1
2/*
3 * Mesa 3-D graphics library
4 * Version:  3.5
5 *
6 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27/*
28 * eval.c was written by
29 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
30 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
31 *
32 * My original implementation of evaluators was simplistic and didn't
33 * compute surface normal vectors properly.  Bernd and Volker applied
34 * used more sophisticated methods to get better results.
35 *
36 * Thanks guys!
37 */
38
39
40#include "main/glheader.h"
41#include "main/config.h"
42#include "m_eval.h"
43
44/*
45 * XXX: MSVC takes forever to compile this module for x86 unless we disable
46 * optimizations.
47 *
48 */
49#if defined(_MSC_VER) && defined(_M_IX86)
50#  pragma optimize( "", off )
51#endif
52
53static GLfloat inv_tab[MAX_EVAL_ORDER];
54
55
56
57/*
58 * Horner scheme for Bezier curves
59 *
60 * Bezier curves can be computed via a Horner scheme.
61 * Horner is numerically less stable than the de Casteljau
62 * algorithm, but it is faster. For curves of degree n
63 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
64 * Since stability is not important for displaying curve
65 * points I decided to use the Horner scheme.
66 *
67 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
68 * written as
69 *
70 *        (([3]        [3]     )     [3]       )     [3]
71 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
72 *
73 *                                           [n]
74 * where s=1-t and the binomial coefficients [i]. These can
75 * be computed iteratively using the identity:
76 *
77 * [n]               [n  ]             [n]
78 * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
79 */
80
81
82void
83_math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t,
84			  GLuint dim, GLuint order)
85{
86   GLfloat s, powert, bincoeff;
87   GLuint i, k;
88
89   if (order >= 2) {
90      bincoeff = (GLfloat) (order - 1);
91      s = 1.0F - t;
92
93      for (k = 0; k < dim; k++)
94	 out[k] = s * cp[k] + bincoeff * t * cp[dim + k];
95
96      for (i = 2, cp += 2 * dim, powert = t * t; i < order;
97	   i++, powert *= t, cp += dim) {
98	 bincoeff *= (GLfloat) (order - i);
99	 bincoeff *= inv_tab[i];
100
101	 for (k = 0; k < dim; k++)
102	    out[k] = s * out[k] + bincoeff * powert * cp[k];
103      }
104   }
105   else {			/* order=1 -> constant curve */
106
107      for (k = 0; k < dim; k++)
108	 out[k] = cp[k];
109   }
110}
111
112/*
113 * Tensor product Bezier surfaces
114 *
115 * Again the Horner scheme is used to compute a point on a
116 * TP Bezier surface. First a control polygon for a curve
117 * on the surface in one parameter direction is computed,
118 * then the point on the curve for the other parameter
119 * direction is evaluated.
120 *
121 * To store the curve control polygon additional storage
122 * for max(uorder,vorder) points is needed in the
123 * control net cn.
124 */
125
126void
127_math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v,
128			 GLuint dim, GLuint uorder, GLuint vorder)
129{
130   GLfloat *cp = cn + uorder * vorder * dim;
131   GLuint i, uinc = vorder * dim;
132
133   if (vorder > uorder) {
134      if (uorder >= 2) {
135	 GLfloat s, poweru, bincoeff;
136	 GLuint j, k;
137
138	 /* Compute the control polygon for the surface-curve in u-direction */
139	 for (j = 0; j < vorder; j++) {
140	    GLfloat *ucp = &cn[j * dim];
141
142	    /* Each control point is the point for parameter u on a */
143	    /* curve defined by the control polygons in u-direction */
144	    bincoeff = (GLfloat) (uorder - 1);
145	    s = 1.0F - u;
146
147	    for (k = 0; k < dim; k++)
148	       cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k];
149
150	    for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder;
151		 i++, poweru *= u, ucp += uinc) {
152	       bincoeff *= (GLfloat) (uorder - i);
153	       bincoeff *= inv_tab[i];
154
155	       for (k = 0; k < dim; k++)
156		  cp[j * dim + k] =
157		     s * cp[j * dim + k] + bincoeff * poweru * ucp[k];
158	    }
159	 }
160
161	 /* Evaluate curve point in v */
162	 _math_horner_bezier_curve(cp, out, v, dim, vorder);
163      }
164      else			/* uorder=1 -> cn defines a curve in v */
165	 _math_horner_bezier_curve(cn, out, v, dim, vorder);
166   }
167   else {			/* vorder <= uorder */
168
169      if (vorder > 1) {
170	 GLuint i;
171
172	 /* Compute the control polygon for the surface-curve in u-direction */
173	 for (i = 0; i < uorder; i++, cn += uinc) {
174	    /* For constant i all cn[i][j] (j=0..vorder) are located */
175	    /* on consecutive memory locations, so we can use        */
176	    /* horner_bezier_curve to compute the control points     */
177
178	    _math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder);
179	 }
180
181	 /* Evaluate curve point in u */
182	 _math_horner_bezier_curve(cp, out, u, dim, uorder);
183      }
184      else			/* vorder=1 -> cn defines a curve in u */
185	 _math_horner_bezier_curve(cn, out, u, dim, uorder);
186   }
187}
188
189/*
190 * The direct de Casteljau algorithm is used when a point on the
191 * surface and the tangent directions spanning the tangent plane
192 * should be computed (this is needed to compute normals to the
193 * surface). In this case the de Casteljau algorithm approach is
194 * nicer because a point and the partial derivatives can be computed
195 * at the same time. To get the correct tangent length du and dv
196 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
197 * Since only the directions are needed, this scaling step is omitted.
