1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "./vpx_config.h"
12#include "vp9/common/vp9_loopfilter.h"
13#include "vp9/common/vp9_onyxc_int.h"
14#include "vp9/common/vp9_reconinter.h"
15#include "vpx_mem/vpx_mem.h"
16
17#include "vp9/common/vp9_seg_common.h"
18
19// 64 bit masks for left transform size. Each 1 represents a position where
20// we should apply a loop filter across the left border of an 8x8 block
21// boundary.
22//
23// In the case of TX_16X16->  ( in low order byte first we end up with
24// a mask that looks like this
25//
26//    10101010
27//    10101010
28//    10101010
29//    10101010
30//    10101010
31//    10101010
32//    10101010
33//    10101010
34//
35// A loopfilter should be applied to every other 8x8 horizontally.
36static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
37  0xffffffffffffffff,  // TX_4X4
38  0xffffffffffffffff,  // TX_8x8
39  0x5555555555555555,  // TX_16x16
40  0x1111111111111111,  // TX_32x32
41};
42
43// 64 bit masks for above transform size. Each 1 represents a position where
44// we should apply a loop filter across the top border of an 8x8 block
45// boundary.
46//
47// In the case of TX_32x32 ->  ( in low order byte first we end up with
48// a mask that looks like this
49//
50//    11111111
51//    00000000
52//    00000000
53//    00000000
54//    11111111
55//    00000000
56//    00000000
57//    00000000
58//
59// A loopfilter should be applied to every other 4 the row vertically.
60static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
61  0xffffffffffffffff,  // TX_4X4
62  0xffffffffffffffff,  // TX_8x8
63  0x00ff00ff00ff00ff,  // TX_16x16
64  0x000000ff000000ff,  // TX_32x32
65};
66
67// 64 bit masks for prediction sizes (left). Each 1 represents a position
68// where left border of an 8x8 block. These are aligned to the right most
69// appropriate bit, and then shifted into place.
70//
71// In the case of TX_16x32 ->  ( low order byte first ) we end up with
72// a mask that looks like this :
73//
74//  10000000
75//  10000000
76//  10000000
77//  10000000
78//  00000000
79//  00000000
80//  00000000
81//  00000000
82static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
83  0x0000000000000001,  // BLOCK_4X4,
84  0x0000000000000001,  // BLOCK_4X8,
85  0x0000000000000001,  // BLOCK_8X4,
86  0x0000000000000001,  // BLOCK_8X8,
87  0x0000000000000101,  // BLOCK_8X16,
88  0x0000000000000001,  // BLOCK_16X8,
89  0x0000000000000101,  // BLOCK_16X16,
90  0x0000000001010101,  // BLOCK_16X32,
91  0x0000000000000101,  // BLOCK_32X16,
92  0x0000000001010101,  // BLOCK_32X32,
93  0x0101010101010101,  // BLOCK_32X64,
94  0x0000000001010101,  // BLOCK_64X32,
95  0x0101010101010101,  // BLOCK_64X64
96};
97
98// 64 bit mask to shift and set for each prediction size.
99static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
100  0x0000000000000001,  // BLOCK_4X4
101  0x0000000000000001,  // BLOCK_4X8
102  0x0000000000000001,  // BLOCK_8X4
103  0x0000000000000001,  // BLOCK_8X8
104  0x0000000000000001,  // BLOCK_8X16,
105  0x0000000000000003,  // BLOCK_16X8
106  0x0000000000000003,  // BLOCK_16X16
107  0x0000000000000003,  // BLOCK_16X32,
108  0x000000000000000f,  // BLOCK_32X16,
109  0x000000000000000f,  // BLOCK_32X32,
110  0x000000000000000f,  // BLOCK_32X64,
111  0x00000000000000ff,  // BLOCK_64X32,
112  0x00000000000000ff,  // BLOCK_64X64
113};
114// 64 bit mask to shift and set for each prediction size. A bit is set for
115// each 8x8 block that would be in the left most block of the given block
116// size in the 64x64 block.
117static const uint64_t size_mask[BLOCK_SIZES] = {
118  0x0000000000000001,  // BLOCK_4X4
119  0x0000000000000001,  // BLOCK_4X8
120  0x0000000000000001,  // BLOCK_8X4
121  0x0000000000000001,  // BLOCK_8X8
122  0x0000000000000101,  // BLOCK_8X16,
123  0x0000000000000003,  // BLOCK_16X8
124  0x0000000000000303,  // BLOCK_16X16
125  0x0000000003030303,  // BLOCK_16X32,
126  0x0000000000000f0f,  // BLOCK_32X16,
127  0x000000000f0f0f0f,  // BLOCK_32X32,
128  0x0f0f0f0f0f0f0f0f,  // BLOCK_32X64,
129  0x00000000ffffffff,  // BLOCK_64X32,
130  0xffffffffffffffff,  // BLOCK_64X64
131};
132
133// These are used for masking the left and above borders.
134static const uint64_t left_border =  0x1111111111111111;
135static const uint64_t above_border = 0x000000ff000000ff;
136
137// 16 bit masks for uv transform sizes.
138static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
139  0xffff,  // TX_4X4
140  0xffff,  // TX_8x8
141  0x5555,  // TX_16x16
142  0x1111,  // TX_32x32
143};
144
145static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
146  0xffff,  // TX_4X4
147  0xffff,  // TX_8x8
148  0x0f0f,  // TX_16x16
149  0x000f,  // TX_32x32
150};
151
152// 16 bit left mask to shift and set for each uv prediction size.
