1/*
2 * jquant1.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009, D. R. Commander
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains 1-pass color quantization (color mapping) routines.
11 * These routines provide mapping to a fixed color map using equally spaced
12 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
13 */
14
15#define JPEG_INTERNALS
16#include "jinclude.h"
17#include "jpeglib.h"
18
19#ifdef QUANT_1PASS_SUPPORTED
20
21
22/*
23 * The main purpose of 1-pass quantization is to provide a fast, if not very
24 * high quality, colormapped output capability.  A 2-pass quantizer usually
25 * gives better visual quality; however, for quantized grayscale output this
26 * quantizer is perfectly adequate.  Dithering is highly recommended with this
27 * quantizer, though you can turn it off if you really want to.
28 *
29 * In 1-pass quantization the colormap must be chosen in advance of seeing the
30 * image.  We use a map consisting of all combinations of Ncolors[i] color
31 * values for the i'th component.  The Ncolors[] values are chosen so that
32 * their product, the total number of colors, is no more than that requested.
33 * (In most cases, the product will be somewhat less.)
34 *
35 * Since the colormap is orthogonal, the representative value for each color
36 * component can be determined without considering the other components;
37 * then these indexes can be combined into a colormap index by a standard
38 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
39 * can be precalculated and stored in the lookup table colorindex[].
40 * colorindex[i][j] maps pixel value j in component i to the nearest
41 * representative value (grid plane) for that component; this index is
42 * multiplied by the array stride for component i, so that the
43 * index of the colormap entry closest to a given pixel value is just
44 *    sum( colorindex[component-number][pixel-component-value] )
45 * Aside from being fast, this scheme allows for variable spacing between
46 * representative values with no additional lookup cost.
47 *
48 * If gamma correction has been applied in color conversion, it might be wise
49 * to adjust the color grid spacing so that the representative colors are
50 * equidistant in linear space.  At this writing, gamma correction is not
51 * implemented by jdcolor, so nothing is done here.
52 */
53
54
55/* Declarations for ordered dithering.
56 *
57 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
58 * dithering is described in many references, for instance Dale Schumacher's
59 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
60 * In place of Schumacher's comparisons against a "threshold" value, we add a
61 * "dither" value to the input pixel and then round the result to the nearest
62 * output value.  The dither value is equivalent to (0.5 - threshold) times
63 * the distance between output values.  For ordered dithering, we assume that
64 * the output colors are equally spaced; if not, results will probably be
65 * worse, since the dither may be too much or too little at a given point.
66 *
67 * The normal calculation would be to form pixel value + dither, range-limit
68 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
69 * We can skip the separate range-limiting step by extending the colorindex
70 * table in both directions.
71 */
72
73#define ODITHER_SIZE  16	/* dimension of dither matrix */
74/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
75#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
76#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
77
78typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
79typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
80
81static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
82  /* Bayer's order-4 dither array.  Generated by the code given in
83   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
84   * The values in this array must range from 0 to ODITHER_CELLS-1.
85   */
86  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
87  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
88  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
89  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
90  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
91  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
92  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
93  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
94  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
95  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
96  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
97  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
98  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
99  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
100  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
101  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
102};
103
104
105/* Declarations for Floyd-Steinberg dithering.
106 *
107 * Errors are accumulated into the array fserrors[], at a resolution of
108 * 1/16th of a pixel count.  The error at a given pixel is propagated
109 * to its not-yet-processed neighbors using the standard F-S fractions,
110 *		...	(here)	7/16
111 *		3/16	5/16	1/16
112 * We work left-to-right on even rows, right-to-left on odd rows.
113 *
114 * We can get away with a single array (holding one row's worth of errors)
115 * by using it to store the current row's errors at pixel columns not yet
116 * processed, but the next row's errors at columns already processed.  We
117 * need only a few extra variables to hold the errors immediately around the
118 * current column.  (If we are lucky, those variables are in registers, but
119 * even if not, they're probably cheaper to access than array elements are.)
120 *
121 * The fserrors[] array is indexed [component#][position].
