1/*
2 * Mesa 3-D graphics library
3 * Version:  7.5
4 *
5 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35#ifndef IMPORTS_H
36#define IMPORTS_H
37
38
39#include "compiler.h"
40#include "glheader.h"
41#include "errors.h"
42
43#ifdef __cplusplus
44extern "C" {
45#endif
46
47
48/**********************************************************************/
49/** Memory macros */
50/*@{*/
51
52/** Allocate \p BYTES bytes */
53#define MALLOC(BYTES)      malloc(BYTES)
54/** Allocate and zero \p BYTES bytes */
55#define CALLOC(BYTES)      calloc(1, BYTES)
56/** Allocate a structure of type \p T */
57#define MALLOC_STRUCT(T)   (struct T *) malloc(sizeof(struct T))
58/** Allocate and zero a structure of type \p T */
59#define CALLOC_STRUCT(T)   (struct T *) calloc(1, sizeof(struct T))
60/** Free memory */
61#define FREE(PTR)          free(PTR)
62
63/*@}*/
64
65
66/*
67 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68 * as offsets into buffer stores.  Since the vertex array pointer and
69 * buffer store pointer are both pointers and we need to add them, we use
70 * this macro.
71 * Both pointers/offsets are expressed in bytes.
72 */
73#define ADD_POINTERS(A, B)  ( (GLubyte *) (A) + (uintptr_t) (B) )
74
75
76/**
77 * Sometimes we treat GLfloats as GLints.  On x86 systems, moving a float
78 * as a int (thereby using integer registers instead of FP registers) is
79 * a performance win.  Typically, this can be done with ordinary casts.
80 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81 * these casts generate warnings.
82 * The following union typedef is used to solve that.
83 */
84typedef union { GLfloat f; GLint i; GLuint u; } fi_type;
85
86
87
88/**********************************************************************
89 * Math macros
90 */
91
92#define MAX_GLUSHORT	0xffff
93#define MAX_GLUINT	0xffffffff
94
95/* Degrees to radians conversion: */
96#define DEG2RAD (M_PI/180.0)
97
98
99/***
100 *** SQRTF: single-precision square root
101 ***/
102#define SQRTF(X)  (float) sqrt((float) (X))
103
104
105/***
106 *** INV_SQRTF: single-precision inverse square root
107 ***/
108#define INV_SQRTF(X) (1.0F / SQRTF(X))
109
110
111/**
112 * \name Work-arounds for platforms that lack C99 math functions
113 */
114/*@{*/
115#if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
116   && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
117   && (!defined(_MSC_VER) || (_MSC_VER < 1400))
118#define acosf(f) ((float) acos(f))
119#define asinf(f) ((float) asin(f))
120#define atan2f(x,y) ((float) atan2(x,y))
121#define atanf(f) ((float) atan(f))
122#define ceilf(f) ((float) ceil(f))
123#define cosf(f) ((float) cos(f))
124#define coshf(f) ((float) cosh(f))
125#define expf(f) ((float) exp(f))
126#define exp2f(f) ((float) exp2(f))
127#define floorf(f) ((float) floor(f))
128#define logf(f) ((float) log(f))
129
130#ifdef ANDROID
131#define log2f(f) (logf(f) * (float) (1.0 / M_LN2))
132#else
133#define log2f(f) ((float) log2(f))
134#endif
135
136#define powf(x,y) ((float) pow(x,y))
137#define sinf(f) ((float) sin(f))
138#define sinhf(f) ((float) sinh(f))
139#define sqrtf(f) ((float) sqrt(f))
140#define tanf(f) ((float) tan(f))
141#define tanhf(f) ((float) tanh(f))
142#define acoshf(f) ((float) acosh(f))
143#define asinhf(f) ((float) asinh(f))
144#define atanhf(f) ((float) atanh(f))
145#endif
146
147#if defined(_MSC_VER)
148#if _MSC_VER < 1800  /* Not required on VS2013 and above. */
149static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
150static inline float exp2f(float x) { return powf(2.0f, x); }
151static inline float log2f(float x) { return logf(x) * 1.442695041f; }
152static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
153static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
154static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
155static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; }
156#define strtoll(p, e, b) _strtoi64(p, e, b)
157#endif  /* _MSC_VER < 1800 */
158#endif
159/*@}*/
160
161/***
162 *** LOG2: Log base 2 of float
163 ***/
164#ifdef USE_IEEE
165#if 0
166/* This is pretty fast, but not accurate enough (only 2 fractional bits).
