1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#include <stdio.h>
13#include <limits.h>
14
15#include "vpx/vpx_encoder.h"
16#include "vpx_mem/vpx_mem.h"
17#include "vpx_ports/mem_ops.h"
18
19#include "vp9/common/vp9_entropy.h"
20#include "vp9/common/vp9_entropymode.h"
21#include "vp9/common/vp9_entropymv.h"
22#include "vp9/common/vp9_mvref_common.h"
23#include "vp9/common/vp9_pred_common.h"
24#include "vp9/common/vp9_seg_common.h"
25#include "vp9/common/vp9_systemdependent.h"
26#include "vp9/common/vp9_tile_common.h"
27
28#include "vp9/encoder/vp9_cost.h"
29#include "vp9/encoder/vp9_bitstream.h"
30#include "vp9/encoder/vp9_encodemv.h"
31#include "vp9/encoder/vp9_mcomp.h"
32#include "vp9/encoder/vp9_segmentation.h"
33#include "vp9/encoder/vp9_subexp.h"
34#include "vp9/encoder/vp9_tokenize.h"
35#include "vp9/encoder/vp9_write_bit_buffer.h"
36
37static struct vp9_token intra_mode_encodings[INTRA_MODES];
38static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
39static struct vp9_token partition_encodings[PARTITION_TYPES];
40static struct vp9_token inter_mode_encodings[INTER_MODES];
41
42void vp9_entropy_mode_init() {
43  vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
44  vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
45  vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
46  vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
47}
48
49static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
50                             const vp9_prob *probs) {
51  vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
52}
53
54static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
55                             const vp9_prob *probs) {
56  assert(is_inter_mode(mode));
57  vp9_write_token(w, vp9_inter_mode_tree, probs,
58                  &inter_mode_encodings[INTER_OFFSET(mode)]);
59}
60
61static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
62                                int data, int max) {
63  vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
64}
65
66static void prob_diff_update(const vp9_tree_index *tree,
67                             vp9_prob probs[/*n - 1*/],
68                             const unsigned int counts[/*n - 1*/],
69                             int n, vp9_writer *w) {
70  int i;
71  unsigned int branch_ct[32][2];
72
73  // Assuming max number of probabilities <= 32
74  assert(n <= 32);
75
76  vp9_tree_probs_from_distribution(tree, branch_ct, counts);
77  for (i = 0; i < n - 1; ++i)
78    vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
79}
80
81static void write_selected_tx_size(const VP9_COMMON *cm,
82                                   const MACROBLOCKD *xd,
83                                   TX_SIZE tx_size, BLOCK_SIZE bsize,
84                                   vp9_writer *w) {
85  const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
86  const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
87                                                 &cm->fc.tx_probs);
88  vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
89  if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
90    vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
91    if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
92      vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
93  }
94}
95
96static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
97                      int segment_id, const MODE_INFO *mi, vp9_writer *w) {
98  if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
99    return 1;
100  } else {
101    const int skip = mi->mbmi.skip;
102    vp9_write(w, skip, vp9_get_skip_prob(cm, xd));
103    return skip;
104  }
105}
106
107static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
108  int k;
109
110  for (k = 0; k < SKIP_CONTEXTS; ++k)
111    vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
112}
113
114static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
115  int j;
116  for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
117    prob_diff_update(vp9_switchable_interp_tree,
118                     cm->fc.switchable_interp_prob[j],
119                     cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
120}
121
122static void pack_mb_tokens(vp9_writer *w,
123                           TOKENEXTRA **tp, const TOKENEXTRA *const stop) {
124  TOKENEXTRA *p = *tp;
125
126  while (p < stop && p->token != EOSB_TOKEN) {
127    const int t = p->token;
128    const struct vp9_token *const a = &vp9_coef_encodings[t];
129    const vp9_extra_bit *const b = &vp9_extra_bits[t];
130    int i = 0;
131    int v = a->value;
132    int n = a->len;
133
134    /* skip one or two nodes */
135    if (p->skip_eob_node) {
136      n -= p->skip_eob_node;
137      i = 2 * p->skip_eob_node;
138    }
139
140    // TODO(jbb): expanding this can lead to big gains.  It allows
141    // much better branch prediction and would enable us to avoid numerous
142    // lookups and compares.
143
144    // If we have a token that's in the constrained set, the coefficient tree
145    // is split into two treed writes.  The first treed write takes care of the
146    // unconstrained nodes.  The second treed write takes care of the
147    // constrained nodes.
