1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36#include "main/glheader.h"
37#include "main/mtypes.h"
38#include "main/macros.h"
39#include "main/mfeatures.h"
40#include "main/enums.h"
41#include "main/ffvertex_prog.h"
42#include "program/program.h"
43#include "program/prog_cache.h"
44#include "program/prog_instruction.h"
45#include "program/prog_parameter.h"
46#include "program/prog_print.h"
47#include "program/prog_statevars.h"
48
49
50/** Max of number of lights and texture coord units */
51#define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
52
53struct state_key {
54   unsigned light_color_material_mask:12;
55   unsigned light_global_enabled:1;
56   unsigned light_local_viewer:1;
57   unsigned light_twoside:1;
58   unsigned material_shininess_is_zero:1;
59   unsigned need_eye_coords:1;
60   unsigned normalize:1;
61   unsigned rescale_normals:1;
62
63   unsigned fog_source_is_depth:1;
64   unsigned fog_distance_mode:2;
65   unsigned separate_specular:1;
66   unsigned point_attenuated:1;
67   unsigned point_array:1;
68   unsigned texture_enabled_global:1;
69   unsigned fragprog_inputs_read:12;
70
71   GLbitfield64 varying_vp_inputs;
72
73   struct {
74      unsigned light_enabled:1;
75      unsigned light_eyepos3_is_zero:1;
76      unsigned light_spotcutoff_is_180:1;
77      unsigned light_attenuated:1;
78      unsigned texunit_really_enabled:1;
79      unsigned texmat_enabled:1;
80      unsigned coord_replace:1;
81      unsigned texgen_enabled:4;
82      unsigned texgen_mode0:4;
83      unsigned texgen_mode1:4;
84      unsigned texgen_mode2:4;
85      unsigned texgen_mode3:4;
86   } unit[NUM_UNITS];
87};
88
89
90#define TXG_NONE           0
91#define TXG_OBJ_LINEAR     1
92#define TXG_EYE_LINEAR     2
93#define TXG_SPHERE_MAP     3
94#define TXG_REFLECTION_MAP 4
95#define TXG_NORMAL_MAP     5
96
97static GLuint translate_texgen( GLboolean enabled, GLenum mode )
98{
99   if (!enabled)
100      return TXG_NONE;
101
102   switch (mode) {
103   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
104   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
105   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
106   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
107   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
108   default: return TXG_NONE;
109   }
110}
111
112#define FDM_EYE_RADIAL    0
113#define FDM_EYE_PLANE     1
114#define FDM_EYE_PLANE_ABS 2
115
116static GLuint translate_fog_distance_mode( GLenum mode )
117{
118   switch (mode) {
119   case GL_EYE_RADIAL_NV:
120      return FDM_EYE_RADIAL;
121   case GL_EYE_PLANE:
122      return FDM_EYE_PLANE;
123   default: /* shouldn't happen; fall through to a sensible default */
124   case GL_EYE_PLANE_ABSOLUTE_NV:
125      return FDM_EYE_PLANE_ABS;
126   }
127}
128
129static GLboolean check_active_shininess( struct gl_context *ctx,
130                                         const struct state_key *key,
131                                         GLuint side )
132{
133   GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
134
135   if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
136       (key->light_color_material_mask & (1 << attr)))
137      return GL_TRUE;
138
139   if (key->varying_vp_inputs & VERT_ATTRIB_GENERIC(attr))
140      return GL_TRUE;
141
142   if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
143      return GL_TRUE;
144
145   return GL_FALSE;
146}
147
148
149static void make_state_key( struct gl_context *ctx, struct state_key *key )
150{
151   const struct gl_fragment_program *fp;
152   GLuint i;
153
154   memset(key, 0, sizeof(struct state_key));
155   fp = ctx->FragmentProgram._Current;
156
157   /* This now relies on texenvprogram.c being active:
158    */
159   assert(fp);
160
161   key->need_eye_coords = ctx->_NeedEyeCoords;
162
163   key->fragprog_inputs_read = fp->Base.InputsRead;
164   key->varying_vp_inputs = ctx->varying_vp_inputs;
165
166   if (ctx->RenderMode == GL_FEEDBACK) {
167      /* make sure the vertprog emits color and tex0 */
168      key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
169   }
170
171   key->separate_specular = (ctx->Light.Model.ColorControl ==
172			     GL_SEPARATE_SPECULAR_COLOR);
173
174   if (ctx->Light.Enabled) {
175      key->light_global_enabled = 1;
176
177      if (ctx->Light.Model.LocalViewer)
178	 key->light_local_viewer = 1;
179
180      if (ctx->Light.Model.TwoSide)
181	 key->light_twoside = 1;
182
183      if (ctx->Light.ColorMaterialEnabled) {
184	 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
185      }
186
187      for (i = 0; i < MAX_LIGHTS; i++) {
188	 struct gl_light *light = &ctx->Light.Light[i];
189
190	 if (light->Enabled) {
191	    key->unit[i].light_enabled = 1;
192
193	    if (light->EyePosition[3] == 0.0)
194	       key->unit[i].light_eyepos3_is_zero = 1;
195
196	    if (light->SpotCutoff == 180.0)
197	       key->unit[i].light_spotcutoff_is_180 = 1;
198
199	    if (light->ConstantAttenuation != 1.0 ||
200		light->LinearAttenuation != 0.0 ||
201		light->QuadraticAttenuation != 0.0)
202	       key->unit[i].light_attenuated = 1;
203	 }
204      }
205
206      if (check_active_shininess(ctx, key, 0)) {
207         key->material_shininess_is_zero = 0;
208      }
209      else if (key->light_twoside &&
210               check_active_shininess(ctx, key, 1)) {
211         key->material_shininess_is_zero = 0;
212      }
213      else {
214         key->material_shininess_is_zero = 1;
215      }
216   }
217
218   if (ctx->Transform.Normalize)
219      key->normalize = 1;
220
221   if (ctx->Transform.RescaleNormals)
222      key->rescale_normals = 1;
223
224   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
225      key->fog_source_is_depth = 1;
