1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// SSE2 version of speed-critical encoding functions.
11//
12// Author: Christian Duvivier (cduvivier@google.com)
13
14#include "./dsp.h"
15
16#if defined(WEBP_USE_SSE2)
17#include <stdlib.h>  // for abs()
18#include <emmintrin.h>
19
20#include "../enc/cost.h"
21#include "../enc/vp8enci.h"
22#include "../utils/utils.h"
23
24//------------------------------------------------------------------------------
25// Quite useful macro for debugging. Left here for convenience.
26
27#if 0
28#include <stdio.h>
29static void PrintReg(const __m128i r, const char* const name, int size) {
30  int n;
31  union {
32    __m128i r;
33    uint8_t i8[16];
34    uint16_t i16[8];
35    uint32_t i32[4];
36    uint64_t i64[2];
37  } tmp;
38  tmp.r = r;
39  printf("%s\t: ", name);
40  if (size == 8) {
41    for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
42  } else if (size == 16) {
43    for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
44  } else if (size == 32) {
45    for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
46  } else {
47    for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
48  }
49  printf("\n");
50}
51#endif
52
53//------------------------------------------------------------------------------
54// Compute susceptibility based on DCT-coeff histograms:
55// the higher, the "easier" the macroblock is to compress.
56
57static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
58                             int start_block, int end_block,
59                             VP8Histogram* const histo) {
60  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
61  int j;
62  for (j = start_block; j < end_block; ++j) {
63    int16_t out[16];
64    int k;
65
66    VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
67
68    // Convert coefficients to bin (within out[]).
69    {
70      // Load.
71      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
72      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
73      // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
74      const __m128i sign0 = _mm_srai_epi16(out0, 15);
75      const __m128i sign1 = _mm_srai_epi16(out1, 15);
76      // abs(out) = (out ^ sign) - sign
77      const __m128i xor0 = _mm_xor_si128(out0, sign0);
78      const __m128i xor1 = _mm_xor_si128(out1, sign1);
79      const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
80      const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
81      // v = abs(out) >> 3
82      const __m128i v0 = _mm_srai_epi16(abs0, 3);
83      const __m128i v1 = _mm_srai_epi16(abs1, 3);
84      // bin = min(v, MAX_COEFF_THRESH)
85      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
86      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
87      // Store.
88      _mm_storeu_si128((__m128i*)&out[0], bin0);
89      _mm_storeu_si128((__m128i*)&out[8], bin1);
90    }
91
92    // Convert coefficients to bin.
93    for (k = 0; k < 16; ++k) {
94      histo->distribution[out[k]]++;
95    }
96  }
97}
98
99//------------------------------------------------------------------------------
100// Transforms (Paragraph 14.4)
101
102// Does one or two inverse transforms.
103static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
104                       int do_two) {
105  // This implementation makes use of 16-bit fixed point versions of two
106  // multiply constants:
107  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
108  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
109  //
110  // To be able to use signed 16-bit integers, we use the following trick to
111  // have constants within range:
112  // - Associated constants are obtained by subtracting the 16-bit fixed point
113  //   version of one:
114  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
115  //      K1 = 85267  =>  k1 =  20091
116  //      K2 = 35468  =>  k2 = -30068
117  // - The multiplication of a variable by a constant become the sum of the
118  //   variable and the multiplication of that variable by the associated
119  //   constant:
120  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
121  const __m128i k1 = _mm_set1_epi16(20091);
122  const __m128i k2 = _mm_set1_epi16(-30068);
123  __m128i T0, T1, T2, T3;
124
125  // Load and concatenate the transform coefficients (we'll do two inverse
126  // transforms in parallel). In the case of only one inverse transform, the
127  // second half of the vectors will just contain random value we'll never
128  // use nor store.
