1/*
2 * Copyright © 2010 Luca Barbieri
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file lower_variable_index_to_cond_assign.cpp
26 *
27 * Turns non-constant indexing into array types to a series of
28 * conditional moves of each element into a temporary.
29 *
30 * Pre-DX10 GPUs often don't have a native way to do this operation,
31 * and this works around that.
32 *
33 * The lowering process proceeds as follows.  Each non-constant index
34 * found in an r-value is converted to a canonical form \c array[i].  Each
35 * element of the array is conditionally assigned to a temporary by comparing
36 * \c i to a constant index.  This is done by cloning the canonical form and
37 * replacing all occurances of \c i with a constant.  Each remaining occurance
38 * of the canonical form in the IR is replaced with a dereference of the
39 * temporary variable.
40 *
41 * L-values with non-constant indices are handled similarly.  In this case,
42 * the RHS of the assignment is assigned to a temporary.  The non-constant
43 * index is replace with the canonical form (just like for r-values).  The
44 * temporary is conditionally assigned to each element of the canonical form
45 * by comparing \c i with each index.  The same clone-and-replace scheme is
46 * used.
47 */
48
49#include "ir.h"
50#include "ir_rvalue_visitor.h"
51#include "ir_optimization.h"
52#include "glsl_types.h"
53#include "main/macros.h"
54
55/**
56 * Generate a comparison value for a block of indices
57 *
58 * Lowering passes for non-constant indexing of arrays, matrices, or vectors
59 * can use this to generate blocks of index comparison values.
60 *
61 * \param instructions  List where new instructions will be appended
62 * \param index         \c ir_variable containing the desired index
63 * \param base          Base value for this block of comparisons
64 * \param components    Number of unique index values to compare.  This must
65 *                      be on the range [1, 4].
66 * \param mem_ctx       ralloc memory context to be used for all allocations.
67 *
68 * \returns
69 * An \c ir_rvalue that \b must be cloned for each use in conditional
70 * assignments, etc.
71 */
72ir_rvalue *
73compare_index_block(exec_list *instructions, ir_variable *index,
74		    unsigned base, unsigned components, void *mem_ctx)
75{
76   ir_rvalue *broadcast_index = new(mem_ctx) ir_dereference_variable(index);
77
78   assert(index->type->is_scalar());
79   assert(index->type->base_type == GLSL_TYPE_INT);
80   assert(components >= 1 && components <= 4);
81
82   if (components > 1) {
83      const ir_swizzle_mask m = { 0, 0, 0, 0, components, false };
84      broadcast_index = new(mem_ctx) ir_swizzle(broadcast_index, m);
85   }
86
87   /* Compare the desired index value with the next block of four indices.
88    */
89   ir_constant_data test_indices_data;
90   memset(&test_indices_data, 0, sizeof(test_indices_data));
91   test_indices_data.i[0] = base;
92   test_indices_data.i[1] = base + 1;
93   test_indices_data.i[2] = base + 2;
94   test_indices_data.i[3] = base + 3;
95
96   ir_constant *const test_indices =
97      new(mem_ctx) ir_constant(broadcast_index->type,
98			       &test_indices_data);
99
100   ir_rvalue *const condition_val =
101      new(mem_ctx) ir_expression(ir_binop_equal,
102				 &glsl_type::bool_type[components - 1],
103				 broadcast_index,
104				 test_indices);
105
106   ir_variable *const condition =
107      new(mem_ctx) ir_variable(condition_val->type,
108			       "dereference_condition",
109			       ir_var_temporary);
110   instructions->push_tail(condition);
111
112   ir_rvalue *const cond_deref =
113      new(mem_ctx) ir_dereference_variable(condition);
114   instructions->push_tail(new(mem_ctx) ir_assignment(cond_deref, condition_val, 0));
115
116   return cond_deref;
117}
118
119static inline bool
120is_array_or_matrix(const ir_rvalue *ir)
121{
122   return (ir->type->is_array() || ir->type->is_matrix());
123}
124
125/**
126 * Replace a dereference of a variable with a specified r-value
127 *
128 * Each time a dereference of the specified value is replaced, the r-value
129 * tree is cloned.