198 *
199 * De Casteljau needs additional storage for uorder*vorder
200 * values in the control net cn.
201 */
202
203void
204_math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du,
205			GLfloat * dv, GLfloat u, GLfloat v, GLuint dim,
206			GLuint uorder, GLuint vorder)
207{
208   GLfloat *dcn = cn + uorder * vorder * dim;
209   GLfloat us = 1.0F - u, vs = 1.0F - v;
210   GLuint h, i, j, k;
211   GLuint minorder = uorder < vorder ? uorder : vorder;
212   GLuint uinc = vorder * dim;
213   GLuint dcuinc = vorder;
214
215   /* Each component is evaluated separately to save buffer space  */
216   /* This does not drasticaly decrease the performance of the     */
217   /* algorithm. If additional storage for (uorder-1)*(vorder-1)   */
218   /* points would be available, the components could be accessed  */
219   /* in the innermost loop which could lead to less cache misses. */
220
221#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
222#define DCN(I, J) dcn[(I)*dcuinc+(J)]
223   if (minorder < 3) {
224      if (uorder == vorder) {
225	 for (k = 0; k < dim; k++) {
226	    /* Derivative direction in u */
227	    du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) +
228	       v * (CN(1, 1, k) - CN(0, 1, k));
229
230	    /* Derivative direction in v */
231	    dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) +
232	       u * (CN(1, 1, k) - CN(1, 0, k));
233
234	    /* bilinear de Casteljau step */
235	    out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) +
236	       u * (vs * CN(1, 0, k) + v * CN(1, 1, k));
237	 }
238      }
239      else if (minorder == uorder) {
240	 for (k = 0; k < dim; k++) {
241	    /* bilinear de Casteljau step */
242	    DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k);
243	    DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k);
244
245	    for (j = 0; j < vorder - 1; j++) {
246	       /* for the derivative in u */
247	       DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k);
248	       DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
249
250	       /* for the `point' */
251	       DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k);
252	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
253	    }
254
255	    /* remaining linear de Casteljau steps until the second last step */
256	    for (h = minorder; h < vorder - 1; h++)
257	       for (j = 0; j < vorder - h; j++) {
258		  /* for the derivative in u */
259		  DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
260
261		  /* for the `point' */
262		  DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
263	       }
264
265	    /* derivative direction in v */
266	    dv[k] = DCN(0, 1) - DCN(0, 0);
267
268	    /* derivative direction in u */
269	    du[k] = vs * DCN(1, 0) + v * DCN(1, 1);
270
271	    /* last linear de Casteljau step */
272	    out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
273	 }
274      }
275      else {			/* minorder == vorder */
276
277	 for (k = 0; k < dim; k++) {
278	    /* bilinear de Casteljau step */
279	    DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k);
280	    DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k);
281	    for (i = 0; i < uorder - 1; i++) {
282	       /* for the derivative in v */
283	       DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k);
284	       DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
285
286	       /* for the `point' */
287	       DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k);
288	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
289	    }
290
291	    /* remaining linear de Casteljau steps until the second last step */
292	    for (h = minorder; h < uorder - 1; h++)
293	       for (i = 0; i < uorder - h; i++) {
294		  /* for the derivative in v */
295		  DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
296
297		  /* for the `point' */
298		  DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
299	       }
300
301	    /* derivative direction in u */
302	    du[k] = DCN(1, 0) - DCN(0, 0);
303
304	    /* derivative direction in v */
305	    dv[k] = us * DCN(0, 1) + u * DCN(1, 1);
306
307	    /* last linear de Casteljau step */
308	    out[k] = us * DCN(0, 0) + u * DCN(1, 0);
309	 }
310      }
311   }
312   else if (uorder == vorder) {
313      for (k = 0; k < dim; k++) {
314	 /* first bilinear de Casteljau step */
315	 for (i = 0; i < uorder - 1; i++) {
316	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
317	    for (j = 0; j < vorder - 1; j++) {
318	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
319	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
320	    }
321	 }
322
323	 /* remaining bilinear de Casteljau steps until the second last step */
324	 for (h = 2; h < minorder - 1; h++)
325	    for (i = 0; i < uorder - h; i++) {
326	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