129  __m128i in0, in1, in2, in3;
130  {
131    in0 = _mm_loadl_epi64((__m128i*)&in[0]);
132    in1 = _mm_loadl_epi64((__m128i*)&in[4]);
133    in2 = _mm_loadl_epi64((__m128i*)&in[8]);
134    in3 = _mm_loadl_epi64((__m128i*)&in[12]);
135    // a00 a10 a20 a30   x x x x
136    // a01 a11 a21 a31   x x x x
137    // a02 a12 a22 a32   x x x x
138    // a03 a13 a23 a33   x x x x
139    if (do_two) {
140      const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
141      const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
142      const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
143      const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
144      in0 = _mm_unpacklo_epi64(in0, inB0);
145      in1 = _mm_unpacklo_epi64(in1, inB1);
146      in2 = _mm_unpacklo_epi64(in2, inB2);
147      in3 = _mm_unpacklo_epi64(in3, inB3);
148      // a00 a10 a20 a30   b00 b10 b20 b30
149      // a01 a11 a21 a31   b01 b11 b21 b31
150      // a02 a12 a22 a32   b02 b12 b22 b32
151      // a03 a13 a23 a33   b03 b13 b23 b33
152    }
153  }
154
155  // Vertical pass and subsequent transpose.
156  {
157    // First pass, c and d calculations are longer because of the "trick"
158    // multiplications.
159    const __m128i a = _mm_add_epi16(in0, in2);
160    const __m128i b = _mm_sub_epi16(in0, in2);
161    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
162    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
163    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
164    const __m128i c3 = _mm_sub_epi16(in1, in3);
165    const __m128i c4 = _mm_sub_epi16(c1, c2);
166    const __m128i c = _mm_add_epi16(c3, c4);
167    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
168    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
169    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
170    const __m128i d3 = _mm_add_epi16(in1, in3);
171    const __m128i d4 = _mm_add_epi16(d1, d2);
172    const __m128i d = _mm_add_epi16(d3, d4);
173
174    // Second pass.
175    const __m128i tmp0 = _mm_add_epi16(a, d);
176    const __m128i tmp1 = _mm_add_epi16(b, c);
177    const __m128i tmp2 = _mm_sub_epi16(b, c);
178    const __m128i tmp3 = _mm_sub_epi16(a, d);
179
180    // Transpose the two 4x4.
181    // a00 a01 a02 a03   b00 b01 b02 b03
182    // a10 a11 a12 a13   b10 b11 b12 b13
183    // a20 a21 a22 a23   b20 b21 b22 b23
184    // a30 a31 a32 a33   b30 b31 b32 b33
185    const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
186    const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
187    const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
188    const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
189    // a00 a10 a01 a11   a02 a12 a03 a13
190    // a20 a30 a21 a31   a22 a32 a23 a33
191    // b00 b10 b01 b11   b02 b12 b03 b13
192    // b20 b30 b21 b31   b22 b32 b23 b33
193    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
194    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
195    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
196    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
197    // a00 a10 a20 a30 a01 a11 a21 a31
198    // b00 b10 b20 b30 b01 b11 b21 b31
199    // a02 a12 a22 a32 a03 a13 a23 a33
200    // b02 b12 a22 b32 b03 b13 b23 b33
201    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
202    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
203    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
204    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
205    // a00 a10 a20 a30   b00 b10 b20 b30
206    // a01 a11 a21 a31   b01 b11 b21 b31
207    // a02 a12 a22 a32   b02 b12 b22 b32
208    // a03 a13 a23 a33   b03 b13 b23 b33
209  }
210
211  // Horizontal pass and subsequent transpose.
212  {
213    // First pass, c and d calculations are longer because of the "trick"
214    // multiplications.
215    const __m128i four = _mm_set1_epi16(4);
216    const __m128i dc = _mm_add_epi16(T0, four);
217    const __m128i a =  _mm_add_epi16(dc, T2);
218    const __m128i b =  _mm_sub_epi16(dc, T2);
219    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
220    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
221    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
222    const __m128i c3 = _mm_sub_epi16(T1, T3);
223    const __m128i c4 = _mm_sub_epi16(c1, c2);
224    const __m128i c = _mm_add_epi16(c3, c4);
225    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
226    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
227    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
228    const __m128i d3 = _mm_add_epi16(T1, T3);
229    const __m128i d4 = _mm_add_epi16(d1, d2);
230    const __m128i d = _mm_add_epi16(d3, d4);
231
232    // Second pass.
