1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * TGSI to PowerPC code generation.
30 */
31
32#include "pipe/p_config.h"
33
34#if defined(PIPE_ARCH_PPC)
35
36#include "util/u_debug.h"
37#include "pipe/p_shader_tokens.h"
38#include "util/u_math.h"
39#include "util/u_memory.h"
40#include "util/u_sse.h"
41#include "tgsi/tgsi_info.h"
42#include "tgsi/tgsi_parse.h"
43#include "tgsi/tgsi_util.h"
44#include "tgsi_dump.h"
45#include "tgsi_exec.h"
46#include "tgsi_ppc.h"
47#include "rtasm/rtasm_ppc.h"
48
49
50/**
51 * Since it's pretty much impossible to form PPC vector immediates, load
52 * them from memory here:
53 */
54PIPE_ALIGN_VAR(16) const float
55ppc_builtin_constants[] = {
56   1.0f, -128.0f, 128.0, 0.0
57};
58
59/**
60 * How many TGSI temps should be implemented with real PPC vector registers
61 * rather than memory.
62 */
63#define MAX_PPC_TEMPS 3
64
65
66/**
67 * Context/state used during code gen.
68 */
69struct gen_context
70{
71   struct ppc_function *f;
72   int inputs_reg;    /**< GP register pointing to input params */
73   int outputs_reg;   /**< GP register pointing to output params */
74   int temps_reg;     /**< GP register pointing to temporary "registers" */
75   int immed_reg;     /**< GP register pointing to immediates buffer */
76   int const_reg;     /**< GP register pointing to constants buffer */
77   int builtins_reg;  /**< GP register pointint to built-in constants */
78
79   int offset_reg;    /**< used to reduce redundant li instructions */
80   int offset_value;
81
82   int one_vec;       /**< vector register with {1.0, 1.0, 1.0, 1.0} */
83   int bit31_vec;     /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
84
85   /**
86    * Map TGSI temps to PPC vector temps.
87    * We have 32 PPC vector regs.  Use 16 of them for storing 4 TGSI temps.
88    * XXX currently only do this for TGSI temps [0..MAX_PPC_TEMPS-1].
89    */
90   int temps_map[MAX_PPC_TEMPS][4];
91
92   /**
93    * Cache of src registers.
94    * This is used to avoid redundant load instructions.
95    */
96   struct {
97      struct tgsi_full_src_register src;
98      uint chan;
99      uint vec;
100   } regs[12];  /* 3 src regs, 4 channels */
101   uint num_regs;
102};
103
104
105/**
106 * Initialize code generation context.
107 */
108static void
109init_gen_context(struct gen_context *gen, struct ppc_function *func)
110{
111   uint i;
112
113   memset(gen, 0, sizeof(*gen));
114   gen->f = func;
115   gen->inputs_reg = ppc_reserve_register(func, 3);   /* first function param */
116   gen->outputs_reg = ppc_reserve_register(func, 4);  /* second function param */
117   gen->temps_reg = ppc_reserve_register(func, 5);    /* ... */
118   gen->immed_reg = ppc_reserve_register(func, 6);
119   gen->const_reg = ppc_reserve_register(func, 7);
120   gen->builtins_reg = ppc_reserve_register(func, 8);
121   gen->one_vec = -1;
122   gen->bit31_vec = -1;
123   gen->offset_reg = -1;
124   gen->offset_value = -9999999;
125   for (i = 0; i < MAX_PPC_TEMPS; i++) {
126      gen->temps_map[i][0] = ppc_allocate_vec_register(gen->f);
127      gen->temps_map[i][1] = ppc_allocate_vec_register(gen->f);
128      gen->temps_map[i][2] = ppc_allocate_vec_register(gen->f);
129      gen->temps_map[i][3] = ppc_allocate_vec_register(gen->f);
130   }
131}
132
133
134/**
135 * Is the given TGSI register stored as a real PPC vector register?
136 */
137static boolean
138is_ppc_vec_temporary(const struct tgsi_full_src_register *reg)
139{
140   return (reg->Register.File == TGSI_FILE_TEMPORARY &&
141           reg->Register.Index < MAX_PPC_TEMPS);
142}
143
144
145/**
146 * Is the given TGSI register stored as a real PPC vector register?
147 */
148static boolean
149is_ppc_vec_temporary_dst(const struct tgsi_full_dst_register *reg)
150{
151   return (reg->Register.File == TGSI_FILE_TEMPORARY &&
152           reg->Register.Index < MAX_PPC_TEMPS);
153}
154
155
156
157/**
158 * All PPC vector load/store instructions form an effective address
159 * by adding the contents of two registers.  For example:
160 *    lvx v2,r8,r9   # v2 = memory[r8 + r9]
161 *    stvx v2,r8,r9  # memory[r8 + r9] = v2;
162 * So our lvx/stvx instructions are typically preceded by an 'li' instruction
163 * to load r9 (above) with an immediate (an offset).
164 * This code emits that 'li' instruction, but only if the offset value is
165 * different than the previous 'li'.
166 * This optimization seems to save about 10% in the instruction count.
167 * Note that we need to unconditionally emit an 'li' inside basic blocks
168 * (such as inside loops).
169 */
170static int
171emit_li_offset(struct gen_context *gen, int offset)
172{
173   if (gen->offset_reg <= 0) {
174      /* allocate a GP register for storing load/store offset */
175      gen->offset_reg = ppc_allocate_register(gen->f);
176   }
177
178   /* emit new 'li' if offset is changing */
179   if (gen->offset_value < 0 || gen->offset_value != offset) {
180      gen->offset_value = offset;
181      ppc_li(gen->f, gen->offset_reg, offset);
182   }
183
184   return gen->offset_reg;
185}
186
187
188/**
189 * Forces subsequent emit_li_offset() calls to emit an 'li'.