148    if (t >= TWO_TOKEN && t < EOB_TOKEN) {
149      int len = UNCONSTRAINED_NODES - p->skip_eob_node;
150      int bits = v >> (n - len);
151      vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
152      vp9_write_tree(w, vp9_coef_con_tree,
153                     vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
154                     v, n - len, 0);
155    } else {
156      vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
157    }
158
159    if (b->base_val) {
160      const int e = p->extra, l = b->len;
161
162      if (l) {
163        const unsigned char *pb = b->prob;
164        int v = e >> 1;
165        int n = l;              /* number of bits in v, assumed nonzero */
166        int i = 0;
167
168        do {
169          const int bb = (v >> --n) & 1;
170          vp9_write(w, bb, pb[i >> 1]);
171          i = b->tree[i + bb];
172        } while (n);
173      }
174
175      vp9_write_bit(w, e & 1);
176    }
177    ++p;
178  }
179
180  *tp = p + (p->token == EOSB_TOKEN);
181}
182
183static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
184                             int segment_id) {
185  if (seg->enabled && seg->update_map)
186    vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
187}
188
189// This function encodes the reference frame
190static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
191                             vp9_writer *w) {
192  const MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
193  const int is_compound = has_second_ref(mbmi);
194  const int segment_id = mbmi->segment_id;
195
196  // If segment level coding of this signal is disabled...
197  // or the segment allows multiple reference frame options
198  if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
199    assert(!is_compound);
200    assert(mbmi->ref_frame[0] ==
201               vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
202  } else {
203    // does the feature use compound prediction or not
204    // (if not specified at the frame/segment level)
205    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
206      vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
207    } else {
208      assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
209    }
210
211    if (is_compound) {
212      vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
213                vp9_get_pred_prob_comp_ref_p(cm, xd));
214    } else {
215      const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
216      vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
217      if (bit0) {
218        const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
219        vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
220      }
221    }
222  }
223}
224
225static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
226                                vp9_writer *w) {
227  VP9_COMMON *const cm = &cpi->common;
228  const nmv_context *nmvc = &cm->fc.nmvc;
229  const MACROBLOCK *const x = &cpi->mb;
230  const MACROBLOCKD *const xd = &x->e_mbd;
231  const struct segmentation *const seg = &cm->seg;
232  const MB_MODE_INFO *const mbmi = &mi->mbmi;
233  const PREDICTION_MODE mode = mbmi->mode;
234  const int segment_id = mbmi->segment_id;
235  const BLOCK_SIZE bsize = mbmi->sb_type;
236  const int allow_hp = cm->allow_high_precision_mv;
237  const int is_inter = is_inter_block(mbmi);
238  const int is_compound = has_second_ref(mbmi);
239  int skip, ref;
240
241  if (seg->update_map) {
242    if (seg->temporal_update) {
243      const int pred_flag = mbmi->seg_id_predicted;
244      vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
245      vp9_write(w, pred_flag, pred_prob);
246      if (!pred_flag)
247        write_segment_id(w, seg, segment_id);
248    } else {
249      write_segment_id(w, seg, segment_id);
250    }
251  }
252
253  skip = write_skip(cm, xd, segment_id, mi, w);
254
255  if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
256    vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
257
258  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
259      !(is_inter &&
260        (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
261    write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
262  }
263
264  if (!is_inter) {
265    if (bsize >= BLOCK_8X8) {
266      write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
267    } else {
268      int idx, idy;
269      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
270      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
271      for (idy = 0; idy < 2; idy += num_4x4_h) {
272        for (idx = 0; idx < 2; idx += num_4x4_w) {
273          const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
274          write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
275        }
276      }
277    }
278    write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
279  } else {
280    const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
281    const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
282    write_ref_frames(cm, xd, w);
283
284    // If segment skip is not enabled code the mode.
285    if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
286      if (bsize >= BLOCK_8X8) {
287        write_inter_mode(w, mode, inter_probs);
288        ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
289      }
290    }
291
292    if (cm->interp_filter == SWITCHABLE) {
293      const int ctx = vp9_get_pred_context_switchable_interp(xd);
294      vp9_write_token(w, vp9_switchable_interp_tree,
295                      cm->fc.switchable_interp_prob[ctx],
296                      &switchable_interp_encodings[mbmi->interp_filter]);
297      ++cpi->interp_filter_selected[0][mbmi->interp_filter];
298    } else {
299      assert(mbmi->interp_filter == cm->interp_filter);
300    }
301
302    if (bsize < BLOCK_8X8) {
303      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
304      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
305      int idx, idy;
306      for (idy = 0; idy < 2; idy += num_4x4_h) {
307        for (idx = 0; idx < 2; idx += num_4x4_w) {
