1/*
2 * jdcoefct.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1994-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2010, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains the coefficient buffer controller for decompression.
11 * This controller is the top level of the JPEG decompressor proper.
12 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
13 *
14 * In buffered-image mode, this controller is the interface between
15 * input-oriented processing and output-oriented processing.
16 * Also, the input side (only) is used when reading a file for transcoding.
17 */
18
19#define JPEG_INTERNALS
20#include "jinclude.h"
21#include "jpeglib.h"
22#include "jpegcomp.h"
23
24/* Block smoothing is only applicable for progressive JPEG, so: */
25#ifndef D_PROGRESSIVE_SUPPORTED
26#undef BLOCK_SMOOTHING_SUPPORTED
27#endif
28
29/* Private buffer controller object */
30
31typedef struct {
32  struct jpeg_d_coef_controller pub; /* public fields */
33
34  /* These variables keep track of the current location of the input side. */
35  /* cinfo->input_iMCU_row is also used for this. */
36  JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
37  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
38  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
39
40  /* The output side's location is represented by cinfo->output_iMCU_row. */
41
42  /* In single-pass modes, it's sufficient to buffer just one MCU.
43   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
44   * and let the entropy decoder write into that workspace each time.
45   * (On 80x86, the workspace is FAR even though it's not really very big;
46   * this is to keep the module interfaces unchanged when a large coefficient
47   * buffer is necessary.)
48   * In multi-pass modes, this array points to the current MCU's blocks
49   * within the virtual arrays; it is used only by the input side.
50   */
51  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
52
53  /* Temporary workspace for one MCU */
54  JCOEF * workspace;
55
56#ifdef D_MULTISCAN_FILES_SUPPORTED
57  /* In multi-pass modes, we need a virtual block array for each component. */
58  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
59#endif
60
61#ifdef BLOCK_SMOOTHING_SUPPORTED
62  /* When doing block smoothing, we latch coefficient Al values here */
63  int * coef_bits_latch;
64#define SAVED_COEFS  6		/* we save coef_bits[0..5] */
65#endif
66} my_coef_controller;
67
68typedef my_coef_controller * my_coef_ptr;
69
70/* Forward declarations */
71METHODDEF(int) decompress_onepass
72	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
73#ifdef D_MULTISCAN_FILES_SUPPORTED
74METHODDEF(int) decompress_data
75	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
76#endif
77#ifdef BLOCK_SMOOTHING_SUPPORTED
78LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
79METHODDEF(int) decompress_smooth_data
80	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
81#endif
82
83
84LOCAL(void)
85start_iMCU_row (j_decompress_ptr cinfo)
86/* Reset within-iMCU-row counters for a new row (input side) */
87{
88  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
89
90  /* In an interleaved scan, an MCU row is the same as an iMCU row.
91   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
92   * But at the bottom of the image, process only what's left.
93   */
94  if (cinfo->comps_in_scan > 1) {
95    coef->MCU_rows_per_iMCU_row = 1;
96  } else {
97    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
98      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
99    else
100      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
101  }
102
103  coef->MCU_ctr = 0;
104  coef->MCU_vert_offset = 0;
105}
106
107
108/*
109 * Initialize for an input processing pass.
110 */
111
112METHODDEF(void)
113start_input_pass (j_decompress_ptr cinfo)
114{
115  cinfo->input_iMCU_row = 0;
116  start_iMCU_row(cinfo);
117}
118
119
120/*
121 * Initialize for an output processing pass.
122 */
123
124METHODDEF(void)
125start_output_pass (j_decompress_ptr cinfo)
126{
127#ifdef BLOCK_SMOOTHING_SUPPORTED
128  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
129
130  /* If multipass, check to see whether to use block smoothing on this pass */
131  if (coef->pub.coef_arrays != NULL) {
132    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
133      coef->pub.decompress_data = decompress_smooth_data;
134    else
135      coef->pub.decompress_data = decompress_data;
136  }
137#endif
138  cinfo->output_iMCU_row = 0;
139}
140
141
142/*
143 * Decompress and return some data in the single-pass case.
144 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
145 * Input and output must run in lockstep since we have only a one-MCU buffer.