190 * To be called at the top of basic blocks.
191 */
192static void
193reset_li_offset(struct gen_context *gen)
194{
195   gen->offset_value = -9999999;
196}
197
198
199
200/**
201 * Load the given vector register with {value, value, value, value}.
202 * The value must be in the ppu_builtin_constants[] array.
203 * We wouldn't need this if there was a simple way to load PPC vector
204 * registers with immediate values!
205 */
206static void
207load_constant_vec(struct gen_context *gen, int dst_vec, float value)
208{
209   uint pos;
210   for (pos = 0; pos < Elements(ppc_builtin_constants); pos++) {
211      if (ppc_builtin_constants[pos] == value) {
212         int offset = pos * 4;
213         int offset_reg = emit_li_offset(gen, offset);
214
215         /* Load 4-byte word into vector register.
216          * The vector slot depends on the effective address we load from.
217          * We know that our builtins start at a 16-byte boundary so we
218          * know that 'swizzle' tells us which vector slot will have the
219          * loaded word.  The other vector slots will be undefined.
220          */
221         ppc_lvewx(gen->f, dst_vec, gen->builtins_reg, offset_reg);
222         /* splat word[pos % 4] across the vector reg */
223         ppc_vspltw(gen->f, dst_vec, dst_vec, pos % 4);
224         return;
225      }
226   }
227   assert(0 && "Need to add new constant to ppc_builtin_constants array");
228}
229
230
231/**
232 * Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
233 */
234static int
235gen_one_vec(struct gen_context *gen)
236{
237   if (gen->one_vec < 0) {
238      gen->one_vec = ppc_allocate_vec_register(gen->f);
239      load_constant_vec(gen, gen->one_vec, 1.0f);
240   }
241   return gen->one_vec;
242}
243
244/**
245 * Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
246 */
247static int
248gen_get_bit31_vec(struct gen_context *gen)
249{
250   if (gen->bit31_vec < 0) {
251      gen->bit31_vec = ppc_allocate_vec_register(gen->f);
252      ppc_vspltisw(gen->f, gen->bit31_vec, -1);
253      ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
254   }
255   return gen->bit31_vec;
256}
257
258
259/**
260 * Register fetch.  Return PPC vector register with result.
261 */
262static int
263emit_fetch(struct gen_context *gen,
264           const struct tgsi_full_src_register *reg,
265           const unsigned chan_index)
266{
267   uint swizzle = tgsi_util_get_full_src_register_swizzle(reg, chan_index);
268   int dst_vec = -1;
269
270   switch (swizzle) {
271   case TGSI_SWIZZLE_X:
272   case TGSI_SWIZZLE_Y:
273   case TGSI_SWIZZLE_Z:
274   case TGSI_SWIZZLE_W:
275      switch (reg->Register.File) {
276      case TGSI_FILE_INPUT:
277         {
278            int offset = (reg->Register.Index * 4 + swizzle) * 16;
279            int offset_reg = emit_li_offset(gen, offset);
280            dst_vec = ppc_allocate_vec_register(gen->f);
281            ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
282         }
283         break;
284      case TGSI_FILE_SYSTEM_VALUE:
285         assert(!"unhandled system value in tgsi_ppc.c");
286         break;
287      case TGSI_FILE_TEMPORARY:
288         if (is_ppc_vec_temporary(reg)) {
289            /* use PPC vec register */
290            dst_vec = gen->temps_map[reg->Register.Index][swizzle];
291         }
292         else {
293            /* use memory-based temp register "file" */
294            int offset = (reg->Register.Index * 4 + swizzle) * 16;
295            int offset_reg = emit_li_offset(gen, offset);
296            dst_vec = ppc_allocate_vec_register(gen->f);
297            ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
298         }
299         break;
300      case TGSI_FILE_IMMEDIATE:
301         {
302            int offset = (reg->Register.Index * 4 + swizzle) * 4;
303            int offset_reg = emit_li_offset(gen, offset);
304            dst_vec = ppc_allocate_vec_register(gen->f);
305            /* Load 4-byte word into vector register.
306             * The vector slot depends on the effective address we load from.
307             * We know that our immediates start at a 16-byte boundary so we
308             * know that 'swizzle' tells us which vector slot will have the
309             * loaded word.  The other vector slots will be undefined.
310             */
311            ppc_lvewx(gen->f, dst_vec, gen->immed_reg, offset_reg);
312            /* splat word[swizzle] across the vector reg */
313            ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
314         }
315         break;
316      case TGSI_FILE_CONSTANT:
317         {
318            int offset = (reg->Register.Index * 4 + swizzle) * 4;
319            int offset_reg = emit_li_offset(gen, offset);
320            dst_vec = ppc_allocate_vec_register(gen->f);
321            /* Load 4-byte word into vector register.
322             * The vector slot depends on the effective address we load from.
323             * We know that our constants start at a 16-byte boundary so we
324             * know that 'swizzle' tells us which vector slot will have the
325             * loaded word.  The other vector slots will be undefined.