167 * Based on code from http://www.stereopsis.com/log2.html
168 */
169static inline GLfloat LOG2(GLfloat x)
170{
171   const GLfloat y = x * x * x * x;
172   const GLuint ix = *((GLuint *) &y);
173   const GLuint exp = (ix >> 23) & 0xFF;
174   const GLint log2 = ((GLint) exp) - 127;
175   return (GLfloat) log2 * (1.0 / 4.0);  /* 4, because of x^4 above */
176}
177#endif
178/* Pretty fast, and accurate.
179 * Based on code from http://www.flipcode.com/totd/
180 */
181static inline GLfloat LOG2(GLfloat val)
182{
183   fi_type num;
184   GLint log_2;
185   num.f = val;
186   log_2 = ((num.i >> 23) & 255) - 128;
187   num.i &= ~(255 << 23);
188   num.i += 127 << 23;
189   num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
190   return num.f + log_2;
191}
192#else
193/*
194 * NOTE: log_base_2(x) = log(x) / log(2)
195 * NOTE: 1.442695 = 1/log(2).
196 */
197#define LOG2(x)  ((GLfloat) (log(x) * 1.442695F))
198#endif
199
200
201/***
202 *** IS_INF_OR_NAN: test if float is infinite or NaN
203 ***/
204#ifdef USE_IEEE
205static inline int IS_INF_OR_NAN( float x )
206{
207   fi_type tmp;
208   tmp.f = x;
209   return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
210}
211#elif defined(isfinite)
212#define IS_INF_OR_NAN(x)        (!isfinite(x))
213#elif defined(finite)
214#define IS_INF_OR_NAN(x)        (!finite(x))
215#elif defined(__VMS)
216#define IS_INF_OR_NAN(x)        (!finite(x))
217#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
218#define IS_INF_OR_NAN(x)        (!isfinite(x))
219#else
220#define IS_INF_OR_NAN(x)        (!finite(x))
221#endif
222
223
224/***
225 *** IS_NEGATIVE: test if float is negative
226 ***/
227#if defined(USE_IEEE)
228static inline int GET_FLOAT_BITS( float x )
229{
230   fi_type fi;
231   fi.f = x;
232   return fi.i;
233}
234#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
235#else
236#define IS_NEGATIVE(x) (x < 0.0F)
237#endif
238
239
240/***
241 *** DIFFERENT_SIGNS: test if two floats have opposite signs
242 ***/
243#if defined(USE_IEEE)
244#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
245#else
246/* Could just use (x*y<0) except for the flatshading requirements.
247 * Maybe there's a better way?
248 */
249#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
250#endif
251
252
253/***
254 *** CEILF: ceiling of float
255 *** FLOORF: floor of float
256 *** FABSF: absolute value of float
257 *** LOGF: the natural logarithm (base e) of the value
258 *** EXPF: raise e to the value
259 *** LDEXPF: multiply value by an integral power of two
260 *** FREXPF: extract mantissa and exponent from value
261 ***/
262#if defined(__gnu_linux__)
263/* C99 functions */
264#define CEILF(x)   ceilf(x)
265#define FLOORF(x)  floorf(x)
266#define FABSF(x)   fabsf(x)
267#define LOGF(x)    logf(x)
268#define EXPF(x)    expf(x)
269#define LDEXPF(x,y)  ldexpf(x,y)
270#define FREXPF(x,y)  frexpf(x,y)
271#else
272#define CEILF(x)   ((GLfloat) ceil(x))
273#define FLOORF(x)  ((GLfloat) floor(x))
274#define FABSF(x)   ((GLfloat) fabs(x))
275#define LOGF(x)    ((GLfloat) log(x))
276#define EXPF(x)    ((GLfloat) exp(x))
277#define LDEXPF(x,y)  ((GLfloat) ldexp(x,y))
278#define FREXPF(x,y)  ((GLfloat) frexp(x,y))
279#endif
280
281
282/**
283 * Convert float to int by rounding to nearest integer, away from zero.
284 */
285static inline int IROUND(float f)
286{
287   return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
288}
289
290
291/**
292 * Convert float to int64 by rounding to nearest integer.
293 */
294static inline GLint64 IROUND64(float f)
295{
296   return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
297}
298
299
300/**
301 * Convert positive float to int by rounding to nearest integer.