122 * We provide (#columns + 2) entries per component; the extra entry at each
123 * end saves us from special-casing the first and last pixels.
124 *
125 * Note: on a wide image, we might not have enough room in a PC's near data
126 * segment to hold the error array; so it is allocated with alloc_large.
127 */
128
129#if BITS_IN_JSAMPLE == 8
130typedef INT16 FSERROR;		/* 16 bits should be enough */
131typedef int LOCFSERROR;		/* use 'int' for calculation temps */
132#else
133typedef INT32 FSERROR;		/* may need more than 16 bits */
134typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
135#endif
136
137typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
138
139
140/* Private subobject */
141
142#define MAX_Q_COMPS 4		/* max components I can handle */
143
144typedef struct {
145  struct jpeg_color_quantizer pub; /* public fields */
146
147  /* Initially allocated colormap is saved here */
148  JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
149  int sv_actual;		/* number of entries in use */
150
151  JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
152  /* colorindex[i][j] = index of color closest to pixel value j in component i,
153   * premultiplied as described above.  Since colormap indexes must fit into
154   * JSAMPLEs, the entries of this array will too.
155   */
156  boolean is_padded;		/* is the colorindex padded for odither? */
157
158  int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
159
160  /* Variables for ordered dithering */
161  int row_index;		/* cur row's vertical index in dither matrix */
162  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
163
164  /* Variables for Floyd-Steinberg dithering */
165  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
166  boolean on_odd_row;		/* flag to remember which row we are on */
167} my_cquantizer;
168
169typedef my_cquantizer * my_cquantize_ptr;
170
171
172/*
173 * Policy-making subroutines for create_colormap and create_colorindex.
174 * These routines determine the colormap to be used.  The rest of the module
175 * only assumes that the colormap is orthogonal.
176 *
177 *  * select_ncolors decides how to divvy up the available colors
178 *    among the components.
179 *  * output_value defines the set of representative values for a component.
180 *  * largest_input_value defines the mapping from input values to
181 *    representative values for a component.
182 * Note that the latter two routines may impose different policies for
183 * different components, though this is not currently done.
184 */
185
186
187LOCAL(int)
188select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
189/* Determine allocation of desired colors to components, */
190/* and fill in Ncolors[] array to indicate choice. */
191/* Return value is total number of colors (product of Ncolors[] values). */
192{
193  int nc = cinfo->out_color_components; /* number of color components */
194  int max_colors = cinfo->desired_number_of_colors;
195  int total_colors, iroot, i, j;
196  boolean changed;
197  long temp;
198  int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
199  RGB_order[0] = rgb_green[cinfo->out_color_space];
200  RGB_order[1] = rgb_red[cinfo->out_color_space];
201  RGB_order[2] = rgb_blue[cinfo->out_color_space];
202
203  /* We can allocate at least the nc'th root of max_colors per component. */
204  /* Compute floor(nc'th root of max_colors). */
205  iroot = 1;
206  do {
207    iroot++;
208    temp = iroot;		/* set temp = iroot ** nc */
209    for (i = 1; i < nc; i++)
210      temp *= iroot;
211  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
212  iroot--;			/* now iroot = floor(root) */
213
214  /* Must have at least 2 color values per component */
215  if (iroot < 2)
216    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
217
218  /* Initialize to iroot color values for each component */
219  total_colors = 1;
220  for (i = 0; i < nc; i++) {
221    Ncolors[i] = iroot;
222    total_colors *= iroot;
223  }
224  /* We may be able to increment the count for one or more components without
225   * exceeding max_colors, though we know not all can be incremented.
226   * Sometimes, the first component can be incremented more than once!
227   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
228   * In RGB colorspace, try to increment G first, then R, then B.