130 */
131class deref_replacer : public ir_rvalue_visitor {
132public:
133   deref_replacer(const ir_variable *variable_to_replace, ir_rvalue *value)
134      : variable_to_replace(variable_to_replace), value(value),
135	progress(false)
136   {
137      assert(this->variable_to_replace != NULL);
138      assert(this->value != NULL);
139   }
140
141   virtual void handle_rvalue(ir_rvalue **rvalue)
142   {
143      ir_dereference_variable *const dv = (*rvalue)->as_dereference_variable();
144
145      if ((dv != NULL) && (dv->var == this->variable_to_replace)) {
146	 this->progress = true;
147	 *rvalue = this->value->clone(ralloc_parent(*rvalue), NULL);
148      }
149   }
150
151   const ir_variable *variable_to_replace;
152   ir_rvalue *value;
153   bool progress;
154};
155
156/**
157 * Find a variable index dereference of an array in an rvalue tree
158 */
159class find_variable_index : public ir_hierarchical_visitor {
160public:
161   find_variable_index()
162      : deref(NULL)
163   {
164      /* empty */
165   }
166
167   virtual ir_visitor_status visit_enter(ir_dereference_array *ir)
168   {
169      if (is_array_or_matrix(ir->array)
170	  && (ir->array_index->as_constant() == NULL)) {
171	 this->deref = ir;
172	 return visit_stop;
173      }
174
175      return visit_continue;
176   }
177
178   /**
179    * First array dereference found in the tree that has a non-constant index.
180    */
181   ir_dereference_array *deref;
182};
183
184struct assignment_generator
185{
186   ir_instruction* base_ir;
187   ir_dereference *rvalue;
188   ir_variable *old_index;
189   bool is_write;
190   unsigned int write_mask;
191   ir_variable* var;
192
193   assignment_generator()
194   {
195   }
196
197   void generate(unsigned i, ir_rvalue* condition, exec_list *list) const
198   {
199      /* Just clone the rest of the deref chain when trying to get at the
200       * underlying variable.
201       */
202      void *mem_ctx = ralloc_parent(base_ir);
203
204      /* Clone the old r-value in its entirety.  Then replace any occurances of
205       * the old variable index with the new constant index.
206       */
207      ir_dereference *element = this->rvalue->clone(mem_ctx, NULL);
208      ir_constant *const index = new(mem_ctx) ir_constant(i);
209      deref_replacer r(this->old_index, index);
210      element->accept(&r);
211      assert(r.progress);
212
213      /* Generate a conditional assignment to (or from) the constant indexed
214       * array dereference.
215       */
216      ir_rvalue *variable = new(mem_ctx) ir_dereference_variable(this->var);
217      ir_assignment *const assignment = (is_write)
218	 ? new(mem_ctx) ir_assignment(element, variable, condition, write_mask)
219	 : new(mem_ctx) ir_assignment(variable, element, condition);
220
221      list->push_tail(assignment);
222   }
223};
224
225struct switch_generator
226{
227   /* make TFunction a template parameter if you need to use other generators */
228   typedef assignment_generator TFunction;
229   const TFunction& generator;
230
231   ir_variable* index;
232   unsigned linear_sequence_max_length;
233   unsigned condition_components;
234
235   void *mem_ctx;
236
237   switch_generator(const TFunction& generator, ir_variable *index,
238		    unsigned linear_sequence_max_length,
239		    unsigned condition_components)
240      : generator(generator), index(index),
241	linear_sequence_max_length(linear_sequence_max_length),
242	condition_components(condition_components)
243   {
244      this->mem_ctx = ralloc_parent(index);
245   }
246
247   void linear_sequence(unsigned begin, unsigned end, exec_list *list)
248   {
249      if (begin == end)
250         return;
251
252      /* If the array access is a read, read the first element of this subregion
253       * unconditionally.  The remaining tests will possibly overwrite this
254       * value with one of the other array elements.
255       *
256       * This optimization cannot be done for writes because it will cause the
257       * first element of the subregion to be written possibly *in addition* to
258       * one of the other elements.