233    const __m128i tmp0 = _mm_add_epi16(a, d);
234    const __m128i tmp1 = _mm_add_epi16(b, c);
235    const __m128i tmp2 = _mm_sub_epi16(b, c);
236    const __m128i tmp3 = _mm_sub_epi16(a, d);
237    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
238    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
239    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
240    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
241
242    // Transpose the two 4x4.
243    // a00 a01 a02 a03   b00 b01 b02 b03
244    // a10 a11 a12 a13   b10 b11 b12 b13
245    // a20 a21 a22 a23   b20 b21 b22 b23
246    // a30 a31 a32 a33   b30 b31 b32 b33
247    const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
248    const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
249    const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
250    const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
251    // a00 a10 a01 a11   a02 a12 a03 a13
252    // a20 a30 a21 a31   a22 a32 a23 a33
253    // b00 b10 b01 b11   b02 b12 b03 b13
254    // b20 b30 b21 b31   b22 b32 b23 b33
255    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
256    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
257    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
258    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
259    // a00 a10 a20 a30 a01 a11 a21 a31
260    // b00 b10 b20 b30 b01 b11 b21 b31
261    // a02 a12 a22 a32 a03 a13 a23 a33
262    // b02 b12 a22 b32 b03 b13 b23 b33
263    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
264    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
265    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
266    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
267    // a00 a10 a20 a30   b00 b10 b20 b30
268    // a01 a11 a21 a31   b01 b11 b21 b31
269    // a02 a12 a22 a32   b02 b12 b22 b32
270    // a03 a13 a23 a33   b03 b13 b23 b33
271  }
272
273  // Add inverse transform to 'ref' and store.
274  {
275    const __m128i zero = _mm_setzero_si128();
276    // Load the reference(s).
277    __m128i ref0, ref1, ref2, ref3;
278    if (do_two) {
279      // Load eight bytes/pixels per line.
280      ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
281      ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
282      ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
283      ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
284    } else {
285      // Load four bytes/pixels per line.
286      ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
287      ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
288      ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
289      ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
290    }
291    // Convert to 16b.
292    ref0 = _mm_unpacklo_epi8(ref0, zero);
293    ref1 = _mm_unpacklo_epi8(ref1, zero);
294    ref2 = _mm_unpacklo_epi8(ref2, zero);
295    ref3 = _mm_unpacklo_epi8(ref3, zero);
296    // Add the inverse transform(s).
297    ref0 = _mm_add_epi16(ref0, T0);
298    ref1 = _mm_add_epi16(ref1, T1);
299    ref2 = _mm_add_epi16(ref2, T2);
300    ref3 = _mm_add_epi16(ref3, T3);
301    // Unsigned saturate to 8b.
302    ref0 = _mm_packus_epi16(ref0, ref0);
303    ref1 = _mm_packus_epi16(ref1, ref1);
304    ref2 = _mm_packus_epi16(ref2, ref2);
305    ref3 = _mm_packus_epi16(ref3, ref3);
306    // Store the results.
307    if (do_two) {
308      // Store eight bytes/pixels per line.
309      _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
310      _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
311      _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
312      _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
313    } else {
314      // Store four bytes/pixels per line.
315      *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
316      *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
317      *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
318      *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
319    }
320  }
321}
322
323static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
324  const __m128i zero = _mm_setzero_si128();
325  const __m128i seven = _mm_set1_epi16(7);
326  const __m128i k937 = _mm_set1_epi32(937);
327  const __m128i k1812 = _mm_set1_epi32(1812);
328  const __m128i k51000 = _mm_set1_epi32(51000);
329  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
330  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
331                                           5352,  2217, 5352,  2217);
332  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
333                                           2217, -5352, 2217, -5352);
334  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
335  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
336  const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
337                                            2217, 5352, 2217, 5352);
338  const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
339                                            -5352, 2217, -5352, 2217);
340  __m128i v01, v32;
341
342
343  // Difference between src and ref and initial transpose.
344  {
345    // Load src and convert to 16b.
346    const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
347    const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
348    const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
349    const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
350    const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
351    const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
352    const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
353    const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
354    // Load ref and convert to 16b.
