1116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch/*
2116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * Copyright © 2010 Intel Corporation
3116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch *
4116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * Permission is hereby granted, free of charge, to any person obtaining a
5116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * copy of this software and associated documentation files (the "Software"),
6116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * to deal in the Software without restriction, including without limitation
7116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * and/or sell copies of the Software, and to permit persons to whom the
9116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * Software is furnished to do so, subject to the following conditions:
10116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch *
11116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * The above copyright notice and this permission notice (including the next
12116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * paragraph) shall be included in all copies or substantial portions of the
13116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * Software.
14116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch *
15116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * IN THE SOFTWARE.
22116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch */
23116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
24116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch/** @file brw_fs_visitor.cpp
25116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch *
26116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * This file supports generating the FS LIR from the GLSL IR.  The LIR
27116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * makes it easier to do backend-specific optimizations than doing so
28116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch * in the GLSL IR or in the native code.
29116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch */
30116680a4aac90f2aa7413d9095a592090648e557Ben Murdochextern "C" {
31116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
32116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include <sys/types.h>
33116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
34116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "main/macros.h"
35116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "main/shaderobj.h"
36116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "main/uniforms.h"
37116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "program/prog_parameter.h"
38116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "program/prog_print.h"
39116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "program/prog_optimize.h"
40116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "program/register_allocate.h"
41116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "program/sampler.h"
42116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "program/hash_table.h"
43116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "brw_context.h"
44116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "brw_eu.h"
45116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "brw_wm.h"
46116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch}
47116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "brw_shader.h"
48116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "brw_fs.h"
49116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "glsl/glsl_types.h"
50116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "glsl/ir_optimization.h"
51116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->index > 0) {
76	 assert(ir->location == FRAG_RESULT_DATA0);
77	 assert(ir->index == 1);
78	 this->dual_src_output = *reg;
79      } else if (ir->location == FRAG_RESULT_COLOR) {
80	 /* Writing gl_FragColor outputs to all color regions. */
81	 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
82	    this->outputs[i] = *reg;
83	    this->output_components[i] = 4;
84	 }
85      } else if (ir->location == FRAG_RESULT_DEPTH) {
86	 this->frag_depth = ir;
87      } else {
88	 /* gl_FragData or a user-defined FS output */
89	 assert(ir->location >= FRAG_RESULT_DATA0 &&
90		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92	 int vector_elements =
93	    ir->type->is_array() ? ir->type->fields.array->vector_elements
94				 : ir->type->vector_elements;
95
96	 /* General color output. */
97	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98	    int output = ir->location - FRAG_RESULT_DATA0 + i;
99	    this->outputs[output] = *reg;
100	    this->outputs[output].reg_offset += vector_elements * i;
101	    this->output_components[output] = vector_elements;
102	 }
103      }
104   } else if (ir->mode == ir_var_uniform) {
105      int param_index = c->prog_data.nr_params;
106
107      /* Thanks to the lower_ubo_reference pass, we will see only
108       * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
109       * variables, so no need for them to be in variable_ht.
110       */
111      if (ir->uniform_block != -1)
112         return;
113
114      if (c->dispatch_width == 16) {
115	 if (!variable_storage(ir)) {
116	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
117	 }
118	 return;
119      }
120
121      if (!strncmp(ir->name, "gl_", 3)) {
122	 setup_builtin_uniform_values(ir);
123      } else {
124	 setup_uniform_values(ir->location, ir->type);
125      }
126
127      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
128      reg->type = brw_type_for_base_type(ir->type);
129   }
130
131   if (!reg)
132      reg = new(this->mem_ctx) fs_reg(this, ir->type);
133
134   hash_table_insert(this->variable_ht, reg, ir);
135}
136
137void
138fs_visitor::visit(ir_dereference_variable *ir)
139{
140   fs_reg *reg = variable_storage(ir->var);
141   this->result = *reg;
142}
143
144void
145fs_visitor::visit(ir_dereference_record *ir)
146{
147   const glsl_type *struct_type = ir->record->type;
148
149   ir->record->accept(this);
150
151   unsigned int offset = 0;
152   for (unsigned int i = 0; i < struct_type->length; i++) {
153      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
154	 break;
155      offset += type_size(struct_type->fields.structure[i].type);
156   }
157   this->result.reg_offset += offset;
158   this->result.type = brw_type_for_base_type(ir->type);
159}
160
161void
162fs_visitor::visit(ir_dereference_array *ir)
163{
164   ir_constant *index;
165   int element_size;
166
167   ir->array->accept(this);
168   index = ir->array_index->as_constant();
169
170   element_size = type_size(ir->type);
171   this->result.type = brw_type_for_base_type(ir->type);
172
173   if (index) {
174      assert(this->result.file == UNIFORM || this->result.file == GRF);
175      this->result.reg_offset += index->value.i[0] * element_size;
176   } else {
177      assert(!"FINISHME: non-constant array element");
178   }
179}
180
181/* Instruction selection: Produce a MOV.sat instead of
182 * MIN(MAX(val, 0), 1) when possible.
183 */
184bool
185fs_visitor::try_emit_saturate(ir_expression *ir)
186{
187   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
188
189   if (!sat_val)
190      return false;
191
192   fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
193
194   sat_val->accept(this);
195   fs_reg src = this->result;
196
197   fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
198
199   /* If the last instruction from our accept() didn't generate our
200    * src, generate a saturated MOV
201    */
202   fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
203   if (!modify || modify->regs_written() != 1) {
204      this->result = fs_reg(this, ir->type);
205      fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
206      inst->saturate = true;
207   } else {
208      modify->saturate = true;
209      this->result = src;
210   }
211
212
213   return true;
214}
215
216bool
217fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
218{
219   /* 3-src instructions were introduced in gen6. */
220   if (intel->gen < 6)
221      return false;
222
223   /* MAD can only handle floating-point data. */
224   if (ir->type != glsl_type::float_type)
225      return false;
226
227   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
228   ir_expression *mul = ir->operands[mul_arg]->as_expression();
229
230   if (!mul || mul->operation != ir_binop_mul)
231      return false;
232
233   if (nonmul->as_constant() ||
234       mul->operands[0]->as_constant() ||
235       mul->operands[1]->as_constant())
236      return false;
237
238   nonmul->accept(this);
239   fs_reg src0 = this->result;
240
241   mul->operands[0]->accept(this);
242   fs_reg src1 = this->result;
243
244   mul->operands[1]->accept(this);
245   fs_reg src2 = this->result;
246
247   this->result = fs_reg(this, ir->type);
248   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
249
250   return true;
251}
252
253void
254fs_visitor::visit(ir_expression *ir)
255{
256   unsigned int operand;
257   fs_reg op[2], temp;
258   fs_inst *inst;
259
260   assert(ir->get_num_operands() <= 2);
261
262   if (try_emit_saturate(ir))
263      return;
264   if (ir->operation == ir_binop_add) {
265      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
266	 return;
267   }
268
269   for (operand = 0; operand < ir->get_num_operands(); operand++) {
270      ir->operands[operand]->accept(this);
271      if (this->result.file == BAD_FILE) {
272	 ir_print_visitor v;
273	 fail("Failed to get tree for expression operand:\n");
274	 ir->operands[operand]->accept(&v);
275      }
276      op[operand] = this->result;
277
278      /* Matrix expression operands should have been broken down to vector
279       * operations already.
280       */
281      assert(!ir->operands[operand]->type->is_matrix());
282      /* And then those vector operands should have been broken down to scalar.
283       */
284      assert(!ir->operands[operand]->type->is_vector());
285   }
286
287   /* Storage for our result.  If our result goes into an assignment, it will
288    * just get copy-propagated out, so no worries.
289    */
290   this->result = fs_reg(this, ir->type);
291
292   switch (ir->operation) {
293   case ir_unop_logic_not:
294      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
295       * ones complement of the whole register, not just bit 0.