226      key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
227   }
228
229   if (ctx->Point._Attenuated)
230      key->point_attenuated = 1;
231
232#if FEATURE_point_size_array
233   if (ctx->Array.ArrayObj->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
234      key->point_array = 1;
235#endif
236
237   if (ctx->Texture._TexGenEnabled ||
238       ctx->Texture._TexMatEnabled ||
239       ctx->Texture._EnabledUnits)
240      key->texture_enabled_global = 1;
241
242   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
243      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
244
245      if (texUnit->_ReallyEnabled)
246	 key->unit[i].texunit_really_enabled = 1;
247
248      if (ctx->Point.PointSprite)
249	 if (ctx->Point.CoordReplace[i])
250	    key->unit[i].coord_replace = 1;
251
252      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
253	 key->unit[i].texmat_enabled = 1;
254
255      if (texUnit->TexGenEnabled) {
256	 key->unit[i].texgen_enabled = 1;
257
258	 key->unit[i].texgen_mode0 =
259	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
260			      texUnit->GenS.Mode );
261	 key->unit[i].texgen_mode1 =
262	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
263			      texUnit->GenT.Mode );
264	 key->unit[i].texgen_mode2 =
265	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
266			      texUnit->GenR.Mode );
267	 key->unit[i].texgen_mode3 =
268	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
269			      texUnit->GenQ.Mode );
270      }
271   }
272}
273
274
275
276/* Very useful debugging tool - produces annotated listing of
277 * generated program with line/function references for each
278 * instruction back into this file:
279 */
280#define DISASSEM 0
281
282
283/* Use uregs to represent registers internally, translate to Mesa's
284 * expected formats on emit.
285 *
286 * NOTE: These are passed by value extensively in this file rather
287 * than as usual by pointer reference.  If this disturbs you, try
288 * remembering they are just 32bits in size.
289 *
290 * GCC is smart enough to deal with these dword-sized structures in
291 * much the same way as if I had defined them as dwords and was using
292 * macros to access and set the fields.  This is much nicer and easier
293 * to evolve.
294 */
295struct ureg {
296   GLuint file:4;
297   GLint idx:9;      /* relative addressing may be negative */
298                     /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
299   GLuint negate:1;
300   GLuint swz:12;
301   GLuint pad:6;
302};
303
304
305struct tnl_program {
306   const struct state_key *state;
307   struct gl_vertex_program *program;
308   GLint max_inst;  /** number of instructions allocated for program */
309   GLboolean mvp_with_dp4;
310
311   GLuint temp_in_use;
312   GLuint temp_reserved;
313
314   struct ureg eye_position;
315   struct ureg eye_position_z;
316   struct ureg eye_position_normalized;
317   struct ureg transformed_normal;
318   struct ureg identity;
319
320   GLuint materials;
321   GLuint color_materials;
322};
323
324
325static const struct ureg undef = {
326   PROGRAM_UNDEFINED,
327   0,
328   0,
329   0,
330   0
331};
332
333/* Local shorthand:
334 */
335#define X    SWIZZLE_X
336#define Y    SWIZZLE_Y
337#define Z    SWIZZLE_Z
338#define W    SWIZZLE_W
339
340
341/* Construct a ureg:
342 */
343static struct ureg make_ureg(GLuint file, GLint idx)
344{
345   struct ureg reg;
346   reg.file = file;
347   reg.idx = idx;
348   reg.negate = 0;
349   reg.swz = SWIZZLE_NOOP;
350   reg.pad = 0;
351   return reg;
352}
353
354
355
356static struct ureg negate( struct ureg reg )
357{
358   reg.negate ^= 1;
359   return reg;
360}
361
362
363static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
364{
365   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
366			   GET_SWZ(reg.swz, y),
367			   GET_SWZ(reg.swz, z),
368			   GET_SWZ(reg.swz, w));
369   return reg;
370}
371
372
373static struct ureg swizzle1( struct ureg reg, int x )
374{
375   return swizzle(reg, x, x, x, x);
376}
377
378
379static struct ureg get_temp( struct tnl_program *p )
380{
381   int bit = ffs( ~p->temp_in_use );
382   if (!bit) {
383      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
384      exit(1);
385   }
386
387   if ((GLuint) bit > p->program->Base.NumTemporaries)
388      p->program->Base.NumTemporaries = bit;
389
390   p->temp_in_use |= 1<<(bit-1);
391   return make_ureg(PROGRAM_TEMPORARY, bit-1);
392}
393
394
395static struct ureg reserve_temp( struct tnl_program *p )
396{
397   struct ureg temp = get_temp( p );
398   p->temp_reserved |= 1<<temp.idx;
399   return temp;
400}
401
402
403static void release_temp( struct tnl_program *p, struct ureg reg )
404{
405   if (reg.file == PROGRAM_TEMPORARY) {
406      p->temp_in_use &= ~(1<<reg.idx);
407      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
408   }
409}
410
411static void release_temps( struct tnl_program *p )
412{
413   p->temp_in_use = p->temp_reserved;
414}
415
416
417static struct ureg register_param5(struct tnl_program *p,
418				   GLint s0,
419				   GLint s1,
420				   GLint s2,
421				   GLint s3,
422                                   GLint s4)
423{
424   gl_state_index tokens[STATE_LENGTH];
425   GLint idx;
426   tokens[0] = s0;
427   tokens[1] = s1;
428   tokens[2] = s2;
429   tokens[3] = s3;
430   tokens[4] = s4;
431   idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
432   return make_ureg(PROGRAM_STATE_VAR, idx);
433}
434
435
436#define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
437#define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
438#define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
439#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
440
441
442
443/**
444 * \param input  one of VERT_ATTRIB_x tokens.