326             */
327            ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
328            /* splat word[swizzle] across the vector reg */
329            ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
330         }
331         break;
332      default:
333         assert( 0 );
334      }
335      break;
336   default:
337      assert( 0 );
338   }
339
340   assert(dst_vec >= 0);
341
342   {
343      uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
344      if (sign_op != TGSI_UTIL_SIGN_KEEP) {
345         int bit31_vec = gen_get_bit31_vec(gen);
346         int dst_vec2;
347
348         if (is_ppc_vec_temporary(reg)) {
349            /* need to use a new temp */
350            dst_vec2 = ppc_allocate_vec_register(gen->f);
351         }
352         else {
353            dst_vec2 = dst_vec;
354         }
355
356         switch (sign_op) {
357         case TGSI_UTIL_SIGN_CLEAR:
358            /* vec = vec & ~bit31 */
359            ppc_vandc(gen->f, dst_vec2, dst_vec, bit31_vec);
360            break;
361         case TGSI_UTIL_SIGN_SET:
362            /* vec = vec | bit31 */
363            ppc_vor(gen->f, dst_vec2, dst_vec, bit31_vec);
364            break;
365         case TGSI_UTIL_SIGN_TOGGLE:
366            /* vec = vec ^ bit31 */
367            ppc_vxor(gen->f, dst_vec2, dst_vec, bit31_vec);
368            break;
369         default:
370            assert(0);
371         }
372         return dst_vec2;
373      }
374   }
375
376   return dst_vec;
377}
378
379
380
381/**
382 * Test if two TGSI src registers refer to the same memory location.
383 * We use this to avoid redundant register loads.
384 */
385static boolean
386equal_src_locs(const struct tgsi_full_src_register *a, uint chan_a,
387               const struct tgsi_full_src_register *b, uint chan_b)
388{
389   int swz_a, swz_b;
390   int sign_a, sign_b;
391   if (a->Register.File != b->Register.File)
392      return FALSE;
393   if (a->Register.Index != b->Register.Index)
394      return FALSE;
395   swz_a = tgsi_util_get_full_src_register_swizzle(a, chan_a);
396   swz_b = tgsi_util_get_full_src_register_swizzle(b, chan_b);
397   if (swz_a != swz_b)
398      return FALSE;
399   sign_a = tgsi_util_get_full_src_register_sign_mode(a, chan_a);
400   sign_b = tgsi_util_get_full_src_register_sign_mode(b, chan_b);
401   if (sign_a != sign_b)
402      return FALSE;
403   return TRUE;
404}
405
406
407/**
408 * Given a TGSI src register and channel index, return the PPC vector
409 * register containing the value.  We use a cache to prevent re-loading
410 * the same register multiple times.
411 * \return index of PPC vector register with the desired src operand
412 */
413static int
414get_src_vec(struct gen_context *gen,
415            struct tgsi_full_instruction *inst, int src_reg, uint chan)
416{
417   const const struct tgsi_full_src_register *src =
418      &inst->Src[src_reg];
419   int vec;
420   uint i;
421
422   /* check the cache */
423   for (i = 0; i < gen->num_regs; i++) {
424      if (equal_src_locs(&gen->regs[i].src, gen->regs[i].chan, src, chan)) {
425         /* cache hit */
426         assert(gen->regs[i].vec >= 0);
427         return gen->regs[i].vec;
428      }
429   }
430
431   /* cache miss: allocate new vec reg and emit fetch/load code */
432   vec = emit_fetch(gen, src, chan);
433   gen->regs[gen->num_regs].src = *src;
434   gen->regs[gen->num_regs].chan = chan;
435   gen->regs[gen->num_regs].vec = vec;
436   gen->num_regs++;
437
438   assert(gen->num_regs <= Elements(gen->regs));
439
440   assert(vec >= 0);
441
442   return vec;
443}
444
445
446/**
447 * Clear the src operand cache.  To be called at the end of each emit function.
448 */
449static void
450release_src_vecs(struct gen_context *gen)
451{
452   uint i;
453   for (i = 0; i < gen->num_regs; i++) {
454      const const struct tgsi_full_src_register src = gen->regs[i].src;
455      if (!is_ppc_vec_temporary(&src)) {
456         ppc_release_vec_register(gen->f, gen->regs[i].vec);
457      }
458   }
459   gen->num_regs = 0;
460}
461
462
463
464static int
465get_dst_vec(struct gen_context *gen,
466            const struct tgsi_full_instruction *inst,
467            unsigned chan_index)
468{
469   const struct tgsi_full_dst_register *reg = &inst->Dst[0];
470
471   if (is_ppc_vec_temporary_dst(reg)) {
472      int vec = gen->temps_map[reg->Register.Index][chan_index];
473      return vec;
474   }
475   else {
476      return ppc_allocate_vec_register(gen->f);
477   }
478}
479
480
481/**
482 * Register store.  Store 'src_vec' at location indicated by 'reg'.
483 * \param free_vec  Should the src_vec be released when done?
