1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// Macroblock analysis
11//
12// Author: Skal (pascal.massimino@gmail.com)
13
14#include <stdlib.h>
15#include <string.h>
16#include <assert.h>
17
18#include "./vp8enci.h"
19#include "./cost.h"
20#include "../utils/utils.h"
21
22#define MAX_ITERS_K_MEANS  6
23
24//------------------------------------------------------------------------------
25// Smooth the segment map by replacing isolated block by the majority of its
26// neighbours.
27
28static void SmoothSegmentMap(VP8Encoder* const enc) {
29  int n, x, y;
30  const int w = enc->mb_w_;
31  const int h = enc->mb_h_;
32  const int majority_cnt_3_x_3_grid = 5;
33  uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34  assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
35
36  if (tmp == NULL) return;
37  for (y = 1; y < h - 1; ++y) {
38    for (x = 1; x < w - 1; ++x) {
39      int cnt[NUM_MB_SEGMENTS] = { 0 };
40      const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41      int majority_seg = mb->segment_;
42      // Check the 8 neighbouring segment values.
43      cnt[mb[-w - 1].segment_]++;  // top-left
44      cnt[mb[-w + 0].segment_]++;  // top
45      cnt[mb[-w + 1].segment_]++;  // top-right
46      cnt[mb[   - 1].segment_]++;  // left
47      cnt[mb[   + 1].segment_]++;  // right
48      cnt[mb[ w - 1].segment_]++;  // bottom-left
49      cnt[mb[ w + 0].segment_]++;  // bottom
50      cnt[mb[ w + 1].segment_]++;  // bottom-right
51      for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52        if (cnt[n] >= majority_cnt_3_x_3_grid) {
53          majority_seg = n;
54          break;
55        }
56      }
57      tmp[x + y * w] = majority_seg;
58    }
59  }
60  for (y = 1; y < h - 1; ++y) {
61    for (x = 1; x < w - 1; ++x) {
62      VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63      mb->segment_ = tmp[x + y * w];
64    }
65  }
66  WebPSafeFree(tmp);
67}
68
69//------------------------------------------------------------------------------
70// set segment susceptibility alpha_ / beta_
71
72static WEBP_INLINE int clip(int v, int m, int M) {
73  return (v < m) ? m : (v > M) ? M : v;
74}
75
76static void SetSegmentAlphas(VP8Encoder* const enc,
77                             const int centers[NUM_MB_SEGMENTS],
78                             int mid) {
79  const int nb = enc->segment_hdr_.num_segments_;
80  int min = centers[0], max = centers[0];
81  int n;
82
83  if (nb > 1) {
84    for (n = 0; n < nb; ++n) {
85      if (min > centers[n]) min = centers[n];
86      if (max < centers[n]) max = centers[n];
87    }
88  }
89  if (max == min) max = min + 1;
90  assert(mid <= max && mid >= min);
91  for (n = 0; n < nb; ++n) {
92    const int alpha = 255 * (centers[n] - mid) / (max - min);
93    const int beta = 255 * (centers[n] - min) / (max - min);
94    enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95    enc->dqm_[n].beta_ = clip(beta, 0, 255);
96  }
97}
98
99//------------------------------------------------------------------------------
100// Compute susceptibility based on DCT-coeff histograms:
101// the higher, the "easier" the macroblock is to compress.
102
103#define MAX_ALPHA 255                // 8b of precision for susceptibilities.
104#define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
105#define DEFAULT_ALPHA (-1)
106#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107
108static int FinalAlphaValue(int alpha) {
109  alpha = MAX_ALPHA - alpha;
110  return clip(alpha, 0, MAX_ALPHA);
111}
112
113static int GetAlpha(const VP8Histogram* const histo) {
114  int max_value = 0, last_non_zero = 1;
115  int k;
116  int alpha;
117  for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
118    const int value = histo->distribution[k];
119    if (value > 0) {
120      if (value > max_value) max_value = value;
121      last_non_zero = k;
122    }
123  }
124  // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
125  // values which happen to be mostly noise. This leaves the maximum precision
126  // for handling the useful small values which contribute most.