153static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
154  0x0001,  // BLOCK_4X4,
155  0x0001,  // BLOCK_4X8,
156  0x0001,  // BLOCK_8X4,
157  0x0001,  // BLOCK_8X8,
158  0x0001,  // BLOCK_8X16,
159  0x0001,  // BLOCK_16X8,
160  0x0001,  // BLOCK_16X16,
161  0x0011,  // BLOCK_16X32,
162  0x0001,  // BLOCK_32X16,
163  0x0011,  // BLOCK_32X32,
164  0x1111,  // BLOCK_32X64
165  0x0011,  // BLOCK_64X32,
166  0x1111,  // BLOCK_64X64
167};
168// 16 bit above mask to shift and set for uv each prediction size.
169static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
170  0x0001,  // BLOCK_4X4
171  0x0001,  // BLOCK_4X8
172  0x0001,  // BLOCK_8X4
173  0x0001,  // BLOCK_8X8
174  0x0001,  // BLOCK_8X16,
175  0x0001,  // BLOCK_16X8
176  0x0001,  // BLOCK_16X16
177  0x0001,  // BLOCK_16X32,
178  0x0003,  // BLOCK_32X16,
179  0x0003,  // BLOCK_32X32,
180  0x0003,  // BLOCK_32X64,
181  0x000f,  // BLOCK_64X32,
182  0x000f,  // BLOCK_64X64
183};
184
185// 64 bit mask to shift and set for each uv prediction size
186static const uint16_t size_mask_uv[BLOCK_SIZES] = {
187  0x0001,  // BLOCK_4X4
188  0x0001,  // BLOCK_4X8
189  0x0001,  // BLOCK_8X4
190  0x0001,  // BLOCK_8X8
191  0x0001,  // BLOCK_8X16,
192  0x0001,  // BLOCK_16X8
193  0x0001,  // BLOCK_16X16
194  0x0011,  // BLOCK_16X32,
195  0x0003,  // BLOCK_32X16,
196  0x0033,  // BLOCK_32X32,
197  0x3333,  // BLOCK_32X64,
198  0x00ff,  // BLOCK_64X32,
199  0xffff,  // BLOCK_64X64
200};
201static const uint16_t left_border_uv =  0x1111;
202static const uint16_t above_border_uv = 0x000f;
203
204static const int mode_lf_lut[MB_MODE_COUNT] = {
205  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // INTRA_MODES
206  1, 1, 0, 1                     // INTER_MODES (ZEROMV == 0)
207};
208
209static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
210  int lvl;
211
212  // For each possible value for the loop filter fill out limits
213  for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
214    // Set loop filter parameters that control sharpness.
215    int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
216
217    if (sharpness_lvl > 0) {
218      if (block_inside_limit > (9 - sharpness_lvl))
219        block_inside_limit = (9 - sharpness_lvl);
220    }
221
222    if (block_inside_limit < 1)
223      block_inside_limit = 1;
224
225    vpx_memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
226    vpx_memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
227               SIMD_WIDTH);
228  }
229}
230
231static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
232                                const MB_MODE_INFO *mbmi) {
233  return lfi_n->lvl[mbmi->segment_id][mbmi->ref_frame[0]]
234                   [mode_lf_lut[mbmi->mode]];
235}
236
237void vp9_loop_filter_init(VP9_COMMON *cm) {
238  loop_filter_info_n *lfi = &cm->lf_info;
239  struct loopfilter *lf = &cm->lf;
240  int lvl;
241
242  // init limits for given sharpness
243  update_sharpness(lfi, lf->sharpness_level);
244  lf->last_sharpness_level = lf->sharpness_level;
245
246  // init hev threshold const vectors
247  for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
248    vpx_memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
249}
250
251void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
252  int seg_id;
253  // n_shift is the multiplier for lf_deltas
254  // the multiplier is 1 for when filter_lvl is between 0 and 31;
255  // 2 when filter_lvl is between 32 and 63
256  const int scale = 1 << (default_filt_lvl >> 5);
257  loop_filter_info_n *const lfi = &cm->lf_info;
258  struct loopfilter *const lf = &cm->lf;
259  const struct segmentation *const seg = &cm->seg;
260
261  // update limits if sharpness has changed
262  if (lf->last_sharpness_level != lf->sharpness_level) {
263    update_sharpness(lfi, lf->sharpness_level);
264    lf->last_sharpness_level = lf->sharpness_level;
265  }
266
267  for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
268    int lvl_seg = default_filt_lvl;
269    if (vp9_segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
270      const int data = vp9_get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
271      lvl_seg = clamp(seg->abs_delta == SEGMENT_ABSDATA ?
272                      data : default_filt_lvl + data,
273                      0, MAX_LOOP_FILTER);
274    }
275
276    if (!lf->mode_ref_delta_enabled) {
277      // we could get rid of this if we assume that deltas are set to
278      // zero when not in use; encoder always uses deltas
279      vpx_memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
280    } else {
281      int ref, mode;
282      const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
283      lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
284
285      for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
286        for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
287          const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale
288                                        + lf->mode_deltas[mode] * scale;
289          lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
290        }
291      }
292    }
293  }
294}
295
296static void filter_selectively_vert_row2(PLANE_TYPE plane_type,
297                                         uint8_t *s, int pitch,
298                                         unsigned int mask_16x16_l,
299                                         unsigned int mask_8x8_l,
300                                         unsigned int mask_4x4_l,
301                                         unsigned int mask_4x4_int_l,
302                                         const loop_filter_info_n *lfi_n,
303                                         const uint8_t *lfl) {
304  const int mask_shift = plane_type ? 4 : 8;
305  const int mask_cutoff = plane_type ? 0xf : 0xff;
306  const int lfl_forward = plane_type ? 4 : 8;
307
308  unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
309  unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
310  unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
311  unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
312  unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
313  unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
314  unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
315  unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
316  unsigned int mask;
317
318  for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
319              mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
320       mask; mask >>= 1) {
321    const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
322    const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
323
324    // TODO(yunqingwang): count in loopfilter functions should be removed.