308          const int j = idy * 2 + idx;
309          const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
310          write_inter_mode(w, b_mode, inter_probs);
311          ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
312          if (b_mode == NEWMV) {
313            for (ref = 0; ref < 1 + is_compound; ++ref)
314              vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
315                            &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
316                            nmvc, allow_hp);
317          }
318        }
319      }
320    } else {
321      if (mode == NEWMV) {
322        for (ref = 0; ref < 1 + is_compound; ++ref)
323          vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
324                        &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
325                        allow_hp);
326      }
327    }
328  }
329}
330
331static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
332                              MODE_INFO *mi_8x8, vp9_writer *w) {
333  const struct segmentation *const seg = &cm->seg;
334  const MODE_INFO *const mi = mi_8x8;
335  const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride].src_mi;
336  const MODE_INFO *const left_mi =
337      xd->left_available ? mi_8x8[-1].src_mi : NULL;
338  const MB_MODE_INFO *const mbmi = &mi->mbmi;
339  const BLOCK_SIZE bsize = mbmi->sb_type;
340
341  if (seg->update_map)
342    write_segment_id(w, seg, mbmi->segment_id);
343
344  write_skip(cm, xd, mbmi->segment_id, mi, w);
345
346  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
347    write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
348
349  if (bsize >= BLOCK_8X8) {
350    write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
351  } else {
352    const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
353    const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
354    int idx, idy;
355
356    for (idy = 0; idy < 2; idy += num_4x4_h) {
357      for (idx = 0; idx < 2; idx += num_4x4_w) {
358        const int block = idy * 2 + idx;
359        write_intra_mode(w, mi->bmi[block].as_mode,
360                         get_y_mode_probs(mi, above_mi, left_mi, block));
361      }
362    }
363  }
364
365  write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
366}
367
368static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
369                          vp9_writer *w, TOKENEXTRA **tok,
370                          const TOKENEXTRA *const tok_end,
371                          int mi_row, int mi_col) {
372  const VP9_COMMON *const cm = &cpi->common;
373  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
374  MODE_INFO *m;
375
376  xd->mi = cm->mi + (mi_row * cm->mi_stride + mi_col);
377  m = xd->mi;
378
379  set_mi_row_col(xd, tile,
380                 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
381                 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
382                 cm->mi_rows, cm->mi_cols);
383  if (frame_is_intra_only(cm)) {
384    write_mb_modes_kf(cm, xd, xd->mi, w);
385  } else {
386    pack_inter_mode_mvs(cpi, m, w);
387  }
388
389  assert(*tok < tok_end);
390  pack_mb_tokens(w, tok, tok_end);
391}
392
393static void write_partition(const VP9_COMMON *const cm,
394                            const MACROBLOCKD *const xd,
395                            int hbs, int mi_row, int mi_col,
396                            PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
397  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
398  const vp9_prob *const probs = get_partition_probs(cm, ctx);
399  const int has_rows = (mi_row + hbs) < cm->mi_rows;
400  const int has_cols = (mi_col + hbs) < cm->mi_cols;
401
402  if (has_rows && has_cols) {
403    vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
404  } else if (!has_rows && has_cols) {
405    assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
406    vp9_write(w, p == PARTITION_SPLIT, probs[1]);
407  } else if (has_rows && !has_cols) {
408    assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
409    vp9_write(w, p == PARTITION_SPLIT, probs[2]);
410  } else {
411    assert(p == PARTITION_SPLIT);
412  }
413}
414
415static void write_modes_sb(VP9_COMP *cpi,
416                           const TileInfo *const tile, vp9_writer *w,
417                           TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
418                           int mi_row, int mi_col, BLOCK_SIZE bsize) {
419  const VP9_COMMON *const cm = &cpi->common;
420  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
421
422  const int bsl = b_width_log2(bsize);
423  const int bs = (1 << bsl) / 4;
424  PARTITION_TYPE partition;
425  BLOCK_SIZE subsize;
426  const MODE_INFO *m = NULL;
427
428  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
429    return;
430
431  m = cm->mi[mi_row * cm->mi_stride + mi_col].src_mi;
432
433  partition = partition_lookup[bsl][m->mbmi.sb_type];
434  write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
435  subsize = get_subsize(bsize, partition);
436  if (subsize < BLOCK_8X8) {
437    write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
438  } else {
439    switch (partition) {
440      case PARTITION_NONE:
441        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
442        break;
443      case PARTITION_HORZ:
444        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
445        if (mi_row + bs < cm->mi_rows)
446          write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
447        break;
448      case PARTITION_VERT:
449        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
450        if (mi_col + bs < cm->mi_cols)
451          write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
452        break;
453      case PARTITION_SPLIT:
454        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
455        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
456                       subsize);
457        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
458                       subsize);