355    const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
356    const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
357    const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
358    const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
359    const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
360    const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
361    const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
362    const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
363    // Compute difference. -> 00 01 02 03 00 00 00 00
364    const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
365    const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
366    const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
367    const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
368
369
370    // Unpack and shuffle
371    // 00 01 02 03   0 0 0 0
372    // 10 11 12 13   0 0 0 0
373    // 20 21 22 23   0 0 0 0
374    // 30 31 32 33   0 0 0 0
375    const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
376    const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
377    // 00 01 10 11 02 03 12 13
378    // 20 21 30 31 22 23 32 33
379    const __m128i shuf01_p =
380        _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
381    const __m128i shuf23_p =
382        _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
383    // 00 01 10 11 03 02 13 12
384    // 20 21 30 31 23 22 33 32
385    const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
386    const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
387    // 00 01 10 11 20 21 30 31
388    // 03 02 13 12 23 22 33 32
389    const __m128i a01 = _mm_add_epi16(s01, s32);
390    const __m128i a32 = _mm_sub_epi16(s01, s32);
391    // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
392    // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
393
394    const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
395    const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
396    const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
397    const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
398    const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
399    const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
400    const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
401    const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
402    const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
403    const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
404    const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
405    const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
406    const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
407    v01 = _mm_unpacklo_epi32(s_lo, s_hi);
408    v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
409  }
410
411  // Second pass
412  {
413    // Same operations are done on the (0,3) and (1,2) pairs.
414    // a0 = v0 + v3
415    // a1 = v1 + v2
416    // a3 = v0 - v3
417    // a2 = v1 - v2
418    const __m128i a01 = _mm_add_epi16(v01, v32);
419    const __m128i a32 = _mm_sub_epi16(v01, v32);
420    const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
421    const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
422    const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
423
424    // d0 = (a0 + a1 + 7) >> 4;
425    // d2 = (a0 - a1 + 7) >> 4;
426    const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
427    const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
428    const __m128i d0 = _mm_srai_epi16(c0, 4);
429    const __m128i d2 = _mm_srai_epi16(c2, 4);
430
431    // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
432    // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
433    const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
434    const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
435    const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
436    const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
437    const __m128i d3 = _mm_add_epi32(c3, k51000);
438    const __m128i e1 = _mm_srai_epi32(d1, 16);
439    const __m128i e3 = _mm_srai_epi32(d3, 16);
440    const __m128i f1 = _mm_packs_epi32(e1, e1);
441    const __m128i f3 = _mm_packs_epi32(e3, e3);
442    // f1 = f1 + (a3 != 0);
443    // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
444    // desired (0, 1), we add one earlier through k12000_plus_one.
445    // -> f1 = f1 + 1 - (a3 == 0)
446    const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
447
448    const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
449    const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
450    _mm_storeu_si128((__m128i*)&out[0], d0_g1);
451    _mm_storeu_si128((__m128i*)&out[8], d2_f3);
452  }
453}
454
455static void FTransformWHT(const int16_t* in, int16_t* out) {
456  int32_t tmp[16];
457  int i;
458  for (i = 0; i < 4; ++i, in += 64) {
459    const int a0 = (in[0 * 16] + in[2 * 16]);
460    const int a1 = (in[1 * 16] + in[3 * 16]);
461    const int a2 = (in[1 * 16] - in[3 * 16]);
462    const int a3 = (in[0 * 16] - in[2 * 16]);
463    tmp[0 + i * 4] = a0 + a1;
464    tmp[1 + i * 4] = a3 + a2;
465    tmp[2 + i * 4] = a3 - a2;
466    tmp[3 + i * 4] = a0 - a1;
467  }
468  {
469    const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]);
470    const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]);
471    const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]);
472    const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]);
473    const __m128i a0 = _mm_add_epi32(src0, src2);
474    const __m128i a1 = _mm_add_epi32(src1, src3);
475    const __m128i a2 = _mm_sub_epi32(src1, src3);
476    const __m128i a3 = _mm_sub_epi32(src0, src2);
477    const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
478    const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
479    const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
480    const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
481    const __m128i out0 = _mm_packs_epi32(b0, b1);
482    const __m128i out1 = _mm_packs_epi32(b2, b3);
483    _mm_storeu_si128((__m128i*)&out[0], out0);
484    _mm_storeu_si128((__m128i*)&out[8], out1);
485  }
486}
487
488//------------------------------------------------------------------------------
489// Metric
490
491static int SSE_Nx4(const uint8_t* a, const uint8_t* b,
492                   int num_quads, int do_16) {
493  const __m128i zero = _mm_setzero_si128();
494  __m128i sum1 = zero;
495  __m128i sum2 = zero;
496
497  while (num_quads-- > 0) {
498    // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
499    // thanks to buffer over-allocation to that effect.