325    if (mask & 1) {
326      if ((mask_16x16_0 | mask_16x16_1) & 1) {
327        if ((mask_16x16_0 & mask_16x16_1) & 1) {
328          vp9_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
329                                   lfi0->hev_thr);
330        } else if (mask_16x16_0 & 1) {
331          vp9_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim,
332                              lfi0->hev_thr);
333        } else {
334          vp9_lpf_vertical_16(s + 8 *pitch, pitch, lfi1->mblim,
335                              lfi1->lim, lfi1->hev_thr);
336        }
337      }
338
339      if ((mask_8x8_0 | mask_8x8_1) & 1) {
340        if ((mask_8x8_0 & mask_8x8_1) & 1) {
341          vp9_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
342                                  lfi0->hev_thr, lfi1->mblim, lfi1->lim,
343                                  lfi1->hev_thr);
344        } else if (mask_8x8_0 & 1) {
345          vp9_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
346                             1);
347        } else {
348          vp9_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
349                             lfi1->hev_thr, 1);
350        }
351      }
352
353      if ((mask_4x4_0 | mask_4x4_1) & 1) {
354        if ((mask_4x4_0 & mask_4x4_1) & 1) {
355          vp9_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
356                                  lfi0->hev_thr, lfi1->mblim, lfi1->lim,
357                                  lfi1->hev_thr);
358        } else if (mask_4x4_0 & 1) {
359          vp9_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
360                             1);
361        } else {
362          vp9_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
363                             lfi1->hev_thr, 1);
364        }
365      }
366
367      if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
368        if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
369          vp9_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
370                                  lfi0->hev_thr, lfi1->mblim, lfi1->lim,
371                                  lfi1->hev_thr);
372        } else if (mask_4x4_int_0 & 1) {
373          vp9_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
374                             lfi0->hev_thr, 1);
375        } else {
376          vp9_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim,
377                             lfi1->hev_thr, 1);
378        }
379      }
380    }
381
382    s += 8;
383    lfl += 1;
384    mask_16x16_0 >>= 1;
385    mask_8x8_0 >>= 1;
386    mask_4x4_0 >>= 1;
387    mask_4x4_int_0 >>= 1;
388    mask_16x16_1 >>= 1;
389    mask_8x8_1 >>= 1;
390    mask_4x4_1 >>= 1;
391    mask_4x4_int_1 >>= 1;
392  }
393}
394
395static void filter_selectively_horiz(uint8_t *s, int pitch,
396                                     unsigned int mask_16x16,
397                                     unsigned int mask_8x8,
398                                     unsigned int mask_4x4,
399                                     unsigned int mask_4x4_int,
400                                     const loop_filter_info_n *lfi_n,
401                                     const uint8_t *lfl) {
402  unsigned int mask;
403  int count;
404
405  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
406       mask; mask >>= count) {
407    const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
408
409    count = 1;
410    if (mask & 1) {
411      if (mask_16x16 & 1) {
412        if ((mask_16x16 & 3) == 3) {
413          vp9_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
414                                lfi->hev_thr, 2);
415          count = 2;
416        } else {
417          vp9_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
418                                lfi->hev_thr, 1);
419        }
420      } else if (mask_8x8 & 1) {
421        if ((mask_8x8 & 3) == 3) {
422          // Next block's thresholds
423          const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
424
425          vp9_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
426                                    lfi->hev_thr, lfin->mblim, lfin->lim,
427                                    lfin->hev_thr);
428
429          if ((mask_4x4_int & 3) == 3) {
430            vp9_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
431                                      lfi->lim, lfi->hev_thr, lfin->mblim,
432                                      lfin->lim, lfin->hev_thr);
433          } else {
434            if (mask_4x4_int & 1)
435              vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
436                                   lfi->hev_thr, 1);
437            else if (mask_4x4_int & 2)
438              vp9_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
439                                   lfin->lim, lfin->hev_thr, 1);
440          }
441          count = 2;
442        } else {
443          vp9_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
444
445          if (mask_4x4_int & 1)
446            vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
447                                 lfi->hev_thr, 1);
448        }
449      } else if (mask_4x4 & 1) {
450        if ((mask_4x4 & 3) == 3) {
451          // Next block's thresholds
452          const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
453
454          vp9_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
455                                    lfi->hev_thr, lfin->mblim, lfin->lim,
456                                    lfin->hev_thr);
457          if ((mask_4x4_int & 3) == 3) {
458            vp9_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
459                                      lfi->lim, lfi->hev_thr, lfin->mblim,
460                                      lfin->lim, lfin->hev_thr);
461          } else {
462            if (mask_4x4_int & 1)
463              vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
464                                   lfi->hev_thr, 1);
465            else if (mask_4x4_int & 2)
466              vp9_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
467                                   lfin->lim, lfin->hev_thr, 1);
468          }
469          count = 2;
470        } else {
471          vp9_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
472
473          if (mask_4x4_int & 1)
474            vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
475                                 lfi->hev_thr, 1);
476        }
477      } else if (mask_4x4_int & 1) {
478        vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
479                             lfi->hev_thr, 1);
480      }
481    }
482    s += 8 * count;
483    lfl += count;
484    mask_16x16 >>= count;
485    mask_8x8 >>= count;
486    mask_4x4 >>= count;
487    mask_4x4_int >>= count;
488  }
489}
490
491// This function ors into the current lfm structure, where to do loop
492// filters for the specific mi we are looking at. It uses information
493// including the block_size_type (32x16, 32x32, etc.), the transform size,
494// whether there were any coefficients encoded, and the loop filter strength
495// block we are currently looking at. Shift is used to position the
496// 1's we produce.
