1/*
2 * Mesa 3-D graphics library
3 * Version:  7.3
4 *
5 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25/**
26 * \file prog_execute.c
27 * Software interpreter for vertex/fragment programs.
28 * \author Brian Paul
29 */
30
31/*
32 * NOTE: we do everything in single-precision floating point; we don't
33 * currently observe the single/half/fixed-precision qualifiers.
34 *
35 */
36
37
38#include "main/glheader.h"
39#include "main/colormac.h"
40#include "main/macros.h"
41#include "prog_execute.h"
42#include "prog_instruction.h"
43#include "prog_parameter.h"
44#include "prog_print.h"
45#include "prog_noise.h"
46
47
48/* debug predicate */
49#define DEBUG_PROG 0
50
51
52/**
53 * Set x to positive or negative infinity.
54 */
55#if defined(USE_IEEE) || defined(_WIN32)
56#define SET_POS_INFINITY(x)                  \
57   do {                                      \
58         fi_type fi;                         \
59         fi.i = 0x7F800000;                  \
60         x = fi.f;                           \
61   } while (0)
62#define SET_NEG_INFINITY(x)                  \
63   do {                                      \
64         fi_type fi;                         \
65         fi.i = 0xFF800000;                  \
66         x = fi.f;                           \
67   } while (0)
68#elif defined(VMS)
69#define SET_POS_INFINITY(x)  x = __MAXFLOAT
70#define SET_NEG_INFINITY(x)  x = -__MAXFLOAT
71#else
72#define SET_POS_INFINITY(x)  x = (GLfloat) HUGE_VAL
73#define SET_NEG_INFINITY(x)  x = (GLfloat) -HUGE_VAL
74#endif
75
76#define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
77
78
79static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
80
81
82
83/**
84 * Return TRUE for +0 and other positive values, FALSE otherwise.
85 * Used for RCC opcode.
86 */
87static inline GLboolean
88positive(float x)
89{
90   fi_type fi;
91   fi.f = x;
92   if (fi.i & 0x80000000)
93      return GL_FALSE;
94   return GL_TRUE;
95}
96
97
98
99/**
100 * Return a pointer to the 4-element float vector specified by the given
101 * source register.
102 */
103static inline const GLfloat *
104get_src_register_pointer(const struct prog_src_register *source,
105                         const struct gl_program_machine *machine)
106{
107   const struct gl_program *prog = machine->CurProgram;
108   GLint reg = source->Index;
109
110   if (source->RelAddr) {
111      /* add address register value to src index/offset */
112      reg += machine->AddressReg[0][0];
113      if (reg < 0) {
114         return ZeroVec;
115      }
116   }
117
118   switch (source->File) {
119   case PROGRAM_TEMPORARY:
120      if (reg >= MAX_PROGRAM_TEMPS)
121         return ZeroVec;
122      return machine->Temporaries[reg];
123
124   case PROGRAM_INPUT:
125      if (prog->Target == GL_VERTEX_PROGRAM_ARB) {
126         if (reg >= VERT_ATTRIB_MAX)
127            return ZeroVec;
128         return machine->VertAttribs[reg];
129      }
130      else {
131         if (reg >= FRAG_ATTRIB_MAX)
132            return ZeroVec;
133         return machine->Attribs[reg][machine->CurElement];
134      }
135
136   case PROGRAM_OUTPUT:
137      if (reg >= MAX_PROGRAM_OUTPUTS)
138         return ZeroVec;
139      return machine->Outputs[reg];
140
141   case PROGRAM_LOCAL_PARAM:
142      if (reg >= MAX_PROGRAM_LOCAL_PARAMS)
143         return ZeroVec;
144      return machine->CurProgram->LocalParams[reg];
145
146   case PROGRAM_ENV_PARAM:
147      if (reg >= MAX_PROGRAM_ENV_PARAMS)
148         return ZeroVec;
149      return machine->EnvParams[reg];
150
151   case PROGRAM_STATE_VAR:
152      /* Fallthrough */
153   case PROGRAM_CONSTANT:
154      /* Fallthrough */
155   case PROGRAM_UNIFORM:
156      /* Fallthrough */
157   case PROGRAM_NAMED_PARAM:
158      if (reg >= (GLint) prog->Parameters->NumParameters)
159         return ZeroVec;
160      return (GLfloat *) prog->Parameters->ParameterValues[reg];
161
162   case PROGRAM_SYSTEM_VALUE:
163      assert(reg < Elements(machine->SystemValues));
164      return machine->SystemValues[reg];
165
166   default:
167      _mesa_problem(NULL,
168         "Invalid src register file %d in get_src_register_pointer()",
169         source->File);
170      return NULL;
171   }
172}
173
174
175/**
176 * Return a pointer to the 4-element float vector specified by the given
177 * destination register.
