfo->dest->next_output_byte;
749  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
750
751  /* Flush out any buffered data */
752  emit_eobrun(entropy);
753  flush_bits(entropy);
754
755  cinfo->dest->next_output_byte = entropy->next_output_byte;
756  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
757}
758
759
760/*
761 * Finish up a statistics-gathering pass and create the new Huffman tables.
762 */
763
764METHODDEF(void)
765finish_pass_gather_phuff (j_compress_ptr cinfo)
766{
767  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
768  boolean is_DC_band;
769  int ci, tbl;
770  jpeg_component_info * compptr;
771  JHUFF_TBL **htblptr;
772  boolean did[NUM_HUFF_TBLS];
773
774  /* Flush out buffered data (all we care about is counting the EOB symbol) */
775  emit_eobrun(entropy);
776
777  is_DC_band = (cinfo->Ss == 0);
778
779  /* It's important not to apply jpeg_gen_optimal_table more than once
780   * per table, because it clobbers the input frequency counts!
781   */
782  MEMZERO(did, SIZEOF(did));
783
784  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
785    compptr = cinfo->cur_comp_info[ci];
786    if (is_DC_band) {
787      if (cinfo->Ah != 0)	/* DC refinement needs no table */
788	continue;
789      tbl = compptr->dc_tbl_no;
790    } else {
791      tbl = compptr->ac_tbl_no;
792    }
793    if (! did[tbl]) {
794      if (is_DC_band)
795        htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
796      else
797        htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
798      if (*htblptr == NULL)
799        *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
800      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
801      did[tbl] = TRUE;
802    }
803  }
804}
805
806
807/*
808 * Module initialization routine for progressive Huffman entropy encoding.
809 */
810
811GLOBAL(void)
812jinit_phuff_encoder (j_compress_ptr cinfo)
813{
814  phuff_entropy_ptr entropy;
815  int i;
816
817  entropy = (phuff_entropy_ptr)
818    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
819				SIZEOF(phuff_entropy_encoder));
820  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
821  entropy->pub.start_pass = start_pass_phuff;
822
823  /* Mark tables unallocated */
824  for (i = 0; i < NUM_HUFF_TBLS; i++) {
825    entropy->derived_tbls[i] = NULL;
826    entropy->count_ptrs[i] = NULL;
827  }
828  entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
829}
830
831#endif /* C_PROGRESSIVE_SUPPORTED */
832