127  alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
128  return alpha;
129}
130
131static void MergeHistograms(const VP8Histogram* const in,
132                            VP8Histogram* const out) {
133  int i;
134  for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
135    out->distribution[i] += in->distribution[i];
136  }
137}
138
139//------------------------------------------------------------------------------
140// Simplified k-Means, to assign Nb segments based on alpha-histogram
141
142static void AssignSegments(VP8Encoder* const enc,
143                           const int alphas[MAX_ALPHA + 1]) {
144  const int nb = enc->segment_hdr_.num_segments_;
145  int centers[NUM_MB_SEGMENTS];
146  int weighted_average = 0;
147  int map[MAX_ALPHA + 1];
148  int a, n, k;
149  int min_a = 0, max_a = MAX_ALPHA, range_a;
150  // 'int' type is ok for histo, and won't overflow
151  int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
152
153  assert(nb >= 1);
154  assert(nb <= NUM_MB_SEGMENTS);
155
156  // bracket the input
157  for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
158  min_a = n;
159  for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
160  max_a = n;
161  range_a = max_a - min_a;
162
163  // Spread initial centers evenly
164  for (k = 0, n = 1; k < nb; ++k, n += 2) {
165    assert(n < 2 * nb);
166    centers[k] = min_a + (n * range_a) / (2 * nb);
167  }
168
169  for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
170    int total_weight;
171    int displaced;
172    // Reset stats
173    for (n = 0; n < nb; ++n) {
174      accum[n] = 0;
175      dist_accum[n] = 0;
176    }
177    // Assign nearest center for each 'a'
178    n = 0;    // track the nearest center for current 'a'
179    for (a = min_a; a <= max_a; ++a) {
180      if (alphas[a]) {
181        while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
182          n++;
183        }
184        map[a] = n;
185        // accumulate contribution into best centroid
186        dist_accum[n] += a * alphas[a];
187        accum[n] += alphas[a];
188      }
189    }
190    // All point are classified. Move the centroids to the
191    // center of their respective cloud.
192    displaced = 0;
193    weighted_average = 0;
194    total_weight = 0;
195    for (n = 0; n < nb; ++n) {
196      if (accum[n]) {
197        const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
198        displaced += abs(centers[n] - new_center);
199        centers[n] = new_center;
200        weighted_average += new_center * accum[n];
201        total_weight += accum[n];
202      }
203    }
204    weighted_average = (weighted_average + total_weight / 2) / total_weight;
205    if (displaced < 5) break;   // no need to keep on looping...
206  }
207
208  // Map each original value to the closest centroid
209  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
210    VP8MBInfo* const mb = &enc->mb_info_[n];
211    const int alpha = mb->alpha_;
212    mb->segment_ = map[alpha];
213    mb->alpha_ = centers[map[alpha]];  // for the record.
214  }
215
216  if (nb > 1) {
217    const int smooth = (enc->config_->preprocessing & 1);
218    if (smooth) SmoothSegmentMap(enc);
219  }
220
221  SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
222}
223
224//------------------------------------------------------------------------------
225// Macroblock analysis: collect histogram for each mode, deduce the maximal
226// susceptibility and set best modes for this macroblock.
227// Segment assignment is done later.
228
229// Number of modes to inspect for alpha_ evaluation. We don't need to test all
230// the possible modes during the analysis phase: we risk falling into a local
231// optimum, or be subject to boundary effect
232#define MAX_INTRA16_MODE 2
233#define MAX_INTRA4_MODE  2
234#define MAX_UV_MODE      2
235
236static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
237  const int max_mode = MAX_INTRA16_MODE;
238  int mode;
239  int best_alpha = DEFAULT_ALPHA;
240  int best_mode = 0;
241
242  VP8MakeLuma16Preds(it);
243  for (mode = 0; mode < max_mode; ++mode) {
244    VP8Histogram histo = { { 0 } };
245    int alpha;
246
247    VP8CollectHistogram(it->yuv_in_ + Y_OFF,
248                        it->yuv_p_ + VP8I16ModeOffsets[mode],
249                        0, 16, &histo);
250    alpha = GetAlpha(&histo);
251    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
252      best_alpha = alpha;
253      best_mode = mode;
254    }
255  }
256  VP8SetIntra16Mode(it, best_mode);
257  return best_alpha;
258}
259
260static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
261                                   int best_alpha) {
262  uint8_t modes[16];
263  const int max_mode = MAX_INTRA4_MODE;
264  int i4_alpha;
265  VP8Histogram total_histo = { { 0 } };
266  int cur_histo = 0;
267
268  VP8IteratorStartI4(it);
269  do {
270    int mode;
271    int best_mode_alpha = DEFAULT_ALPHA;
272    VP8Histogram histos[2];
273    const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
274
275    VP8MakeIntra4Preds(it);
276    for (mode = 0; mode < max_mode; ++mode) {
277      int alpha;
278
279      memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
280      VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
281                          0, 1, &histos[cur_histo]);
282      alpha = GetAlpha(&histos[cur_histo]);
283      if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
284        best_mode_alpha = alpha;
285        modes[it->i4_] = mode;
286        cur_histo ^= 1;   // keep track of best histo so far.