445 */
446static struct ureg register_input( struct tnl_program *p, GLuint input )
447{
448   assert(input < VERT_ATTRIB_MAX);
449
450   if (p->state->varying_vp_inputs & VERT_BIT(input)) {
451      p->program->Base.InputsRead |= VERT_BIT(input);
452      return make_ureg(PROGRAM_INPUT, input);
453   }
454   else {
455      return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
456   }
457}
458
459
460/**
461 * \param input  one of VERT_RESULT_x tokens.
462 */
463static struct ureg register_output( struct tnl_program *p, GLuint output )
464{
465   p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
466   return make_ureg(PROGRAM_OUTPUT, output);
467}
468
469
470static struct ureg register_const4f( struct tnl_program *p,
471			      GLfloat s0,
472			      GLfloat s1,
473			      GLfloat s2,
474			      GLfloat s3)
475{
476   gl_constant_value values[4];
477   GLint idx;
478   GLuint swizzle;
479   values[0].f = s0;
480   values[1].f = s1;
481   values[2].f = s2;
482   values[3].f = s3;
483   idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
484                                     &swizzle );
485   ASSERT(swizzle == SWIZZLE_NOOP);
486   return make_ureg(PROGRAM_CONSTANT, idx);
487}
488
489#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
490#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
491#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
492#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
493
494static GLboolean is_undef( struct ureg reg )
495{
496   return reg.file == PROGRAM_UNDEFINED;
497}
498
499
500static struct ureg get_identity_param( struct tnl_program *p )
501{
502   if (is_undef(p->identity))
503      p->identity = register_const4f(p, 0,0,0,1);
504
505   return p->identity;
506}
507
508static void register_matrix_param5( struct tnl_program *p,
509				    GLint s0, /* modelview, projection, etc */
510				    GLint s1, /* texture matrix number */
511				    GLint s2, /* first row */
512				    GLint s3, /* last row */
513				    GLint s4, /* inverse, transpose, etc */
514				    struct ureg *matrix )
515{
516   GLint i;
517
518   /* This is a bit sad as the support is there to pull the whole
519    * matrix out in one go:
520    */
521   for (i = 0; i <= s3 - s2; i++)
522      matrix[i] = register_param5( p, s0, s1, i, i, s4 );
523}
524
525
526static void emit_arg( struct prog_src_register *src,
527		      struct ureg reg )
528{
529   src->File = reg.file;
530   src->Index = reg.idx;
531   src->Swizzle = reg.swz;
532   src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
533   src->Abs = 0;
534   src->RelAddr = 0;
535   /* Check that bitfield sizes aren't exceeded */
536   ASSERT(src->Index == reg.idx);
537}
538
539
540static void emit_dst( struct prog_dst_register *dst,
541		      struct ureg reg, GLuint mask )
542{
543   dst->File = reg.file;
544   dst->Index = reg.idx;
545   /* allow zero as a shorthand for xyzw */
546   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
547   dst->CondMask = COND_TR;  /* always pass cond test */
548   dst->CondSwizzle = SWIZZLE_NOOP;
549   dst->CondSrc = 0;
550   /* Check that bitfield sizes aren't exceeded */
551   ASSERT(dst->Index == reg.idx);
552}
553
554
555static void debug_insn( struct prog_instruction *inst, const char *fn,
556			GLuint line )
557{
558   if (DISASSEM) {
559      static const char *last_fn;
560
561      if (fn != last_fn) {
562	 last_fn = fn;
563	 printf("%s:\n", fn);
564      }
565
566      printf("%d:\t", line);
567      _mesa_print_instruction(inst);
568   }
569}
570
571
572static void emit_op3fn(struct tnl_program *p,
573                       enum prog_opcode op,
574		       struct ureg dest,
575		       GLuint mask,
576		       struct ureg src0,
577		       struct ureg src1,
578		       struct ureg src2,
579		       const char *fn,
580		       GLuint line)
581{
582   GLuint nr;
583   struct prog_instruction *inst;
584
585   assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
586
587   if (p->program->Base.NumInstructions == p->max_inst) {
588      /* need to extend the program's instruction array */
589      struct prog_instruction *newInst;
590
591      /* double the size */
592      p->max_inst *= 2;
593
594      newInst = _mesa_alloc_instructions(p->max_inst);
595      if (!newInst) {
596         _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
597         return;
598      }
599
600      _mesa_copy_instructions(newInst,
601                              p->program->Base.Instructions,
602                              p->program->Base.NumInstructions);
603
604      _mesa_free_instructions(p->program->Base.Instructions,
605                              p->program->Base.NumInstructions);
606
607      p->program->Base.Instructions = newInst;
608   }
609
610   nr = p->program->Base.NumInstructions++;
611
612   inst = &p->program->Base.Instructions[nr];
613   inst->Opcode = (enum prog_opcode) op;
614   inst->Data = 0;
615
616   emit_arg( &inst->SrcReg[0], src0 );
617   emit_arg( &inst->SrcReg[1], src1 );
618   emit_arg( &inst->SrcReg[2], src2 );
619
620   emit_dst( &inst->DstReg, dest, mask );
621
622   debug_insn(inst, fn, line);
623}
624
625
626#define emit_op3(p, op, dst, mask, src0, src1, src2) \
627   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
628
629#define emit_op2(p, op, dst, mask, src0, src1) \
630    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
631
632#define emit_op1(p, op, dst, mask, src0) \
633    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
634
635
636static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
637{
638   if (reg.file == PROGRAM_TEMPORARY &&
639       !(p->temp_reserved & (1<<reg.idx)))
640      return reg;
641   else {
642      struct ureg temp = get_temp(p);
643      emit_op1(p, OPCODE_MOV, temp, 0, reg);
644      return temp;
645   }
646}
647
648
649/* Currently no tracking performed of input/output/register size or
650 * active elements.  Could be used to reduce these operations, as
651 * could the matrix type.