497// TODO(JBB) Need another function for different resolution color..
498static void build_masks(const loop_filter_info_n *const lfi_n,
499                        const MODE_INFO *mi, const int shift_y,
500                        const int shift_uv,
501                        LOOP_FILTER_MASK *lfm) {
502  const MB_MODE_INFO *mbmi = &mi->mbmi;
503  const BLOCK_SIZE block_size = mbmi->sb_type;
504  const TX_SIZE tx_size_y = mbmi->tx_size;
505  const TX_SIZE tx_size_uv = get_uv_tx_size_impl(tx_size_y, block_size, 1, 1);
506  const int filter_level = get_filter_level(lfi_n, mbmi);
507  uint64_t *const left_y = &lfm->left_y[tx_size_y];
508  uint64_t *const above_y = &lfm->above_y[tx_size_y];
509  uint64_t *const int_4x4_y = &lfm->int_4x4_y;
510  uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
511  uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
512  uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
513  int i;
514
515  // If filter level is 0 we don't loop filter.
516  if (!filter_level) {
517    return;
518  } else {
519    const int w = num_8x8_blocks_wide_lookup[block_size];
520    const int h = num_8x8_blocks_high_lookup[block_size];
521    int index = shift_y;
522    for (i = 0; i < h; i++) {
523      vpx_memset(&lfm->lfl_y[index], filter_level, w);
524      index += 8;
525    }
526  }
527
528  // These set 1 in the current block size for the block size edges.
529  // For instance if the block size is 32x16, we'll set:
530  //    above =   1111
531  //              0000
532  //    and
533  //    left  =   1000
534  //          =   1000
535  // NOTE : In this example the low bit is left most ( 1000 ) is stored as
536  //        1,  not 8...
537  //
538  // U and V set things on a 16 bit scale.
539  //
540  *above_y |= above_prediction_mask[block_size] << shift_y;
541  *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
542  *left_y |= left_prediction_mask[block_size] << shift_y;
543  *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
544
545  // If the block has no coefficients and is not intra we skip applying
546  // the loop filter on block edges.
547  if (mbmi->skip && is_inter_block(mbmi))
548    return;
549
550  // Here we are adding a mask for the transform size. The transform
551  // size mask is set to be correct for a 64x64 prediction block size. We
552  // mask to match the size of the block we are working on and then shift it
553  // into place..
554  *above_y |= (size_mask[block_size] &
555               above_64x64_txform_mask[tx_size_y]) << shift_y;
556  *above_uv |= (size_mask_uv[block_size] &
557                above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
558
559  *left_y |= (size_mask[block_size] &
560              left_64x64_txform_mask[tx_size_y]) << shift_y;
561  *left_uv |= (size_mask_uv[block_size] &
562               left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
563
564  // Here we are trying to determine what to do with the internal 4x4 block
565  // boundaries.  These differ from the 4x4 boundaries on the outside edge of
566  // an 8x8 in that the internal ones can be skipped and don't depend on
567  // the prediction block size.
568  if (tx_size_y == TX_4X4)
569    *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
570
571  if (tx_size_uv == TX_4X4)
572    *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
573}
574
575// This function does the same thing as the one above with the exception that
576// it only affects the y masks. It exists because for blocks < 16x16 in size,
577// we only update u and v masks on the first block.
578static void build_y_mask(const loop_filter_info_n *const lfi_n,
579                         const MODE_INFO *mi, const int shift_y,
580                         LOOP_FILTER_MASK *lfm) {
581  const MB_MODE_INFO *mbmi = &mi->mbmi;
582  const BLOCK_SIZE block_size = mbmi->sb_type;
583  const TX_SIZE tx_size_y = mbmi->tx_size;
584  const int filter_level = get_filter_level(lfi_n, mbmi);
585  uint64_t *const left_y = &lfm->left_y[tx_size_y];
586  uint64_t *const above_y = &lfm->above_y[tx_size_y];
587  uint64_t *const int_4x4_y = &lfm->int_4x4_y;
588  int i;
589
590  if (!filter_level) {
591    return;
592  } else {
593    const int w = num_8x8_blocks_wide_lookup[block_size];
594    const int h = num_8x8_blocks_high_lookup[block_size];
595    int index = shift_y;
596    for (i = 0; i < h; i++) {
597      vpx_memset(&lfm->lfl_y[index], filter_level, w);
598      index += 8;
599    }
600  }
601
602  *above_y |= above_prediction_mask[block_size] << shift_y;
603  *left_y |= left_prediction_mask[block_size] << shift_y;
604
605  if (mbmi->skip && is_inter_block(mbmi))
606    return;
607
608  *above_y |= (size_mask[block_size] &
609               above_64x64_txform_mask[tx_size_y]) << shift_y;
610
611  *left_y |= (size_mask[block_size] &
612              left_64x64_txform_mask[tx_size_y]) << shift_y;
613
614  if (tx_size_y == TX_4X4)
615    *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
616}
617
618// This function sets up the bit masks for the entire 64x64 region represented
619// by mi_row, mi_col.
620// TODO(JBB): This function only works for yv12.
621void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
622                    MODE_INFO *mi, const int mode_info_stride,
623                    LOOP_FILTER_MASK *lfm) {
624  int idx_32, idx_16, idx_8;
625  const loop_filter_info_n *const lfi_n = &cm->lf_info;
626  MODE_INFO *mip = mi;
627  MODE_INFO *mip2 = mi;
628
629  // These are offsets to the next mi in the 64x64 block. It is what gets
630  // added to the mi ptr as we go through each loop. It helps us to avoid
631  // setting up special row and column counters for each index. The last step
632  // brings us out back to the starting position.