500    const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
501    const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
502    const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
503    const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
504    const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
505    const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
506    const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
507    const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
508
509    // compute clip0(a-b) and clip0(b-a)
510    const __m128i a0p = _mm_subs_epu8(a0, b0);
511    const __m128i a0m = _mm_subs_epu8(b0, a0);
512    const __m128i a1p = _mm_subs_epu8(a1, b1);
513    const __m128i a1m = _mm_subs_epu8(b1, a1);
514    const __m128i a2p = _mm_subs_epu8(a2, b2);
515    const __m128i a2m = _mm_subs_epu8(b2, a2);
516    const __m128i a3p = _mm_subs_epu8(a3, b3);
517    const __m128i a3m = _mm_subs_epu8(b3, a3);
518
519    // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
520    const __m128i diff0 = _mm_or_si128(a0p, a0m);
521    const __m128i diff1 = _mm_or_si128(a1p, a1m);
522    const __m128i diff2 = _mm_or_si128(a2p, a2m);
523    const __m128i diff3 = _mm_or_si128(a3p, a3m);
524
525    // unpack (only four operations, instead of eight)
526    const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
527    const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
528    const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
529    const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
530
531    // multiply with self
532    const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
533    const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
534    const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
535    const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
536
537    // collect in a cascading way
538    const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
539    const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
540    sum1 = _mm_add_epi32(sum1, low_sum0);
541    sum2 = _mm_add_epi32(sum2, low_sum1);
542
543    if (do_16) {  // if necessary, process the higher 8 bytes similarly
544      const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
545      const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
546      const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
547      const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
548
549      const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
550      const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
551      const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
552      const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
553      const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
554      const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
555      sum1 = _mm_add_epi32(sum1, hi_sum0);
556      sum2 = _mm_add_epi32(sum2, hi_sum1);
557    }
558    a += 4 * BPS;
559    b += 4 * BPS;
560  }
561  {
562    int32_t tmp[4];
563    const __m128i sum = _mm_add_epi32(sum1, sum2);
564    _mm_storeu_si128((__m128i*)tmp, sum);
565    return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
566  }
567}
568
569static int SSE16x16(const uint8_t* a, const uint8_t* b) {
570  return SSE_Nx4(a, b, 4, 1);
571}
572
573static int SSE16x8(const uint8_t* a, const uint8_t* b) {
574  return SSE_Nx4(a, b, 2, 1);
575}
576
577static int SSE8x8(const uint8_t* a, const uint8_t* b) {
578  return SSE_Nx4(a, b, 2, 0);
579}
580
581static int SSE4x4(const uint8_t* a, const uint8_t* b) {
582  const __m128i zero = _mm_setzero_si128();
583
584  // Load values. Note that we read 8 pixels instead of 4,
585  // but the a/b buffers are over-allocated to that effect.
586  const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
587  const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
588  const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
589  const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
590  const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
591  const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
592  const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
593  const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
594
595  // Combine pair of lines and convert to 16b.
596  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
597  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
598  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
599  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
600  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
601  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
602  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
603  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
604
605  // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
606  // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
607  //                  need absolute values, there is no need to do calculation
608  //                  in 8bit as we are already in 16bit, ... Yet this is what
609  //                  benchmarks the fastest!
610  const __m128i d0 = _mm_subs_epu8(a01s, b01s);
611  const __m128i d1 = _mm_subs_epu8(b01s, a01s);
612  const __m128i d2 = _mm_subs_epu8(a23s, b23s);
613  const __m128i d3 = _mm_subs_epu8(b23s, a23s);
614
615  // Square and add them all together.