296       */
297      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
298      break;
299   case ir_unop_neg:
300      op[0].negate = !op[0].negate;
301      this->result = op[0];
302      break;
303   case ir_unop_abs:
304      op[0].abs = true;
305      op[0].negate = false;
306      this->result = op[0];
307      break;
308   case ir_unop_sign:
309      temp = fs_reg(this, ir->type);
310
311      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
312
313      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
314      inst->conditional_mod = BRW_CONDITIONAL_G;
315      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
316      inst->predicated = true;
317
318      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
319      inst->conditional_mod = BRW_CONDITIONAL_L;
320      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
321      inst->predicated = true;
322
323      break;
324   case ir_unop_rcp:
325      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
326      break;
327
328   case ir_unop_exp2:
329      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
330      break;
331   case ir_unop_log2:
332      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
333      break;
334   case ir_unop_exp:
335   case ir_unop_log:
336      assert(!"not reached: should be handled by ir_explog_to_explog2");
337      break;
338   case ir_unop_sin:
339   case ir_unop_sin_reduced:
340      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
341      break;
342   case ir_unop_cos:
343   case ir_unop_cos_reduced:
344      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
345      break;
346
347   case ir_unop_dFdx:
348      emit(FS_OPCODE_DDX, this->result, op[0]);
349      break;
350   case ir_unop_dFdy:
351      emit(FS_OPCODE_DDY, this->result, op[0]);
352      break;
353
354   case ir_binop_add:
355      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
356      break;
357   case ir_binop_sub:
358      assert(!"not reached: should be handled by ir_sub_to_add_neg");
359      break;
360
361   case ir_binop_mul:
362      if (ir->type->is_integer()) {
363	 /* For integer multiplication, the MUL uses the low 16 bits
364	  * of one of the operands (src0 on gen6, src1 on gen7).  The
365	  * MACH accumulates in the contribution of the upper 16 bits
366	  * of that operand.
367	  *
368	  * FINISHME: Emit just the MUL if we know an operand is small
369	  * enough.
370	  */
371	 if (intel->gen >= 7 && c->dispatch_width == 16)
372	    fail("16-wide explicit accumulator operands unsupported\n");
373
374	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
375
376	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
377	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
378	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
379      } else {
380	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
381      }
382      break;
383   case ir_binop_div:
384      if (intel->gen >= 7 && c->dispatch_width == 16)
385	 fail("16-wide INTDIV unsupported\n");
386
387      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
388      assert(ir->type->is_integer());
389      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
390      break;
391   case ir_binop_mod:
392      if (intel->gen >= 7 && c->dispatch_width == 16)
393	 fail("16-wide INTDIV unsupported\n");
394
395      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
396      assert(ir->type->is_integer());
397      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
398      break;
399
400   case ir_binop_less:
401   case ir_binop_greater:
402   case ir_binop_lequal:
403   case ir_binop_gequal:
404   case ir_binop_equal:
405   case ir_binop_all_equal:
406   case ir_binop_nequal:
407   case ir_binop_any_nequal:
408      temp = this->result;
409      /* original gen4 does implicit conversion before comparison. */
410      if (intel->gen < 5)
411	 temp.type = op[0].type;
412
413      resolve_ud_negate(&op[0]);
414      resolve_ud_negate(&op[1]);
415
416      resolve_bool_comparison(ir->operands[0], &op[0]);
417      resolve_bool_comparison(ir->operands[1], &op[1]);
418
419      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
420      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
421      break;
422
423   case ir_binop_logic_xor:
424      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
425      break;
426
427   case ir_binop_logic_or:
428      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
429      break;
430
431   case ir_binop_logic_and:
432      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
433      break;
434
435   case ir_binop_dot:
436   case ir_unop_any:
437      assert(!"not reached: should be handled by brw_fs_channel_expressions");
438      break;
439
440   case ir_unop_noise:
441      assert(!"not reached: should be handled by lower_noise");
442      break;
443
444   case ir_quadop_vector:
445      assert(!"not reached: should be handled by lower_quadop_vector");
446      break;
447
448   case ir_unop_sqrt:
449      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
450      break;
451
452   case ir_unop_rsq:
453      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
454      break;
455
456   case ir_unop_bitcast_i2f:
457   case ir_unop_bitcast_u2f:
458      op[0].type = BRW_REGISTER_TYPE_F;
459      this->result = op[0];
460      break;
461   case ir_unop_i2u:
462   case ir_unop_bitcast_f2u:
463      op[0].type = BRW_REGISTER_TYPE_UD;
464      this->result = op[0];
465      break;
466   case ir_unop_u2i:
467   case ir_unop_bitcast_f2i:
468      op[0].type = BRW_REGISTER_TYPE_D;
469      this->result = op[0];
470      break;
471   case ir_unop_i2f:
472   case ir_unop_u2f:
473   case ir_unop_f2i:
474   case ir_unop_f2u:
475      emit(BRW_OPCODE_MOV, this->result, op[0]);
476      break;
477
478   case ir_unop_b2i:
479      inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
480      break;
481   case ir_unop_b2f:
482      temp = fs_reg(this, glsl_type::int_type);
483      emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
484      emit(BRW_OPCODE_MOV, this->result, temp);
485      break;
486
487   case ir_unop_f2b:
488      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f));
489      inst->conditional_mod = BRW_CONDITIONAL_NZ;
490      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
491      break;
492   case ir_unop_i2b:
493      assert(op[0].type == BRW_REGISTER_TYPE_D);
494
495      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0));
496      inst->conditional_mod = BRW_CONDITIONAL_NZ;
497      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
498      break;
499
500   case ir_unop_trunc:
501      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
502      break;
503   case ir_unop_ceil:
504      op[0].negate = !op[0].negate;
505      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
506      this->result.negate = true;
507      break;
508   case ir_unop_floor:
509      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
510      break;
511   case ir_unop_fract:
512      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
513      break;
514   case ir_unop_round_even:
515      emit(BRW_OPCODE_RNDE, this->result, op[0]);
516      break;
517
518   case ir_binop_min:
519      resolve_ud_negate(&op[0]);
520      resolve_ud_negate(&op[1]);
521
522      if (intel->gen >= 6) {
523	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
524	 inst->conditional_mod = BRW_CONDITIONAL_L;
525      } else {
526	 /* Unalias the destination */
527	 this->result = fs_reg(this, ir->type);
528
529	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
530	 inst->conditional_mod = BRW_CONDITIONAL_L;
531
532	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
533	 inst->predicated = true;
534      }
535      break;
536   case ir_binop_max:
537      resolve_ud_negate(&op[0]);
538      resolve_ud_negate(&op[1]);
539
540      if (intel->gen >= 6) {
541	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
542	 inst->conditional_mod = BRW_CONDITIONAL_GE;
543      } else {
544	 /* Unalias the destination */
545	 this->result = fs_reg(this, ir->type);
546
547	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
548	 inst->conditional_mod = BRW_CONDITIONAL_G;
549
550	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
551	 inst->predicated = true;
552      }
553      break;
554
555   case ir_binop_pow:
556      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
557      break;
558
559   case ir_unop_bit_not:
560      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
561      break;
562   case ir_binop_bit_and:
563      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
564      break;
565   case ir_binop_bit_xor:
566      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
567      break;
568   case ir_binop_bit_or:
569      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
570      break;
571
572   case ir_binop_lshift:
573      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
574      break;
575
576   case ir_binop_rshift:
577      if (ir->type->base_type == GLSL_TYPE_INT)
578	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
579      else
580	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
581      break;
582
583   case ir_binop_ubo_load:
584      ir_constant *uniform_block = ir->operands[0]->as_constant();
585      ir_constant *offset = ir->operands[1]->as_constant();
586
587      fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
588      packed_consts.type = result.type;
589      fs_reg surf_index = fs_reg((unsigned)SURF_INDEX_WM_UBO(uniform_block->value.u[0]));
590      fs_inst *pull = emit(fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
591                                   packed_consts,
592                                   surf_index,
593                                   fs_reg(offset->value.u[0])));
594      pull->base_mrf = 14;
595      pull->mlen = 1;
596
597      packed_consts.smear = offset->value.u[0] % 16 / 4;
598      for (int i = 0; i < ir->type->vector_elements; i++) {
599         /* UBO bools are any nonzero value.  We consider bools to be
600          * values with the low bit set to 1.  Convert them using CMP.