146 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
147 *
148 * NB: output_buf contains a plane for each component in image,
149 * which we index according to the component's SOF position.
150 */
151
152METHODDEF(int)
153decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
154{
155  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
156  JDIMENSION MCU_col_num;	/* index of current MCU within row */
157  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
158  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
159  int blkn, ci, xindex, yindex, yoffset, useful_width;
160  JSAMPARRAY output_ptr;
161  JDIMENSION start_col, output_col;
162  jpeg_component_info *compptr;
163  inverse_DCT_method_ptr inverse_DCT;
164
165  /* Loop to process as much as one whole iMCU row */
166  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
167       yoffset++) {
168    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
169	 MCU_col_num++) {
170      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
171      jzero_far((void FAR *) coef->MCU_buffer[0],
172		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
173      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
174	/* Suspension forced; update state counters and exit */
175	coef->MCU_vert_offset = yoffset;
176	coef->MCU_ctr = MCU_col_num;
177	return JPEG_SUSPENDED;
178      }
179      /* Determine where data should go in output_buf and do the IDCT thing.
180       * We skip dummy blocks at the right and bottom edges (but blkn gets
181       * incremented past them!).  Note the inner loop relies on having
182       * allocated the MCU_buffer[] blocks sequentially.
183       */
184      blkn = 0;			/* index of current DCT block within MCU */
185      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
186	compptr = cinfo->cur_comp_info[ci];
187	/* Don't bother to IDCT an uninteresting component. */
188	if (! compptr->component_needed) {
189	  blkn += compptr->MCU_blocks;
190	  continue;
191	}
192	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
193	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
194						    : compptr->last_col_width;
195	output_ptr = output_buf[compptr->component_index] +
196	  yoffset * compptr->_DCT_scaled_size;
197	start_col = MCU_col_num * compptr->MCU_sample_width;
198	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
199	  if (cinfo->input_iMCU_row < last_iMCU_row ||
200	      yoffset+yindex < compptr->last_row_height) {
201	    output_col = start_col;
202	    for (xindex = 0; xindex < useful_width; xindex++) {
203	      (*inverse_DCT) (cinfo, compptr,
204			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
205			      output_ptr, output_col);
206	      output_col += compptr->_DCT_scaled_size;
207	    }
208	  }
209	  blkn += compptr->MCU_width;
210	  output_ptr += compptr->_DCT_scaled_size;
211	}
212      }
213    }
214    /* Completed an MCU row, but perhaps not an iMCU row */
215    coef->MCU_ctr = 0;
216  }
217  /* Completed the iMCU row, advance counters for next one */
218  cinfo->output_iMCU_row++;
219  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
220    start_iMCU_row(cinfo);
221    return JPEG_ROW_COMPLETED;
222  }
223  /* Completed the scan */
224  (*cinfo->inputctl->finish_input_pass) (cinfo);
225  return JPEG_SCAN_COMPLETED;
226}
227
228
229/*
230 * Dummy consume-input routine for single-pass operation.
231 */
232
233METHODDEF(int)
234dummy_consume_data (j_decompress_ptr cinfo)
235{
236  return JPEG_SUSPENDED;	/* Always indicate nothing was done */
237}
238
239
240#ifdef D_MULTISCAN_FILES_SUPPORTED
241
242/*
243 * Consume input data and store it in the full-image coefficient buffer.
244 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
245 * ie, v_samp_factor block rows for each component in the scan.
246 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
247 */
248
249METHODDEF(int)
250consume_data (j_decompress_ptr cinfo)
251{
252  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
253  JDIMENSION MCU_col_num;	/* index of current MCU within row */
254  int blkn, ci, xindex, yindex, yoffset;
255  JDIMENSION start_col;
256  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
257  JBLOCKROW buffer_ptr;
258  jpeg_component_info *compptr;
259
260  /* Align the virtual buffers for the components used in this scan. */
261  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
262    compptr = cinfo->cur_comp_info[ci];
263    buffer[ci] = (*cinfo->mem->access_virt_barray)
264      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
265       cinfo->input_iMCU_row * compptr->v_samp_factor,
266       (JDIMENSION) compptr->v_samp_factor, TRUE);
267    /* Note: entropy decoder expects buffer to be zeroed,
268     * but this is handled automatically by the memory manager
269     * because we requested a pre-zeroed array.