633  const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
634                           -(mode_info_stride << 2) - 4};
635  const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
636                           -(mode_info_stride << 1) - 2};
637  const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};
638
639  // Following variables represent shifts to position the current block
640  // mask over the appropriate block. A shift of 36 to the left will move
641  // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
642  // 4 rows to the appropriate spot.
643  const int shift_32_y[] = {0, 4, 32, 36};
644  const int shift_16_y[] = {0, 2, 16, 18};
645  const int shift_8_y[] = {0, 1, 8, 9};
646  const int shift_32_uv[] = {0, 2, 8, 10};
647  const int shift_16_uv[] = {0, 1, 4, 5};
648  int i;
649  const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
650                        cm->mi_rows - mi_row : MI_BLOCK_SIZE);
651  const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
652                        cm->mi_cols - mi_col : MI_BLOCK_SIZE);
653
654  vp9_zero(*lfm);
655  assert(mip != NULL);
656
657  // TODO(jimbankoski): Try moving most of the following code into decode
658  // loop and storing lfm in the mbmi structure so that we don't have to go
659  // through the recursive loop structure multiple times.
660  switch (mip->mbmi.sb_type) {
661    case BLOCK_64X64:
662      build_masks(lfi_n, mip , 0, 0, lfm);
663      break;
664    case BLOCK_64X32:
665      build_masks(lfi_n, mip, 0, 0, lfm);
666      mip2 = mip + mode_info_stride * 4;
667      if (4 >= max_rows)
668        break;
669      build_masks(lfi_n, mip2, 32, 8, lfm);
670      break;
671    case BLOCK_32X64:
672      build_masks(lfi_n, mip, 0, 0, lfm);
673      mip2 = mip + 4;
674      if (4 >= max_cols)
675        break;
676      build_masks(lfi_n, mip2, 4, 2, lfm);
677      break;
678    default:
679      for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
680        const int shift_y = shift_32_y[idx_32];
681        const int shift_uv = shift_32_uv[idx_32];
682        const int mi_32_col_offset = ((idx_32 & 1) << 2);
683        const int mi_32_row_offset = ((idx_32 >> 1) << 2);
684        if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
685          continue;
686        switch (mip->mbmi.sb_type) {
687          case BLOCK_32X32:
688            build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
689            break;
690          case BLOCK_32X16:
691            build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
692            if (mi_32_row_offset + 2 >= max_rows)
693              continue;
694            mip2 = mip + mode_info_stride * 2;
695            build_masks(lfi_n, mip2, shift_y + 16, shift_uv + 4, lfm);
696            break;
697          case BLOCK_16X32:
698            build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
699            if (mi_32_col_offset + 2 >= max_cols)
700              continue;
701            mip2 = mip + 2;
702            build_masks(lfi_n, mip2, shift_y + 2, shift_uv + 1, lfm);
703            break;
704          default:
705            for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
706              const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
707              const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
708              const int mi_16_col_offset = mi_32_col_offset +
709                  ((idx_16 & 1) << 1);
710              const int mi_16_row_offset = mi_32_row_offset +
711                  ((idx_16 >> 1) << 1);
712
713              if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
714                continue;
715
716              switch (mip->mbmi.sb_type) {
717                case BLOCK_16X16:
718                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
719                  break;
720                case BLOCK_16X8:
721                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
722                  if (mi_16_row_offset + 1 >= max_rows)
723                    continue;
724                  mip2 = mip + mode_info_stride;
725                  build_y_mask(lfi_n, mip2, shift_y+8, lfm);
726                  break;
727                case BLOCK_8X16:
728                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
729                  if (mi_16_col_offset +1 >= max_cols)
730                    continue;
731                  mip2 = mip + 1;
732                  build_y_mask(lfi_n, mip2, shift_y+1, lfm);
733                  break;
734                default: {
735                  const int shift_y = shift_32_y[idx_32] +
736                                      shift_16_y[idx_16] +
737                                      shift_8_y[0];
738                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
739                  mip += offset[0];
740                  for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
741                    const int shift_y = shift_32_y[idx_32] +
742                                        shift_16_y[idx_16] +
743                                        shift_8_y[idx_8];
744                    const int mi_8_col_offset = mi_16_col_offset +
745                        ((idx_8 & 1));
746                    const int mi_8_row_offset = mi_16_row_offset +
747                        ((idx_8 >> 1));
748
749                    if (mi_8_col_offset >= max_cols ||
750                        mi_8_row_offset >= max_rows)
751                      continue;
752                    build_y_mask(lfi_n, mip, shift_y, lfm);
753                  }
754                  break;
755                }
756              }
757            }
758            break;
759        }
760      }
761      break;
762  }
763  // The largest loopfilter we have is 16x16 so we use the 16x16 mask
764  // for 32x32 transforms also also.
765  lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
766  lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
767  lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
768  lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
769
770  // We do at least 8 tap filter on every 32x32 even if the transform size
771  // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
772  // remove it from the 4x4.
773  lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
774  lfm->left_y[TX_4X4] &= ~left_border;
775  lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
776  lfm->above_y[TX_4X4] &= ~above_border;
777  lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
778  lfm->left_uv[TX_4X4] &= ~left_border_uv;
779  lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
780  lfm->above_uv[TX_4X4] &= ~above_border_uv;
781
782  // We do some special edge handling.
783  if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
784    const uint64_t rows = cm->mi_rows - mi_row;
785
786    // Each pixel inside the border gets a 1,
787    const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
788    const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
789
790    // Remove values completely outside our border.