459        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
460                       subsize);
461        break;
462      default:
463        assert(0);
464    }
465  }
466
467  // update partition context
468  if (bsize >= BLOCK_8X8 &&
469      (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
470    update_partition_context(xd, mi_row, mi_col, subsize, bsize);
471}
472
473static void write_modes(VP9_COMP *cpi,
474                        const TileInfo *const tile, vp9_writer *w,
475                        TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
476  int mi_row, mi_col;
477
478  for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
479       mi_row += MI_BLOCK_SIZE) {
480    vp9_zero(cpi->mb.e_mbd.left_seg_context);
481    for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
482         mi_col += MI_BLOCK_SIZE)
483      write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
484                     BLOCK_64X64);
485  }
486}
487
488static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
489                                    vp9_coeff_stats *coef_branch_ct,
490                                    vp9_coeff_probs_model *coef_probs) {
491  vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
492  unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
493      cpi->common.counts.eob_branch[tx_size];
494  int i, j, k, l, m;
495
496  for (i = 0; i < PLANE_TYPES; ++i) {
497    for (j = 0; j < REF_TYPES; ++j) {
498      for (k = 0; k < COEF_BANDS; ++k) {
499        for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
500          vp9_tree_probs_from_distribution(vp9_coef_tree,
501                                           coef_branch_ct[i][j][k][l],
502                                           coef_counts[i][j][k][l]);
503          coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
504                                             coef_branch_ct[i][j][k][l][0][0];
505          for (m = 0; m < UNCONSTRAINED_NODES; ++m)
506            coef_probs[i][j][k][l][m] = get_binary_prob(
507                                            coef_branch_ct[i][j][k][l][m][0],
508                                            coef_branch_ct[i][j][k][l][m][1]);
509        }
510      }
511    }
512  }
513}
514
515static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
516                                     TX_SIZE tx_size,
517                                     vp9_coeff_stats *frame_branch_ct,
518                                     vp9_coeff_probs_model *new_coef_probs) {
519  vp9_coeff_probs_model *old_coef_probs = cpi->common.fc.coef_probs[tx_size];
520  const vp9_prob upd = DIFF_UPDATE_PROB;
521  const int entropy_nodes_update = UNCONSTRAINED_NODES;
522  int i, j, k, l, t;
523  switch (cpi->sf.use_fast_coef_updates) {
524    case TWO_LOOP: {
525      /* dry run to see if there is any update at all needed */
526      int savings = 0;
527      int update[2] = {0, 0};
528      for (i = 0; i < PLANE_TYPES; ++i) {
529        for (j = 0; j < REF_TYPES; ++j) {
530          for (k = 0; k < COEF_BANDS; ++k) {
531            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
532              for (t = 0; t < entropy_nodes_update; ++t) {
533                vp9_prob newp = new_coef_probs[i][j][k][l][t];
534                const vp9_prob oldp = old_coef_probs[i][j][k][l][t];
535                int s;
536                int u = 0;
537                if (t == PIVOT_NODE)
538                  s = vp9_prob_diff_update_savings_search_model(
539                      frame_branch_ct[i][j][k][l][0],
540                      old_coef_probs[i][j][k][l], &newp, upd);
541                else
542                  s = vp9_prob_diff_update_savings_search(
543                      frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
544                if (s > 0 && newp != oldp)
545                  u = 1;
546                if (u)
547                  savings += s - (int)(vp9_cost_zero(upd));
548                else
549                  savings -= (int)(vp9_cost_zero(upd));
550                update[u]++;
551              }
552            }
553          }
554        }
555      }
556
557      // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
558      /* Is coef updated at all */
559      if (update[1] == 0 || savings < 0) {
560        vp9_write_bit(bc, 0);
561        return;
562      }
563      vp9_write_bit(bc, 1);
564      for (i = 0; i < PLANE_TYPES; ++i) {
565        for (j = 0; j < REF_TYPES; ++j) {
566          for (k = 0; k < COEF_BANDS; ++k) {
567            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
568              // calc probs and branch cts for this frame only
569              for (t = 0; t < entropy_nodes_update; ++t) {
570                vp9_prob newp = new_coef_probs[i][j][k][l][t];
571                vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
572                const vp9_prob upd = DIFF_UPDATE_PROB;
573                int s;
574                int u = 0;
575                if (t == PIVOT_NODE)
576                  s = vp9_prob_diff_update_savings_search_model(
577                      frame_branch_ct[i][j][k][l][0],
578                      old_coef_probs[i][j][k][l], &newp, upd);
579                else
580                  s = vp9_prob_diff_update_savings_search(
581                      frame_branch_ct[i][j][k][l][t],
582                      *oldp, &newp, upd);
583                if (s > 0 && newp != *oldp)
584                  u = 1;
585                vp9_write(bc, u, upd);
586                if (u) {
587                  /* send/use new probability */
588                  vp9_write_prob_diff_update(bc, newp, *oldp);
589                  *oldp = newp;
590                }
591              }
592            }
593          }
594        }
595      }
596      return;
597    }
598
599    case ONE_LOOP:
600    case ONE_LOOP_REDUCED: {
601      const int prev_coef_contexts_to_update =
602          cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
603              COEFF_CONTEXTS >> 1 : COEFF_CONTEXTS;
604      const int coef_band_to_update =