601          */
602         if (ir->type->base_type == GLSL_TYPE_BOOL) {
603            fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, result,
604                                         packed_consts, fs_reg(0u)));
605            inst->conditional_mod = BRW_CONDITIONAL_NZ;
606         } else {
607            emit(fs_inst(BRW_OPCODE_MOV, result, packed_consts));
608         }
609
610         packed_consts.smear++;
611         result.reg_offset++;
612
613         /* The std140 packing rules don't allow vectors to cross 16-byte
614          * boundaries, and a reg is 32 bytes.
615          */
616         assert(packed_consts.smear < 8);
617      }
618      result.reg_offset = 0;
619      break;
620   }
621}
622
623void
624fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
625				   const glsl_type *type, bool predicated)
626{
627   switch (type->base_type) {
628   case GLSL_TYPE_FLOAT:
629   case GLSL_TYPE_UINT:
630   case GLSL_TYPE_INT:
631   case GLSL_TYPE_BOOL:
632      for (unsigned int i = 0; i < type->components(); i++) {
633	 l.type = brw_type_for_base_type(type);
634	 r.type = brw_type_for_base_type(type);
635
636	 if (predicated || !l.equals(r)) {
637	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
638	    inst->predicated = predicated;
639	 }
640
641	 l.reg_offset++;
642	 r.reg_offset++;
643      }
644      break;
645   case GLSL_TYPE_ARRAY:
646      for (unsigned int i = 0; i < type->length; i++) {
647	 emit_assignment_writes(l, r, type->fields.array, predicated);
648      }
649      break;
650
651   case GLSL_TYPE_STRUCT:
652      for (unsigned int i = 0; i < type->length; i++) {
653	 emit_assignment_writes(l, r, type->fields.structure[i].type,
654				predicated);
655      }
656      break;
657
658   case GLSL_TYPE_SAMPLER:
659      break;
660
661   default:
662      assert(!"not reached");
663      break;
664   }
665}
666
667/* If the RHS processing resulted in an instruction generating a
668 * temporary value, and it would be easy to rewrite the instruction to
669 * generate its result right into the LHS instead, do so.  This ends
670 * up reliably removing instructions where it can be tricky to do so
671 * later without real UD chain information.
672 */
673bool
674fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
675                                   fs_reg dst,
676                                   fs_reg src,
677                                   fs_inst *pre_rhs_inst,
678                                   fs_inst *last_rhs_inst)
679{
680   /* Only attempt if we're doing a direct assignment. */
681   if (ir->condition ||
682       !(ir->lhs->type->is_scalar() ||
683        (ir->lhs->type->is_vector() &&
684         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
685      return false;
686
687   /* Make sure the last instruction generated our source reg. */
688   fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
689						    last_rhs_inst,
690						    src);
691   if (!modify)
692      return false;
693
694   /* If last_rhs_inst wrote a different number of components than our LHS,
695    * we can't safely rewrite it.
696    */
697   if (ir->lhs->type->vector_elements != modify->regs_written())
698      return false;
699
700   /* Success!  Rewrite the instruction. */
701   modify->dst = dst;
702
703   return true;
704}
705
706void
707fs_visitor::visit(ir_assignment *ir)
708{
709   fs_reg l, r;
710   fs_inst *inst;
711
712   /* FINISHME: arrays on the lhs */
713   ir->lhs->accept(this);
714   l = this->result;
715
716   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
717
718   ir->rhs->accept(this);
719   r = this->result;
720
721   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
722
723   assert(l.file != BAD_FILE);
724   assert(r.file != BAD_FILE);
725
726   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
727      return;
728
729   if (ir->condition) {
730      emit_bool_to_cond_code(ir->condition);
731   }
732
733   if (ir->lhs->type->is_scalar() ||
734       ir->lhs->type->is_vector()) {
735      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
736	 if (ir->write_mask & (1 << i)) {
737	    inst = emit(BRW_OPCODE_MOV, l, r);
738	    if (ir->condition)
739	       inst->predicated = true;
740	    r.reg_offset++;
741	 }
742	 l.reg_offset++;
743      }
744   } else {
745      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
746   }
747}
748
749fs_inst *
750fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
751			      fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
752{
753   int mlen;
754   int base_mrf = 1;
755   bool simd16 = false;
756   fs_reg orig_dst;
757
758   /* g0 header. */
759   mlen = 1;
760
761   if (ir->shadow_comparitor) {
762      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
763	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
764	 coordinate.reg_offset++;
765      }
766      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
767      mlen += 3;
768
769      if (ir->op == ir_tex) {
770	 /* There's no plain shadow compare message, so we use shadow
771	  * compare with a bias of 0.0.
772	  */
773	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
774	 mlen++;
775      } else if (ir->op == ir_txb || ir->op == ir_txl) {
776	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
777	 mlen++;
778      } else {
779         assert(!"Should not get here.");
780      }
781
782      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
783      mlen++;
784   } else if (ir->op == ir_tex) {
785      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
786	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
787	 coordinate.reg_offset++;
788      }
789      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
790      mlen += 3;
791   } else if (ir->op == ir_txd) {
792      fs_reg &dPdx = lod;
793
794      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
795	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
796	 coordinate.reg_offset++;
797      }
798      /* the slots for u and v are always present, but r is optional */
799      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
800
801      /*  P   = u, v, r
802       * dPdx = dudx, dvdx, drdx
803       * dPdy = dudy, dvdy, drdy
804       *
805       * 1-arg: Does not exist.
806       *
807       * 2-arg: dudx   dvdx   dudy   dvdy
808       *        dPdx.x dPdx.y dPdy.x dPdy.y
809       *        m4     m5     m6     m7
810       *
811       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
812       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
813       *        m5     m6     m7     m8     m9     m10
814       */
815      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
816	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
817	 dPdx.reg_offset++;
818      }
819      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
820
821      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
822	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
823	 dPdy.reg_offset++;
824      }
825      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
826   } else if (ir->op == ir_txs) {
827      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
828      simd16 = true;
829      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
830      mlen += 2;
831   } else {
832      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
833       * instructions.  We'll need to do SIMD16 here.
834       */
835      simd16 = true;
836      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
837
838      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
839	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
840	      coordinate);
841	 coordinate.reg_offset++;
842      }
843
844      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
845       * be necessary for TXF (ld), but seems wise to do for all messages.
846       */
847      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
848	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
849      }
850
851      /* lod/bias appears after u/v/r. */
852      mlen += 6;
853
854      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, lod.type), lod);
855      mlen++;
856
857      /* The unused upper half. */
858      mlen++;
859   }
860
861   if (simd16) {
862      /* Now, since we're doing simd16, the return is 2 interleaved
863       * vec4s where the odd-indexed ones are junk. We'll need to move
864       * this weirdness around to the expected layout.
865       */
866      orig_dst = dst;
867      const glsl_type *vec_type =
868	 glsl_type::get_instance(ir->type->base_type, 4, 1);
869      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
870      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
871			       : BRW_REGISTER_TYPE_F;
872   }
873
874   fs_inst *inst = NULL;
875   switch (ir->op) {
876   case ir_tex:
877      inst = emit(SHADER_OPCODE_TEX, dst);
878      break;
879   case ir_txb:
880      inst = emit(FS_OPCODE_TXB, dst);
881      break;
882   case ir_txl:
883      inst = emit(SHADER_OPCODE_TXL, dst);
884      break;
885   case ir_txd:
886      inst = emit(SHADER_OPCODE_TXD, dst);
887      break;
888   case ir_txs:
889      inst = emit(SHADER_OPCODE_TXS, dst);
890      break;
891   case ir_txf:
892      inst = emit(SHADER_OPCODE_TXF, dst);
893      break;
894   }
895   inst->base_mrf = base_mrf;
896   inst->mlen = mlen;
897   inst->header_present = true;
898
899   if (simd16) {
900      for (int i = 0; i < 4; i++) {
901	 emit(BRW_OPCODE_MOV, orig_dst, dst);
902	 orig_dst.reg_offset++;
903	 dst.reg_offset += 2;
904      }
905   }
906
907   return inst;
908}
909
910/* gen5's sampler has slots for u, v, r, array index, then optional
911 * parameters like shadow comparitor or LOD bias.  If optional
912 * parameters aren't present, those base slots are optional and don't
913 * need to be included in the message.