229   */
230  do {
231    changed = FALSE;
232    for (i = 0; i < nc; i++) {
233      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
234      /* calculate new total_colors if Ncolors[j] is incremented */
235      temp = total_colors / Ncolors[j];
236      temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
237      if (temp > (long) max_colors)
238	break;			/* won't fit, done with this pass */
239      Ncolors[j]++;		/* OK, apply the increment */
240      total_colors = (int) temp;
241      changed = TRUE;
242    }
243  } while (changed);
244
245  return total_colors;
246}
247
248
249LOCAL(int)
250output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
251/* Return j'th output value, where j will range from 0 to maxj */
252/* The output values must fall in 0..MAXJSAMPLE in increasing order */
253{
254  /* We always provide values 0 and MAXJSAMPLE for each component;
255   * any additional values are equally spaced between these limits.
256   * (Forcing the upper and lower values to the limits ensures that
257   * dithering can't produce a color outside the selected gamut.)
258   */
259  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
260}
261
262
263LOCAL(int)
264largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
265/* Return largest input value that should map to j'th output value */
266/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
267{
268  /* Breakpoints are halfway between values returned by output_value */
269  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
270}
271
272
273/*
274 * Create the colormap.
275 */
276
277LOCAL(void)
278create_colormap (j_decompress_ptr cinfo)
279{
280  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
281  JSAMPARRAY colormap;		/* Created colormap */
282  int total_colors;		/* Number of distinct output colors */
283  int i,j,k, nci, blksize, blkdist, ptr, val;
284
285  /* Select number of colors for each component */
286  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
287
288  /* Report selected color counts */
289  if (cinfo->out_color_components == 3)
290    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
291	     total_colors, cquantize->Ncolors[0],
292	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
293  else
294    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
295
296  /* Allocate and fill in the colormap. */
297  /* The colors are ordered in the map in standard row-major order, */
298  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
299
300  colormap = (*cinfo->mem->alloc_sarray)
301    ((j_common_ptr) cinfo, JPOOL_IMAGE,
302     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
303
304  /* blksize is number of adjacent repeated entries for a component */
305  /* blkdist is distance between groups of identical entries for a component */
306  blkdist = total_colors;
307
308  for (i = 0; i < cinfo->out_color_components; i++) {
309    /* fill in colormap entries for i'th color component */
310    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
311    blksize = blkdist / nci;
312    for (j = 0; j < nci; j++) {
313      /* Compute j'th output value (out of nci) for component */
314      val = output_value(cinfo, i, j, nci-1);
315      /* Fill in all colormap entries that have this value of this component */
316      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
317	/* fill in blksize entries beginning at ptr */
318	for (k = 0; k < blksize; k++)
319	  colormap[i][ptr+k] = (JSAMPLE) val;
320      }
321    }
322    blkdist = blksize;		/* blksize of this color is blkdist of next */
323  }
324
325  /* Save the colormap in private storage,
326   * where it will survive color quantization mode changes.
327   */
328  cquantize->sv_colormap = colormap;
329  cquantize->sv_actual = total_colors;
330}
331
332
333/*
334 * Create the color index table.
335 */
336
337LOCAL(void)
338create_colorindex (j_decompress_ptr cinfo)
339{
340  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
341  JSAMPROW indexptr;
342  int i,j,k, nci, blksize, val, pad;
343
344  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
345   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
346   * This is not necessary in the other dithering modes.  However, we
347   * flag whether it was done in case user changes dithering mode.
348   */
349  if (cinfo->dither_mode == JDITHER_ORDERED) {
350    pad = MAXJSAMPLE*2;
351    cquantize->is_padded = TRUE;
352  } else {
353    pad = 0;
354    cquantize->is_padded = FALSE;
355  }
356
357  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
358    ((j_common_ptr) cinfo, JPOOL_IMAGE,
359     (JDIMENSION) (MAXJSAMPLE+1 + pad),
360     (JDIMENSION) cinfo->out_color_components);
361
362  /* blksize is number of adjacent repeated entries for a component */
363  blksize = cquantize->sv_actual;
364
365  for (i = 0; i < cinfo->out_color_components; i++) {
366    /* fill in colorindex entries for i'th color component */
367    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
368    blksize = blksize / nci;
369
370    /* adjust colorindex pointers to provide padding at negative indexes. */
371    if (pad)
372      cquantize->colorindex[i] += MAXJSAMPLE;
373
374    /* in loop, val = index of current output value, */
375    /* and k = largest j that maps to current val */
376    indexptr = cquantize->colorindex[i];
377    val = 0;
378    k = largest_input_value(cinfo, i, 0, nci-1);
379    for (j = 0; j <= MAXJSAMPLE; j++) {
380      while (j > k)		/* advance val if past boundary */
381	k = largest_input_value(cinfo, i, ++val, nci-1);
382      /* premultiply so that no multiplication needed in main processing */
383      indexptr[j] = (JSAMPLE) (val * blksize);
384    }
385    /* Pad at both ends if necessary */
386    if (pad)
387      for (j = 1; j <= MAXJSAMPLE; j++) {
388	indexptr[-j] = indexptr[0];
389	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
390      }
391  }
392}
393
394
395/*
396 * Create an ordered-dither array for a component having ncolors
397 * distinct output values.