270     */
271  }
272
273  /* Loop to process one whole iMCU row */
274  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
275       yoffset++) {
276    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
277	 MCU_col_num++) {
278      /* Construct list of pointers to DCT blocks belonging to this MCU */
279      blkn = 0;			/* index of current DCT block within MCU */
280      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
281	compptr = cinfo->cur_comp_info[ci];
282	start_col = MCU_col_num * compptr->MCU_width;
283	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
284	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
285	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
286	    coef->MCU_buffer[blkn++] = buffer_ptr++;
287	  }
288	}
289      }
290      /* Try to fetch the MCU. */
291      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
292	/* Suspension forced; update state counters and exit */
293	coef->MCU_vert_offset = yoffset;
294	coef->MCU_ctr = MCU_col_num;
295	return JPEG_SUSPENDED;
296      }
297    }
298    /* Completed an MCU row, but perhaps not an iMCU row */
299    coef->MCU_ctr = 0;
300  }
301  /* Completed the iMCU row, advance counters for next one */
302  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
303    start_iMCU_row(cinfo);
304    return JPEG_ROW_COMPLETED;
305  }
306  /* Completed the scan */
307  (*cinfo->inputctl->finish_input_pass) (cinfo);
308  return JPEG_SCAN_COMPLETED;
309}
310
311
312/*
313 * Decompress and return some data in the multi-pass case.
314 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
315 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
316 *
317 * NB: output_buf contains a plane for each component in image.
318 */
319
320METHODDEF(int)
321decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
322{
323  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
324  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
325  JDIMENSION block_num;
326  int ci, block_row, block_rows;
327  JBLOCKARRAY buffer;
328  JBLOCKROW buffer_ptr;
329  JSAMPARRAY output_ptr;
330  JDIMENSION output_col;
331  jpeg_component_info *compptr;
332  inverse_DCT_method_ptr inverse_DCT;
333
334  /* Force some input to be done if we are getting ahead of the input. */
335  while (cinfo->input_scan_number < cinfo->output_scan_number ||
336	 (cinfo->input_scan_number == cinfo->output_scan_number &&
337	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
338    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
339      return JPEG_SUSPENDED;
340  }
341
342  /* OK, output from the virtual arrays. */
343  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
344       ci++, compptr++) {
345    /* Don't bother to IDCT an uninteresting component. */
346    if (! compptr->component_needed)
347      continue;
348    /* Align the virtual buffer for this component. */
349    buffer = (*cinfo->mem->access_virt_barray)
350      ((j_common_ptr) cinfo, coef->whole_image[ci],
351       cinfo->output_iMCU_row * compptr->v_samp_factor,
352       (JDIMENSION) compptr->v_samp_factor, FALSE);
353    /* Count non-dummy DCT block rows in this iMCU row. */
354    if (cinfo->output_iMCU_row < last_iMCU_row)
355      block_rows = compptr->v_samp_factor;
356    else {
357      /* NB: can't use last_row_height here; it is input-side-dependent! */
358      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
359      if (block_rows == 0) block_rows = compptr->v_samp_factor;
360    }
361    inverse_DCT = cinfo->idct->inverse_DCT[ci];
362    output_ptr = output_buf[ci];
363    /* Loop over all DCT blocks to be processed. */
364    for (block_row = 0; block_row < block_rows; block_row++) {
365      buffer_ptr = buffer[block_row];
366      output_col = 0;
367      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
368	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
369			output_ptr, output_col);
370	buffer_ptr++;
371	output_col += compptr->_DCT_scaled_size;
372      }
373      output_ptr += compptr->_DCT_scaled_size;
374    }
375  }
376
377  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
378    return JPEG_ROW_COMPLETED;
379  return JPEG_SCAN_COMPLETED;
380}
381
382#endif /* D_MULTISCAN_FILES_SUPPORTED */
383
384
385#ifdef BLOCK_SMOOTHING_SUPPORTED
386
387/*
388 * This code applies interblock smoothing as described by section K.8
389 * of the JPEG standard: the first 5 AC coefficients are estimated from
390 * the DC values of a DCT block and its 8 neighboring blocks.