605          cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
606              COEF_BANDS >> 1 : COEF_BANDS;
607      int updates = 0;
608      int noupdates_before_first = 0;
609      for (i = 0; i < PLANE_TYPES; ++i) {
610        for (j = 0; j < REF_TYPES; ++j) {
611          for (k = 0; k < COEF_BANDS; ++k) {
612            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
613              // calc probs and branch cts for this frame only
614              for (t = 0; t < entropy_nodes_update; ++t) {
615                vp9_prob newp = new_coef_probs[i][j][k][l][t];
616                vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
617                int s;
618                int u = 0;
619                if (l >= prev_coef_contexts_to_update ||
620                    k >= coef_band_to_update) {
621                  u = 0;
622                } else {
623                  if (t == PIVOT_NODE)
624                    s = vp9_prob_diff_update_savings_search_model(
625                        frame_branch_ct[i][j][k][l][0],
626                        old_coef_probs[i][j][k][l], &newp, upd);
627                  else
628                    s = vp9_prob_diff_update_savings_search(
629                        frame_branch_ct[i][j][k][l][t],
630                        *oldp, &newp, upd);
631                  if (s > 0 && newp != *oldp)
632                    u = 1;
633                }
634                updates += u;
635                if (u == 0 && updates == 0) {
636                  noupdates_before_first++;
637                  continue;
638                }
639                if (u == 1 && updates == 1) {
640                  int v;
641                  // first update
642                  vp9_write_bit(bc, 1);
643                  for (v = 0; v < noupdates_before_first; ++v)
644                    vp9_write(bc, 0, upd);
645                }
646                vp9_write(bc, u, upd);
647                if (u) {
648                  /* send/use new probability */
649                  vp9_write_prob_diff_update(bc, newp, *oldp);
650                  *oldp = newp;
651                }
652              }
653            }
654          }
655        }
656      }
657      if (updates == 0) {
658        vp9_write_bit(bc, 0);  // no updates
659      }
660      return;
661    }
662
663    default:
664      assert(0);
665  }
666}
667
668static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
669  const TX_MODE tx_mode = cpi->common.tx_mode;
670  const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
671  TX_SIZE tx_size;
672  vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
673  vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
674
675  for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
676    build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size],
677                            frame_coef_probs[tx_size]);
678
679  for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
680    update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size],
681                             frame_coef_probs[tx_size]);
682}
683
684static void encode_loopfilter(struct loopfilter *lf,
685                              struct vp9_write_bit_buffer *wb) {
686  int i;
687
688  // Encode the loop filter level and type
689  vp9_wb_write_literal(wb, lf->filter_level, 6);
690  vp9_wb_write_literal(wb, lf->sharpness_level, 3);
691
692  // Write out loop filter deltas applied at the MB level based on mode or
693  // ref frame (if they are enabled).
694  vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
695
696  if (lf->mode_ref_delta_enabled) {
697    vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
698    if (lf->mode_ref_delta_update) {
699      for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
700        const int delta = lf->ref_deltas[i];
701        const int changed = delta != lf->last_ref_deltas[i];
702        vp9_wb_write_bit(wb, changed);
703        if (changed) {
704          lf->last_ref_deltas[i] = delta;
705          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
706          vp9_wb_write_bit(wb, delta < 0);
707        }
708      }
709
710      for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
711        const int delta = lf->mode_deltas[i];
712        const int changed = delta != lf->last_mode_deltas[i];
713        vp9_wb_write_bit(wb, changed);
714        if (changed) {
715          lf->last_mode_deltas[i] = delta;
716          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
717          vp9_wb_write_bit(wb, delta < 0);
718        }
719      }
720    }
721  }
722}
723
724static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
725  if (delta_q != 0) {
726    vp9_wb_write_bit(wb, 1);
727    vp9_wb_write_literal(wb, abs(delta_q), 4);
728    vp9_wb_write_bit(wb, delta_q < 0);
729  } else {
730    vp9_wb_write_bit(wb, 0);
731  }
732}
733
734static void encode_quantization(const VP9_COMMON *const cm,
735                                struct vp9_write_bit_buffer *wb) {
736  vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
737  write_delta_q(wb, cm->y_dc_delta_q);
738  write_delta_q(wb, cm->uv_dc_delta_q);
739  write_delta_q(wb, cm->uv_ac_delta_q);
740}
741
742static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
743                                struct vp9_write_bit_buffer *wb) {
744  int i, j;
745
746  const struct segmentation *seg = &cm->seg;
747
748  vp9_wb_write_bit(wb, seg->enabled);
749  if (!seg->enabled)
750    return;
751
752  // Segmentation map
753  vp9_wb_write_bit(wb, seg->update_map);
754  if (seg->update_map) {
755    // Select the coding strategy (temporal or spatial)
756    vp9_choose_segmap_coding_method(cm, xd);
757    // Write out probabilities used to decode unpredicted  macro-block segments
758    for (i = 0; i < SEG_TREE_PROBS; i++) {
759      const int prob = seg->tree_probs[i];
760      const int update = prob != MAX_PROB;
761      vp9_wb_write_bit(wb, update);
762      if (update)
763        vp9_wb_write_literal(wb, prob, 8);
764    }
765
766    // Write out the chosen coding method.