914 *
915 * We don't fill in the unnecessary slots regardless, which may look
916 * surprising in the disassembly.
917 */
918fs_inst *
919fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
920			      fs_reg shadow_c, fs_reg lod, fs_reg lod2)
921{
922   int mlen = 0;
923   int base_mrf = 2;
924   int reg_width = c->dispatch_width / 8;
925   bool header_present = false;
926   const int vector_elements =
927      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
928
929   if (ir->offset != NULL && ir->op == ir_txf) {
930      /* It appears that the ld instruction used for txf does its
931       * address bounds check before adding in the offset.  To work
932       * around this, just add the integer offset to the integer texel
933       * coordinate, and don't put the offset in the header.
934       */
935      ir_constant *offset = ir->offset->as_constant();
936      for (int i = 0; i < vector_elements; i++) {
937	 emit(BRW_OPCODE_ADD,
938	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
939	      coordinate,
940	      offset->value.i[i]);
941	 coordinate.reg_offset++;
942      }
943   } else {
944      if (ir->offset) {
945	 /* The offsets set up by the ir_texture visitor are in the
946	  * m1 header, so we can't go headerless.
947	  */
948	 header_present = true;
949	 mlen++;
950	 base_mrf--;
951      }
952
953      for (int i = 0; i < vector_elements; i++) {
954	 emit(BRW_OPCODE_MOV,
955	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
956	      coordinate);
957	 coordinate.reg_offset++;
958      }
959   }
960   mlen += vector_elements * reg_width;
961
962   if (ir->shadow_comparitor) {
963      mlen = MAX2(mlen, header_present + 4 * reg_width);
964
965      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
966      mlen += reg_width;
967   }
968
969   fs_inst *inst = NULL;
970   switch (ir->op) {
971   case ir_tex:
972      inst = emit(SHADER_OPCODE_TEX, dst);
973      break;
974   case ir_txb:
975      mlen = MAX2(mlen, header_present + 4 * reg_width);
976      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
977      mlen += reg_width;
978
979      inst = emit(FS_OPCODE_TXB, dst);
980      break;
981   case ir_txl:
982      mlen = MAX2(mlen, header_present + 4 * reg_width);
983      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
984      mlen += reg_width;
985
986      inst = emit(SHADER_OPCODE_TXL, dst);
987      break;
988   case ir_txd: {
989      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
990
991      /**
992       *  P   =  u,    v,    r
993       * dPdx = dudx, dvdx, drdx
994       * dPdy = dudy, dvdy, drdy
995       *
996       * Load up these values:
997       * - dudx   dudy   dvdx   dvdy   drdx   drdy
998       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
999       */
1000      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1001	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1002	 lod.reg_offset++;
1003	 mlen += reg_width;
1004
1005	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod2);
1006	 lod2.reg_offset++;
1007	 mlen += reg_width;
1008      }
1009
1010      inst = emit(SHADER_OPCODE_TXD, dst);
1011      break;
1012   }
1013   case ir_txs:
1014      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
1015      mlen += reg_width;
1016      inst = emit(SHADER_OPCODE_TXS, dst);
1017      break;
1018   case ir_txf:
1019      mlen = header_present + 4 * reg_width;
1020
1021      emit(BRW_OPCODE_MOV,
1022	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
1023	   lod);
1024      inst = emit(SHADER_OPCODE_TXF, dst);
1025      break;
1026   }
1027   inst->base_mrf = base_mrf;
1028   inst->mlen = mlen;
1029   inst->header_present = header_present;
1030
1031   if (mlen > 11) {
1032      fail("Message length >11 disallowed by hardware\n");
1033   }
1034
1035   return inst;
1036}
1037
1038fs_inst *
1039fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1040			      fs_reg shadow_c, fs_reg lod, fs_reg lod2)
1041{
1042   int mlen = 0;
1043   int base_mrf = 2;
1044   int reg_width = c->dispatch_width / 8;
1045   bool header_present = false;
1046   int offsets[3];
1047
1048   if (ir->offset && ir->op != ir_txf) {
1049      /* The offsets set up by the ir_texture visitor are in the
1050       * m1 header, so we can't go headerless.
1051       */
1052      header_present = true;
1053      mlen++;
1054      base_mrf--;
1055   }
1056
1057   if (ir->shadow_comparitor) {
1058      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
1059      mlen += reg_width;
1060   }
1061
1062   /* Set up the LOD info */
1063   switch (ir->op) {
1064   case ir_tex:
1065      break;
1066   case ir_txb:
1067      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1068      mlen += reg_width;
1069      break;
1070   case ir_txl:
1071      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1072      mlen += reg_width;
1073      break;
1074   case ir_txd: {
1075      if (c->dispatch_width == 16)
1076	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1077
1078      /* Load dPdx and the coordinate together:
1079       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1080       */
1081      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1082	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1083	 coordinate.reg_offset++;
1084	 mlen += reg_width;
1085
1086	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1087	 lod.reg_offset++;
1088	 mlen += reg_width;
1089
1090	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod2);
1091	 lod2.reg_offset++;
1092	 mlen += reg_width;
1093      }
1094      break;
1095   }
1096   case ir_txs:
1097      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
1098      mlen += reg_width;
1099      break;
1100   case ir_txf:
1101      /* It appears that the ld instruction used for txf does its
1102       * address bounds check before adding in the offset.  To work
1103       * around this, just add the integer offset to the integer texel
1104       * coordinate, and don't put the offset in the header.
1105       */
1106      if (ir->offset) {
1107	 ir_constant *offset = ir->offset->as_constant();
1108	 offsets[0] = offset->value.i[0];
1109	 offsets[1] = offset->value.i[1];
1110	 offsets[2] = offset->value.i[2];
1111      } else {
1112	 memset(offsets, 0, sizeof(offsets));
1113      }
1114
1115      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1116      emit(BRW_OPCODE_ADD,
1117	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1118      coordinate.reg_offset++;
1119      mlen += reg_width;
1120
1121      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), lod);
1122      mlen += reg_width;
1123
1124      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1125	 emit(BRW_OPCODE_ADD,
1126	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1127	 coordinate.reg_offset++;
1128	 mlen += reg_width;
1129      }
1130      break;
1131   }
1132
1133   /* Set up the coordinate (except for cases where it was done above) */
1134   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1135      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1136	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1137	 coordinate.reg_offset++;
1138	 mlen += reg_width;
1139      }
1140   }
1141
1142   /* Generate the SEND */
1143   fs_inst *inst = NULL;
1144   switch (ir->op) {
1145   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1146   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1147   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1148   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1149   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1150   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1151   }
1152   inst->base_mrf = base_mrf;
1153   inst->mlen = mlen;
1154   inst->header_present = header_present;
1155
1156   if (mlen > 11) {
1157      fail("Message length >11 disallowed by hardware\n");
1158   }
1159
1160   return inst;
1161}
1162
1163/**
1164 * Emit code to produce the coordinates for a texture lookup.
1165 *
1166 * Returns the fs_reg containing the texture coordinate (as opposed to
1167 * setting this->result).
1168 */
1169fs_reg
1170fs_visitor::emit_texcoord(ir_texture *ir, int sampler, int texunit)
1171{
1172   fs_inst *inst = NULL;
1173
1174   if (!ir->coordinate)
1175      return fs_reg(); /* Return the default BAD_FILE register. */
1176
1177   ir->coordinate->accept(this);
1178   fs_reg coordinate = this->result;
1179
1180   bool needs_gl_clamp = true;
1181
1182   fs_reg scale_x, scale_y;
1183
1184   /* The 965 requires the EU to do the normalization of GL rectangle
1185    * texture coordinates.  We use the program parameter state
1186    * tracking to get the scaling factor.