391 * We apply smoothing only for progressive JPEG decoding, and only if
392 * the coefficients it can estimate are not yet known to full precision.
393 */
394
395/* Natural-order array positions of the first 5 zigzag-order coefficients */
396#define Q01_POS  1
397#define Q10_POS  8
398#define Q20_POS  16
399#define Q11_POS  9
400#define Q02_POS  2
401
402/*
403 * Determine whether block smoothing is applicable and safe.
404 * We also latch the current states of the coef_bits[] entries for the
405 * AC coefficients; otherwise, if the input side of the decompressor
406 * advances into a new scan, we might think the coefficients are known
407 * more accurately than they really are.
408 */
409
410LOCAL(boolean)
411smoothing_ok (j_decompress_ptr cinfo)
412{
413  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
414  boolean smoothing_useful = FALSE;
415  int ci, coefi;
416  jpeg_component_info *compptr;
417  JQUANT_TBL * qtable;
418  int * coef_bits;
419  int * coef_bits_latch;
420
421  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
422    return FALSE;
423
424  /* Allocate latch area if not already done */
425  if (coef->coef_bits_latch == NULL)
426    coef->coef_bits_latch = (int *)
427      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
428				  cinfo->num_components *
429				  (SAVED_COEFS * SIZEOF(int)));
430  coef_bits_latch = coef->coef_bits_latch;
431
432  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
433       ci++, compptr++) {
434    /* All components' quantization values must already be latched. */
435    if ((qtable = compptr->quant_table) == NULL)
436      return FALSE;
437    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
438    if (qtable->quantval[0] == 0 ||
439	qtable->quantval[Q01_POS] == 0 ||
440	qtable->quantval[Q10_POS] == 0 ||
441	qtable->quantval[Q20_POS] == 0 ||
442	qtable->quantval[Q11_POS] == 0 ||
443	qtable->quantval[Q02_POS] == 0)
444      return FALSE;
445    /* DC values must be at least partly known for all components. */
446    coef_bits = cinfo->coef_bits[ci];
447    if (coef_bits[0] < 0)
448      return FALSE;
449    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
450    for (coefi = 1; coefi <= 5; coefi++) {
451      coef_bits_latch[coefi] = coef_bits[coefi];
452      if (coef_bits[coefi] != 0)
453	smoothing_useful = TRUE;
454    }
455    coef_bits_latch += SAVED_COEFS;
456  }
457
458  return smoothing_useful;
459}
460
461
462/*
463 * Variant of decompress_data for use when doing block smoothing.
464 */
465
466METHODDEF(int)
467decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
468{
469  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
470  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
471  JDIMENSION block_num, last_block_column;
472  int ci, block_row, block_rows, access_rows;
473  JBLOCKARRAY buffer;
474  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
475  JSAMPARRAY output_ptr;
476  JDIMENSION output_col;
477  jpeg_component_info *compptr;
478  inverse_DCT_method_ptr inverse_DCT;
479  boolean first_row, last_row;
480  JCOEF * workspace;
481  int *coef_bits;
482  JQUANT_TBL *quanttbl;
483  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
484  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
485  int Al, pred;
486
487  /* Keep a local variable to avoid looking it up more than once */
488  workspace = coef->workspace;
489
490  /* Force some input to be done if we are getting ahead of the input. */
491  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
492	 ! cinfo->inputctl->eoi_reached) {
493    if (cinfo->input_scan_number == cinfo->output_scan_number) {
494      /* If input is working on current scan, we ordinarily want it to
495       * have completed the current row.  But if input scan is DC,
496       * we want it to keep one row ahead so that next block row's DC
497       * values are up to date.