791    for (i = 0; i < TX_32X32; i++) {
792      lfm->left_y[i] &= mask_y;
793      lfm->above_y[i] &= mask_y;
794      lfm->left_uv[i] &= mask_uv;
795      lfm->above_uv[i] &= mask_uv;
796    }
797    lfm->int_4x4_y &= mask_y;
798    lfm->int_4x4_uv &= mask_uv;
799
800    // We don't apply a wide loop filter on the last uv block row. If set
801    // apply the shorter one instead.
802    if (rows == 1) {
803      lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
804      lfm->above_uv[TX_16X16] = 0;
805    }
806    if (rows == 5) {
807      lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
808      lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
809    }
810  }
811
812  if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
813    const uint64_t columns = cm->mi_cols - mi_col;
814
815    // Each pixel inside the border gets a 1, the multiply copies the border
816    // to where we need it.
817    const uint64_t mask_y  = (((1 << columns) - 1)) * 0x0101010101010101;
818    const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
819
820    // Internal edges are not applied on the last column of the image so
821    // we mask 1 more for the internal edges
822    const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
823
824    // Remove the bits outside the image edge.
825    for (i = 0; i < TX_32X32; i++) {
826      lfm->left_y[i] &= mask_y;
827      lfm->above_y[i] &= mask_y;
828      lfm->left_uv[i] &= mask_uv;
829      lfm->above_uv[i] &= mask_uv;
830    }
831    lfm->int_4x4_y &= mask_y;
832    lfm->int_4x4_uv &= mask_uv_int;
833
834    // We don't apply a wide loop filter on the last uv column. If set
835    // apply the shorter one instead.
836    if (columns == 1) {
837      lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
838      lfm->left_uv[TX_16X16] = 0;
839    }
840    if (columns == 5) {
841      lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
842      lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
843    }
844  }
845  // We don't apply a loop filter on the first column in the image, mask that
846  // out.
847  if (mi_col == 0) {
848    for (i = 0; i < TX_32X32; i++) {
849      lfm->left_y[i] &= 0xfefefefefefefefe;
850      lfm->left_uv[i] &= 0xeeee;
851    }
852  }
853
854  // Assert if we try to apply 2 different loop filters at the same position.
855  assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
856  assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
857  assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
858  assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
859  assert(!(lfm->left_uv[TX_16X16]&lfm->left_uv[TX_8X8]));
860  assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
861  assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
862  assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
863  assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
864  assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
865  assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
866  assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
867  assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
868  assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
869  assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
870  assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
871}
872
873static void filter_selectively_vert(uint8_t *s, int pitch,
874                                    unsigned int mask_16x16,
875                                    unsigned int mask_8x8,
876                                    unsigned int mask_4x4,
877                                    unsigned int mask_4x4_int,
878                                    const loop_filter_info_n *lfi_n,
879                                    const uint8_t *lfl) {
880  unsigned int mask;
881
882  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
883       mask; mask >>= 1) {
884    const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
885
886    if (mask & 1) {
887      if (mask_16x16 & 1) {
888        vp9_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
889      } else if (mask_8x8 & 1) {
890        vp9_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
891      } else if (mask_4x4 & 1) {
892        vp9_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
893      }
894    }
895    if (mask_4x4_int & 1)
896      vp9_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
897    s += 8;
898    lfl += 1;
899    mask_16x16 >>= 1;
900    mask_8x8 >>= 1;
901    mask_4x4 >>= 1;
902    mask_4x4_int >>= 1;
903  }
904}
905
906static void filter_block_plane_non420(VP9_COMMON *cm,
907                                      struct macroblockd_plane *plane,
908                                      MODE_INFO *mi_8x8,
909                                      int mi_row, int mi_col) {
910  const int ss_x = plane->subsampling_x;
911  const int ss_y = plane->subsampling_y;
912  const int row_step = 1 << ss_x;
913  const int col_step = 1 << ss_y;
914  const int row_step_stride = cm->mi_stride * row_step;
915  struct buf_2d *const dst = &plane->dst;
916  uint8_t* const dst0 = dst->buf;
917  unsigned int mask_16x16[MI_BLOCK_SIZE] = {0};
918  unsigned int mask_8x8[MI_BLOCK_SIZE] = {0};
919  unsigned int mask_4x4[MI_BLOCK_SIZE] = {0};
920  unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
921  uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE];
922  int r, c;
923
924  for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
925    unsigned int mask_16x16_c = 0;
926    unsigned int mask_8x8_c = 0;
927    unsigned int mask_4x4_c = 0;
928    unsigned int border_mask;
929
930    // Determine the vertical edges that need filtering
931    for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
932      const MODE_INFO *mi = mi_8x8[c].src_mi;
933      const BLOCK_SIZE sb_type = mi[0].mbmi.sb_type;
934      const int skip_this = mi[0].mbmi.skip && is_inter_block(&mi[0].mbmi);
935      // left edge of current unit is block/partition edge -> no skip
936      const int block_edge_left = (num_4x4_blocks_wide_lookup[sb_type] > 1) ?
937          !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1)) : 1;
938      const int skip_this_c = skip_this && !block_edge_left;
939      // top edge of current unit is block/partition edge -> no skip
940      const int block_edge_above = (num_4x4_blocks_high_lookup[sb_type] > 1) ?