259       */
260      unsigned first;
261      if (!this->generator.is_write) {
262	 this->generator.generate(begin, 0, list);
263	 first = begin + 1;
264      } else {
265	 first = begin;
266      }
267
268      for (unsigned i = first; i < end; i += 4) {
269         const unsigned comps = MIN2(condition_components, end - i);
270
271	 ir_rvalue *const cond_deref =
272	    compare_index_block(list, index, i, comps, this->mem_ctx);
273
274         if (comps == 1) {
275            this->generator.generate(i, cond_deref->clone(this->mem_ctx, NULL),
276				     list);
277         } else {
278            for (unsigned j = 0; j < comps; j++) {
279	       ir_rvalue *const cond_swiz =
280		  new(this->mem_ctx) ir_swizzle(cond_deref->clone(this->mem_ctx, NULL),
281						j, 0, 0, 0, 1);
282
283               this->generator.generate(i + j, cond_swiz, list);
284            }
285         }
286      }
287   }
288
289   void bisect(unsigned begin, unsigned end, exec_list *list)
290   {
291      unsigned middle = (begin + end) >> 1;
292
293      assert(index->type->is_integer());
294
295      ir_constant *const middle_c = (index->type->base_type == GLSL_TYPE_UINT)
296	 ? new(this->mem_ctx) ir_constant((unsigned)middle)
297         : new(this->mem_ctx) ir_constant((int)middle);
298
299
300      ir_dereference_variable *deref =
301	 new(this->mem_ctx) ir_dereference_variable(this->index);
302
303      ir_expression *less =
304	 new(this->mem_ctx) ir_expression(ir_binop_less, glsl_type::bool_type,
305					  deref, middle_c);
306
307      ir_if *if_less = new(this->mem_ctx) ir_if(less);
308
309      generate(begin, middle, &if_less->then_instructions);
310      generate(middle, end, &if_less->else_instructions);
311
312      list->push_tail(if_less);
313   }
314
315   void generate(unsigned begin, unsigned end, exec_list *list)
316   {
317      unsigned length = end - begin;
318      if (length <= this->linear_sequence_max_length)
319         return linear_sequence(begin, end, list);
320      else
321         return bisect(begin, end, list);
322   }
323};
324
325/**
326 * Visitor class for replacing expressions with ir_constant values.
327 */
328
329class variable_index_to_cond_assign_visitor : public ir_rvalue_visitor {
330public:
331   variable_index_to_cond_assign_visitor(bool lower_input,
332					 bool lower_output,
333					 bool lower_temp,
334					 bool lower_uniform)
335   {
336      this->progress = false;
337      this->lower_inputs = lower_input;
338      this->lower_outputs = lower_output;
339      this->lower_temps = lower_temp;
340      this->lower_uniforms = lower_uniform;
341   }
342
343   bool progress;
344   bool lower_inputs;
345   bool lower_outputs;
346   bool lower_temps;
347   bool lower_uniforms;
348
349   bool storage_type_needs_lowering(ir_dereference_array *deref) const
350   {
351      /* If a variable isn't eventually the target of this dereference, then
352       * it must be a constant or some sort of anonymous temporary storage.
353       *
354       * FINISHME: Is this correct?  Most drivers treat arrays of constants as
355       * FINISHME: uniforms.  It seems like this should do the same.
356       */
357      const ir_variable *const var = deref->array->variable_referenced();
358      if (var == NULL)
359	 return this->lower_temps;
360
361      switch (var->mode) {
362      case ir_var_auto:
363      case ir_var_temporary:
364	 return this->lower_temps;
365      case ir_var_uniform:
366	 return this->lower_uniforms;
367      case ir_var_in:
368      case ir_var_const_in:
369	 return (var->location == -1) ? this->lower_temps : this->lower_inputs;
370      case ir_var_out:
371	 return (var->location == -1) ? this->lower_temps : this->lower_outputs;
372      case ir_var_inout:
373	 return this->lower_temps;
374      }
375
376      assert(!"Should not get here.");
377      return false;
378   }
379
380   bool needs_lowering(ir_dereference_array *deref) const
381   {
382      if (deref == NULL || deref->array_index->as_constant()
383	  || !is_array_or_matrix(deref->array))
384	 return false;
385
386      return this->storage_type_needs_lowering(deref);
387   }
388
389   ir_variable *convert_dereference_array(ir_dereference_array *orig_deref,
390					  ir_assignment* orig_assign,
391					  ir_dereference *orig_base)
392   {
393      assert(is_array_or_matrix(orig_deref->array));
394
395      const unsigned length = (orig_deref->array->type->is_array())
396         ? orig_deref->array->type->length
397         : orig_deref->array->type->matrix_columns;
398
399      void *const mem_ctx = ralloc_parent(base_ir);
400
401      /* Temporary storage for either the result of the dereference of
402       * the array, or the RHS that's being assigned into the
403       * dereference of the array.