498       */
499      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
500      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
501	break;
502    }
503    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
504      return JPEG_SUSPENDED;
505  }
506
507  /* OK, output from the virtual arrays. */
508  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
509       ci++, compptr++) {
510    /* Don't bother to IDCT an uninteresting component. */
511    if (! compptr->component_needed)
512      continue;
513    /* Count non-dummy DCT block rows in this iMCU row. */
514    if (cinfo->output_iMCU_row < last_iMCU_row) {
515      block_rows = compptr->v_samp_factor;
516      access_rows = block_rows * 2; /* this and next iMCU row */
517      last_row = FALSE;
518    } else {
519      /* NB: can't use last_row_height here; it is input-side-dependent! */
520      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
521      if (block_rows == 0) block_rows = compptr->v_samp_factor;
522      access_rows = block_rows; /* this iMCU row only */
523      last_row = TRUE;
524    }
525    /* Align the virtual buffer for this component. */
526    if (cinfo->output_iMCU_row > 0) {
527      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
528      buffer = (*cinfo->mem->access_virt_barray)
529	((j_common_ptr) cinfo, coef->whole_image[ci],
530	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
531	 (JDIMENSION) access_rows, FALSE);
532      buffer += compptr->v_samp_factor;	/* point to current iMCU row */
533      first_row = FALSE;
534    } else {
535      buffer = (*cinfo->mem->access_virt_barray)
536	((j_common_ptr) cinfo, coef->whole_image[ci],
537	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
538      first_row = TRUE;
539    }
540    /* Fetch component-dependent info */
541    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
542    quanttbl = compptr->quant_table;
543    Q00 = quanttbl->quantval[0];
544    Q01 = quanttbl->quantval[Q01_POS];
545    Q10 = quanttbl->quantval[Q10_POS];
546    Q20 = quanttbl->quantval[Q20_POS];
547    Q11 = quanttbl->quantval[Q11_POS];
548    Q02 = quanttbl->quantval[Q02_POS];
549    inverse_DCT = cinfo->idct->inverse_DCT[ci];
550    output_ptr = output_buf[ci];
551    /* Loop over all DCT blocks to be processed. */
552    for (block_row = 0; block_row < block_rows; block_row++) {
553      buffer_ptr = buffer[block_row];
554      if (first_row && block_row == 0)
555	prev_block_row = buffer_ptr;
556      else
557	prev_block_row = buffer[block_row-1];
558      if (last_row && block_row == block_rows-1)
559	next_block_row = buffer_ptr;
560      else
561	next_block_row = buffer[block_row+1];
562      /* We fetch the surrounding DC values using a sliding-register approach.
563       * Initialize all nine here so as to do the right thing on narrow pics.
564       */
565      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
566      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
567      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
568      output_col = 0;
569      last_block_column = compptr->width_in_blocks - 1;
570      for (block_num = 0; block_num <= last_block_column; block_num++) {
571	/* Fetch current DCT block into workspace so we can modify it. */
572	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
573	/* Update DC values */
574	if (block_num < last_block_column) {
575	  DC3 = (int) prev_block_row[1][0];
576	  DC6 = (int) buffer_ptr[1][0];
577	  DC9 = (int) next_block_row[1][0];
578	}
579	/* Compute coefficient estimates per K.8.
580	 * An estimate is applied only if coefficient is still zero,
581	 * and is not known to be fully accurate.