327	       for (j = 0; j < vorder - h; j++) {
328		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
329		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
330	       }
331	    }
332
333	 /* derivative direction in u */
334	 du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1));
335
336	 /* derivative direction in v */
337	 dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0));
338
339	 /* last bilinear de Casteljau step */
340	 out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) +
341	    u * (vs * DCN(1, 0) + v * DCN(1, 1));
342      }
343   }
344   else if (minorder == uorder) {
345      for (k = 0; k < dim; k++) {
346	 /* first bilinear de Casteljau step */
347	 for (i = 0; i < uorder - 1; i++) {
348	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
349	    for (j = 0; j < vorder - 1; j++) {
350	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
351	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
352	    }
353	 }
354
355	 /* remaining bilinear de Casteljau steps until the second last step */
356	 for (h = 2; h < minorder - 1; h++)
357	    for (i = 0; i < uorder - h; i++) {
358	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
359	       for (j = 0; j < vorder - h; j++) {
360		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
361		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
362	       }
363	    }
364
365	 /* last bilinear de Casteljau step */
366	 DCN(2, 0) = DCN(1, 0) - DCN(0, 0);
367	 DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0);
368	 for (j = 0; j < vorder - 1; j++) {
369	    /* for the derivative in u */
370	    DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1);
371	    DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
372
373	    /* for the `point' */
374	    DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1);
375	    DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
376	 }
377
378	 /* remaining linear de Casteljau steps until the second last step */
379	 for (h = minorder; h < vorder - 1; h++)
380	    for (j = 0; j < vorder - h; j++) {
381	       /* for the derivative in u */
382	       DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
383
384	       /* for the `point' */
385	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
386	    }
387
388	 /* derivative direction in v */
389	 dv[k] = DCN(0, 1) - DCN(0, 0);
390
391	 /* derivative direction in u */
392	 du[k] = vs * DCN(2, 0) + v * DCN(2, 1);
393
394	 /* last linear de Casteljau step */
395	 out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
396      }
397   }
398   else {			/* minorder == vorder */
399
400      for (k = 0; k < dim; k++) {
401	 /* first bilinear de Casteljau step */
402	 for (i = 0; i < uorder - 1; i++) {
403	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
404	    for (j = 0; j < vorder - 1; j++) {
405	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
406	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
407	    }
408	 }
409
410	 /* remaining bilinear de Casteljau steps until the second last step */
411	 for (h = 2; h < minorder - 1; h++)
412	    for (i = 0; i < uorder - h; i++) {
413	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
414	       for (j = 0; j < vorder - h; j++) {
415		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
416		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
417	       }
418	    }
419
420	 /* last bilinear de Casteljau step */
421	 DCN(0, 2) = DCN(0, 1) - DCN(0, 0);
422	 DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1);
423	 for (i = 0; i < uorder - 1; i++) {
424	    /* for the derivative in v */
425	    DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0);
426	    DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
427
428	    /* for the `point' */
429	    DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1);
430	    DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
431	 }
432
433	 /* remaining linear de Casteljau steps until the second last step */
434	 for (h = minorder; h < uorder - 1; h++)
435	    for (i = 0; i < uorder - h; i++) {
436	       /* for the derivative in v */
437	       DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
438
439	       /* for the `point' */
440	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
441	    }
442
443	 /* derivative direction in u */
444	 du[k] = DCN(1, 0) - DCN(0, 0);
445
446	 /* derivative direction in v */
447	 dv[k] = us * DCN(0, 2) + u * DCN(1, 2);
448
449	 /* last linear de Casteljau step */
450	 out[k] = us * DCN(0, 0) + u * DCN(1, 0);
451      }
452   }
453#undef DCN
454#undef CN
455}
456
457
458/*
459 * Do one-time initialization for evaluators.
460 */
461void
462_math_init_eval(void)
463{
464   GLuint i;
465
466   /* KW: precompute 1/x for useful x.
467    */
468   for (i = 1; i < MAX_EVAL_ORDER; i++)
469      inv_tab[i] = 1.0F / i;
470}
471