1187    */
1188   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1189       (intel->gen < 6 ||
1190	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1191			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1192      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1193      int tokens[STATE_LENGTH] = {
1194	 STATE_INTERNAL,
1195	 STATE_TEXRECT_SCALE,
1196	 texunit,
1197	 0,
1198	 0
1199      };
1200
1201      if (c->dispatch_width == 16) {
1202	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1203	 return fs_reg(this, ir->type);
1204      }
1205
1206      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1207      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1208
1209      GLuint index = _mesa_add_state_reference(params,
1210					       (gl_state_index *)tokens);
1211
1212      this->param_index[c->prog_data.nr_params] = index;
1213      this->param_offset[c->prog_data.nr_params] = 0;
1214      c->prog_data.nr_params++;
1215      this->param_index[c->prog_data.nr_params] = index;
1216      this->param_offset[c->prog_data.nr_params] = 1;
1217      c->prog_data.nr_params++;
1218   }
1219
1220   /* The 965 requires the EU to do the normalization of GL rectangle
1221    * texture coordinates.  We use the program parameter state
1222    * tracking to get the scaling factor.
1223    */
1224   if (intel->gen < 6 &&
1225       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1226      fs_reg dst = fs_reg(this, ir->coordinate->type);
1227      fs_reg src = coordinate;
1228      coordinate = dst;
1229
1230      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1231      dst.reg_offset++;
1232      src.reg_offset++;
1233      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1234   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1235      /* On gen6+, the sampler handles the rectangle coordinates
1236       * natively, without needing rescaling.  But that means we have
1237       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1238       * not [0, 1] like the default case below.
1239       */
1240      needs_gl_clamp = false;
1241
1242      for (int i = 0; i < 2; i++) {
1243	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1244	    fs_reg chan = coordinate;
1245	    chan.reg_offset += i;
1246
1247	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1248	    inst->conditional_mod = BRW_CONDITIONAL_G;
1249
1250	    /* Our parameter comes in as 1.0/width or 1.0/height,
1251	     * because that's what people normally want for doing
1252	     * texture rectangle handling.  We need width or height
1253	     * for clamping, but we don't care enough to make a new
1254	     * parameter type, so just invert back.
1255	     */
1256	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1257	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1258	    emit(SHADER_OPCODE_RCP, limit, limit);
1259
1260	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1261	    inst->conditional_mod = BRW_CONDITIONAL_L;
1262	 }
1263      }
1264   }
1265
1266   if (ir->coordinate && needs_gl_clamp) {
1267      for (unsigned int i = 0;
1268	   i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1269	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1270	    fs_reg chan = coordinate;
1271	    chan.reg_offset += i;
1272
1273	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1274	    inst->saturate = true;
1275	 }
1276      }
1277   }
1278   return coordinate;
1279}
1280
1281void
1282fs_visitor::visit(ir_texture *ir)
1283{
1284   fs_inst *inst = NULL;
1285
1286   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1287   int texunit = fp->Base.SamplerUnits[sampler];
1288
1289   /* Should be lowered by do_lower_texture_projection */
1290   assert(!ir->projector);
1291
1292   /* Generate code to compute all the subexpression trees.  This has to be
1293    * done before loading any values into MRFs for the sampler message since
1294    * generating these values may involve SEND messages that need the MRFs.
1295    */
1296   fs_reg coordinate = emit_texcoord(ir, sampler, texunit);
1297
1298   fs_reg shadow_comparitor;
1299   if (ir->shadow_comparitor) {
1300      ir->shadow_comparitor->accept(this);
1301      shadow_comparitor = this->result;
1302   }
1303
1304   fs_reg lod, lod2;
1305   switch (ir->op) {
1306   case ir_tex:
1307      break;
1308   case ir_txb:
1309      ir->lod_info.bias->accept(this);
1310      lod = this->result;
1311      break;
1312   case ir_txd:
1313      ir->lod_info.grad.dPdx->accept(this);
1314      lod = this->result;
1315
1316      ir->lod_info.grad.dPdy->accept(this);
1317      lod2 = this->result;
1318      break;
1319   case ir_txf:
1320   case ir_txl:
1321   case ir_txs:
1322      ir->lod_info.lod->accept(this);
1323      lod = this->result;
1324      break;
1325   };
1326
1327   /* Writemasking doesn't eliminate channels on SIMD8 texture
1328    * samples, so don't worry about them.
1329    */
1330   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1331
1332   if (intel->gen >= 7) {
1333      inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1334                               lod, lod2);
1335   } else if (intel->gen >= 5) {
1336      inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1337                               lod, lod2);
1338   } else {
1339      inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1340                               lod, lod2);
1341   }
1342
1343   /* The header is set up by generate_tex() when necessary. */
1344   inst->src[0] = reg_undef;
1345
1346   if (ir->offset != NULL && ir->op != ir_txf)
1347      inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1348
1349   inst->sampler = sampler;
1350
1351   if (ir->shadow_comparitor)
1352      inst->shadow_compare = true;
1353
1354   swizzle_result(ir, dst, sampler);
1355}
1356
1357/**
1358 * Swizzle the result of a texture result.  This is necessary for
1359 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1360 */
1361void
1362fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1363{
1364   this->result = orig_val;
1365
1366   if (ir->op == ir_txs)
1367      return;
1368
1369   if (ir->type == glsl_type::float_type) {
1370      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1371      assert(ir->sampler->type->sampler_shadow);
1372   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1373      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1374
1375      for (int i = 0; i < 4; i++) {
1376	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1377	 fs_reg l = swizzled_result;
1378	 l.reg_offset += i;
1379
1380	 if (swiz == SWIZZLE_ZERO) {
1381	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1382	 } else if (swiz == SWIZZLE_ONE) {
1383	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1384	 } else {
1385	    fs_reg r = orig_val;
1386	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1387	    emit(BRW_OPCODE_MOV, l, r);
1388	 }
1389      }
1390      this->result = swizzled_result;
1391   }
1392}
1393
1394void
1395fs_visitor::visit(ir_swizzle *ir)
1396{
1397   ir->val->accept(this);
1398   fs_reg val = this->result;
1399
1400   if (ir->type->vector_elements == 1) {
1401      this->result.reg_offset += ir->mask.x;
1402      return;
1403   }
1404
1405   fs_reg result = fs_reg(this, ir->type);
1406   this->result = result;
1407
1408   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1409      fs_reg channel = val;
1410      int swiz = 0;
1411
1412      switch (i) {
1413      case 0:
1414	 swiz = ir->mask.x;
1415	 break;
1416      case 1:
1417	 swiz = ir->mask.y;
1418	 break;
1419      case 2:
1420	 swiz = ir->mask.z;
1421	 break;
1422      case 3:
1423	 swiz = ir->mask.w;
1424	 break;
1425      }
1426
1427      channel.reg_offset += swiz;
1428      emit(BRW_OPCODE_MOV, result, channel);
1429      result.reg_offset++;
1430   }
1431}
1432
1433void
1434fs_visitor::visit(ir_discard *ir)
1435{
1436   assert(ir->condition == NULL); /* FINISHME */
1437
1438   emit(FS_OPCODE_DISCARD);
1439}
1440
1441void
1442fs_visitor::visit(ir_constant *ir)
1443{
1444   /* Set this->result to reg at the bottom of the function because some code
1445    * paths will cause this visitor to be applied to other fields.  This will
1446    * cause the value stored in this->result to be modified.
