1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/**
25 * @file gen7_sol_state.c
26 *
27 * Controls the stream output logic (SOL) stage of the gen7 hardware, which is
28 * used to implement GL_EXT_transform_feedback.
29 */
30
31#include "brw_context.h"
32#include "brw_state.h"
33#include "brw_defines.h"
34#include "intel_batchbuffer.h"
35#include "intel_buffer_objects.h"
36
37static void
38upload_3dstate_so_buffers(struct brw_context *brw)
39{
40   struct intel_context *intel = &brw->intel;
41   struct gl_context *ctx = &intel->ctx;
42   /* BRW_NEW_VERTEX_PROGRAM */
43   const struct gl_shader_program *vs_prog =
44      ctx->Shader.CurrentVertexProgram;
45   const struct gl_transform_feedback_info *linked_xfb_info =
46      &vs_prog->LinkedTransformFeedback;
47   /* _NEW_TRANSFORM_FEEDBACK */
48   struct gl_transform_feedback_object *xfb_obj =
49      ctx->TransformFeedback.CurrentObject;
50   int i;
51
52   /* Set up the up to 4 output buffers.  These are the ranges defined in the
53    * gl_transform_feedback_object.
54    */
55   for (i = 0; i < 4; i++) {
56      struct intel_buffer_object *bufferobj =
57	 intel_buffer_object(xfb_obj->Buffers[i]);
58      drm_intel_bo *bo;
59      uint32_t start, end;
60      uint32_t stride;
61
62      if (!xfb_obj->Buffers[i]) {
63	 /* The pitch of 0 in this command indicates that the buffer is
64	  * unbound and won't be written to.
65	  */
66	 BEGIN_BATCH(4);
67	 OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
68	 OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT));
69	 OUT_BATCH(0);
70	 OUT_BATCH(0);
71	 ADVANCE_BATCH();
72
73	 continue;
74      }
75
76      bo = intel_bufferobj_buffer(intel, bufferobj, INTEL_WRITE_PART);
77      stride = linked_xfb_info->BufferStride[i] * 4;
78
79      start = xfb_obj->Offset[i];
80      assert(start % 4 == 0);
81      end = ALIGN(start + xfb_obj->Size[i], 4);
82      assert(end <= bo->size);
83
84      /* Offset the starting offset by the current vertex index into the
85       * feedback buffer, offset register is always set to 0 at the start of the
86       * batchbuffer.
87       */
88      start += brw->sol.offset_0_batch_start * stride;
89      assert(start <= end);
90
91      BEGIN_BATCH(4);
92      OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
93      OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT) | stride);
94      OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, start);
95      OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, end);
96      ADVANCE_BATCH();
97   }
98}
99
100/**
101 * Outputs the 3DSTATE_SO_DECL_LIST command.
102 *
103 * The data output is a series of 64-bit entries containing a SO_DECL per
104 * stream.  We only have one stream of rendering coming out of the GS unit, so
105 * we only emit stream 0 (low 16 bits) SO_DECLs.
106 */
107static void
108upload_3dstate_so_decl_list(struct brw_context *brw,
109			    struct brw_vue_map *vue_map)
110{
111   struct intel_context *intel = &brw->intel;
112   struct gl_context *ctx = &intel->ctx;
113   /* BRW_NEW_VERTEX_PROGRAM */
114   const struct gl_shader_program *vs_prog =
115      ctx->Shader.CurrentVertexProgram;
116   /* _NEW_TRANSFORM_FEEDBACK */
117   const struct gl_transform_feedback_info *linked_xfb_info =
118      &vs_prog->LinkedTransformFeedback;
119   int i;
120   uint16_t so_decl[128];
121   int buffer_mask = 0;
122   int next_offset[4] = {0, 0, 0, 0};
123
124   STATIC_ASSERT(ARRAY_SIZE(so_decl) >= MAX_PROGRAM_OUTPUTS);
125
126   /* Construct the list of SO_DECLs to be emitted.  The formatting of the
127    * command is feels strange -- each dword pair contains a SO_DECL per stream.
128    */
129   for (i = 0; i < linked_xfb_info->NumOutputs; i++) {
130      int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
131      uint16_t decl = 0;
132      int vert_result = linked_xfb_info->Outputs[i].OutputRegister;
133      unsigned component_mask =
134         (1 << linked_xfb_info->Outputs[i].NumComponents) - 1;
135
136      /* gl_PointSize is stored in VERT_RESULT_PSIZ.w. */
137      if (vert_result == VERT_RESULT_PSIZ) {
138         assert(linked_xfb_info->Outputs[i].NumComponents == 1);
139         component_mask <<= 3;
140      } else {
141         component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
142      }
143
144      buffer_mask |= 1 << buffer;
145
146      decl |= buffer << SO_DECL_OUTPUT_BUFFER_SLOT_SHIFT;
147      decl |= vue_map->vert_result_to_slot[vert_result] <<
148	 SO_DECL_REGISTER_INDEX_SHIFT;
149      decl |= component_mask << SO_DECL_COMPONENT_MASK_SHIFT;
150
151      /* This assert should be true until GL_ARB_transform_feedback_instanced
152       * is added and we start using the hole flag.