484 */
485static void
486emit_store(struct gen_context *gen,
487           int src_vec,
488           const struct tgsi_full_instruction *inst,
489           unsigned chan_index,
490           boolean free_vec)
491{
492   const struct tgsi_full_dst_register *reg = &inst->Dst[0];
493
494   switch (reg->Register.File) {
495   case TGSI_FILE_OUTPUT:
496      {
497         int offset = (reg->Register.Index * 4 + chan_index) * 16;
498         int offset_reg = emit_li_offset(gen, offset);
499         ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
500      }
501      break;
502   case TGSI_FILE_TEMPORARY:
503      if (is_ppc_vec_temporary_dst(reg)) {
504         if (!free_vec) {
505            int dst_vec = gen->temps_map[reg->Register.Index][chan_index];
506            if (dst_vec != src_vec)
507               ppc_vmove(gen->f, dst_vec, src_vec);
508         }
509         free_vec = FALSE;
510      }
511      else {
512         int offset = (reg->Register.Index * 4 + chan_index) * 16;
513         int offset_reg = emit_li_offset(gen, offset);
514         ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
515      }
516      break;
517#if 0
518   case TGSI_FILE_ADDRESS:
519      emit_addrs(
520         func,
521         xmm,
522         reg->Register.Index,
523         chan_index );
524      break;
525#endif
526   default:
527      assert( 0 );
528   }
529
530#if 0
531   switch( inst->Instruction.Saturate ) {
532   case TGSI_SAT_NONE:
533      break;
534
535   case TGSI_SAT_ZERO_ONE:
536      /* assert( 0 ); */
537      break;
538
539   case TGSI_SAT_MINUS_PLUS_ONE:
540      assert( 0 );
541      break;
542   }
543#endif
544
545   if (free_vec)
546      ppc_release_vec_register(gen->f, src_vec);
547}
548
549
550static void
551emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
552{
553   int v0, v1;
554   uint chan_index;
555
556   v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
557   v1 = ppc_allocate_vec_register(gen->f);
558
559   switch (inst->Instruction.Opcode) {
560   case TGSI_OPCODE_RSQ:
561      /* v1 = 1.0 / sqrt(v0) */
562      ppc_vrsqrtefp(gen->f, v1, v0);
563      break;
564   case TGSI_OPCODE_RCP:
565      /* v1 = 1.0 / v0 */
566      ppc_vrefp(gen->f, v1, v0);
567      break;
568   default:
569      assert(0);
570   }
571
572   TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
573      emit_store(gen, v1, inst, chan_index, FALSE);
574   }
575
576   release_src_vecs(gen);
577   ppc_release_vec_register(gen->f, v1);
578}
579
580
581static void
582emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
583{
584   uint chan_index;
585
586   TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
587      int v0 = get_src_vec(gen, inst, 0, chan_index);   /* v0 = srcreg[0] */
588      int v1 = get_dst_vec(gen, inst, chan_index);
589      switch (inst->Instruction.Opcode) {
590      case TGSI_OPCODE_ABS:
591         /* turn off the most significant bit of each vector float word */
592         {
593            int bit31_vec = gen_get_bit31_vec(gen);
594            ppc_vandc(gen->f, v1, v0, bit31_vec); /* v1 = v0 & ~bit31 */
595         }
596         break;
597      case TGSI_OPCODE_FLR:
598         ppc_vrfim(gen->f, v1, v0);         /* v1 = floor(v0) */
599         break;
600      case TGSI_OPCODE_FRC:
601         ppc_vrfim(gen->f, v1, v0);      /* tmp = floor(v0) */
602         ppc_vsubfp(gen->f, v1, v0, v1); /* v1 = v0 - v1 */
603         break;
604      case TGSI_OPCODE_EX2:
605         ppc_vexptefp(gen->f, v1, v0);     /* v1 = 2^v0 */
606         break;
607      case TGSI_OPCODE_LG2:
608         /* XXX this may be broken! */
609         ppc_vlogefp(gen->f, v1, v0);      /* v1 = log2(v0) */
610         break;
611      case TGSI_OPCODE_MOV:
612         if (v0 != v1)
613            ppc_vmove(gen->f, v1, v0);
614         break;
615      default:
616         assert(0);
617      }
618      emit_store(gen, v1, inst, chan_index, TRUE);  /* store v0 */
619   }
620
621   release_src_vecs(gen);
622}
623
624
625static void
626emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
627{
628   int zero_vec = -1;
629   uint chan;
630
631   if (inst->Instruction.Opcode == TGSI_OPCODE_MUL) {
632      zero_vec = ppc_allocate_vec_register(gen->f);
633      ppc_vzero(gen->f, zero_vec);
634   }
635
636   TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
637      /* fetch src operands */
638      int v0 = get_src_vec(gen, inst, 0, chan);
639      int v1 = get_src_vec(gen, inst, 1, chan);
640      int v2 = get_dst_vec(gen, inst, chan);
641
642      /* emit binop */
643      switch (inst->Instruction.Opcode) {
644      case TGSI_OPCODE_ADD:
645         ppc_vaddfp(gen->f, v2, v0, v1);
646         break;
647      case TGSI_OPCODE_SUB:
648         ppc_vsubfp(gen->f, v2, v0, v1);
649         break;
650      case TGSI_OPCODE_MUL:
651         ppc_vmaddfp(gen->f, v2, v0, v1, zero_vec);
652         break;
653      case TGSI_OPCODE_MIN:
654         ppc_vminfp(gen->f, v2, v0, v1);
655         break;
656      case TGSI_OPCODE_MAX:
657         ppc_vmaxfp(gen->f, v2, v0, v1);
658         break;
659      default:
660         assert(0);
661      }
662
663      /* store v2 */
664      emit_store(gen, v2, inst, chan, TRUE);
665   }
666
667   if (inst->Instruction.Opcode == TGSI_OPCODE_MUL)
668      ppc_release_vec_register(gen->f, zero_vec);
669
670   release_src_vecs(gen);
671}
672
673
674static void
675emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
676{
677   uint chan;
678
679   TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
680      /* fetch src operands */
681      int v0 = get_src_vec(gen, inst, 0, chan);
682      int v1 = get_src_vec(gen, inst, 1, chan);
683      int v2 = get_src_vec(gen, inst, 2, chan);
684      int v3 = get_dst_vec(gen, inst, chan);
685
686      /* emit ALU */
687      switch (inst->Instruction.Opcode) {
688      case TGSI_OPCODE_MAD:
689         ppc_vmaddfp(gen->f, v3, v0, v1, v2);   /* v3 = v0 * v1 + v2 */
690         break;
691      case TGSI_OPCODE_LRP:
692         ppc_vsubfp(gen->f, v3, v1, v2);        /* v3 = v1 - v2 */
693         ppc_vmaddfp(gen->f, v3, v0, v3, v2);   /* v3 = v0 * v3 + v2 */
694         break;
695      default:
696         assert(0);
697      }
698
699      /* store v3 */
700      emit_store(gen, v3, inst, chan, TRUE);
701   }
702
703   release_src_vecs(gen);
704}
705
706
707/**
708 * Vector comparisons, resulting in 1.0 or 0.0 values.