1447    *
1448    * Make reg constant so that it doesn't get accidentally modified along the
1449    * way.  Yes, I actually had this problem. :(
1450    */
1451   const fs_reg reg(this, ir->type);
1452   fs_reg dst_reg = reg;
1453
1454   if (ir->type->is_array()) {
1455      const unsigned size = type_size(ir->type->fields.array);
1456
1457      for (unsigned i = 0; i < ir->type->length; i++) {
1458	 ir->array_elements[i]->accept(this);
1459	 fs_reg src_reg = this->result;
1460
1461	 dst_reg.type = src_reg.type;
1462	 for (unsigned j = 0; j < size; j++) {
1463	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1464	    src_reg.reg_offset++;
1465	    dst_reg.reg_offset++;
1466	 }
1467      }
1468   } else if (ir->type->is_record()) {
1469      foreach_list(node, &ir->components) {
1470	 ir_constant *const field = (ir_constant *) node;
1471	 const unsigned size = type_size(field->type);
1472
1473	 field->accept(this);
1474	 fs_reg src_reg = this->result;
1475
1476	 dst_reg.type = src_reg.type;
1477	 for (unsigned j = 0; j < size; j++) {
1478	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1479	    src_reg.reg_offset++;
1480	    dst_reg.reg_offset++;
1481	 }
1482      }
1483   } else {
1484      const unsigned size = type_size(ir->type);
1485
1486      for (unsigned i = 0; i < size; i++) {
1487	 switch (ir->type->base_type) {
1488	 case GLSL_TYPE_FLOAT:
1489	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1490	    break;
1491	 case GLSL_TYPE_UINT:
1492	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1493	    break;
1494	 case GLSL_TYPE_INT:
1495	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1496	    break;
1497	 case GLSL_TYPE_BOOL:
1498	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1499	    break;
1500	 default:
1501	    assert(!"Non-float/uint/int/bool constant");
1502	 }
1503	 dst_reg.reg_offset++;
1504      }
1505   }
1506
1507   this->result = reg;
1508}
1509
1510void
1511fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1512{
1513   ir_expression *expr = ir->as_expression();
1514
1515   if (expr) {
1516      fs_reg op[2];
1517      fs_inst *inst;
1518
1519      assert(expr->get_num_operands() <= 2);
1520      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1521	 assert(expr->operands[i]->type->is_scalar());
1522
1523	 expr->operands[i]->accept(this);
1524	 op[i] = this->result;
1525
1526	 resolve_ud_negate(&op[i]);
1527      }
1528
1529      switch (expr->operation) {
1530      case ir_unop_logic_not:
1531	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1532	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1533	 break;
1534
1535      case ir_binop_logic_xor:
1536      case ir_binop_logic_or:
1537      case ir_binop_logic_and:
1538	 goto out;
1539
1540      case ir_unop_f2b:
1541	 if (intel->gen >= 6) {
1542	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1543	 } else {
1544	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1545	 }
1546	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1547	 break;
1548
1549      case ir_unop_i2b:
1550	 if (intel->gen >= 6) {
1551	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1552	 } else {
1553	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1554	 }
1555	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1556	 break;
1557
1558      case ir_binop_greater:
1559      case ir_binop_gequal:
1560      case ir_binop_less:
1561      case ir_binop_lequal:
1562      case ir_binop_equal:
1563      case ir_binop_all_equal:
1564      case ir_binop_nequal:
1565      case ir_binop_any_nequal:
1566	 resolve_bool_comparison(expr->operands[0], &op[0]);
1567	 resolve_bool_comparison(expr->operands[1], &op[1]);
1568
1569	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1570	 inst->conditional_mod =
1571	    brw_conditional_for_comparison(expr->operation);
1572	 break;
1573
1574      default:
1575	 assert(!"not reached");
1576	 fail("bad cond code\n");
1577	 break;
1578      }
1579      return;
1580   }
1581
1582out:
1583   ir->accept(this);
1584
1585   fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1586   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1587}
1588
1589/**
1590 * Emit a gen6 IF statement with the comparison folded into the IF
1591 * instruction.
1592 */
1593void
1594fs_visitor::emit_if_gen6(ir_if *ir)
1595{
1596   ir_expression *expr = ir->condition->as_expression();
1597
1598   if (expr) {
1599      fs_reg op[2];
1600      fs_inst *inst;
1601      fs_reg temp;
1602
1603      assert(expr->get_num_operands() <= 2);
1604      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1605	 assert(expr->operands[i]->type->is_scalar());
1606
1607	 expr->operands[i]->accept(this);
1608	 op[i] = this->result;
1609      }
1610
1611      switch (expr->operation) {
1612      case ir_unop_logic_not:
1613      case ir_binop_logic_xor:
1614      case ir_binop_logic_or:
1615      case ir_binop_logic_and:
1616         /* For operations on bool arguments, only the low bit of the bool is
1617          * valid, and the others are undefined.  Fall back to the condition
1618          * code path.
1619          */
1620         break;
1621
1622      case ir_unop_f2b:
1623	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1624	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1625	 return;
1626
1627      case ir_unop_i2b:
1628	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1629	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1630	 return;
1631
1632      case ir_binop_greater:
1633      case ir_binop_gequal:
1634      case ir_binop_less:
1635      case ir_binop_lequal:
1636      case ir_binop_equal:
1637      case ir_binop_all_equal:
1638      case ir_binop_nequal:
1639      case ir_binop_any_nequal:
1640	 resolve_bool_comparison(expr->operands[0], &op[0]);
1641	 resolve_bool_comparison(expr->operands[1], &op[1]);
1642
1643	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1644	 inst->conditional_mod =
1645	    brw_conditional_for_comparison(expr->operation);
1646	 return;
1647      default:
1648	 assert(!"not reached");
1649	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1650	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1651	 fail("bad condition\n");
1652	 return;
1653      }
1654   }
1655
1656   emit_bool_to_cond_code(ir->condition);
1657   fs_inst *inst = emit(BRW_OPCODE_IF);
1658   inst->predicated = true;
1659}
1660
1661void
1662fs_visitor::visit(ir_if *ir)
1663{
1664   fs_inst *inst;
1665
1666   if (intel->gen < 6 && c->dispatch_width == 16) {
1667      fail("Can't support (non-uniform) control flow on 16-wide\n");
1668   }
1669
1670   /* Don't point the annotation at the if statement, because then it plus
1671    * the then and else blocks get printed.
1672    */
1673   this->base_ir = ir->condition;
1674
1675   if (intel->gen == 6) {
1676      emit_if_gen6(ir);
1677   } else {
1678      emit_bool_to_cond_code(ir->condition);
1679
1680      inst = emit(BRW_OPCODE_IF);
1681      inst->predicated = true;
1682   }
1683
1684   foreach_list(node, &ir->then_instructions) {
1685      ir_instruction *ir = (ir_instruction *)node;
1686      this->base_ir = ir;
1687
1688      ir->accept(this);
1689   }
1690
1691   if (!ir->else_instructions.is_empty()) {
1692      emit(BRW_OPCODE_ELSE);
1693
1694      foreach_list(node, &ir->else_instructions) {
1695	 ir_instruction *ir = (ir_instruction *)node;
1696	 this->base_ir = ir;
1697
1698	 ir->accept(this);
1699      }
1700   }
1701
1702   emit(BRW_OPCODE_ENDIF);
1703}
1704
1705void
1706fs_visitor::visit(ir_loop *ir)
1707{
1708   fs_reg counter = reg_undef;
1709
1710   if (intel->gen < 6 && c->dispatch_width == 16) {
1711      fail("Can't support (non-uniform) control flow on 16-wide\n");
1712   }
1713
1714   if (ir->counter) {
1715      this->base_ir = ir->counter;
1716      ir->counter->accept(this);
1717      counter = *(variable_storage(ir->counter));
1718
1719      if (ir->from) {
1720	 this->base_ir = ir->from;
1721	 ir->from->accept(this);
1722
1723	 emit(BRW_OPCODE_MOV, counter, this->result);
1724      }
1725   }
1726
1727   this->base_ir = NULL;
1728   emit(BRW_OPCODE_DO);
1729
1730   if (ir->to) {
1731      this->base_ir = ir->to;
1732      ir->to->accept(this);
1733
1734      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1735      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1736
1737      inst = emit(BRW_OPCODE_BREAK);
1738      inst->predicated = true;
1739   }
1740
1741   foreach_list(node, &ir->body_instructions) {
1742      ir_instruction *ir = (ir_instruction *)node;
1743
1744      this->base_ir = ir;
1745      ir->accept(this);
1746   }
1747
1748   if (ir->increment) {
1749      this->base_ir = ir->increment;
1750      ir->increment->accept(this);
1751      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1752   }
1753
1754   this->base_ir = NULL;
1755   emit(BRW_OPCODE_WHILE);
1756}
1757
1758void
1759fs_visitor::visit(ir_loop_jump *ir)
1760{
1761   switch (ir->mode) {
1762   case ir_loop_jump::jump_break:
1763      emit(BRW_OPCODE_BREAK);
1764      break;
1765   case ir_loop_jump::jump_continue:
1766      emit(BRW_OPCODE_CONTINUE);
1767      break;
1768   }
1769}
1770
1771void
1772fs_visitor::visit(ir_call *ir)
1773{
1774   assert(!"FINISHME");
1775}
1776
1777void
1778fs_visitor::visit(ir_return *ir)
1779{
1780   assert(!"FINISHME");
1781}
1782
1783void
1784fs_visitor::visit(ir_function *ir)
1785{
1786   /* Ignore function bodies other than main() -- we shouldn't see calls to
1787    * them since they should all be inlined before we get to ir_to_mesa.