652 */
653static void emit_matrix_transform_vec4( struct tnl_program *p,
654					struct ureg dest,
655					const struct ureg *mat,
656					struct ureg src)
657{
658   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
659   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
660   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
661   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
662}
663
664
665/* This version is much easier to implement if writemasks are not
666 * supported natively on the target or (like SSE), the target doesn't
667 * have a clean/obvious dotproduct implementation.
668 */
669static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
670						  struct ureg dest,
671						  const struct ureg *mat,
672						  struct ureg src)
673{
674   struct ureg tmp;
675
676   if (dest.file != PROGRAM_TEMPORARY)
677      tmp = get_temp(p);
678   else
679      tmp = dest;
680
681   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
682   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
683   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
684   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
685
686   if (dest.file != PROGRAM_TEMPORARY)
687      release_temp(p, tmp);
688}
689
690
691static void emit_matrix_transform_vec3( struct tnl_program *p,
692					struct ureg dest,
693					const struct ureg *mat,
694					struct ureg src)
695{
696   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
697   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
698   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
699}
700
701
702static void emit_normalize_vec3( struct tnl_program *p,
703				 struct ureg dest,
704				 struct ureg src )
705{
706#if 0
707   /* XXX use this when drivers are ready for NRM3 */
708   emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
709#else
710   struct ureg tmp = get_temp(p);
711   emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
712   emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
713   emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
714   release_temp(p, tmp);
715#endif
716}
717
718
719static void emit_passthrough( struct tnl_program *p,
720			      GLuint input,
721			      GLuint output )
722{
723   struct ureg out = register_output(p, output);
724   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
725}
726
727
728static struct ureg get_eye_position( struct tnl_program *p )
729{
730   if (is_undef(p->eye_position)) {
731      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
732      struct ureg modelview[4];
733
734      p->eye_position = reserve_temp(p);
735
736      if (p->mvp_with_dp4) {
737	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
738                                 0, modelview );
739
740	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
741      }
742      else {
743	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
744				 STATE_MATRIX_TRANSPOSE, modelview );
745
746	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
747      }
748   }
749
750   return p->eye_position;
751}
752
753
754static struct ureg get_eye_position_z( struct tnl_program *p )
755{
756   if (!is_undef(p->eye_position))
757      return swizzle1(p->eye_position, Z);
758
759   if (is_undef(p->eye_position_z)) {
760      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
761      struct ureg modelview[4];
762
763      p->eye_position_z = reserve_temp(p);
764
765      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
766                              0, modelview );
767
768      emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
769   }
770
771   return p->eye_position_z;
772}
773
774
775static struct ureg get_eye_position_normalized( struct tnl_program *p )
776{
777   if (is_undef(p->eye_position_normalized)) {
778      struct ureg eye = get_eye_position(p);
779      p->eye_position_normalized = reserve_temp(p);
780      emit_normalize_vec3(p, p->eye_position_normalized, eye);
781   }
782
783   return p->eye_position_normalized;
784}
785
786
787static struct ureg get_transformed_normal( struct tnl_program *p )
788{
789   if (is_undef(p->transformed_normal) &&
790       !p->state->need_eye_coords &&
791       !p->state->normalize &&
792       !(p->state->need_eye_coords == p->state->rescale_normals))
793   {
794      p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
795   }
796   else if (is_undef(p->transformed_normal))
797   {
798      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
799      struct ureg mvinv[3];
800      struct ureg transformed_normal = reserve_temp(p);
801
802      if (p->state->need_eye_coords) {
803         register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
804                                 STATE_MATRIX_INVTRANS, mvinv );
805
806         /* Transform to eye space:
807          */
808         emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
809         normal = transformed_normal;
810      }
811
812      /* Normalize/Rescale:
813       */
814      if (p->state->normalize) {
815	 emit_normalize_vec3( p, transformed_normal, normal );
816         normal = transformed_normal;
817      }
818      else if (p->state->need_eye_coords == p->state->rescale_normals) {
819         /* This is already adjusted for eye/non-eye rendering:
820          */
821	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
822                                               STATE_NORMAL_SCALE);
823
824	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
825         normal = transformed_normal;
826      }
827
828      assert(normal.file == PROGRAM_TEMPORARY);
829      p->transformed_normal = normal;
830   }
831
832   return p->transformed_normal;
833}
834
835
836static void build_hpos( struct tnl_program *p )
837{
838   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
839   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
840   struct ureg mvp[4];
841
842   if (p->mvp_with_dp4) {
843      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
844			      0, mvp );
845      emit_matrix_transform_vec4( p, hpos, mvp, pos );
846   }
847   else {
848      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
849			      STATE_MATRIX_TRANSPOSE, mvp );
850      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
851   }
852}
853
854
855static GLuint material_attrib( GLuint side, GLuint property )
856{
857   return (property - STATE_AMBIENT) * 2 + side;
858}
859
860
861/**
862 * Get a bitmask of which material values vary on a per-vertex basis.
863 */
864static void set_material_flags( struct tnl_program *p )
865{
866   p->color_materials = 0;
867   p->materials = 0;
868
869   if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
870      p->materials =
871	 p->color_materials = p->state->light_color_material_mask;
872   }
873
874   p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
875}
876
877
878static struct ureg get_material( struct tnl_program *p, GLuint side,
879				 GLuint property )
880{
881   GLuint attrib = material_attrib(side, property);
882
883   if (p->color_materials & (1<<attrib))
884      return register_input(p, VERT_ATTRIB_COLOR0);
885   else if (p->materials & (1<<attrib)) {
886      /* Put material values in the GENERIC slots -- they are not used
887       * for anything in fixed function mode.