398 */
399
400LOCAL(ODITHER_MATRIX_PTR)
401make_odither_array (j_decompress_ptr cinfo, int ncolors)
402{
403  ODITHER_MATRIX_PTR odither;
404  int j,k;
405  INT32 num,den;
406
407  odither = (ODITHER_MATRIX_PTR)
408    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
409				SIZEOF(ODITHER_MATRIX));
410  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
411   * Hence the dither value for the matrix cell with fill order f
412   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
413   * On 16-bit-int machine, be careful to avoid overflow.
414   */
415  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
416  for (j = 0; j < ODITHER_SIZE; j++) {
417    for (k = 0; k < ODITHER_SIZE; k++) {
418      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
419	    * MAXJSAMPLE;
420      /* Ensure round towards zero despite C's lack of consistency
421       * about rounding negative values in integer division...
422       */
423      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
424    }
425  }
426  return odither;
427}
428
429
430/*
431 * Create the ordered-dither tables.
432 * Components having the same number of representative colors may
433 * share a dither table.
434 */
435
436LOCAL(void)
437create_odither_tables (j_decompress_ptr cinfo)
438{
439  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
440  ODITHER_MATRIX_PTR odither;
441  int i, j, nci;
442
443  for (i = 0; i < cinfo->out_color_components; i++) {
444    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
445    odither = NULL;		/* search for matching prior component */
446    for (j = 0; j < i; j++) {
447      if (nci == cquantize->Ncolors[j]) {
448	odither = cquantize->odither[j];
449	break;
450      }
451    }
452    if (odither == NULL)	/* need a new table? */
453      odither = make_odither_array(cinfo, nci);
454    cquantize->odither[i] = odither;
455  }
456}
457
458
459/*
460 * Map some rows of pixels to the output colormapped representation.
461 */
462
463METHODDEF(void)
464color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
465		JSAMPARRAY output_buf, int num_rows)
466/* General case, no dithering */
467{
468  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
469  JSAMPARRAY colorindex = cquantize->colorindex;
470  register int pixcode, ci;
471  register JSAMPROW ptrin, ptrout;
472  int row;
473  JDIMENSION col;
474  JDIMENSION width = cinfo->output_width;
475  register int nc = cinfo->out_color_components;
476
477  for (row = 0; row < num_rows; row++) {
478    ptrin = input_buf[row];
479    ptrout = output_buf[row];
480    for (col = width; col > 0; col--) {
481      pixcode = 0;
482      for (ci = 0; ci < nc; ci++) {
483	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
484      }
485      *ptrout++ = (JSAMPLE) pixcode;
486    }
487  }
488}
489
490
491METHODDEF(void)
492color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
493		 JSAMPARRAY output_buf, int num_rows)
494/* Fast path for out_color_components==3, no dithering */
495{
496  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
497  register int pixcode;
498  register JSAMPROW ptrin, ptrout;
499  JSAMPROW colorindex0 = cquantize->colorindex[0];
500  JSAMPROW colorindex1 = cquantize->colorindex[1];
501  JSAMPROW colorindex2 = cquantize->colorindex[2];
502  int row;
503  JDIMENSION col;
504  JDIMENSION width = cinfo->output_width;
505
506  for (row = 0; row < num_rows; row++) {
507    ptrin = input_buf[row];
508    ptrout = output_buf[row];
509    for (col = width; col > 0; col--) {
510      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
511      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
512      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
513      *ptrout++ = (JSAMPLE) pixcode;
514    }
515  }
516}
517
518
519METHODDEF(void)
520quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
521		     JSAMPARRAY output_buf, int num_rows)
522/* General case, with ordered dithering */
523{