709 */
710static void
711emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
712{
713   uint chan;
714   int one_vec = gen_one_vec(gen);
715
716   TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
717      /* fetch src operands */
718      int v0 = get_src_vec(gen, inst, 0, chan);
719      int v1 = get_src_vec(gen, inst, 1, chan);
720      int v2 = get_dst_vec(gen, inst, chan);
721      boolean complement = FALSE;
722
723      switch (inst->Instruction.Opcode) {
724      case TGSI_OPCODE_SNE:
725         complement = TRUE;
726         /* fall-through */
727      case TGSI_OPCODE_SEQ:
728         ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
729         break;
730
731      case TGSI_OPCODE_SGE:
732         complement = TRUE;
733         /* fall-through */
734      case TGSI_OPCODE_SLT:
735         ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
736         break;
737
738      case TGSI_OPCODE_SLE:
739         complement = TRUE;
740         /* fall-through */
741      case TGSI_OPCODE_SGT:
742         ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
743         break;
744      default:
745         assert(0);
746      }
747
748      /* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
749
750      if (complement)
751         ppc_vandc(gen->f, v2, one_vec, v2);    /* v2 = one_vec & ~v2 */
752      else
753         ppc_vand(gen->f, v2, one_vec, v2);     /* v2 = one_vec & v2 */
754
755      /* store v2 */
756      emit_store(gen, v2, inst, chan, TRUE);
757   }
758
759   release_src_vecs(gen);
760}
761
762
763static void
764emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
765{
766   int v0, v1, v2;
767   uint chan_index;
768
769   v2 = ppc_allocate_vec_register(gen->f);
770
771   ppc_vzero(gen->f, v2);                  /* v2 = {0, 0, 0, 0} */
772
773   v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X); /* v0 = src0.XXXX */
774   v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_X); /* v1 = src1.XXXX */
775   ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
776
777   v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Y); /* v0 = src0.YYYY */
778   v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Y); /* v1 = src1.YYYY */
779   ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
780
781   v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Z); /* v0 = src0.ZZZZ */
782   v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Z); /* v1 = src1.ZZZZ */
783   ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
784
785   if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
786      v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_W); /* v0 = src0.WWWW */
787      v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
788      ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
789   }
790   else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
791      v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
792      ppc_vaddfp(gen->f, v2, v2, v1);         /* v2 = v2 + v1 */
793   }
794
795   TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
796      emit_store(gen, v2, inst, chan_index, FALSE);  /* store v2, free v2 later */
797   }
798
799   release_src_vecs(gen);
800
801   ppc_release_vec_register(gen->f, v2);
802}
803
804
805/** Approximation for vr = pow(va, vb) */
806static void
807ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
808{
809   /* pow(a,b) ~= exp2(log2(a) * b) */
810   int t_vec = ppc_allocate_vec_register(f);
811   int zero_vec = ppc_allocate_vec_register(f);
812
813   ppc_vzero(f, zero_vec);
814
815   ppc_vlogefp(f, t_vec, va);                   /* t = log2(va) */
816   ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec);  /* t = t * vb + zero */
817   ppc_vexptefp(f, vr, t_vec);                  /* vr = 2^t */
818
819   ppc_release_vec_register(f, t_vec);
820   ppc_release_vec_register(f, zero_vec);
821}
822
823
824static void
825emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
826{
827   int one_vec = gen_one_vec(gen);
828
829   /* Compute X */
830   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
831      emit_store(gen, one_vec, inst, TGSI_CHAN_X, FALSE);
832   }
833
834   /* Compute Y, Z */
835   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
836      TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
837      int x_vec;
838      int zero_vec = ppc_allocate_vec_register(gen->f);
839
840      x_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);  /* x_vec = src[0].x */
841
842      ppc_vzero(gen->f, zero_vec);                /* zero = {0,0,0,0} */
843      ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
844
845      if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
846         emit_store(gen, x_vec, inst, TGSI_CHAN_Y, FALSE);
847      }
848
849      if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
850         int y_vec, w_vec;
851         int z_vec = ppc_allocate_vec_register(gen->f);
852         int pow_vec = ppc_allocate_vec_register(gen->f);
853         int pos_vec = ppc_allocate_vec_register(gen->f);
854         int p128_vec = ppc_allocate_vec_register(gen->f);
855         int n128_vec = ppc_allocate_vec_register(gen->f);
856
857         y_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y);  /* y_vec = src[0].y */
858         ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
859
860         w_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_W);  /* w_vec = src[0].w */
861
862         /* clamp W to [-128, 128] */
863         load_constant_vec(gen, p128_vec, 128.0f);
864         load_constant_vec(gen, n128_vec, -128.0f);
865         ppc_vmaxfp(gen->f, w_vec, w_vec, n128_vec); /* w = max(w, -128) */