302 */
303static inline int IROUND_POS(float f)
304{
305   assert(f >= 0.0F);
306   return (int) (f + 0.5F);
307}
308
309
310/**
311 * Convert float to int using a fast method.  The rounding mode may vary.
312 * XXX We could use an x86-64/SSE2 version here.
313 */
314#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
315static inline int F_TO_I(float f)
316{
317   int r;
318   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
319   return r;
320}
321#elif defined(USE_X86_ASM) && defined(_MSC_VER)
322static inline int F_TO_I(float f)
323{
324   int r;
325   _asm {
326	 fld f
327	 fistp r
328	}
329   return r;
330}
331#elif defined(__WATCOMC__) && defined(__386__)
332long F_TO_I(float f);
333#pragma aux iround =                    \
334	"push   eax"                        \
335	"fistp  dword ptr [esp]"            \
336	"pop    eax"                        \
337	parm [8087]                         \
338	value [eax]                         \
339	modify exact [eax];
340#else
341#define F_TO_I(f)  IROUND(f)
342#endif
343
344
345/***
346 *** IFLOOR: return (as an integer) floor of float
347 ***/
348#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
349/*
350 * IEEE floor for computers that round to nearest or even.
351 * 'f' must be between -4194304 and 4194303.
352 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
353 * but uses some IEEE specific tricks for better speed.
354 * Contributed by Josh Vanderhoof
355 */
356static inline int ifloor(float f)
357{
358   int ai, bi;
359   double af, bf;
360   af = (3 << 22) + 0.5 + (double)f;
361   bf = (3 << 22) + 0.5 - (double)f;
362   /* GCC generates an extra fstp/fld without this. */
363   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
364   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
365   return (ai - bi) >> 1;
366}
367#define IFLOOR(x)  ifloor(x)
368#elif defined(USE_IEEE)
369static inline int ifloor(float f)
370{
371   int ai, bi;
372   double af, bf;
373   fi_type u;
374
375   af = (3 << 22) + 0.5 + (double)f;
376   bf = (3 << 22) + 0.5 - (double)f;
377   u.f = (float) af;  ai = u.i;
378   u.f = (float) bf;  bi = u.i;
379   return (ai - bi) >> 1;
380}
381#define IFLOOR(x)  ifloor(x)
382#else
383static inline int ifloor(float f)
384{
385   int i = IROUND(f);
386   return (i > f) ? i - 1 : i;
387}
388#define IFLOOR(x)  ifloor(x)
389#endif
390
391
392/***
393 *** ICEIL: return (as an integer) ceiling of float
394 ***/
395#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
396/*
397 * IEEE ceil for computers that round to nearest or even.
398 * 'f' must be between -4194304 and 4194303.
399 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
400 * but uses some IEEE specific tricks for better speed.
401 * Contributed by Josh Vanderhoof
402 */
403static inline int iceil(float f)
404{
405   int ai, bi;
406   double af, bf;
407   af = (3 << 22) + 0.5 + (double)f;
408   bf = (3 << 22) + 0.5 - (double)f;
409   /* GCC generates an extra fstp/fld without this. */
410   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
411   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
412   return (ai - bi + 1) >> 1;
413}
414#define ICEIL(x)  iceil(x)
415#elif defined(USE_IEEE)
416static inline int iceil(float f)
417{
418   int ai, bi;
419   double af, bf;
420   fi_type u;
421   af = (3 << 22) + 0.5 + (double)f;
422   bf = (3 << 22) + 0.5 - (double)f;
423   u.f = (float) af; ai = u.i;
424   u.f = (float) bf; bi = u.i;
425   return (ai - bi + 1) >> 1;
426}
427#define ICEIL(x)  iceil(x)
428#else
429static inline int iceil(float f)
430{
431   int i = IROUND(f);
432   return (i < f) ? i + 1 : i;
433}
434#define ICEIL(x)  iceil(x)
435#endif
436
437
438/**
439 * Is x a power of two?
440 */
441static inline int
442_mesa_is_pow_two(int x)
443{
444   return !(x & (x - 1));
445}
446
447/**
448 * Round given integer to next higer power of two
449 * If X is zero result is undefined.
450 *
451 * Source for the fallback implementation is
452 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
453 * http://graphics.stanford.edu/~seander/bithacks.html
454 *
455 * When using builtin function have to do some work
456 * for case when passed values 1 to prevent hiting
457 * undefined result from __builtin_clz. Undefined
458 * results would be different depending on optimization
459 * level used for build.