616  const __m128i madd0 = _mm_madd_epi16(d0, d0);
617  const __m128i madd1 = _mm_madd_epi16(d1, d1);
618  const __m128i madd2 = _mm_madd_epi16(d2, d2);
619  const __m128i madd3 = _mm_madd_epi16(d3, d3);
620  const __m128i sum0 = _mm_add_epi32(madd0, madd1);
621  const __m128i sum1 = _mm_add_epi32(madd2, madd3);
622  const __m128i sum2 = _mm_add_epi32(sum0, sum1);
623
624  int32_t tmp[4];
625  _mm_storeu_si128((__m128i*)tmp, sum2);
626  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
627}
628
629//------------------------------------------------------------------------------
630// Texture distortion
631//
632// We try to match the spectral content (weighted) between source and
633// reconstructed samples.
634
635// Hadamard transform
636// Returns the difference between the weighted sum of the absolute value of
637// transformed coefficients.
638static int TTransform(const uint8_t* inA, const uint8_t* inB,
639                      const uint16_t* const w) {
640  int32_t sum[4];
641  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
642  const __m128i zero = _mm_setzero_si128();
643
644  // Load, combine and transpose inputs.
645  {
646    const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
647    const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
648    const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
649    const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
650    const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
651    const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
652    const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
653    const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
654
655    // Combine inA and inB (we'll do two transforms in parallel).
656    const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
657    const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
658    const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
659    const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
660    // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
661    // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
662    // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
663    // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
664
665    // Transpose the two 4x4, discarding the filling zeroes.
666    const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
667    const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
668    // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
669    // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
670    const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
671    const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
672    // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
673    // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
674
675    // Convert to 16b.
676    tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
677    tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
678    tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
679    tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
680    // a00 a10 a20 a30   b00 b10 b20 b30
681    // a01 a11 a21 a31   b01 b11 b21 b31
682    // a02 a12 a22 a32   b02 b12 b22 b32
683    // a03 a13 a23 a33   b03 b13 b23 b33
684  }
685
686  // Horizontal pass and subsequent transpose.
687  {
688    // Calculate a and b (two 4x4 at once).
689    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
690    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
691    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
692    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
693    const __m128i b0 = _mm_add_epi16(a0, a1);
694    const __m128i b1 = _mm_add_epi16(a3, a2);
695    const __m128i b2 = _mm_sub_epi16(a3, a2);
696    const __m128i b3 = _mm_sub_epi16(a0, a1);
697    // a00 a01 a02 a03   b00 b01 b02 b03
698    // a10 a11 a12 a13   b10 b11 b12 b13
699    // a20 a21 a22 a23   b20 b21 b22 b23
700    // a30 a31 a32 a33   b30 b31 b32 b33
701
702    // Transpose the two 4x4.
703    const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
704    const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
705    const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
706    const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
707    // a00 a10 a01 a11   a02 a12 a03 a13
708    // a20 a30 a21 a31   a22 a32 a23 a33
709    // b00 b10 b01 b11   b02 b12 b03 b13
710    // b20 b30 b21 b31   b22 b32 b23 b33
711    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
712    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
713    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
714    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
715    // a00 a10 a20 a30 a01 a11 a21 a31
716    // b00 b10 b20 b30 b01 b11 b21 b31
717    // a02 a12 a22 a32 a03 a13 a23 a33
718    // b02 b12 a22 b32 b03 b13 b23 b33
719    tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
720    tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
721    tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
722    tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
723    // a00 a10 a20 a30   b00 b10 b20 b30
724    // a01 a11 a21 a31   b01 b11 b21 b31
725    // a02 a12 a22 a32   b02 b12 b22 b32
726    // a03 a13 a23 a33   b03 b13 b23 b33
727  }
728
729  // Vertical pass and difference of weighted sums.
730  {
731    // Load all inputs.
732    // TODO(cduvivier): Make variable declarations and allocations aligned so
733    //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
734    const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
735    const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
736
737    // Calculate a and b (two 4x4 at once).
738    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
739    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
740    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
741    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
742    const __m128i b0 = _mm_add_epi16(a0, a1);
743    const __m128i b1 = _mm_add_epi16(a3, a2);
744    const __m128i b2 = _mm_sub_epi16(a3, a2);
745    const __m128i b3 = _mm_sub_epi16(a0, a1);
746
747    // Separate the transforms of inA and inB.