767    vp9_wb_write_bit(wb, seg->temporal_update);
768    if (seg->temporal_update) {
769      for (i = 0; i < PREDICTION_PROBS; i++) {
770        const int prob = seg->pred_probs[i];
771        const int update = prob != MAX_PROB;
772        vp9_wb_write_bit(wb, update);
773        if (update)
774          vp9_wb_write_literal(wb, prob, 8);
775      }
776    }
777  }
778
779  // Segmentation data
780  vp9_wb_write_bit(wb, seg->update_data);
781  if (seg->update_data) {
782    vp9_wb_write_bit(wb, seg->abs_delta);
783
784    for (i = 0; i < MAX_SEGMENTS; i++) {
785      for (j = 0; j < SEG_LVL_MAX; j++) {
786        const int active = vp9_segfeature_active(seg, i, j);
787        vp9_wb_write_bit(wb, active);
788        if (active) {
789          const int data = vp9_get_segdata(seg, i, j);
790          const int data_max = vp9_seg_feature_data_max(j);
791
792          if (vp9_is_segfeature_signed(j)) {
793            encode_unsigned_max(wb, abs(data), data_max);
794            vp9_wb_write_bit(wb, data < 0);
795          } else {
796            encode_unsigned_max(wb, data, data_max);
797          }
798        }
799      }
800    }
801  }
802}
803
804static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
805  // Mode
806  vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
807  if (cm->tx_mode >= ALLOW_32X32)
808    vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
809
810  // Probabilities
811  if (cm->tx_mode == TX_MODE_SELECT) {
812    int i, j;
813    unsigned int ct_8x8p[TX_SIZES - 3][2];
814    unsigned int ct_16x16p[TX_SIZES - 2][2];
815    unsigned int ct_32x32p[TX_SIZES - 1][2];
816
817
818    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
819      tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
820      for (j = 0; j < TX_SIZES - 3; j++)
821        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
822    }
823
824    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
825      tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
826      for (j = 0; j < TX_SIZES - 2; j++)
827        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
828                                  ct_16x16p[j]);
829    }
830
831    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
832      tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
833      for (j = 0; j < TX_SIZES - 1; j++)
834        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
835                                  ct_32x32p[j]);
836    }
837  }
838}
839
840static void write_interp_filter(INTERP_FILTER filter,
841                                struct vp9_write_bit_buffer *wb) {
842  const int filter_to_literal[] = { 1, 0, 2, 3 };
843
844  vp9_wb_write_bit(wb, filter == SWITCHABLE);
845  if (filter != SWITCHABLE)
846    vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
847}
848
849static void fix_interp_filter(VP9_COMMON *cm) {
850  if (cm->interp_filter == SWITCHABLE) {
851    // Check to see if only one of the filters is actually used
852    int count[SWITCHABLE_FILTERS];
853    int i, j, c = 0;
854    for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
855      count[i] = 0;
856      for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
857        count[i] += cm->counts.switchable_interp[j][i];
858      c += (count[i] > 0);
859    }
860    if (c == 1) {
861      // Only one filter is used. So set the filter at frame level
862      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
863        if (count[i]) {
864          cm->interp_filter = i;
865          break;
866        }
867      }
868    }
869  }
870}
871
872static void write_tile_info(const VP9_COMMON *const cm,
873                            struct vp9_write_bit_buffer *wb) {
874  int min_log2_tile_cols, max_log2_tile_cols, ones;
875  vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
876
877  // columns
878  ones = cm->log2_tile_cols - min_log2_tile_cols;
879  while (ones--)
880    vp9_wb_write_bit(wb, 1);
881
882  if (cm->log2_tile_cols < max_log2_tile_cols)
883    vp9_wb_write_bit(wb, 0);
884
885  // rows
886  vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
887  if (cm->log2_tile_rows != 0)
888    vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
889}
890
891static int get_refresh_mask(VP9_COMP *cpi) {
892  if (vp9_preserve_existing_gf(cpi)) {
893    // We have decided to preserve the previously existing golden frame as our
894    // new ARF frame. However, in the short term we leave it in the GF slot and,
895    // if we're updating the GF with the current decoded frame, we save it
896    // instead to the ARF slot.
897    // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
898    // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
899    // there so that it can be done outside of the recode loop.
900    // Note: This is highly specific to the use of ARF as a forward reference,
901    // and this needs to be generalized as other uses are implemented
902    // (like RTC/temporal scalability).