524  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
525  register JSAMPROW input_ptr;
526  register JSAMPROW output_ptr;
527  JSAMPROW colorindex_ci;
528  int * dither;			/* points to active row of dither matrix */
529  int row_index, col_index;	/* current indexes into dither matrix */
530  int nc = cinfo->out_color_components;
531  int ci;
532  int row;
533  JDIMENSION col;
534  JDIMENSION width = cinfo->output_width;
535
536  for (row = 0; row < num_rows; row++) {
537    /* Initialize output values to 0 so can process components separately */
538    jzero_far((void FAR *) output_buf[row],
539	      (size_t) (width * SIZEOF(JSAMPLE)));
540    row_index = cquantize->row_index;
541    for (ci = 0; ci < nc; ci++) {
542      input_ptr = input_buf[row] + ci;
543      output_ptr = output_buf[row];
544      colorindex_ci = cquantize->colorindex[ci];
545      dither = cquantize->odither[ci][row_index];
546      col_index = 0;
547
548      for (col = width; col > 0; col--) {
549	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
550	 * select output value, accumulate into output code for this pixel.
551	 * Range-limiting need not be done explicitly, as we have extended
552	 * the colorindex table to produce the right answers for out-of-range
553	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
554	 * required amount of padding.
555	 */
556	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
557	input_ptr += nc;
558	output_ptr++;
559	col_index = (col_index + 1) & ODITHER_MASK;
560      }
561    }
562    /* Advance row index for next row */
563    row_index = (row_index + 1) & ODITHER_MASK;
564    cquantize->row_index = row_index;
565  }
566}
567
568
569METHODDEF(void)
570quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
571		      JSAMPARRAY output_buf, int num_rows)
572/* Fast path for out_color_components==3, with ordered dithering */
573{
574  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
575  register int pixcode;
576  register JSAMPROW input_ptr;
577  register JSAMPROW output_ptr;
578  JSAMPROW colorindex0 = cquantize->colorindex[0];
579  JSAMPROW colorindex1 = cquantize->colorindex[1];
580  JSAMPROW colorindex2 = cquantize->colorindex[2];
581  int * dither0;		/* points to active row of dither matrix */
582  int * dither1;
583  int * dither2;
584  int row_index, col_index;	/* current indexes into dither matrix */
585  int row;
586  JDIMENSION col;
587  JDIMENSION width = cinfo->output_width;
588
589  for (row = 0; row < num_rows; row++) {
590    row_index = cquantize->row_index;
591    input_ptr = input_buf[row];
592    output_ptr = output_buf[row];
593    dither0 = cquantize->odither[0][row_index];
594    dither1 = cquantize->odither[1][row_index];
595    dither2 = cquantize->odither[2][row_index];
596    col_index = 0;
597
598    for (col = width; col > 0; col--) {
599      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
600					dither0[col_index]]);
601      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
602					dither1[col_index]]);
603      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
604					dither2[col_index]]);
605      *output_ptr++ = (JSAMPLE) pixcode;
606      col_index = (col_index + 1) & ODITHER_MASK;
607    }
608    row_index = (row_index + 1) & ODITHER_MASK;
609    cquantize->row_index = row_index;
610  }
611}
612
613
614METHODDEF(void)
615quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
616		    JSAMPARRAY output_buf, int num_rows)
617/* General case, with Floyd-Steinberg dithering */
618{
619  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
620  register LOCFSERROR cur;	/* current error or pixel value */
621  LOCFSERROR belowerr;		/* error for pixel below cur */
622  LOCFSERROR bpreverr;		/* error for below/prev col */
623  LOCFSERROR bnexterr;		/* error for below/next col */
624  LOCFSERROR delta;
625  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
626  register JSAMPROW input_ptr;
627  register JSAMPROW output_ptr;