582	 */
583	/* AC01 */
584	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
585	  num = 36 * Q00 * (DC4 - DC6);
586	  if (num >= 0) {
587	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
588	    if (Al > 0 && pred >= (1<<Al))
589	      pred = (1<<Al)-1;
590	  } else {
591	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
592	    if (Al > 0 && pred >= (1<<Al))
593	      pred = (1<<Al)-1;
594	    pred = -pred;
595	  }
596	  workspace[1] = (JCOEF) pred;
597	}
598	/* AC10 */
599	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
600	  num = 36 * Q00 * (DC2 - DC8);
601	  if (num >= 0) {
602	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
603	    if (Al > 0 && pred >= (1<<Al))
604	      pred = (1<<Al)-1;
605	  } else {
606	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
607	    if (Al > 0 && pred >= (1<<Al))
608	      pred = (1<<Al)-1;
609	    pred = -pred;
610	  }
611	  workspace[8] = (JCOEF) pred;
612	}
613	/* AC20 */
614	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
615	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
616	  if (num >= 0) {
617	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
618	    if (Al > 0 && pred >= (1<<Al))
619	      pred = (1<<Al)-1;
620	  } else {
621	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
622	    if (Al > 0 && pred >= (1<<Al))
623	      pred = (1<<Al)-1;
624	    pred = -pred;
625	  }
626	  workspace[16] = (JCOEF) pred;
627	}
628	/* AC11 */
629	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
630	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
631	  if (num >= 0) {
632	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
633	    if (Al > 0 && pred >= (1<<Al))
634	      pred = (1<<Al)-1;
635	  } else {
636	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
637	    if (Al > 0 && pred >= (1<<Al))
638	      pred = (1<<Al)-1;
639	    pred = -pred;
640	  }
641	  workspace[9] = (JCOEF) pred;
642	}
643	/* AC02 */
644	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
645	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
646	  if (num >= 0) {
647	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
648	    if (Al > 0 && pred >= (1<<Al))
649	      pred = (1<<Al)-1;
650	  } else {
651	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
652	    if (Al > 0 && pred >= (1<<Al))
653	      pred = (1<<Al)-1;
654	    pred = -pred;
655	  }
656	  workspace[2] = (JCOEF) pred;
657	}
658	/* OK, do the IDCT */
659	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
660			output_ptr, output_col);
661	/* Advance for next column */
662	DC1 = DC2; DC2 = DC3;
663	DC4 = DC5; DC5 = DC6;
664	DC7 = DC8; DC8 = DC9;
665	buffer_ptr++, prev_block_row++, next_block_row++;
666	output_col += compptr->_DCT_scaled_size;
667      }
668      output_ptr += compptr->_DCT_scaled_size;
669    }
670  }
671
672  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
673    return JPEG_ROW_COMPLETED;
674  return JPEG_SCAN_COMPLETED;
675}
676
677#endif /* BLOCK_SMOOTHING_SUPPORTED */
678
679
680/*
681 * Initialize coefficient buffer controller.
682 */
683
684GLOBAL(void)
685jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
686{
687  my_coef_ptr coef;
688
689  coef = (my_coef_ptr)
690    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
691				SIZEOF(my_coef_controller));
692  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
693  coef->pub.start_input_pass = start_input_pass;
694  coef->pub.start_output_pass = start_output_pass;
695#ifdef BLOCK_SMOOTHING_SUPPORTED
696  coef->coef_bits_latch = NULL;
697#endif
698
699  /* Create the coefficient buffer. */
700  if (need_full_buffer) {
701#ifdef D_MULTISCAN_FILES_SUPPORTED
702    /* Allocate a full-image virtual array for each component, */
703    /* padded to a multiple of samp_factor DCT blocks in each direction. */
704    /* Note we ask for a pre-zeroed array. */
705    int ci, access_rows;
706    jpeg_component_info *compptr;
707
708    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
709	 ci++, compptr++) {
710      access_rows = compptr->v_samp_factor;
711#ifdef BLOCK_SMOOTHING_SUPPORTED
712      /* If block smoothing could be used, need a bigger window */
713      if (cinfo->progressive_mode)
714	access_rows *= 3;
715#endif
716      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
717	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
718	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
719				(long) compptr->h_samp_factor),
720	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
721				(long) compptr->v_samp_factor),
722	 (JDIMENSION) access_rows);
723    }
724    coef->pub.consume_data = consume_data;
725    coef->pub.decompress_data = decompress_data;
726    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
727#else
728    ERREXIT(cinfo, JERR_NOT_COMPILED);
729#endif
730  } else {
731    /* We only need a single-MCU buffer. */
732    JBLOCKROW buffer;
733    int i;
734
735    buffer = (JBLOCKROW)
736      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
737				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
738    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
739      coef->MCU_buffer[i] = buffer + i;
740    }
741    coef->pub.consume_data = dummy_consume_data;
742    coef->pub.decompress_data = decompress_onepass;
743    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
744  }
745
746  /* Allocate the workspace buffer */
747  coef->workspace = (JCOEF *)
748    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
749                                SIZEOF(JCOEF) * DCTSIZE2);
750}
751