903    return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
904           (cpi->refresh_golden_frame << cpi->alt_fb_idx);
905  } else {
906    int arf_idx = cpi->alt_fb_idx;
907    if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
908      const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
909      arf_idx = gf_group->arf_update_idx[gf_group->index];
910    }
911    return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
912           (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
913           (cpi->refresh_alt_ref_frame << arf_idx);
914  }
915}
916
917static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
918  VP9_COMMON *const cm = &cpi->common;
919  vp9_writer residual_bc;
920
921  int tile_row, tile_col;
922  TOKENEXTRA *tok[4][1 << 6], *tok_end;
923  size_t total_size = 0;
924  const int tile_cols = 1 << cm->log2_tile_cols;
925  const int tile_rows = 1 << cm->log2_tile_rows;
926
927  vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
928             mi_cols_aligned_to_sb(cm->mi_cols));
929
930  tok[0][0] = cpi->tok;
931  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
932    if (tile_row)
933      tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
934                         cpi->tok_count[tile_row - 1][tile_cols - 1];
935
936    for (tile_col = 1; tile_col < tile_cols; tile_col++)
937      tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
938                                cpi->tok_count[tile_row][tile_col - 1];
939  }
940
941  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
942    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
943      TileInfo tile;
944
945      vp9_tile_init(&tile, cm, tile_row, tile_col);
946      tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
947
948      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
949        vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
950      else
951        vp9_start_encode(&residual_bc, data_ptr + total_size);
952
953      write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
954      assert(tok[tile_row][tile_col] == tok_end);
955      vp9_stop_encode(&residual_bc);
956      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
957        // size of this tile
958        mem_put_be32(data_ptr + total_size, residual_bc.pos);
959        total_size += 4;
960      }
961
962      total_size += residual_bc.pos;
963    }
964  }
965
966  return total_size;
967}
968
969static void write_display_size(const VP9_COMMON *cm,
970                               struct vp9_write_bit_buffer *wb) {
971  const int scaling_active = cm->width != cm->display_width ||
972                             cm->height != cm->display_height;
973  vp9_wb_write_bit(wb, scaling_active);
974  if (scaling_active) {
975    vp9_wb_write_literal(wb, cm->display_width - 1, 16);
976    vp9_wb_write_literal(wb, cm->display_height - 1, 16);
977  }
978}
979
980static void write_frame_size(const VP9_COMMON *cm,
981                             struct vp9_write_bit_buffer *wb) {
982  vp9_wb_write_literal(wb, cm->width - 1, 16);
983  vp9_wb_write_literal(wb, cm->height - 1, 16);
984
985  write_display_size(cm, wb);
986}
987
988static void write_frame_size_with_refs(VP9_COMP *cpi,
989                                       struct vp9_write_bit_buffer *wb) {
990  VP9_COMMON *const cm = &cpi->common;
991  int found = 0;
992
993  MV_REFERENCE_FRAME ref_frame;
994  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
995    YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
996    found = cm->width == cfg->y_crop_width &&
997            cm->height == cfg->y_crop_height;
998
999    // Set "found" to 0 for temporal svc and for spatial svc key frame
1000    if (cpi->use_svc &&
1001        ((cpi->svc.number_temporal_layers > 1 &&
1002         cpi->oxcf.rc_mode == VPX_CBR) ||
1003        (cpi->svc.number_spatial_layers > 1 &&
1004         cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame))) {
1005      found = 0;
1006    }
1007    vp9_wb_write_bit(wb, found);
1008    if (found) {
1009      break;
1010    }
1011  }
1012
1013  if (!found) {
1014    vp9_wb_write_literal(wb, cm->width - 1, 16);
1015    vp9_wb_write_literal(wb, cm->height - 1, 16);
1016  }
1017
1018  write_display_size(cm, wb);
1019}
1020
1021static void write_sync_code(struct vp9_write_bit_buffer *wb) {
1022  vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1023  vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1024  vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1025}
1026
1027static void write_profile(BITSTREAM_PROFILE profile,
1028                          struct vp9_write_bit_buffer *wb) {
1029  switch (profile) {
1030    case PROFILE_0:
1031      vp9_wb_write_literal(wb, 0, 2);
1032      break;
1033    case PROFILE_1:
1034      vp9_wb_write_literal(wb, 2, 2);
1035      break;
1036    case PROFILE_2:
1037      vp9_wb_write_literal(wb, 1, 2);
1038      break;
1039    case PROFILE_3:
1040      vp9_wb_write_literal(wb, 6, 3);
1041      break;
1042    default:
1043      assert(0);
1044  }
1045}
1046
1047static void write_bitdepth_colorspace_sampling(
1048    VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) {
1049  if (cm->profile >= PROFILE_2) {
1050    assert(cm->bit_depth > VPX_BITS_8);
1051    vp9_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
1052  }
1053  vp9_wb_write_literal(wb, cm->color_space, 3);
1054  if (cm->color_space != SRGB) {
1055    vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1056    if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1057      assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1058      vp9_wb_write_bit(wb, cm->subsampling_x);
1059      vp9_wb_write_bit(wb, cm->subsampling_y);
1060      vp9_wb_write_bit(wb, 0);  // unused
1061    } else {
1062      assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1063    }
1064  } else {
1065    assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1066    vp9_wb_write_bit(wb, 0);  // unused
1067  }
1068}
1069
1070static void write_uncompressed_header(VP9_COMP *cpi,
1071                                      struct vp9_write_bit_buffer *wb) {
1072  VP9_COMMON *const cm = &cpi->common;
1073
1074  vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1075
1076  write_profile(cm->profile, wb);
1077
1078  vp9_wb_write_bit(wb, 0);  // show_existing_frame
1079  vp9_wb_write_bit(wb, cm->frame_type);
1080  vp9_wb_write_bit(wb, cm->show_frame);
1081  vp9_wb_write_bit(wb, cm->error_resilient_mode);
1082
1083  if (cm->frame_type == KEY_FRAME) {
1084    write_sync_code(wb);
1085    write_bitdepth_colorspace_sampling(cm, wb);
1086    write_frame_size(cm, wb);
1087  } else {
1088    // In spatial svc if it's not error_resilient_mode then we need to code all
1089    // visible frames as invisible. But we need to keep the show_frame flag so
1090    // that the publisher could know whether it is supposed to be visible.