866         ppc_vminfp(gen->f, w_vec, w_vec, p128_vec); /* w = min(w, 128) */
867
868         /* if temp.x > 0
869          *    z = pow(tmp.y, tmp.w)
870          * else
871          *    z = 0.0
872          */
873         ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec);      /* pow = pow(y, w) */
874         ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
875         ppc_vand(gen->f, z_vec, pow_vec, pos_vec);       /* z = pow & pos */
876
877         emit_store(gen, z_vec, inst, TGSI_CHAN_Z, FALSE);
878
879         ppc_release_vec_register(gen->f, z_vec);
880         ppc_release_vec_register(gen->f, pow_vec);
881         ppc_release_vec_register(gen->f, pos_vec);
882         ppc_release_vec_register(gen->f, p128_vec);
883         ppc_release_vec_register(gen->f, n128_vec);
884      }
885
886      ppc_release_vec_register(gen->f, zero_vec);
887   }
888
889   /* Compute W */
890   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
891      emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
892   }
893
894   release_src_vecs(gen);
895}
896
897
898static void
899emit_exp(struct gen_context *gen, struct tgsi_full_instruction *inst)
900{
901   const int one_vec = gen_one_vec(gen);
902   int src_vec;
903
904   /* get src arg */
905   src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
906
907   /* Compute X = 2^floor(src) */
908   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
909      int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_X);
910      int tmp_vec = ppc_allocate_vec_register(gen->f);
911      ppc_vrfim(gen->f, tmp_vec, src_vec);             /* tmp = floor(src); */
912      ppc_vexptefp(gen->f, dst_vec, tmp_vec);          /* dst = 2 ^ tmp */
913      emit_store(gen, dst_vec, inst, TGSI_CHAN_X, TRUE);
914      ppc_release_vec_register(gen->f, tmp_vec);
915   }
916
917   /* Compute Y = src - floor(src) */
918   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
919      int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Y);
920      int tmp_vec = ppc_allocate_vec_register(gen->f);
921      ppc_vrfim(gen->f, tmp_vec, src_vec);             /* tmp = floor(src); */
922      ppc_vsubfp(gen->f, dst_vec, src_vec, tmp_vec);   /* dst = src - tmp */
923      emit_store(gen, dst_vec, inst, TGSI_CHAN_Y, TRUE);
924      ppc_release_vec_register(gen->f, tmp_vec);
925   }
926
927   /* Compute Z = RoughApprox2ToX(src) */
928   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
929      int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
930      ppc_vexptefp(gen->f, dst_vec, src_vec);          /* dst = 2 ^ src */
931      emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
932   }
933
934   /* Compute W = 1.0 */
935   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
936      emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
937   }
938
939   release_src_vecs(gen);
940}
941
942
943static void
944emit_log(struct gen_context *gen, struct tgsi_full_instruction *inst)
945{
946   const int bit31_vec = gen_get_bit31_vec(gen);
947   const int one_vec = gen_one_vec(gen);
948   int src_vec, abs_vec;
949
950   /* get src arg */
951   src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
952
953   /* compute abs(src) */
954   abs_vec = ppc_allocate_vec_register(gen->f);
955   ppc_vandc(gen->f, abs_vec, src_vec, bit31_vec);     /* abs = src & ~bit31 */
956
957   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) &&
958      TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
959
960      /* compute tmp = floor(log2(abs)) */
961      int tmp_vec = ppc_allocate_vec_register(gen->f);
962      ppc_vlogefp(gen->f, tmp_vec, abs_vec);           /* tmp = log2(abs) */
963      ppc_vrfim(gen->f, tmp_vec, tmp_vec);             /* tmp = floor(tmp); */
964
965      /* Compute X = tmp */
966      if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
967         emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
968      }
969
970      /* Compute Y = abs / 2^tmp */
971      if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
972         const int zero_vec = ppc_allocate_vec_register(gen->f);
973         ppc_vzero(gen->f, zero_vec);
974         ppc_vexptefp(gen->f, tmp_vec, tmp_vec);       /* tmp = 2 ^ tmp */
975         ppc_vrefp(gen->f, tmp_vec, tmp_vec);          /* tmp = 1 / tmp */
976         /* tmp = abs * tmp + zero */
977         ppc_vmaddfp(gen->f, tmp_vec, abs_vec, tmp_vec, zero_vec);
978         emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
979         ppc_release_vec_register(gen->f, zero_vec);
980      }
981
982      ppc_release_vec_register(gen->f, tmp_vec);
983   }
984
985   /* Compute Z = RoughApproxLog2(abs) */
986   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
987      int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
988      ppc_vlogefp(gen->f, dst_vec, abs_vec);           /* dst = log2(abs) */
989      emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
990   }
991
992   /* Compute W = 1.0 */
993   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
994      emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
995   }
996
997   ppc_release_vec_register(gen->f, abs_vec);
998   release_src_vecs(gen);
999}
1000
1001
1002static void
1003emit_pow(struct gen_context *gen, struct tgsi_full_instruction *inst)
1004{
1005   int s0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
1006   int s1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
1007   int pow_vec = ppc_allocate_vec_register(gen->f);
1008   int chan;
1009
1010   ppc_vec_pow(gen->f, pow_vec, s0_vec, s1_vec);
1011
1012   TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