628  JSAMPROW colorindex_ci;
629  JSAMPROW colormap_ci;
630  int pixcode;
631  int nc = cinfo->out_color_components;
632  int dir;			/* 1 for left-to-right, -1 for right-to-left */
633  int dirnc;			/* dir * nc */
634  int ci;
635  int row;
636  JDIMENSION col;
637  JDIMENSION width = cinfo->output_width;
638  JSAMPLE *range_limit = cinfo->sample_range_limit;
639  SHIFT_TEMPS
640
641  for (row = 0; row < num_rows; row++) {
642    /* Initialize output values to 0 so can process components separately */
643    jzero_far((void FAR *) output_buf[row],
644	      (size_t) (width * SIZEOF(JSAMPLE)));
645    for (ci = 0; ci < nc; ci++) {
646      input_ptr = input_buf[row] + ci;
647      output_ptr = output_buf[row];
648      if (cquantize->on_odd_row) {
649	/* work right to left in this row */
650	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
651	output_ptr += width-1;
652	dir = -1;
653	dirnc = -nc;
654	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
655      } else {
656	/* work left to right in this row */
657	dir = 1;
658	dirnc = nc;
659	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
660      }
661      colorindex_ci = cquantize->colorindex[ci];
662      colormap_ci = cquantize->sv_colormap[ci];
663      /* Preset error values: no error propagated to first pixel from left */
664      cur = 0;
665      /* and no error propagated to row below yet */
666      belowerr = bpreverr = 0;
667
668      for (col = width; col > 0; col--) {
669	/* cur holds the error propagated from the previous pixel on the
670	 * current line.  Add the error propagated from the previous line
671	 * to form the complete error correction term for this pixel, and
672	 * round the error term (which is expressed * 16) to an integer.
673	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
674	 * for either sign of the error value.
675	 * Note: errorptr points to *previous* column's array entry.
676	 */
677	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
678	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
679	 * The maximum error is +- MAXJSAMPLE; this sets the required size
680	 * of the range_limit array.
681	 */
682	cur += GETJSAMPLE(*input_ptr);
683	cur = GETJSAMPLE(range_limit[cur]);
684	/* Select output value, accumulate into output code for this pixel */
685	pixcode = GETJSAMPLE(colorindex_ci[cur]);
686	*output_ptr += (JSAMPLE) pixcode;
687	/* Compute actual representation error at this pixel */
688	/* Note: we can do this even though we don't have the final */
689	/* pixel code, because the colormap is orthogonal. */
690	cur -= GETJSAMPLE(colormap_ci[pixcode]);
691	/* Compute error fractions to be propagated to adjacent pixels.
692	 * Add these into the running sums, and simultaneously shift the
693	 * next-line error sums left by 1 column.
694	 */
695	bnexterr = cur;
696	delta = cur * 2;
697	cur += delta;		/* form error * 3 */
698	errorptr[0] = (FSERROR) (bpreverr + cur);
699	cur += delta;		/* form error * 5 */
700	bpreverr = belowerr + cur;
701	belowerr = bnexterr;
702	cur += delta;		/* form error * 7 */
703	/* At this point cur contains the 7/16 error value to be propagated
704	 * to the next pixel on the current line, and all the errors for the
705	 * next line have been shifted over. We are therefore ready to move on.
706	 */
707	input_ptr += dirnc;	/* advance input ptr to next column */
708	output_ptr += dir;	/* advance output ptr to next column */
709	errorptr += dir;	/* advance errorptr to current column */
710      }
711      /* Post-loop cleanup: we must unload the final error value into the
712       * final fserrors[] entry.  Note we need not unload belowerr because
713       * it is for the dummy column before or after the actual array.
714       */
715      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
716    }
717    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
718  }
719}
720
721
722/*
723 * Allocate workspace for Floyd-Steinberg errors.