1788    */
1789   if (strcmp(ir->name, "main") == 0) {
1790      const ir_function_signature *sig;
1791      exec_list empty;
1792
1793      sig = ir->matching_signature(&empty);
1794
1795      assert(sig);
1796
1797      foreach_list(node, &sig->body) {
1798	 ir_instruction *ir = (ir_instruction *)node;
1799	 this->base_ir = ir;
1800
1801	 ir->accept(this);
1802      }
1803   }
1804}
1805
1806void
1807fs_visitor::visit(ir_function_signature *ir)
1808{
1809   assert(!"not reached");
1810   (void)ir;
1811}
1812
1813fs_inst *
1814fs_visitor::emit(fs_inst inst)
1815{
1816   fs_inst *list_inst = new(mem_ctx) fs_inst;
1817   *list_inst = inst;
1818
1819   if (force_uncompressed_stack > 0)
1820      list_inst->force_uncompressed = true;
1821   else if (force_sechalf_stack > 0)
1822      list_inst->force_sechalf = true;
1823
1824   list_inst->annotation = this->current_annotation;
1825   list_inst->ir = this->base_ir;
1826
1827   this->instructions.push_tail(list_inst);
1828
1829   return list_inst;
1830}
1831
1832/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1833void
1834fs_visitor::emit_dummy_fs()
1835{
1836   int reg_width = c->dispatch_width / 8;
1837
1838   /* Everyone's favorite color. */
1839   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1840   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1841   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1842   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1843
1844   fs_inst *write;
1845   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1846   write->base_mrf = 2;
1847   write->mlen = 4 * reg_width;
1848   write->eot = true;
1849}
1850
1851/* The register location here is relative to the start of the URB
1852 * data.  It will get adjusted to be a real location before
1853 * generate_code() time.
1854 */
1855struct brw_reg
1856fs_visitor::interp_reg(int location, int channel)
1857{
1858   int regnr = urb_setup[location] * 2 + channel / 2;
1859   int stride = (channel & 1) * 4;
1860
1861   assert(urb_setup[location] != -1);
1862
1863   return brw_vec1_grf(regnr, stride);
1864}
1865
1866/** Emits the interpolation for the varying inputs. */
1867void
1868fs_visitor::emit_interpolation_setup_gen4()
1869{
1870   this->current_annotation = "compute pixel centers";
1871   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1872   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1873   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1874   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1875
1876   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1877   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1878
1879   this->current_annotation = "compute pixel deltas from v0";
1880   if (brw->has_pln) {
1881      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1882         fs_reg(this, glsl_type::vec2_type);
1883      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1884         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1885      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1886   } else {
1887      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1888         fs_reg(this, glsl_type::float_type);
1889      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1890         fs_reg(this, glsl_type::float_type);
1891   }
1892   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1893	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1894   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1895	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1896
1897   this->current_annotation = "compute pos.w and 1/pos.w";
1898   /* Compute wpos.w.  It's always in our setup, since it's needed to
1899    * interpolate the other attributes.
1900    */
1901   this->wpos_w = fs_reg(this, glsl_type::float_type);
1902   emit(FS_OPCODE_LINTERP, wpos_w,
1903        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1904        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1905	interp_reg(FRAG_ATTRIB_WPOS, 3));
1906   /* Compute the pixel 1/W value from wpos.w. */
1907   this->pixel_w = fs_reg(this, glsl_type::float_type);
1908   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1909   this->current_annotation = NULL;
1910}
1911
1912/** Emits the interpolation for the varying inputs. */
1913void
1914fs_visitor::emit_interpolation_setup_gen6()
1915{
1916   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1917
1918   /* If the pixel centers end up used, the setup is the same as for gen4. */
1919   this->current_annotation = "compute pixel centers";
1920   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1921   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1922   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1923   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1924   emit(BRW_OPCODE_ADD,
1925	int_pixel_x,
1926	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1927	fs_reg(brw_imm_v(0x10101010)));
1928   emit(BRW_OPCODE_ADD,
1929	int_pixel_y,
1930	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1931	fs_reg(brw_imm_v(0x11001100)));
1932
1933   /* As of gen6, we can no longer mix float and int sources.  We have
1934    * to turn the integer pixel centers into floats for their actual
1935    * use.
1936    */
1937   this->pixel_x = fs_reg(this, glsl_type::float_type);
1938   this->pixel_y = fs_reg(this, glsl_type::float_type);
1939   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1940   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1941
1942   this->current_annotation = "compute pos.w";
1943   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1944   this->wpos_w = fs_reg(this, glsl_type::float_type);
1945   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1946
1947   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1948      uint8_t reg = c->barycentric_coord_reg[i];
1949      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1950      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1951   }
1952
1953   this->current_annotation = NULL;
1954}
1955
1956void
1957fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1958{
1959   int reg_width = c->dispatch_width / 8;
1960   fs_inst *inst;
1961   fs_reg color = outputs[target];
1962   fs_reg mrf;
1963
1964   /* If there's no color data to be written, skip it. */
1965   if (color.file == BAD_FILE)
1966      return;
1967
1968   color.reg_offset += index;
1969
1970   if (c->dispatch_width == 8 || intel->gen >= 6) {
1971      /* SIMD8 write looks like:
1972       * m + 0: r0
1973       * m + 1: r1
1974       * m + 2: g0
1975       * m + 3: g1
1976       *
1977       * gen6 SIMD16 DP write looks like:
1978       * m + 0: r0
1979       * m + 1: r1
1980       * m + 2: g0
1981       * m + 3: g1
1982       * m + 4: b0
1983       * m + 5: b1
1984       * m + 6: a0
1985       * m + 7: a1
1986       */
1987      inst = emit(BRW_OPCODE_MOV,
1988		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1989		  color);
1990      inst->saturate = c->key.clamp_fragment_color;
1991   } else {
1992      /* pre-gen6 SIMD16 single source DP write looks like:
1993       * m + 0: r0
1994       * m + 1: g0
1995       * m + 2: b0
1996       * m + 3: a0
1997       * m + 4: r1
1998       * m + 5: g1
1999       * m + 6: b1
2000       * m + 7: a1
2001       */
2002      if (brw->has_compr4) {
2003	 /* By setting the high bit of the MRF register number, we
2004	  * indicate that we want COMPR4 mode - instead of doing the
2005	  * usual destination + 1 for the second half we get
2006	  * destination + 4.
2007	  */
2008	 inst = emit(BRW_OPCODE_MOV,
2009		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2010			    color.type),
2011		     color);
2012	 inst->saturate = c->key.clamp_fragment_color;
2013      } else {
2014	 push_force_uncompressed();
2015	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
2016					    color.type),
2017		     color);
2018	 inst->saturate = c->key.clamp_fragment_color;
2019	 pop_force_uncompressed();
2020
2021	 push_force_sechalf();
2022	 color.sechalf = true;
2023	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
2024					    color.type),
2025		     color);
2026	 inst->saturate = c->key.clamp_fragment_color;
2027	 pop_force_sechalf();
2028	 color.sechalf = false;
2029      }
2030   }
2031}
2032
2033void
2034fs_visitor::emit_fb_writes()
2035{
2036   this->current_annotation = "FB write header";
2037   bool header_present = true;
2038   /* We can potentially have a message length of up to 15, so we have to set
2039    * base_mrf to either 0 or 1 in order to fit in m0..m15.