748    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
749    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
750    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
751    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
752
753    {
754      // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
755      const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
756      const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
757      const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
758      const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
759
760      // b = abs(b) = (b ^ sign) - sign
761      A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
762      A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
763      B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
764      B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
765      A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
766      A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
767      B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
768      B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
769    }
770
771    // weighted sums
772    A_b0 = _mm_madd_epi16(A_b0, w_0);
773    A_b2 = _mm_madd_epi16(A_b2, w_8);
774    B_b0 = _mm_madd_epi16(B_b0, w_0);
775    B_b2 = _mm_madd_epi16(B_b2, w_8);
776    A_b0 = _mm_add_epi32(A_b0, A_b2);
777    B_b0 = _mm_add_epi32(B_b0, B_b2);
778
779    // difference of weighted sums
780    A_b0 = _mm_sub_epi32(A_b0, B_b0);
781    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
782  }
783  return sum[0] + sum[1] + sum[2] + sum[3];
784}
785
786static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
787                    const uint16_t* const w) {
788  const int diff_sum = TTransform(a, b, w);
789  return abs(diff_sum) >> 5;
790}
791
792static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
793                      const uint16_t* const w) {
794  int D = 0;
795  int x, y;
796  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
797    for (x = 0; x < 16; x += 4) {
798      D += Disto4x4(a + x + y, b + x + y, w);
799    }
800  }
801  return D;
802}
803
804//------------------------------------------------------------------------------
805// Quantization
806//
807
808static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
809                                       const uint16_t* const sharpen,
810                                       const VP8Matrix* const mtx) {
811  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
812  const __m128i zero = _mm_setzero_si128();
813  __m128i coeff0, coeff8;
814  __m128i out0, out8;
815  __m128i packed_out;
816
817  // Load all inputs.
818  // TODO(cduvivier): Make variable declarations and allocations aligned so that
819  //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
820  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
821  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
822  const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
823  const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
824  const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
825  const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
826
827  // extract sign(in)  (0x0000 if positive, 0xffff if negative)
828  const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
829  const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
830
831  // coeff = abs(in) = (in ^ sign) - sign
832  coeff0 = _mm_xor_si128(in0, sign0);
833  coeff8 = _mm_xor_si128(in8, sign8);
834  coeff0 = _mm_sub_epi16(coeff0, sign0);
835  coeff8 = _mm_sub_epi16(coeff8, sign8);
836
837  // coeff = abs(in) + sharpen
838  if (sharpen != NULL) {
839    const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&sharpen[0]);
840    const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&sharpen[8]);
841    coeff0 = _mm_add_epi16(coeff0, sharpen0);
842    coeff8 = _mm_add_epi16(coeff8, sharpen8);
843  }
844
845  // out = (coeff * iQ + B) >> QFIX
846  {
847    // doing calculations with 32b precision (QFIX=17)
848    // out = (coeff * iQ)
849    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
850    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
851    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
852    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
853    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
854    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
855    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
856    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
857    // out = (coeff * iQ + B)
858    const __m128i bias_00 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
859    const __m128i bias_04 = _mm_loadu_si128((__m128i*)&mtx->bias_[4]);
860    const __m128i bias_08 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
861    const __m128i bias_12 = _mm_loadu_si128((__m128i*)&mtx->bias_[12]);
862    out_00 = _mm_add_epi32(out_00, bias_00);
863    out_04 = _mm_add_epi32(out_04, bias_04);
864    out_08 = _mm_add_epi32(out_08, bias_08);
865    out_12 = _mm_add_epi32(out_12, bias_12);
866    // out = QUANTDIV(coeff, iQ, B, QFIX)
867    out_00 = _mm_srai_epi32(out_00, QFIX);
868    out_04 = _mm_srai_epi32(out_04, QFIX);
869    out_08 = _mm_srai_epi32(out_08, QFIX);
870    out_12 = _mm_srai_epi32(out_12, QFIX);
871
872    // pack result as 16b
873    out0 = _mm_packs_epi32(out_00, out_04);
874    out8 = _mm_packs_epi32(out_08, out_12);
875
876    // if (coeff > 2047) coeff = 2047
877    out0 = _mm_min_epi16(out0, max_coeff_2047);
878    out8 = _mm_min_epi16(out8, max_coeff_2047);
879  }
880
881  // get sign back (if (sign[j]) out_n = -out_n)
882  out0 = _mm_xor_si128(out0, sign0);
883  out8 = _mm_xor_si128(out8, sign8);
884  out0 = _mm_sub_epi16(out0, sign0);
885  out8 = _mm_sub_epi16(out8, sign8);
886
887  // in = out * Q
888  in0 = _mm_mullo_epi16(out0, q0);
889  in8 = _mm_mullo_epi16(out8, q8);
890
891  _mm_storeu_si128((__m128i*)&in[0], in0);
892  _mm_storeu_si128((__m128i*)&in[8], in8);
893
894  // zigzag the output before storing it.