404       */
405      ir_variable *var;
406
407      if (orig_assign) {
408	 var = new(mem_ctx) ir_variable(orig_assign->rhs->type,
409					"dereference_array_value",
410					ir_var_temporary);
411	 base_ir->insert_before(var);
412
413	 ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(var);
414	 ir_assignment *assign = new(mem_ctx) ir_assignment(lhs,
415							    orig_assign->rhs,
416							    NULL);
417
418         base_ir->insert_before(assign);
419      } else {
420	 var = new(mem_ctx) ir_variable(orig_deref->type,
421					"dereference_array_value",
422					ir_var_temporary);
423	 base_ir->insert_before(var);
424      }
425
426      /* Store the index to a temporary to avoid reusing its tree. */
427      ir_variable *index =
428	 new(mem_ctx) ir_variable(orig_deref->array_index->type,
429				  "dereference_array_index", ir_var_temporary);
430      base_ir->insert_before(index);
431
432      ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(index);
433      ir_assignment *assign =
434	 new(mem_ctx) ir_assignment(lhs, orig_deref->array_index, NULL);
435      base_ir->insert_before(assign);
436
437      orig_deref->array_index = lhs->clone(mem_ctx, NULL);
438
439      assignment_generator ag;
440      ag.rvalue = orig_base;
441      ag.base_ir = base_ir;
442      ag.old_index = index;
443      ag.var = var;
444      if (orig_assign) {
445	 ag.is_write = true;
446	 ag.write_mask = orig_assign->write_mask;
447      } else {
448	 ag.is_write = false;
449      }
450
451      switch_generator sg(ag, index, 4, 4);
452
453      /* If the original assignment has a condition, respect that original
454       * condition!  This is acomplished by wrapping the new conditional
455       * assignments in an if-statement that uses the original condition.
456       */
457      if ((orig_assign != NULL) && (orig_assign->condition != NULL)) {
458	 /* No need to clone the condition because the IR that it hangs on is
459	  * going to be removed from the instruction sequence.
460	  */
461	 ir_if *if_stmt = new(mem_ctx) ir_if(orig_assign->condition);
462
463	 sg.generate(0, length, &if_stmt->then_instructions);
464	 base_ir->insert_before(if_stmt);
465      } else {
466	 exec_list list;
467
468	 sg.generate(0, length, &list);
469	 base_ir->insert_before(&list);
470      }
471
472      return var;
473   }
474
475   virtual void handle_rvalue(ir_rvalue **pir)
476   {
477      if (this->in_assignee)
478	 return;
479
480      if (!*pir)
481         return;
482
483      ir_dereference_array* orig_deref = (*pir)->as_dereference_array();
484      if (needs_lowering(orig_deref)) {
485         ir_variable *var =
486	    convert_dereference_array(orig_deref, NULL, orig_deref);
487         assert(var);
488         *pir = new(ralloc_parent(base_ir)) ir_dereference_variable(var);
489         this->progress = true;
490      }
491   }
492
493   ir_visitor_status
494   visit_leave(ir_assignment *ir)
495   {
496      ir_rvalue_visitor::visit_leave(ir);
497
498      find_variable_index f;
499      ir->lhs->accept(&f);
500
501      if ((f.deref != NULL) && storage_type_needs_lowering(f.deref)) {
502         convert_dereference_array(f.deref, ir, ir->lhs);
503         ir->remove();
504         this->progress = true;
505      }
506
507      return visit_continue;
508   }
509};
510
511bool
512lower_variable_index_to_cond_assign(exec_list *instructions,
513				    bool lower_input,
514				    bool lower_output,
515				    bool lower_temp,
516				    bool lower_uniform)
517{
518   variable_index_to_cond_assign_visitor v(lower_input,
519					   lower_output,
520					   lower_temp,
521					   lower_uniform);
522
523   /* Continue lowering until no progress is made.  If there are multiple
524    * levels of indirection (e.g., non-constant indexing of array elements and
525    * matrix columns of an array of matrix), each pass will only lower one
526    * level of indirection.
527    */
528   bool progress_ever = false;
529   do {
530      v.progress = false;
531      visit_list_elements(&v, instructions);
532      progress_ever = v.progress || progress_ever;
533   } while (v.progress);
534
535   return progress_ever;
536}
537