1013      emit_store(gen, pow_vec, inst, chan, FALSE);
1014   }
1015
1016   ppc_release_vec_register(gen->f, pow_vec);
1017
1018   release_src_vecs(gen);
1019}
1020
1021
1022static void
1023emit_xpd(struct gen_context *gen, struct tgsi_full_instruction *inst)
1024{
1025   int x0_vec, y0_vec, z0_vec;
1026   int x1_vec, y1_vec, z1_vec;
1027   int zero_vec, tmp_vec;
1028   int tmp2_vec;
1029
1030   zero_vec = ppc_allocate_vec_register(gen->f);
1031   ppc_vzero(gen->f, zero_vec);
1032
1033   tmp_vec = ppc_allocate_vec_register(gen->f);
1034   tmp2_vec = ppc_allocate_vec_register(gen->f);
1035
1036   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
1037      TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
1038      x0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
1039      x1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
1040   }
1041   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
1042      TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
1043      y0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y);
1044      y1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Y);
1045   }
1046   if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
1047      TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
1048      z0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Z);
1049      z1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Z);
1050   }
1051
1052   TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) {
1053      /* tmp = y0 * z1 */
1054      ppc_vmaddfp(gen->f, tmp_vec, y0_vec, z1_vec, zero_vec);
1055      /* tmp = tmp - z0 * y1*/
1056      ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, z0_vec, y1_vec);
1057      emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
1058   }
1059   TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) {
1060      /* tmp = z0 * x1 */
1061      ppc_vmaddfp(gen->f, tmp_vec, z0_vec, x1_vec, zero_vec);
1062      /* tmp = tmp - x0 * z1 */
1063      ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, x0_vec, z1_vec);
1064      emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
1065   }
1066   TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z) {
1067      /* tmp = x0 * y1 */
1068      ppc_vmaddfp(gen->f, tmp_vec, x0_vec, y1_vec, zero_vec);
1069      /* tmp = tmp - y0 * x1 */
1070      ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, y0_vec, x1_vec);
1071      emit_store(gen, tmp_vec, inst, TGSI_CHAN_Z, FALSE);
1072   }
1073   /* W is undefined */
1074
1075   ppc_release_vec_register(gen->f, tmp_vec);
1076   ppc_release_vec_register(gen->f, zero_vec);
1077   release_src_vecs(gen);
1078}
1079
1080static int
1081emit_instruction(struct gen_context *gen,
1082                 struct tgsi_full_instruction *inst)
1083{
1084
1085   /* we don't handle saturation/clamping yet */
1086   if (inst->Instruction.Saturate != TGSI_SAT_NONE)
1087      return 0;
1088
1089   /* need to use extra temps to fix SOA dependencies : */
1090   if (tgsi_check_soa_dependencies(inst))
1091      return FALSE;
1092
1093   switch (inst->Instruction.Opcode) {
1094   case TGSI_OPCODE_MOV:
1095   case TGSI_OPCODE_ABS:
1096   case TGSI_OPCODE_FLR:
1097   case TGSI_OPCODE_FRC:
1098   case TGSI_OPCODE_EX2:
1099   case TGSI_OPCODE_LG2:
1100      emit_unaryop(gen, inst);
1101      break;
1102   case TGSI_OPCODE_RSQ:
1103   case TGSI_OPCODE_RCP:
1104      emit_scalar_unaryop(gen, inst);
1105      break;
1106   case TGSI_OPCODE_ADD:
1107   case TGSI_OPCODE_SUB:
1108   case TGSI_OPCODE_MUL:
1109   case TGSI_OPCODE_MIN:
1110   case TGSI_OPCODE_MAX:
1111      emit_binop(gen, inst);
1112      break;
1113   case TGSI_OPCODE_SEQ:
1114   case TGSI_OPCODE_SNE:
1115   case TGSI_OPCODE_SLT:
1116   case TGSI_OPCODE_SGT:
1117   case TGSI_OPCODE_SLE:
1118   case TGSI_OPCODE_SGE:
1119      emit_inequality(gen, inst);
1120      break;
1121   case TGSI_OPCODE_MAD:
1122   case TGSI_OPCODE_LRP:
1123      emit_triop(gen, inst);
1124      break;
1125   case TGSI_OPCODE_DP3:
1126   case TGSI_OPCODE_DP4:
1127   case TGSI_OPCODE_DPH:
1128      emit_dotprod(gen, inst);
1129      break;
1130   case TGSI_OPCODE_LIT:
1131      emit_lit(gen, inst);
1132      break;
1133   case TGSI_OPCODE_LOG:
1134      emit_log(gen, inst);
1135      break;
1136   case TGSI_OPCODE_EXP:
1137      emit_exp(gen, inst);
1138      break;
1139   case TGSI_OPCODE_POW:
1140      emit_pow(gen, inst);
1141      break;
1142   case TGSI_OPCODE_XPD:
1143      emit_xpd(gen, inst);
1144      break;
1145   case TGSI_OPCODE_END:
1146      /* normal end */
1147      return 1;
1148   default:
1149      return 0;
1150   }
1151   return 1;
1152}
1153
1154
1155static void
1156emit_declaration(
1157   struct ppc_function *func,
1158   struct tgsi_full_declaration *decl )
1159{
1160   if( decl->Declaration.File == TGSI_FILE_INPUT ||
1161       decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE ) {
1162#if 0
1163      unsigned first, last, mask;
1164      unsigned i, j;
1165
1166      first = decl->Range.First;
1167      last = decl->Range.Last;
1168      mask = decl->Declaration.UsageMask;
1169
1170      for( i = first; i <= last; i++ ) {
1171         for( j = 0; j < NUM_CHANNELS; j++ ) {
1172            if( mask & (1 << j) ) {
1173               switch( decl->Interp.Interpolate ) {
1174               case TGSI_INTERPOLATE_CONSTANT:
1175                  emit_coef_a0( func, 0, i, j );
1176                  emit_inputs( func, 0, i, j );
1177                  break;
1178
1179               case TGSI_INTERPOLATE_LINEAR:
1180                  emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1181                  emit_coef_dadx( func, 1, i, j );