888       */
889      return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
890   }
891   else
892      return register_param3( p, STATE_MATERIAL, side, property );
893}
894
895#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
896				   MAT_BIT_FRONT_AMBIENT | \
897				   MAT_BIT_FRONT_DIFFUSE) << (side))
898
899
900/**
901 * Either return a precalculated constant value or emit code to
902 * calculate these values dynamically in the case where material calls
903 * are present between begin/end pairs.
904 *
905 * Probably want to shift this to the program compilation phase - if
906 * we always emitted the calculation here, a smart compiler could
907 * detect that it was constant (given a certain set of inputs), and
908 * lift it out of the main loop.  That way the programs created here
909 * would be independent of the vertex_buffer details.
910 */
911static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
912{
913   if (p->materials & SCENE_COLOR_BITS(side)) {
914      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
915      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
916      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
917      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
918      struct ureg tmp = make_temp(p, material_diffuse);
919      emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
920	       material_ambient, material_emission);
921      return tmp;
922   }
923   else
924      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
925}
926
927
928static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
929				  GLuint side, GLuint property )
930{
931   GLuint attrib = material_attrib(side, property);
932   if (p->materials & (1<<attrib)) {
933      struct ureg light_value =
934	 register_param3(p, STATE_LIGHT, light, property);
935      struct ureg material_value = get_material(p, side, property);
936      struct ureg tmp = get_temp(p);
937      emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
938      return tmp;
939   }
940   else
941      return register_param4(p, STATE_LIGHTPROD, light, side, property);
942}
943
944
945static struct ureg calculate_light_attenuation( struct tnl_program *p,
946						GLuint i,
947						struct ureg VPpli,
948						struct ureg dist )
949{
950   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
951					     STATE_ATTENUATION);
952   struct ureg att = undef;
953
954   /* Calculate spot attenuation:
955    */
956   if (!p->state->unit[i].light_spotcutoff_is_180) {
957      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
958						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
959      struct ureg spot = get_temp(p);
960      struct ureg slt = get_temp(p);
961
962      att = get_temp(p);
963
964      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
965      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
966      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
967      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
968
969      release_temp(p, spot);
970      release_temp(p, slt);
971   }
972
973   /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
974    *
975    * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
976    */
977   if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
978      if (is_undef(att))
979         att = get_temp(p);
980      /* 1/d,d,d,1/d */
981      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
982      /* 1,d,d*d,1/d */
983      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
984      /* 1/dist-atten */
985      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
986
987      if (!p->state->unit[i].light_spotcutoff_is_180) {
988	 /* dist-atten */
989	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
990	 /* spot-atten * dist-atten */
991	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
992      }
993      else {
994	 /* dist-atten */
995	 emit_op1(p, OPCODE_RCP, att, 0, dist);
996      }
997   }
998
999   return att;
1000}
1001
1002
1003/**
1004 * Compute:
1005 *   lit.y = MAX(0, dots.x)
1006 *   lit.z = SLT(0, dots.x)
1007 */
1008static void emit_degenerate_lit( struct tnl_program *p,
1009                                 struct ureg lit,
1010                                 struct ureg dots )
1011{
1012   struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */
1013
1014   /* Note that lit.x & lit.w will not be examined.  Note also that
1015    * dots.xyzw == dots.xxxx.
1016    */
1017
1018   /* MAX lit, id, dots;
1019    */
1020   emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1021
1022   /* result[2] = (in > 0 ? 1 : 0)
1023    * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
1024    */
1025   emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1026}
1027
1028
1029/* Need to add some addtional parameters to allow lighting in object
1030 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1031 * space lighting.
1032 */
1033static void build_lighting( struct tnl_program *p )
1034{
1035   const GLboolean twoside = p->state->light_twoside;
1036   const GLboolean separate = p->state->separate_specular;
1037   GLuint nr_lights = 0, count = 0;
1038   struct ureg normal = get_transformed_normal(p);
1039   struct ureg lit = get_temp(p);
1040   struct ureg dots = get_temp(p);
1041   struct ureg _col0 = undef, _col1 = undef;
1042   struct ureg _bfc0 = undef, _bfc1 = undef;
1043   GLuint i;
1044
1045   /*
1046    * NOTE:
1047    * dots.x = dot(normal, VPpli)
1048    * dots.y = dot(normal, halfAngle)
1049    * dots.z = back.shininess
1050    * dots.w = front.shininess
1051    */
1052
1053   for (i = 0; i < MAX_LIGHTS; i++)
1054      if (p->state->unit[i].light_enabled)
1055	 nr_lights++;
1056
1057   set_material_flags(p);
1058
1059   {
1060      if (!p->state->material_shininess_is_zero) {
1061         struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1062         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1063         release_temp(p, shininess);
1064      }
1065
1066      _col0 = make_temp(p, get_scenecolor(p, 0));
1067      if (separate)
1068	 _col1 = make_temp(p, get_identity_param(p));
1069      else
1070	 _col1 = _col0;
1071   }
1072
1073   if (twoside) {
1074      if (!p->state->material_shininess_is_zero) {
1075         /* Note that we negate the back-face specular exponent here.
1076          * The negation will be un-done later in the back-face code below.
1077          */
1078         struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1079         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1080                  negate(swizzle1(shininess,X)));
1081         release_temp(p, shininess);
1082      }
1083
1084      _bfc0 = make_temp(p, get_scenecolor(p, 1));
1085      if (separate)
1086	 _bfc1 = make_temp(p, get_identity_param(p));
1087      else
1088	 _bfc1 = _bfc0;
1089   }
1090
1091   /* If no lights, still need to emit the scenecolor.