941          !(r & (num_8x8_blocks_high_lookup[sb_type] - 1)) : 1;
942      const int skip_this_r = skip_this && !block_edge_above;
943      const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
944                            ? get_uv_tx_size(&mi[0].mbmi, plane)
945                            : mi[0].mbmi.tx_size;
946      const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
947      const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
948
949      // Filter level can vary per MI
950      if (!(lfl[(r << 3) + (c >> ss_x)] =
951            get_filter_level(&cm->lf_info, &mi[0].mbmi)))
952        continue;
953
954      // Build masks based on the transform size of each block
955      if (tx_size == TX_32X32) {
956        if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
957          if (!skip_border_4x4_c)
958            mask_16x16_c |= 1 << (c >> ss_x);
959          else
960            mask_8x8_c |= 1 << (c >> ss_x);
961        }
962        if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
963          if (!skip_border_4x4_r)
964            mask_16x16[r] |= 1 << (c >> ss_x);
965          else
966            mask_8x8[r] |= 1 << (c >> ss_x);
967        }
968      } else if (tx_size == TX_16X16) {
969        if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
970          if (!skip_border_4x4_c)
971            mask_16x16_c |= 1 << (c >> ss_x);
972          else
973            mask_8x8_c |= 1 << (c >> ss_x);
974        }
975        if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
976          if (!skip_border_4x4_r)
977            mask_16x16[r] |= 1 << (c >> ss_x);
978          else
979            mask_8x8[r] |= 1 << (c >> ss_x);
980        }
981      } else {
982        // force 8x8 filtering on 32x32 boundaries
983        if (!skip_this_c) {
984          if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
985            mask_8x8_c |= 1 << (c >> ss_x);
986          else
987            mask_4x4_c |= 1 << (c >> ss_x);
988        }
989
990        if (!skip_this_r) {
991          if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
992            mask_8x8[r] |= 1 << (c >> ss_x);
993          else
994            mask_4x4[r] |= 1 << (c >> ss_x);
995        }
996
997        if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
998          mask_4x4_int[r] |= 1 << (c >> ss_x);
999      }
1000    }
1001
1002    // Disable filtering on the leftmost column
1003    border_mask = ~(mi_col == 0);
1004    filter_selectively_vert(dst->buf, dst->stride,
1005                            mask_16x16_c & border_mask,
1006                            mask_8x8_c & border_mask,
1007                            mask_4x4_c & border_mask,
1008                            mask_4x4_int[r],
1009                            &cm->lf_info, &lfl[r << 3]);
1010    dst->buf += 8 * dst->stride;
1011    mi_8x8 += row_step_stride;
1012  }
1013
1014  // Now do horizontal pass
1015  dst->buf = dst0;
1016  for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
1017    const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
1018    const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
1019
1020    unsigned int mask_16x16_r;
1021    unsigned int mask_8x8_r;
1022    unsigned int mask_4x4_r;
1023
1024    if (mi_row + r == 0) {
1025      mask_16x16_r = 0;
1026      mask_8x8_r = 0;
1027      mask_4x4_r = 0;
1028    } else {
1029      mask_16x16_r = mask_16x16[r];
1030      mask_8x8_r = mask_8x8[r];
1031      mask_4x4_r = mask_4x4[r];
1032    }
1033
1034    filter_selectively_horiz(dst->buf, dst->stride,
1035                             mask_16x16_r,
1036                             mask_8x8_r,
1037                             mask_4x4_r,
1038                             mask_4x4_int_r,
1039                             &cm->lf_info, &lfl[r << 3]);
1040    dst->buf += 8 * dst->stride;
1041  }
1042}
1043
1044void vp9_filter_block_plane(VP9_COMMON *const cm,
1045                            struct macroblockd_plane *const plane,
1046                            int mi_row,
1047                            LOOP_FILTER_MASK *lfm) {
1048  struct buf_2d *const dst = &plane->dst;
1049  uint8_t* const dst0 = dst->buf;
1050  int r, c;
1051
1052  if (!plane->plane_type) {
1053    uint64_t mask_16x16 = lfm->left_y[TX_16X16];
1054    uint64_t mask_8x8 = lfm->left_y[TX_8X8];
1055    uint64_t mask_4x4 = lfm->left_y[TX_4X4];
1056    uint64_t mask_4x4_int = lfm->int_4x4_y;
1057
1058    // Vertical pass: do 2 rows at one time
1059    for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1060      unsigned int mask_16x16_l = mask_16x16 & 0xffff;
1061      unsigned int mask_8x8_l = mask_8x8 & 0xffff;
1062      unsigned int mask_4x4_l = mask_4x4 & 0xffff;
1063      unsigned int mask_4x4_int_l = mask_4x4_int & 0xffff;
1064
1065      // Disable filtering on the leftmost column
1066      filter_selectively_vert_row2(plane->plane_type,
1067                                   dst->buf, dst->stride,
1068                                   mask_16x16_l,
1069                                   mask_8x8_l,
1070                                   mask_4x4_l,
1071                                   mask_4x4_int_l,
1072                                   &cm->lf_info, &lfm->lfl_y[r << 3]);
1073
1074      dst->buf += 16 * dst->stride;
1075      mask_16x16 >>= 16;
1076      mask_8x8 >>= 16;
1077      mask_4x4 >>= 16;
1078      mask_4x4_int >>= 16;
1079    }
1080
1081    // Horizontal pass
1082    dst->buf = dst0;
1083    mask_16x16 = lfm->above_y[TX_16X16];
1084    mask_8x8 = lfm->above_y[TX_8X8];
1085    mask_4x4 = lfm->above_y[TX_4X4];
1086    mask_4x4_int = lfm->int_4x4_y;
1087
1088    for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
1089      unsigned int mask_16x16_r;
1090      unsigned int mask_8x8_r;
1091      unsigned int mask_4x4_r;
1092
1093      if (mi_row + r == 0) {
1094        mask_16x16_r = 0;
1095        mask_8x8_r = 0;
1096        mask_4x4_r = 0;
1097      } else {
1098        mask_16x16_r = mask_16x16 & 0xff;
1099        mask_8x8_r = mask_8x8 & 0xff;