1091    // So we will code the show_frame flag as it is. Then code the intra_only
1092    // bit here. This will make the bitstream incompatible. In the player we
1093    // will change to show_frame flag to 0, then add an one byte frame with
1094    // show_existing_frame flag which tells the decoder which frame we want to
1095    // show.
1096    if (!cm->show_frame ||
1097        (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0))
1098      vp9_wb_write_bit(wb, cm->intra_only);
1099
1100    if (!cm->error_resilient_mode)
1101      vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
1102
1103    if (cm->intra_only) {
1104      write_sync_code(wb);
1105
1106      // Note for profile 0, 420 8bpp is assumed.
1107      if (cm->profile > PROFILE_0) {
1108        write_bitdepth_colorspace_sampling(cm, wb);
1109      }
1110
1111      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1112      write_frame_size(cm, wb);
1113    } else {
1114      MV_REFERENCE_FRAME ref_frame;
1115      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1116      for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1117        vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
1118                             REF_FRAMES_LOG2);
1119        vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1120      }
1121
1122      write_frame_size_with_refs(cpi, wb);
1123
1124      vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
1125
1126      fix_interp_filter(cm);
1127      write_interp_filter(cm->interp_filter, wb);
1128    }
1129  }
1130
1131  if (!cm->error_resilient_mode) {
1132    vp9_wb_write_bit(wb, cm->refresh_frame_context);
1133    vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1134  }
1135
1136  vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1137
1138  encode_loopfilter(&cm->lf, wb);
1139  encode_quantization(cm, wb);
1140  encode_segmentation(cm, &cpi->mb.e_mbd, wb);
1141
1142  write_tile_info(cm, wb);
1143}
1144
1145static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1146  VP9_COMMON *const cm = &cpi->common;
1147  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1148  FRAME_CONTEXT *const fc = &cm->fc;
1149  vp9_writer header_bc;
1150
1151  vp9_start_encode(&header_bc, data);
1152
1153  if (xd->lossless)
1154    cm->tx_mode = ONLY_4X4;
1155  else
1156    encode_txfm_probs(cm, &header_bc);
1157
1158  update_coef_probs(cpi, &header_bc);
1159  update_skip_probs(cm, &header_bc);
1160
1161  if (!frame_is_intra_only(cm)) {
1162    int i;
1163
1164    for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1165      prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
1166                       cm->counts.inter_mode[i], INTER_MODES, &header_bc);
1167
1168    vp9_zero(cm->counts.inter_mode);
1169
1170    if (cm->interp_filter == SWITCHABLE)
1171      update_switchable_interp_probs(cm, &header_bc);
1172
1173    for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1174      vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1175                                cm->counts.intra_inter[i]);
1176
1177    if (cm->allow_comp_inter_inter) {
1178      const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1179      const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1180
1181      vp9_write_bit(&header_bc, use_compound_pred);
1182      if (use_compound_pred) {
1183        vp9_write_bit(&header_bc, use_hybrid_pred);
1184        if (use_hybrid_pred)
1185          for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1186            vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1187                                      cm->counts.comp_inter[i]);
1188      }
1189    }
1190
1191    if (cm->reference_mode != COMPOUND_REFERENCE) {
1192      for (i = 0; i < REF_CONTEXTS; i++) {
1193        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1194                                  cm->counts.single_ref[i][0]);
1195        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1196                                  cm->counts.single_ref[i][1]);
1197      }
1198    }
1199
1200    if (cm->reference_mode != SINGLE_REFERENCE)
1201      for (i = 0; i < REF_CONTEXTS; i++)
1202        vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1203                                  cm->counts.comp_ref[i]);
1204
1205    for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1206      prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
1207                       cm->counts.y_mode[i], INTRA_MODES, &header_bc);
1208
1209    for (i = 0; i < PARTITION_CONTEXTS; ++i)
1210      prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1211                       cm->counts.partition[i], PARTITION_TYPES, &header_bc);
1212
1213    vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
1214  }
1215
1216  vp9_stop_encode(&header_bc);
1217  assert(header_bc.pos <= 0xffff);
1218
1219  return header_bc.pos;
1220}
1221
1222void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1223  uint8_t *data = dest;
1224  size_t first_part_size, uncompressed_hdr_size;
1225  struct vp9_write_bit_buffer wb = {data, 0};
1226  struct vp9_write_bit_buffer saved_wb;
1227
1228  write_uncompressed_header(cpi, &wb);
1229  saved_wb = wb;
1230  vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
1231
1232  uncompressed_hdr_size = vp9_wb_bytes_written(&wb);
1233  data += uncompressed_hdr_size;
1234
1235  vp9_clear_system_state();
1236
1237  first_part_size = write_compressed_header(cpi, data);
1238  data += first_part_size;
1239  // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1240  vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1241
1242  data += encode_tiles(cpi, data);
1243
1244  *size = data - dest;
1245}
1246