460 */
461static inline int32_t
462_mesa_next_pow_two_32(uint32_t x)
463{
464#if defined(__GNUC__) && \
465	((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
466	uint32_t y = (x != 1);
467	return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
468#else
469	x--;
470	x |= x >> 1;
471	x |= x >> 2;
472	x |= x >> 4;
473	x |= x >> 8;
474	x |= x >> 16;
475	x++;
476	return x;
477#endif
478}
479
480static inline int64_t
481_mesa_next_pow_two_64(uint64_t x)
482{
483#if defined(__GNUC__) && \
484	((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
485	uint64_t y = (x != 1);
486	if (sizeof(x) == sizeof(long))
487		return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
488	else
489		return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
490#else
491	x--;
492	x |= x >> 1;
493	x |= x >> 2;
494	x |= x >> 4;
495	x |= x >> 8;
496	x |= x >> 16;
497	x |= x >> 32;
498	x++;
499	return x;
500#endif
501}
502
503
504/*
505 * Returns the floor form of binary logarithm for a 32-bit integer.
506 */
507static inline GLuint
508_mesa_logbase2(GLuint n)
509{
510#if defined(__GNUC__) && \
511   ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
512   return (31 - __builtin_clz(n | 1));
513#else
514   GLuint pos = 0;
515   if (n >= 1<<16) { n >>= 16; pos += 16; }
516   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
517   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
518   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
519   if (n >= 1<< 1) {           pos +=  1; }
520   return pos;
521#endif
522}
523
524
525/**
526 * Return 1 if this is a little endian machine, 0 if big endian.
527 */
528static inline GLboolean
529_mesa_little_endian(void)
530{
531   const GLuint ui = 1; /* intentionally not static */
532   return *((const GLubyte *) &ui);
533}
534
535
536
537/**********************************************************************
538 * Functions
539 */
540
541extern void *
542_mesa_align_malloc( size_t bytes, unsigned long alignment );
543
544extern void *
545_mesa_align_calloc( size_t bytes, unsigned long alignment );
546
547extern void
548_mesa_align_free( void *ptr );
549
550extern void *
551_mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
552                    unsigned long alignment);
553
554extern void *
555_mesa_exec_malloc( GLuint size );
556
557extern void
558_mesa_exec_free( void *addr );
559
560extern void *
561_mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
562
563
564#ifndef FFS_DEFINED
565#define FFS_DEFINED 1
566#ifdef __GNUC__
567
568#if defined(__MINGW32__) || defined(__CYGWIN__) || defined(ANDROID) || defined(__APPLE__)
569#define ffs __builtin_ffs
570#define ffsll __builtin_ffsll
571#endif
572
573#else
574
575extern int ffs(int i);
576extern int ffsll(long long int i);
577
578#endif /*__ GNUC__ */
579#endif /* FFS_DEFINED */
580
581
582#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
583#define _mesa_bitcount(i) __builtin_popcount(i)
584#define _mesa_bitcount_64(i) __builtin_popcountll(i)
585#else
586extern unsigned int
587_mesa_bitcount(unsigned int n);
588extern unsigned int
589_mesa_bitcount_64(uint64_t n);
590#endif
591
592/**
593 * Find the last (most significant) bit set in a word.
594 *
595 * Essentially ffs() in the reverse direction.
596 */
597static inline unsigned int
598_mesa_fls(unsigned int n)
599{
600#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304)
601   return n == 0 ? 0 : 32 - __builtin_clz(n);
602#else
603   unsigned int v = 1;
604
605   if (n == 0)
606      return 0;
607
608   while (n >>= 1)
609       v++;
610
611   return v;
612#endif
613}
614
615extern GLhalfARB
616_mesa_float_to_half(float f);
617
618extern float
619_mesa_half_to_float(GLhalfARB h);
620
621
622extern void *
623_mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
624               int (*compar)(const void *, const void *) );
625
626extern char *
627_mesa_getenv( const char *var );
628
629extern char *
630_mesa_strdup( const char *s );
631
632extern float
633_mesa_strtof( const char *s, char **end );
634
635extern unsigned int
636_mesa_str_checksum(const char *str);
637
638extern int
639_mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
640
641extern int
642_mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
643
644
645#if defined(_MSC_VER) && !defined(snprintf)
646#define snprintf _snprintf
647#endif
648
649
650#ifdef __cplusplus
651}
652#endif
653
654
655#endif /* IMPORTS_H */
656