1092    */
1093   {
1094      struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1095      emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1096   }
1097
1098   if (separate) {
1099      struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1100      emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1101   }
1102
1103   if (twoside) {
1104      struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1105      emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1106   }
1107
1108   if (twoside && separate) {
1109      struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1110      emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1111   }
1112
1113   if (nr_lights == 0) {
1114      release_temps(p);
1115      return;
1116   }
1117
1118   for (i = 0; i < MAX_LIGHTS; i++) {
1119      if (p->state->unit[i].light_enabled) {
1120	 struct ureg half = undef;
1121	 struct ureg att = undef, VPpli = undef;
1122	 struct ureg dist = undef;
1123
1124	 count++;
1125         if (p->state->unit[i].light_eyepos3_is_zero) {
1126             VPpli = register_param3(p, STATE_INTERNAL,
1127                                     STATE_LIGHT_POSITION_NORMALIZED, i);
1128         } else {
1129            struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1130                                               STATE_LIGHT_POSITION, i);
1131            struct ureg V = get_eye_position(p);
1132
1133            VPpli = get_temp(p);
1134            dist = get_temp(p);
1135
1136            /* Calculate VPpli vector
1137             */
1138            emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1139
1140            /* Normalize VPpli.  The dist value also used in
1141             * attenuation below.
1142             */
1143            emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1144            emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1145            emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1146         }
1147
1148         /* Calculate attenuation:
1149          */
1150         att = calculate_light_attenuation(p, i, VPpli, dist);
1151         release_temp(p, dist);
1152
1153	 /* Calculate viewer direction, or use infinite viewer:
1154	  */
1155         if (!p->state->material_shininess_is_zero) {
1156            if (p->state->light_local_viewer) {
1157               struct ureg eye_hat = get_eye_position_normalized(p);
1158               half = get_temp(p);
1159               emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1160               emit_normalize_vec3(p, half, half);
1161            } else if (p->state->unit[i].light_eyepos3_is_zero) {
1162               half = register_param3(p, STATE_INTERNAL,
1163                                      STATE_LIGHT_HALF_VECTOR, i);
1164            } else {
1165               struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1166               half = get_temp(p);
1167               emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1168               emit_normalize_vec3(p, half, half);
1169            }
1170	 }
1171
1172	 /* Calculate dot products:
1173	  */
1174         if (p->state->material_shininess_is_zero) {
1175            emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1176         }
1177         else {
1178            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1179            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1180         }
1181
1182	 /* Front face lighting:
1183	  */
1184	 {
1185	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1186	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1187	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1188	    struct ureg res0, res1;
1189	    GLuint mask0, mask1;
1190
1191	    if (count == nr_lights) {
1192	       if (separate) {
1193		  mask0 = WRITEMASK_XYZ;
1194		  mask1 = WRITEMASK_XYZ;
1195		  res0 = register_output( p, VERT_RESULT_COL0 );
1196		  res1 = register_output( p, VERT_RESULT_COL1 );
1197	       }
1198	       else {
1199		  mask0 = 0;
1200		  mask1 = WRITEMASK_XYZ;
1201		  res0 = _col0;
1202		  res1 = register_output( p, VERT_RESULT_COL0 );
1203	       }
1204	    }
1205            else {
1206	       mask0 = 0;
1207	       mask1 = 0;
1208	       res0 = _col0;
1209	       res1 = _col1;
1210	    }
1211
1212	    if (!is_undef(att)) {
1213               /* light is attenuated by distance */
1214               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1215               emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1216               emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1217            }
1218            else if (!p->state->material_shininess_is_zero) {
1219               /* there's a non-zero specular term */
1220               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1221               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1222            }
1223            else {
1224               /* no attenutation, no specular */
1225               emit_degenerate_lit(p, lit, dots);
1226               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1227            }
1228
1229	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1230	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1231
1232	    release_temp(p, ambient);
1233	    release_temp(p, diffuse);
1234	    release_temp(p, specular);
1235	 }
1236
1237	 /* Back face lighting:
1238	  */
1239	 if (twoside) {
1240	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1241	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1242	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1243	    struct ureg res0, res1;
1244	    GLuint mask0, mask1;
1245
1246	    if (count == nr_lights) {
1247	       if (separate) {
1248		  mask0 = WRITEMASK_XYZ;
1249		  mask1 = WRITEMASK_XYZ;
1250		  res0 = register_output( p, VERT_RESULT_BFC0 );
1251		  res1 = register_output( p, VERT_RESULT_BFC1 );
1252	       }
1253	       else {
1254		  mask0 = 0;
1255		  mask1 = WRITEMASK_XYZ;
1256		  res0 = _bfc0;
1257		  res1 = register_output( p, VERT_RESULT_BFC0 );
1258	       }
1259	    }
1260            else {
1261	       res0 = _bfc0;
1262	       res1 = _bfc1;
1263	       mask0 = 0;
1264	       mask1 = 0;
1265	    }
1266
1267            /* For the back face we need to negate the X and Y component
1268             * dot products.  dots.Z has the negated back-face specular
1269             * exponent.  We swizzle that into the W position.  This
1270             * negation makes the back-face specular term positive again.
1271             */
1272            dots = negate(swizzle(dots,X,Y,W,Z));
1273
1274	    if (!is_undef(att)) {
1275               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1276	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1277               emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1278            }
1279            else if (!p->state->material_shininess_is_zero) {
1280               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1281               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1282            }
1283            else {
1284               emit_degenerate_lit(p, lit, dots);
1285               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1286            }
1287
1288	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1289	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1290            /* restore dots to its original state for subsequent lights
1291             * by negating and swizzling again.