724 */
725
726LOCAL(void)
727alloc_fs_workspace (j_decompress_ptr cinfo)
728{
729  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
730  size_t arraysize;
731  int i;
732
733  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
734  for (i = 0; i < cinfo->out_color_components; i++) {
735    cquantize->fserrors[i] = (FSERRPTR)
736      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
737  }
738}
739
740
741/*
742 * Initialize for one-pass color quantization.
743 */
744
745METHODDEF(void)
746start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
747{
748  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
749  size_t arraysize;
750  int i;
751
752  /* Install my colormap. */
753  cinfo->colormap = cquantize->sv_colormap;
754  cinfo->actual_number_of_colors = cquantize->sv_actual;
755
756  /* Initialize for desired dithering mode. */
757  switch (cinfo->dither_mode) {
758  case JDITHER_NONE:
759    if (cinfo->out_color_components == 3)
760      cquantize->pub.color_quantize = color_quantize3;
761    else
762      cquantize->pub.color_quantize = color_quantize;
763    break;
764  case JDITHER_ORDERED:
765    if (cinfo->out_color_components == 3)
766      cquantize->pub.color_quantize = quantize3_ord_dither;
767    else
768      cquantize->pub.color_quantize = quantize_ord_dither;
769    cquantize->row_index = 0;	/* initialize state for ordered dither */
770    /* If user changed to ordered dither from another mode,
771     * we must recreate the color index table with padding.
772     * This will cost extra space, but probably isn't very likely.
773     */
774    if (! cquantize->is_padded)
775      create_colorindex(cinfo);
776    /* Create ordered-dither tables if we didn't already. */
777    if (cquantize->odither[0] == NULL)
778      create_odither_tables(cinfo);
779    break;
780  case JDITHER_FS:
781    cquantize->pub.color_quantize = quantize_fs_dither;
782    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
783    /* Allocate Floyd-Steinberg workspace if didn't already. */
784    if (cquantize->fserrors[0] == NULL)
785      alloc_fs_workspace(cinfo);
786    /* Initialize the propagated errors to zero. */
787    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
788    for (i = 0; i < cinfo->out_color_components; i++)
789      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
790    break;
791  default:
792    ERREXIT(cinfo, JERR_NOT_COMPILED);
793    break;
794  }
795}
796
797
798/*
799 * Finish up at the end of the pass.
800 */
801
802METHODDEF(void)
803finish_pass_1_quant (j_decompress_ptr cinfo)
804{
805  /* no work in 1-pass case */
806}
807
808
809/*
810 * Switch to a new external colormap between output passes.
811 * Shouldn't get to this module!
812 */
813
814METHODDEF(void)
815new_color_map_1_quant (j_decompress_ptr cinfo)
816{
817  ERREXIT(cinfo, JERR_MODE_CHANGE);
818}
819
820
821/*
822 * Module initialization routine for 1-pass color quantization.
823 */
824
825GLOBAL(void)
826jinit_1pass_quantizer (j_decompress_ptr cinfo)
827{
828  my_cquantize_ptr cquantize;
829
830  cquantize = (my_cquantize_ptr)
831    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
832				SIZEOF(my_cquantizer));
833  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
834  cquantize->pub.start_pass = start_pass_1_quant;
835  cquantize->pub.finish_pass = finish_pass_1_quant;
836  cquantize->pub.new_color_map = new_color_map_1_quant;
837  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
838  cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
839
840  /* Make sure my internal arrays won't overflow */
841  if (cinfo->out_color_components > MAX_Q_COMPS)
842    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
843  /* Make sure colormap indexes can be represented by JSAMPLEs */
844  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
845    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
846
847  /* Create the colormap and color index table. */
848  create_colormap(cinfo);
849  create_colorindex(cinfo);
850
851  /* Allocate Floyd-Steinberg workspace now if requested.
852   * We do this now since it is FAR storage and may affect the memory
853   * manager's space calculations.  If the user changes to FS dither
854   * mode in a later pass, we will allocate the space then, and will
855   * possibly overrun the max_memory_to_use setting.
856   */
857  if (cinfo->dither_mode == JDITHER_FS)
858    alloc_fs_workspace(cinfo);
859}
860
861#endif /* QUANT_1PASS_SUPPORTED */
862