1100        mask_4x4_r = mask_4x4 & 0xff;
1101      }
1102
1103      filter_selectively_horiz(dst->buf, dst->stride,
1104                               mask_16x16_r,
1105                               mask_8x8_r,
1106                               mask_4x4_r,
1107                               mask_4x4_int & 0xff,
1108                               &cm->lf_info, &lfm->lfl_y[r << 3]);
1109
1110      dst->buf += 8 * dst->stride;
1111      mask_16x16 >>= 8;
1112      mask_8x8 >>= 8;
1113      mask_4x4 >>= 8;
1114      mask_4x4_int >>= 8;
1115    }
1116  } else {
1117    uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
1118    uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
1119    uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
1120    uint16_t mask_4x4_int = lfm->int_4x4_uv;
1121
1122    // Vertical pass: do 2 rows at one time
1123    for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) {
1124      if (plane->plane_type == 1) {
1125        for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) {
1126          lfm->lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
1127          lfm->lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) +
1128                                                       (c << 1)];
1129        }
1130      }
1131
1132      {
1133        unsigned int mask_16x16_l = mask_16x16 & 0xff;
1134        unsigned int mask_8x8_l = mask_8x8 & 0xff;
1135        unsigned int mask_4x4_l = mask_4x4 & 0xff;
1136        unsigned int mask_4x4_int_l = mask_4x4_int & 0xff;
1137
1138        // Disable filtering on the leftmost column
1139        filter_selectively_vert_row2(plane->plane_type,
1140                                     dst->buf, dst->stride,
1141                                     mask_16x16_l,
1142                                     mask_8x8_l,
1143                                     mask_4x4_l,
1144                                     mask_4x4_int_l,
1145                                     &cm->lf_info, &lfm->lfl_uv[r << 1]);
1146
1147        dst->buf += 16 * dst->stride;
1148        mask_16x16 >>= 8;
1149        mask_8x8 >>= 8;
1150        mask_4x4 >>= 8;
1151        mask_4x4_int >>= 8;
1152      }
1153    }
1154
1155    // Horizontal pass
1156    dst->buf = dst0;
1157    mask_16x16 = lfm->above_uv[TX_16X16];
1158    mask_8x8 = lfm->above_uv[TX_8X8];
1159    mask_4x4 = lfm->above_uv[TX_4X4];
1160    mask_4x4_int = lfm->int_4x4_uv;
1161
1162    for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1163      const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
1164      const unsigned int mask_4x4_int_r = skip_border_4x4_r ?
1165          0 : (mask_4x4_int & 0xf);
1166      unsigned int mask_16x16_r;
1167      unsigned int mask_8x8_r;
1168      unsigned int mask_4x4_r;
1169
1170      if (mi_row + r == 0) {
1171        mask_16x16_r = 0;
1172        mask_8x8_r = 0;
1173        mask_4x4_r = 0;
1174      } else {
1175        mask_16x16_r = mask_16x16 & 0xf;
1176        mask_8x8_r = mask_8x8 & 0xf;
1177        mask_4x4_r = mask_4x4 & 0xf;
1178      }
1179
1180      filter_selectively_horiz(dst->buf, dst->stride,
1181                               mask_16x16_r,
1182                               mask_8x8_r,
1183                               mask_4x4_r,
1184                               mask_4x4_int_r,
1185                               &cm->lf_info, &lfm->lfl_uv[r << 1]);
1186
1187      dst->buf += 8 * dst->stride;
1188      mask_16x16 >>= 4;
1189      mask_8x8 >>= 4;
1190      mask_4x4 >>= 4;
1191      mask_4x4_int >>= 4;
1192    }
1193  }
1194}
1195
1196void vp9_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer,
1197                          VP9_COMMON *cm,
1198                          struct macroblockd_plane planes[MAX_MB_PLANE],
1199                          int start, int stop, int y_only) {
1200  const int num_planes = y_only ? 1 : MAX_MB_PLANE;
1201  const int use_420 = y_only || (planes[1].subsampling_y == 1 &&
1202                                 planes[1].subsampling_x == 1);
1203  LOOP_FILTER_MASK lfm;
1204  int mi_row, mi_col;
1205
1206  for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
1207    MODE_INFO *mi = cm->mi + mi_row * cm->mi_stride;
1208
1209    for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
1210      int plane;
1211
1212      vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
1213
1214      // TODO(JBB): Make setup_mask work for non 420.
1215      if (use_420)
1216        vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
1217                       &lfm);
1218
1219      for (plane = 0; plane < num_planes; ++plane) {
1220        if (use_420)
1221          vp9_filter_block_plane(cm, &planes[plane], mi_row, &lfm);
1222        else
1223          filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
1224                                    mi_row, mi_col);
1225      }
1226    }
1227  }
1228}
1229
1230void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame,
1231                           VP9_COMMON *cm, MACROBLOCKD *xd,
1232                           int frame_filter_level,
1233                           int y_only, int partial_frame) {
1234  int start_mi_row, end_mi_row, mi_rows_to_filter;
1235  if (!frame_filter_level) return;
1236  start_mi_row = 0;
1237  mi_rows_to_filter = cm->mi_rows;
1238  if (partial_frame && cm->mi_rows > 8) {
1239    start_mi_row = cm->mi_rows >> 1;
1240    start_mi_row &= 0xfffffff8;
1241    mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
1242  }
1243  end_mi_row = start_mi_row + mi_rows_to_filter;
1244  vp9_loop_filter_frame_init(cm, frame_filter_level);
1245  vp9_loop_filter_rows(frame, cm, xd->plane,
1246                       start_mi_row, end_mi_row,
1247                       y_only);
1248}
1249
1250int vp9_loop_filter_worker(LFWorkerData *const lf_data, void *unused) {
1251  (void)unused;
1252  vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
1253                       lf_data->start, lf_data->stop, lf_data->y_only);
1254  return 1;
1255}
1256