2040    */
2041   int base_mrf = 1;
2042   int nr = base_mrf;
2043   int reg_width = c->dispatch_width / 8;
2044   bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2045   bool src0_alpha_to_render_target = false;
2046
2047   if (c->dispatch_width == 16 && do_dual_src) {
2048      fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2049      do_dual_src = false;
2050   }
2051
2052   /* From the Sandy Bridge PRM, volume 4, page 198:
2053    *
2054    *     "Dispatched Pixel Enables. One bit per pixel indicating
2055    *      which pixels were originally enabled when the thread was
2056    *      dispatched. This field is only required for the end-of-
2057    *      thread message and on all dual-source messages."
2058    */
2059   if (intel->gen >= 6 &&
2060       !this->fp->UsesKill &&
2061       !do_dual_src &&
2062       c->key.nr_color_regions == 1) {
2063      header_present = false;
2064   }
2065
2066   if (header_present) {
2067      src0_alpha_to_render_target = intel->gen >= 6 &&
2068				    !do_dual_src &&
2069				    c->key.nr_color_regions > 1 &&
2070				    c->key.sample_alpha_to_coverage;
2071      /* m2, m3 header */
2072      nr += 2;
2073   }
2074
2075   if (c->aa_dest_stencil_reg) {
2076      push_force_uncompressed();
2077      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2078	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2079      pop_force_uncompressed();
2080   }
2081
2082   /* Reserve space for color. It'll be filled in per MRT below. */
2083   int color_mrf = nr;
2084   nr += 4 * reg_width;
2085   if (do_dual_src)
2086      nr += 4;
2087   if (src0_alpha_to_render_target)
2088      nr += reg_width;
2089
2090   if (c->source_depth_to_render_target) {
2091      if (intel->gen == 6 && c->dispatch_width == 16) {
2092	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2093	  * used.  This would require 8-wide moves of each half to
2094	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2095	  * Just bail on doing so for now.
2096	  */
2097	 fail("Missing support for simd16 depth writes on gen6\n");
2098      }
2099
2100      if (c->computes_depth) {
2101	 /* Hand over gl_FragDepth. */
2102	 assert(this->frag_depth);
2103	 fs_reg depth = *(variable_storage(this->frag_depth));
2104
2105	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2106      } else {
2107	 /* Pass through the payload depth. */
2108	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2109	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2110      }
2111      nr += reg_width;
2112   }
2113
2114   if (c->dest_depth_reg) {
2115      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2116	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2117      nr += reg_width;
2118   }
2119
2120   if (do_dual_src) {
2121      fs_reg src0 = this->outputs[0];
2122      fs_reg src1 = this->dual_src_output;
2123
2124      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2125						 "FB write src0");
2126      for (int i = 0; i < 4; i++) {
2127	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2128			      fs_reg(MRF, color_mrf + i, src0.type),
2129			      src0);
2130	 src0.reg_offset++;
2131	 inst->saturate = c->key.clamp_fragment_color;
2132      }
2133
2134      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2135						 "FB write src1");
2136      for (int i = 0; i < 4; i++) {
2137	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2138			      fs_reg(MRF, color_mrf + 4 + i, src1.type),
2139			      src1);
2140	 src1.reg_offset++;
2141	 inst->saturate = c->key.clamp_fragment_color;
2142      }
2143
2144      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2145      inst->target = 0;
2146      inst->base_mrf = base_mrf;
2147      inst->mlen = nr - base_mrf;
2148      inst->eot = true;
2149      inst->header_present = header_present;
2150
2151      c->prog_data.dual_src_blend = true;
2152      this->current_annotation = NULL;
2153      return;
2154   }
2155
2156   for (int target = 0; target < c->key.nr_color_regions; target++) {
2157      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2158						 "FB write target %d",
2159						 target);
2160      /* If src0_alpha_to_render_target is true, include source zero alpha
2161       * data in RenderTargetWrite message for targets > 0.
2162       */
2163      int write_color_mrf = color_mrf;
2164      if (src0_alpha_to_render_target && target != 0) {
2165         fs_inst *inst;
2166         fs_reg color = outputs[0];
2167         color.reg_offset += 3;
2168
2169         inst = emit(BRW_OPCODE_MOV,
2170		     fs_reg(MRF, write_color_mrf, color.type),
2171		     color);
2172         inst->saturate = c->key.clamp_fragment_color;
2173         write_color_mrf = color_mrf + reg_width;
2174      }
2175
2176      for (unsigned i = 0; i < this->output_components[target]; i++)
2177         emit_color_write(target, i, write_color_mrf);
2178
2179      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2180      inst->target = target;
2181      inst->base_mrf = base_mrf;
2182      if (src0_alpha_to_render_target && target == 0)
2183         inst->mlen = nr - base_mrf - reg_width;
2184      else
2185         inst->mlen = nr - base_mrf;
2186      if (target == c->key.nr_color_regions - 1)
2187	 inst->eot = true;
2188      inst->header_present = header_present;
2189   }
2190
2191   if (c->key.nr_color_regions == 0) {
2192      /* Even if there's no color buffers enabled, we still need to send
2193       * alpha out the pipeline to our null renderbuffer to support
2194       * alpha-testing, alpha-to-coverage, and so on.
2195       */
2196      emit_color_write(0, 3, color_mrf);
2197
2198      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2199      inst->base_mrf = base_mrf;
2200      inst->mlen = nr - base_mrf;
2201      inst->eot = true;
2202      inst->header_present = header_present;
2203   }
2204
2205   this->current_annotation = NULL;
2206}
2207
2208void
2209fs_visitor::resolve_ud_negate(fs_reg *reg)
2210{
2211   if (reg->type != BRW_REGISTER_TYPE_UD ||
2212       !reg->negate)
2213      return;
2214
2215   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2216   emit(BRW_OPCODE_MOV, temp, *reg);
2217   *reg = temp;
2218}
2219
2220void
2221fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2222{
2223   if (rvalue->type != glsl_type::bool_type)
2224      return;
2225
2226   fs_reg temp = fs_reg(this, glsl_type::bool_type);
2227   emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2228   *reg = temp;
2229}
2230
2231fs_visitor::fs_visitor(struct brw_wm_compile *c, struct gl_shader_program *prog,
2232                       struct brw_shader *shader)
2233{
2234   this->c = c;
2235   this->p = &c->func;
2236   this->brw = p->brw;
2237   this->fp = (struct gl_fragment_program *)
2238      prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
2239   this->prog = prog;
2240   this->intel = &brw->intel;
2241   this->ctx = &intel->ctx;
2242   this->mem_ctx = ralloc_context(NULL);
2243   this->shader = shader;
2244   this->failed = false;
2245   this->variable_ht = hash_table_ctor(0,
2246                                       hash_table_pointer_hash,
2247                                       hash_table_pointer_compare);
2248
2249   /* There's a question that appears to be left open in the spec:
2250    * How do implicit dst conversions interact with the CMP
2251    * instruction or conditional mods?  On gen6, the instruction:
2252    *
2253    * CMP null<d> src0<f> src1<f>
2254    *
2255    * will do src1 - src0 and compare that result as if it was an
2256    * integer.  On gen4, it will do src1 - src0 as float, convert
2257    * the result to int, and compare as int.  In between, it
2258    * appears that it does src1 - src0 and does the compare in the
2259    * execution type so dst type doesn't matter.
2260    */
2261   if (this->intel->gen > 4)
2262      this->reg_null_cmp = reg_null_d;
2263   else
2264      this->reg_null_cmp = reg_null_f;
2265
2266   this->frag_depth = NULL;
2267   memset(this->outputs, 0, sizeof(this->outputs));
2268   memset(this->output_components, 0, sizeof(this->output_components));
2269   this->first_non_payload_grf = 0;
2270   this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2271
2272   this->current_annotation = NULL;
2273   this->base_ir = NULL;
2274
2275   this->virtual_grf_sizes = NULL;
2276   this->virtual_grf_count = 0;
2277   this->virtual_grf_array_size = 0;
2278   this->virtual_grf_def = NULL;
2279   this->virtual_grf_use = NULL;
2280   this->live_intervals_valid = false;
2281
2282   this->force_uncompressed_stack = 0;
2283   this->force_sechalf_stack = 0;
2284}
2285
2286fs_visitor::~fs_visitor()
2287{
2288   ralloc_free(this->mem_ctx);
2289   hash_table_dtor(this->variable_ht);
2290}
2291