895  //
896  // The zigzag pattern can almost be reproduced with a small sequence of
897  // shuffles. After it, we only need to swap the 7th (ending up in third
898  // position instead of twelfth) and 8th values.
899  {
900    __m128i outZ0, outZ8;
901    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
902    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
903    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
904    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
905    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
906    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
907    _mm_storeu_si128((__m128i*)&out[0], outZ0);
908    _mm_storeu_si128((__m128i*)&out[8], outZ8);
909    packed_out = _mm_packs_epi16(outZ0, outZ8);
910  }
911  {
912    const int16_t outZ_12 = out[12];
913    const int16_t outZ_3 = out[3];
914    out[3] = outZ_12;
915    out[12] = outZ_3;
916  }
917
918  // detect if all 'out' values are zeroes or not
919  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
920}
921
922static int QuantizeBlock(int16_t in[16], int16_t out[16],
923                         const VP8Matrix* const mtx) {
924  return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
925}
926
927static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
928                            const VP8Matrix* const mtx) {
929  return DoQuantizeBlock(in, out, NULL, mtx);
930}
931
932// Forward declaration.
933void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
934                              VP8Residual* const res);
935
936void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
937                              VP8Residual* const res) {
938  const __m128i c0 = _mm_loadu_si128((const __m128i*)coeffs);
939  const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8));
940  // Use SSE to compare 8 values with a single instruction.
941  const __m128i zero = _mm_setzero_si128();
942  const __m128i m0 = _mm_cmpeq_epi16(c0, zero);
943  const __m128i m1 = _mm_cmpeq_epi16(c1, zero);
944  // Get the comparison results as a bitmask, consisting of two times 16 bits:
945  // two identical bits for each result. Concatenate both bitmasks to get a
946  // single 32 bit value. Negate the mask to get the position of entries that
947  // are not equal to zero. We don't need to mask out least significant bits
948  // according to res->first, since coeffs[0] is 0 if res->first > 0
949  const uint32_t mask =
950      ~(((uint32_t)_mm_movemask_epi8(m1) << 16) | _mm_movemask_epi8(m0));
951  // The position of the most significant non-zero bit indicates the position of
952  // the last non-zero value. Divide the result by two because __movemask_epi8
953  // operates on 8 bit values instead of 16 bit values.
954  assert(res->first == 0 || coeffs[0] == 0);
955  res->last = mask ? (BitsLog2Floor(mask) >> 1) : -1;
956  res->coeffs = coeffs;
957}
958
959#endif   // WEBP_USE_SSE2
960
961//------------------------------------------------------------------------------
962// Entry point
963
964extern void VP8EncDspInitSSE2(void);
965
966void VP8EncDspInitSSE2(void) {
967#if defined(WEBP_USE_SSE2)
968  VP8CollectHistogram = CollectHistogram;
969  VP8EncQuantizeBlock = QuantizeBlock;
970  VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
971  VP8ITransform = ITransform;
972  VP8FTransform = FTransform;
973  VP8FTransformWHT = FTransformWHT;
974  VP8SSE16x16 = SSE16x16;
975  VP8SSE16x8 = SSE16x8;
976  VP8SSE8x8 = SSE8x8;
977  VP8SSE4x4 = SSE4x4;
978  VP8TDisto4x4 = Disto4x4;
979  VP8TDisto16x16 = Disto16x16;
980#endif   // WEBP_USE_SSE2
981}
982
983