178 */
179static inline GLfloat *
180get_dst_register_pointer(const struct prog_dst_register *dest,
181                         struct gl_program_machine *machine)
182{
183   static GLfloat dummyReg[4];
184   GLint reg = dest->Index;
185
186   if (dest->RelAddr) {
187      /* add address register value to src index/offset */
188      reg += machine->AddressReg[0][0];
189      if (reg < 0) {
190         return dummyReg;
191      }
192   }
193
194   switch (dest->File) {
195   case PROGRAM_TEMPORARY:
196      if (reg >= MAX_PROGRAM_TEMPS)
197         return dummyReg;
198      return machine->Temporaries[reg];
199
200   case PROGRAM_OUTPUT:
201      if (reg >= MAX_PROGRAM_OUTPUTS)
202         return dummyReg;
203      return machine->Outputs[reg];
204
205   case PROGRAM_WRITE_ONLY:
206      return dummyReg;
207
208   default:
209      _mesa_problem(NULL,
210         "Invalid dest register file %d in get_dst_register_pointer()",
211         dest->File);
212      return NULL;
213   }
214}
215
216
217
218/**
219 * Fetch a 4-element float vector from the given source register.
220 * Apply swizzling and negating as needed.
221 */
222static void
223fetch_vector4(const struct prog_src_register *source,
224              const struct gl_program_machine *machine, GLfloat result[4])
225{
226   const GLfloat *src = get_src_register_pointer(source, machine);
227   ASSERT(src);
228
229   if (source->Swizzle == SWIZZLE_NOOP) {
230      /* no swizzling */
231      COPY_4V(result, src);
232   }
233   else {
234      ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
235      ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
236      ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
237      ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
238      result[0] = src[GET_SWZ(source->Swizzle, 0)];
239      result[1] = src[GET_SWZ(source->Swizzle, 1)];
240      result[2] = src[GET_SWZ(source->Swizzle, 2)];
241      result[3] = src[GET_SWZ(source->Swizzle, 3)];
242   }
243
244   if (source->Abs) {
245      result[0] = FABSF(result[0]);
246      result[1] = FABSF(result[1]);
247      result[2] = FABSF(result[2]);
248      result[3] = FABSF(result[3]);
249   }
250   if (source->Negate) {
251      ASSERT(source->Negate == NEGATE_XYZW);
252      result[0] = -result[0];
253      result[1] = -result[1];
254      result[2] = -result[2];
255      result[3] = -result[3];
256   }
257
258#ifdef NAN_CHECK
259   assert(!IS_INF_OR_NAN(result[0]));
260   assert(!IS_INF_OR_NAN(result[0]));
261   assert(!IS_INF_OR_NAN(result[0]));
262   assert(!IS_INF_OR_NAN(result[0]));
263#endif
264}
265
266
267/**
268 * Fetch a 4-element uint vector from the given source register.
269 * Apply swizzling but not negation/abs.
270 */
271static void
272fetch_vector4ui(const struct prog_src_register *source,
273                const struct gl_program_machine *machine, GLuint result[4])
274{
275   const GLuint *src = (GLuint *) get_src_register_pointer(source, machine);
276   ASSERT(src);
277
278   if (source->Swizzle == SWIZZLE_NOOP) {
279      /* no swizzling */
280      COPY_4V(result, src);
281   }
282   else {
283      ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
284      ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
285      ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
286      ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
287      result[0] = src[GET_SWZ(source->Swizzle, 0)];
288      result[1] = src[GET_SWZ(source->Swizzle, 1)];
289      result[2] = src[GET_SWZ(source->Swizzle, 2)];
290      result[3] = src[GET_SWZ(source->Swizzle, 3)];
291   }
292
293   /* Note: no Negate or Abs here */
294}
295
296
297
298/**
299 * Fetch the derivative with respect to X or Y for the given register.
300 * XXX this currently only works for fragment program input attribs.