153       */
154      assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
155
156      next_offset[buffer] += linked_xfb_info->Outputs[i].NumComponents;
157
158      so_decl[i] = decl;
159   }
160
161   BEGIN_BATCH(linked_xfb_info->NumOutputs * 2 + 3);
162   OUT_BATCH(_3DSTATE_SO_DECL_LIST << 16 |
163	     (linked_xfb_info->NumOutputs * 2 + 1));
164
165   OUT_BATCH((buffer_mask << SO_STREAM_TO_BUFFER_SELECTS_0_SHIFT) |
166	     (0 << SO_STREAM_TO_BUFFER_SELECTS_1_SHIFT) |
167	     (0 << SO_STREAM_TO_BUFFER_SELECTS_2_SHIFT) |
168	     (0 << SO_STREAM_TO_BUFFER_SELECTS_3_SHIFT));
169
170   OUT_BATCH((linked_xfb_info->NumOutputs << SO_NUM_ENTRIES_0_SHIFT) |
171	     (0 << SO_NUM_ENTRIES_1_SHIFT) |
172	     (0 << SO_NUM_ENTRIES_2_SHIFT) |
173	     (0 << SO_NUM_ENTRIES_3_SHIFT));
174
175   for (i = 0; i < linked_xfb_info->NumOutputs; i++) {
176      OUT_BATCH(so_decl[i]);
177      OUT_BATCH(0);
178   }
179
180   ADVANCE_BATCH();
181}
182
183static void
184upload_3dstate_streamout(struct brw_context *brw, bool active,
185			 struct brw_vue_map *vue_map)
186{
187   struct intel_context *intel = &brw->intel;
188   struct gl_context *ctx = &intel->ctx;
189   /* _NEW_TRANSFORM_FEEDBACK */
190   struct gl_transform_feedback_object *xfb_obj =
191      ctx->TransformFeedback.CurrentObject;
192   uint32_t dw1 = 0, dw2 = 0;
193   int i;
194
195   /* _NEW_RASTERIZER_DISCARD */
196   if (ctx->RasterDiscard)
197      dw1 |= SO_RENDERING_DISABLE;
198
199   if (active) {
200      int urb_entry_read_offset = 0;
201      int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
202	 urb_entry_read_offset;
203
204      dw1 |= SO_FUNCTION_ENABLE;
205      dw1 |= SO_STATISTICS_ENABLE;
206
207      /* _NEW_LIGHT */
208      if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
209	 dw1 |= SO_REORDER_TRAILING;
210
211      for (i = 0; i < 4; i++) {
212	 if (xfb_obj->Buffers[i]) {
213	    dw1 |= SO_BUFFER_ENABLE(i);
214	 }
215      }
216
217      /* We always read the whole vertex.  This could be reduced at some
218       * point by reading less and offsetting the register index in the
219       * SO_DECLs.
220       */
221      dw2 |= urb_entry_read_offset << SO_STREAM_0_VERTEX_READ_OFFSET_SHIFT;
222      dw2 |= (urb_entry_read_length - 1) <<
223	 SO_STREAM_0_VERTEX_READ_LENGTH_SHIFT;
224   }
225
226   BEGIN_BATCH(3);
227   OUT_BATCH(_3DSTATE_STREAMOUT << 16 | (3 - 2));
228   OUT_BATCH(dw1);
229   OUT_BATCH(dw2);
230   ADVANCE_BATCH();
231}
232
233static void
234upload_sol_state(struct brw_context *brw)
235{
236   struct intel_context *intel = &brw->intel;
237   struct gl_context *ctx = &intel->ctx;
238   /* _NEW_TRANSFORM_FEEDBACK */
239   struct gl_transform_feedback_object *xfb_obj =
240      ctx->TransformFeedback.CurrentObject;
241   bool active = xfb_obj->Active && !xfb_obj->Paused;
242
243   if (active) {
244      upload_3dstate_so_buffers(brw);
245      /* CACHE_NEW_VS_PROG */
246      upload_3dstate_so_decl_list(brw, &brw->vs.prog_data->vue_map);
247
248      intel->batch.needs_sol_reset = true;
249   }
250
251   /* Finally, set up the SOL stage.  This command must always follow updates to
252    * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
253    * MMIO register updates (current performed by the kernel at each batch
254    * emit).
255    */
256   upload_3dstate_streamout(brw, active, &brw->vs.prog_data->vue_map);
257}
258
259const struct brw_tracked_state gen7_sol_state = {
260   .dirty = {
261      .mesa  = (_NEW_RASTERIZER_DISCARD |
262		_NEW_LIGHT |
263		_NEW_TRANSFORM_FEEDBACK),
264      .brw   = (BRW_NEW_BATCH |
265		BRW_NEW_VERTEX_PROGRAM),
266      .cache = CACHE_NEW_VS_PROG,
267   },
268   .emit = upload_sol_state,
269};
270
271void
272gen7_end_transform_feedback(struct gl_context *ctx,
273			    struct gl_transform_feedback_object *obj)
274{
275   /* Because we have to rely on the kernel to reset our SO write offsets, and
276    * we only get to do it once per batchbuffer, flush the batch after feedback
277    * so another transform feedback can get the write offset reset it needs.
278    *
279    * This also covers any cache flushing required.
280    */
281   struct brw_context *brw = brw_context(ctx);
282   struct intel_context *intel = &brw->intel;
283
284   intel_batchbuffer_flush(intel);
285}
286