287      }
288    }
289    // accumulate best histogram
290    MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
291    // Note: we reuse the original samples for predictors
292  } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
293
294  i4_alpha = GetAlpha(&total_histo);
295  if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
296    VP8SetIntra4Mode(it, modes);
297    best_alpha = i4_alpha;
298  }
299  return best_alpha;
300}
301
302static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
303  int best_alpha = DEFAULT_ALPHA;
304  int best_mode = 0;
305  const int max_mode = MAX_UV_MODE;
306  int mode;
307
308  VP8MakeChroma8Preds(it);
309  for (mode = 0; mode < max_mode; ++mode) {
310    VP8Histogram histo = { { 0 } };
311    int alpha;
312    VP8CollectHistogram(it->yuv_in_ + U_OFF,
313                        it->yuv_p_ + VP8UVModeOffsets[mode],
314                        16, 16 + 4 + 4, &histo);
315    alpha = GetAlpha(&histo);
316    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
317      best_alpha = alpha;
318      best_mode = mode;
319    }
320  }
321  VP8SetIntraUVMode(it, best_mode);
322  return best_alpha;
323}
324
325static void MBAnalyze(VP8EncIterator* const it,
326                      int alphas[MAX_ALPHA + 1],
327                      int* const alpha, int* const uv_alpha) {
328  const VP8Encoder* const enc = it->enc_;
329  int best_alpha, best_uv_alpha;
330
331  VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
332  VP8SetSkip(it, 0);         // not skipped
333  VP8SetSegment(it, 0);      // default segment, spec-wise.
334
335  best_alpha = MBAnalyzeBestIntra16Mode(it);
336  if (enc->method_ >= 5) {
337    // We go and make a fast decision for intra4/intra16.
338    // It's usually not a good and definitive pick, but helps seeding the stats
339    // about level bit-cost.
340    // TODO(skal): improve criterion.
341    best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
342  }
343  best_uv_alpha = MBAnalyzeBestUVMode(it);
344
345  // Final susceptibility mix
346  best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
347  best_alpha = FinalAlphaValue(best_alpha);
348  alphas[best_alpha]++;
349  it->mb_->alpha_ = best_alpha;   // for later remapping.
350
351  // Accumulate for later complexity analysis.
352  *alpha += best_alpha;   // mixed susceptibility (not just luma)
353  *uv_alpha += best_uv_alpha;
354}
355
356static void DefaultMBInfo(VP8MBInfo* const mb) {
357  mb->type_ = 1;     // I16x16
358  mb->uv_mode_ = 0;
359  mb->skip_ = 0;     // not skipped
360  mb->segment_ = 0;  // default segment
361  mb->alpha_ = 0;
362}
363
364//------------------------------------------------------------------------------
365// Main analysis loop:
366// Collect all susceptibilities for each macroblock and record their
367// distribution in alphas[]. Segments is assigned a-posteriori, based on
368// this histogram.
369// We also pick an intra16 prediction mode, which shouldn't be considered
370// final except for fast-encode settings. We can also pick some intra4 modes
371// and decide intra4/intra16, but that's usually almost always a bad choice at
372// this stage.
373
374static void ResetAllMBInfo(VP8Encoder* const enc) {
375  int n;
376  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
377    DefaultMBInfo(&enc->mb_info_[n]);
378  }
379  // Default susceptibilities.