1292             */
1293            dots = negate(swizzle(dots,X,Y,W,Z));
1294
1295	    release_temp(p, ambient);
1296	    release_temp(p, diffuse);
1297	    release_temp(p, specular);
1298	 }
1299
1300	 release_temp(p, half);
1301	 release_temp(p, VPpli);
1302	 release_temp(p, att);
1303      }
1304   }
1305
1306   release_temps( p );
1307}
1308
1309
1310static void build_fog( struct tnl_program *p )
1311{
1312   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1313   struct ureg input;
1314
1315   if (p->state->fog_source_is_depth) {
1316
1317      switch (p->state->fog_distance_mode) {
1318      case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1319	input = get_eye_position(p);
1320	emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
1321	emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
1322	emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
1323	break;
1324      case FDM_EYE_PLANE: /* Z = Ze */
1325	input = get_eye_position_z(p);
1326	emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1327	break;
1328      case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1329	input = get_eye_position_z(p);
1330	emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1331	break;
1332      default: assert(0); break; /* can't happen */
1333      }
1334
1335   }
1336   else {
1337      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1338      emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1339   }
1340
1341   emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1342}
1343
1344
1345static void build_reflect_texgen( struct tnl_program *p,
1346				  struct ureg dest,
1347				  GLuint writemask )
1348{
1349   struct ureg normal = get_transformed_normal(p);
1350   struct ureg eye_hat = get_eye_position_normalized(p);
1351   struct ureg tmp = get_temp(p);
1352
1353   /* n.u */
1354   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1355   /* 2n.u */
1356   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1357   /* (-2n.u)n + u */
1358   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1359
1360   release_temp(p, tmp);
1361}
1362
1363
1364static void build_sphere_texgen( struct tnl_program *p,
1365				 struct ureg dest,
1366				 GLuint writemask )
1367{
1368   struct ureg normal = get_transformed_normal(p);
1369   struct ureg eye_hat = get_eye_position_normalized(p);
1370   struct ureg tmp = get_temp(p);
1371   struct ureg half = register_scalar_const(p, .5);
1372   struct ureg r = get_temp(p);
1373   struct ureg inv_m = get_temp(p);
1374   struct ureg id = get_identity_param(p);
1375
1376   /* Could share the above calculations, but it would be
1377    * a fairly odd state for someone to set (both sphere and
1378    * reflection active for different texture coordinate
1379    * components.  Of course - if two texture units enable
1380    * reflect and/or sphere, things start to tilt in favour
1381    * of seperating this out:
1382    */
1383
1384   /* n.u */
1385   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1386   /* 2n.u */
1387   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1388   /* (-2n.u)n + u */
1389   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1390   /* r + 0,0,1 */
1391   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1392   /* rx^2 + ry^2 + (rz+1)^2 */
1393   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1394   /* 2/m */
1395   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1396   /* 1/m */
1397   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1398   /* r/m + 1/2 */
1399   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1400
1401   release_temp(p, tmp);
1402   release_temp(p, r);
1403   release_temp(p, inv_m);
1404}
1405
1406
1407static void build_texture_transform( struct tnl_program *p )
1408{
1409   GLuint i, j;
1410
1411   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1412
1413      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1414	 continue;
1415
1416      if (p->state->unit[i].coord_replace)
1417  	 continue;
1418
1419      if (p->state->unit[i].texgen_enabled ||
1420	  p->state->unit[i].texmat_enabled) {
1421
1422	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1423	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1424	 struct ureg out_texgen = undef;
1425
1426	 if (p->state->unit[i].texgen_enabled) {
1427	    GLuint copy_mask = 0;
1428	    GLuint sphere_mask = 0;
1429	    GLuint reflect_mask = 0;
1430	    GLuint normal_mask = 0;
1431	    GLuint modes[4];
1432
1433	    if (texmat_enabled)
1434	       out_texgen = get_temp(p);
1435	    else
1436	       out_texgen = out;
1437
1438	    modes[0] = p->state->unit[i].texgen_mode0;
1439	    modes[1] = p->state->unit[i].texgen_mode1;
1440	    modes[2] = p->state->unit[i].texgen_mode2;
1441	    modes[3] = p->state->unit[i].texgen_mode3;
1442
1443	    for (j = 0; j < 4; j++) {
1444	       switch (modes[j]) {
1445	       case TXG_OBJ_LINEAR: {
1446		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1447		  struct ureg plane =
1448		     register_param3(p, STATE_TEXGEN, i,
1449				     STATE_TEXGEN_OBJECT_S + j);
1450
1451		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1452			   obj, plane );
1453		  break;
1454	       }
1455	       case TXG_EYE_LINEAR: {
1456		  struct ureg eye = get_eye_position(p);
1457		  struct ureg plane =
1458		     register_param3(p, STATE_TEXGEN, i,
1459				     STATE_TEXGEN_EYE_S + j);
1460
1461		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1462			   eye, plane );
1463		  break;
1464	       }
1465	       case TXG_SPHERE_MAP:
1466		  sphere_mask |= WRITEMASK_X << j;
1467		  break;
1468	       case TXG_REFLECTION_MAP:
1469		  reflect_mask |= WRITEMASK_X << j;
1470		  break;
1471	       case TXG_NORMAL_MAP:
1472		  normal_mask |= WRITEMASK_X << j;
1473		  break;
1474	       case TXG_NONE:
1475		  copy_mask |= WRITEMASK_X << j;
1476	       }
1477	    }
1478
1479	    if (sphere_mask) {
1480	       build_sphere_texgen(p, out_texgen, sphere_mask);
1481	    }
1482
1483	    if (reflect_mask) {
1484	       build_reflect_texgen(p, out_texgen, reflect_mask);
1485	    }
1486
1487	    if (normal_mask) {
1488	       struct ureg normal = get_transformed_normal(p);
1489	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1490	    }
1491
1492	    if (copy_mask) {
1493	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1494	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1495	    }
1496	 }
1497
1498	 if (texmat_enabled) {
1499	    struct ureg texmat[4];
1500	    struct ureg in = (!is_undef(out_texgen) ?