1182                  emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1183                  emit_coef_dady( func, 3, i, j );
1184                  emit_mul( func, 0, 1 );    /* x * dadx */
1185                  emit_coef_a0( func, 4, i, j );
1186                  emit_mul( func, 2, 3 );    /* y * dady */
1187                  emit_add( func, 0, 4 );    /* x * dadx + a0 */
1188                  emit_add( func, 0, 2 );    /* x * dadx + y * dady + a0 */
1189                  emit_inputs( func, 0, i, j );
1190                  break;
1191
1192               case TGSI_INTERPOLATE_PERSPECTIVE:
1193                  emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1194                  emit_coef_dadx( func, 1, i, j );
1195                  emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1196                  emit_coef_dady( func, 3, i, j );
1197                  emit_mul( func, 0, 1 );    /* x * dadx */
1198                  emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
1199                  emit_coef_a0( func, 5, i, j );
1200                  emit_rcp( func, 4, 4 );    /* 1.0 / w */
1201                  emit_mul( func, 2, 3 );    /* y * dady */
1202                  emit_add( func, 0, 5 );    /* x * dadx + a0 */
1203                  emit_add( func, 0, 2 );    /* x * dadx + y * dady + a0 */
1204                  emit_mul( func, 0, 4 );    /* (x * dadx + y * dady + a0) / w */
1205                  emit_inputs( func, 0, i, j );
1206                  break;
1207
1208               default:
1209                  assert( 0 );
1210		  break;
1211               }
1212            }
1213         }
1214      }
1215#endif
1216   }
1217}
1218
1219
1220
1221static void
1222emit_prologue(struct ppc_function *func)
1223{
1224   /* XXX set up stack frame */
1225}
1226
1227
1228static void
1229emit_epilogue(struct ppc_function *func)
1230{
1231   ppc_comment(func, -4, "Epilogue:");
1232   ppc_return(func);
1233   /* XXX restore prev stack frame */
1234#if 0
1235   debug_printf("PPC: Emitted %u instructions\n", func->num_inst);
1236#endif
1237}
1238
1239
1240
1241/**
1242 * Translate a TGSI vertex/fragment shader to PPC code.
1243 *
1244 * \param tokens  the TGSI input shader
1245 * \param func  the output PPC code/function
1246 * \param immediates  buffer to place immediates, later passed to PPC func
1247 * \return TRUE for success, FALSE if translation failed
1248 */
1249boolean
1250tgsi_emit_ppc(const struct tgsi_token *tokens,
1251              struct ppc_function *func,
1252              float (*immediates)[4],
1253              boolean do_swizzles )
1254{
1255   static int use_ppc_asm = -1;
1256   struct tgsi_parse_context parse;
1257   /*boolean instruction_phase = FALSE;*/
1258   unsigned ok = 1;
1259   uint num_immediates = 0;
1260   struct gen_context gen;
1261   uint ic = 0;
1262
1263   if (use_ppc_asm < 0) {
1264      /* If GALLIUM_NOPPC is set, don't use PPC codegen */
1265      use_ppc_asm = !debug_get_bool_option("GALLIUM_NOPPC", FALSE);
1266   }
1267   if (!use_ppc_asm)
1268      return FALSE;
1269
1270   if (0) {
1271      debug_printf("\n********* TGSI->PPC ********\n");
1272      tgsi_dump(tokens, 0);
1273   }
1274
1275   util_init_math();
1276
1277   init_gen_context(&gen, func);
1278
1279   emit_prologue(func);
1280
1281   tgsi_parse_init( &parse, tokens );
1282
1283   while (!tgsi_parse_end_of_tokens(&parse) && ok) {
1284      tgsi_parse_token(&parse);
1285
1286      switch (parse.FullToken.Token.Type) {
1287      case TGSI_TOKEN_TYPE_DECLARATION:
1288         if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
1289            emit_declaration(func, &parse.FullToken.FullDeclaration );
1290         }
1291         break;
1292
1293      case TGSI_TOKEN_TYPE_INSTRUCTION:
1294         if (func->print) {
1295            _debug_printf("# ");
1296            ic++;
1297            tgsi_dump_instruction(&parse.FullToken.FullInstruction, ic);
1298         }
1299
1300         ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
1301
1302	 if (!ok) {
1303            uint opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1304	    debug_printf("failed to translate tgsi opcode %d (%s) to PPC (%s)\n",
1305			 opcode,
1306                         tgsi_get_opcode_name(opcode),
1307                         parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
1308                         "vertex shader" : "fragment shader");
1309	 }
1310         break;
1311
1312      case TGSI_TOKEN_TYPE_IMMEDIATE:
1313         /* splat each immediate component into a float[4] vector for SoA */
1314         {
1315            const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1316            uint i;
1317            assert(size <= 4);
1318            assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
1319            for (i = 0; i < size; i++) {
1320               immediates[num_immediates][i] =
1321		  parse.FullToken.FullImmediate.u[i].Float;
1322            }
1323            num_immediates++;
1324         }
1325         break;
1326
1327      case TGSI_TOKEN_TYPE_PROPERTY:
1328         break;
1329
1330      default:
1331	 ok = 0;
1332         assert( 0 );
1333      }
1334   }
1335
1336   emit_epilogue(func);
1337
1338   tgsi_parse_free( &parse );
1339
1340   if (ppc_num_instructions(func) == 0) {
1341      /* ran out of memory for instructions */
1342      ok = FALSE;
1343   }
1344
1345   if (!ok)
1346      debug_printf("TGSI->PPC translation failed\n");
1347
1348   return ok;
1349}
1350
1351#else
1352
1353void ppc_dummy_func(void);
1354
1355void ppc_dummy_func(void)
1356{
1357}
1358
1359#endif /* PIPE_ARCH_PPC */
1360