380  enc->dqm_[0].alpha_ = 0;
381  enc->dqm_[0].beta_ = 0;
382  // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
383  enc->alpha_ = 0;
384  enc->uv_alpha_ = 0;
385  WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
386}
387
388// struct used to collect job result
389typedef struct {
390  WebPWorker worker;
391  int alphas[MAX_ALPHA + 1];
392  int alpha, uv_alpha;
393  VP8EncIterator it;
394  int delta_progress;
395} SegmentJob;
396
397// main work call
398static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
399  int ok = 1;
400  if (!VP8IteratorIsDone(it)) {
401    uint8_t tmp[32 + ALIGN_CST];
402    uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
403    do {
404      // Let's pretend we have perfect lossless reconstruction.
405      VP8IteratorImport(it, scratch);
406      MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
407      ok = VP8IteratorProgress(it, job->delta_progress);
408    } while (ok && VP8IteratorNext(it));
409  }
410  return ok;
411}
412
413static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
414  int i;
415  for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
416  dst->alpha += src->alpha;
417  dst->uv_alpha += src->uv_alpha;
418}
419
420// initialize the job struct with some TODOs
421static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
422                           int start_row, int end_row) {
423  WebPGetWorkerInterface()->Init(&job->worker);
424  job->worker.data1 = job;
425  job->worker.data2 = &job->it;
426  job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
427  VP8IteratorInit(enc, &job->it);
428  VP8IteratorSetRow(&job->it, start_row);
429  VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
430  memset(job->alphas, 0, sizeof(job->alphas));
431  job->alpha = 0;
432  job->uv_alpha = 0;
433  // only one of both jobs can record the progress, since we don't
434  // expect the user's hook to be multi-thread safe
435  job->delta_progress = (start_row == 0) ? 20 : 0;
436}
437
438// main entry point
439int VP8EncAnalyze(VP8Encoder* const enc) {
440  int ok = 1;
441  const int do_segments =
442      enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
443      (enc->segment_hdr_.num_segments_ > 1) ||
444      (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
445  if (do_segments) {
446    const int last_row = enc->mb_h_;
447    // We give a little more than a half work to the main thread.
448    const int split_row = (9 * last_row + 15) >> 4;
449    const int total_mb = last_row * enc->mb_w_;
450#ifdef WEBP_USE_THREAD
451    const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
452    const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
453#else
454    const int do_mt = 0;
455#endif
456    const WebPWorkerInterface* const worker_interface =
457        WebPGetWorkerInterface();
458    SegmentJob main_job;
459    if (do_mt) {
460      SegmentJob side_job;
461      // Note the use of '&' instead of '&&' because we must call the functions
462      // no matter what.
463      InitSegmentJob(enc, &main_job, 0, split_row);
464      InitSegmentJob(enc, &side_job, split_row, last_row);
465      // we don't need to call Reset() on main_job.worker, since we're calling
466      // WebPWorkerExecute() on it
467      ok &= worker_interface->Reset(&side_job.worker);
468      // launch the two jobs in parallel
469      if (ok) {
470        worker_interface->Launch(&side_job.worker);
471        worker_interface->Execute(&main_job.worker);
472        ok &= worker_interface->Sync(&side_job.worker);
473        ok &= worker_interface->Sync(&main_job.worker);
474      }
475      worker_interface->End(&side_job.worker);
476      if (ok) MergeJobs(&side_job, &main_job);  // merge results together
477    } else {
478      // Even for single-thread case, we use the generic Worker tools.
479      InitSegmentJob(enc, &main_job, 0, last_row);
480      worker_interface->Execute(&main_job.worker);
481      ok &= worker_interface->Sync(&main_job.worker);
482    }
483    worker_interface->End(&main_job.worker);
484    if (ok) {
485      enc->alpha_ = main_job.alpha / total_mb;
486      enc->uv_alpha_ = main_job.uv_alpha / total_mb;
487      AssignSegments(enc, main_job.alphas);
488    }
489  } else {   // Use only one default segment.
490    ResetAllMBInfo(enc);
491  }
492  return ok;
493}
494
495