1501			      out_texgen :
1502			      register_input(p, VERT_ATTRIB_TEX0+i));
1503	    if (p->mvp_with_dp4) {
1504	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1505				       0, texmat );
1506	       emit_matrix_transform_vec4( p, out, texmat, in );
1507	    }
1508	    else {
1509	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1510				       STATE_MATRIX_TRANSPOSE, texmat );
1511	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1512	    }
1513	 }
1514
1515	 release_temps(p);
1516      }
1517      else {
1518	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1519      }
1520   }
1521}
1522
1523
1524/**
1525 * Point size attenuation computation.
1526 */
1527static void build_atten_pointsize( struct tnl_program *p )
1528{
1529   struct ureg eye = get_eye_position_z(p);
1530   struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1531   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1532   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1533   struct ureg ut = get_temp(p);
1534
1535   /* dist = |eyez| */
1536   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1537   /* p1 + dist * (p2 + dist * p3); */
1538   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1539		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1540   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1541		ut, swizzle1(state_attenuation, X));
1542
1543   /* 1 / sqrt(factor) */
1544   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1545
1546#if 0
1547   /* out = pointSize / sqrt(factor) */
1548   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1549#else
1550   /* this is a good place to clamp the point size since there's likely
1551    * no hardware registers to clamp point size at rasterization time.
1552    */
1553   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1554   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1555   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1556#endif
1557
1558   release_temp(p, ut);
1559}
1560
1561
1562/**
1563 * Pass-though per-vertex point size, from user's point size array.
1564 */
1565static void build_array_pointsize( struct tnl_program *p )
1566{
1567   struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1568   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1569   emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1570}
1571
1572
1573static void build_tnl_program( struct tnl_program *p )
1574{
1575   /* Emit the program, starting with the modelview, projection transforms:
1576    */
1577   build_hpos(p);
1578
1579   /* Lighting calculations:
1580    */
1581   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1582      if (p->state->light_global_enabled)
1583	 build_lighting(p);
1584      else {
1585	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1586	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1587
1588	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1589	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1590      }
1591   }
1592
1593   if (p->state->fragprog_inputs_read & FRAG_BIT_FOGC)
1594      build_fog(p);
1595
1596   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1597      build_texture_transform(p);
1598
1599   if (p->state->point_attenuated)
1600      build_atten_pointsize(p);
1601   else if (p->state->point_array)
1602      build_array_pointsize(p);
1603
1604   /* Finish up:
1605    */
1606   emit_op1(p, OPCODE_END, undef, 0, undef);
1607
1608   /* Disassemble:
1609    */
1610   if (DISASSEM) {
1611      printf ("\n");
1612   }
1613}
1614
1615
1616static void
1617create_new_program( const struct state_key *key,
1618                    struct gl_vertex_program *program,
1619                    GLboolean mvp_with_dp4,
1620                    GLuint max_temps)
1621{
1622   struct tnl_program p;
1623
1624   memset(&p, 0, sizeof(p));
1625   p.state = key;
1626   p.program = program;
1627   p.eye_position = undef;
1628   p.eye_position_z = undef;
1629   p.eye_position_normalized = undef;
1630   p.transformed_normal = undef;
1631   p.identity = undef;
1632   p.temp_in_use = 0;
1633   p.mvp_with_dp4 = mvp_with_dp4;
1634
1635   if (max_temps >= sizeof(int) * 8)
1636      p.temp_reserved = 0;
1637   else
1638      p.temp_reserved = ~((1<<max_temps)-1);
1639
1640   /* Start by allocating 32 instructions.
1641    * If we need more, we'll grow the instruction array as needed.
1642    */
1643   p.max_inst = 32;
1644   p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1645   p.program->Base.String = NULL;
1646   p.program->Base.NumInstructions =
1647   p.program->Base.NumTemporaries =
1648   p.program->Base.NumParameters =
1649   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1650   p.program->Base.Parameters = _mesa_new_parameter_list();
1651   p.program->Base.InputsRead = 0;
1652   p.program->Base.OutputsWritten = 0;
1653
1654   build_tnl_program( &p );
1655}
1656
1657
1658/**
1659 * Return a vertex program which implements the current fixed-function
1660 * transform/lighting/texgen operations.
1661 */
1662struct gl_vertex_program *
1663_mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1664{
1665   struct gl_vertex_program *prog;
1666   struct state_key key;
1667
1668   /* Grab all the relevent state and put it in a single structure:
1669    */
1670   make_state_key(ctx, &key);
1671
1672   /* Look for an already-prepared program for this state:
1673    */
1674   prog = gl_vertex_program(
1675      _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key)));
1676
1677   if (!prog) {
1678      /* OK, we'll have to build a new one */
1679      if (0)
1680         printf("Build new TNL program\n");
1681
1682      prog = gl_vertex_program(ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0));
1683      if (!prog)
1684         return NULL;
1685
1686      create_new_program( &key, prog,
1687                          ctx->mvp_with_dp4,
1688                          ctx->Const.VertexProgram.MaxTemps );
1689
1690#if 0
1691      if (ctx->Driver.ProgramStringNotify)
1692         ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1693                                          &prog->Base );
1694#endif
1695      _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1696                                 &key, sizeof(key), &prog->Base);
1697   }
1698
1699   return prog;
1700}
1701