301 */
302static void
303fetch_vector4_deriv(struct gl_context * ctx,
304                    const struct prog_src_register *source,
305                    const struct gl_program_machine *machine,
306                    char xOrY, GLfloat result[4])
307{
308   if (source->File == PROGRAM_INPUT &&
309       source->Index < (GLint) machine->NumDeriv) {
310      const GLint col = machine->CurElement;
311      const GLfloat w = machine->Attribs[FRAG_ATTRIB_WPOS][col][3];
312      const GLfloat invQ = 1.0f / w;
313      GLfloat deriv[4];
314
315      if (xOrY == 'X') {
316         deriv[0] = machine->DerivX[source->Index][0] * invQ;
317         deriv[1] = machine->DerivX[source->Index][1] * invQ;
318         deriv[2] = machine->DerivX[source->Index][2] * invQ;
319         deriv[3] = machine->DerivX[source->Index][3] * invQ;
320      }
321      else {
322         deriv[0] = machine->DerivY[source->Index][0] * invQ;
323         deriv[1] = machine->DerivY[source->Index][1] * invQ;
324         deriv[2] = machine->DerivY[source->Index][2] * invQ;
325         deriv[3] = machine->DerivY[source->Index][3] * invQ;
326      }
327
328      result[0] = deriv[GET_SWZ(source->Swizzle, 0)];
329      result[1] = deriv[GET_SWZ(source->Swizzle, 1)];
330      result[2] = deriv[GET_SWZ(source->Swizzle, 2)];
331      result[3] = deriv[GET_SWZ(source->Swizzle, 3)];
332
333      if (source->Abs) {
334         result[0] = FABSF(result[0]);
335         result[1] = FABSF(result[1]);
336         result[2] = FABSF(result[2]);
337         result[3] = FABSF(result[3]);
338      }
339      if (source->Negate) {
340         ASSERT(source->Negate == NEGATE_XYZW);
341         result[0] = -result[0];
342         result[1] = -result[1];
343         result[2] = -result[2];
344         result[3] = -result[3];
345      }
346   }
347   else {
348      ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0);
349   }
350}
351
352
353/**
354 * As above, but only return result[0] element.
355 */
356static void
357fetch_vector1(const struct prog_src_register *source,
358              const struct gl_program_machine *machine, GLfloat result[4])
359{
360   const GLfloat *src = get_src_register_pointer(source, machine);
361   ASSERT(src);
362
363   result[0] = src[GET_SWZ(source->Swizzle, 0)];
364
365   if (source->Abs) {
366      result[0] = FABSF(result[0]);
367   }
368   if (source->Negate) {
369      result[0] = -result[0];
370   }
371}
372
373
374static GLuint
375fetch_vector1ui(const struct prog_src_register *source,
376                const struct gl_program_machine *machine)
377{
378   const GLuint *src = (GLuint *) get_src_register_pointer(source, machine);
379   return src[GET_SWZ(source->Swizzle, 0)];
380}
381
382
383/**
384 * Fetch texel from texture.  Use partial derivatives when possible.
385 */
386static inline void
387fetch_texel(struct gl_context *ctx,
388            const struct gl_program_machine *machine,
389            const struct prog_instruction *inst,
390            const GLfloat texcoord[4], GLfloat lodBias,
391            GLfloat color[4])
392{
393   const GLuint unit = machine->Samplers[inst->TexSrcUnit];
394
395   /* Note: we only have the right derivatives for fragment input attribs.
396    */
397   if (machine->NumDeriv > 0 &&
398       inst->SrcReg[0].File == PROGRAM_INPUT &&
399       inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit) {
400      /* simple texture fetch for which we should have derivatives */
401      GLuint attr = inst->SrcReg[0].Index;
402      machine->FetchTexelDeriv(ctx, texcoord,
403                               machine->DerivX[attr],
404                               machine->DerivY[attr],
405                               lodBias, unit, color);
406   }
407   else {
408      machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color);
409   }
410}
411
412
413/**
414 * Test value against zero and return GT, LT, EQ or UN if NaN.
415 */
416static inline GLuint
417generate_cc(float value)
418{
419   if (value != value)
420      return COND_UN;           /* NaN */
421   if (value > 0.0F)
422      return COND_GT;
423   if (value < 0.0F)
424      return COND_LT;
425   return COND_EQ;
426}
427
428
429/**
430 * Test if the ccMaskRule is satisfied by the given condition code.
431 * Used to mask destination writes according to the current condition code.
432 */
433static inline GLboolean
434test_cc(GLuint condCode, GLuint ccMaskRule)
435{
436   switch (ccMaskRule) {
437   case COND_EQ: return (condCode == COND_EQ);
438   case COND_NE: return (condCode != COND_EQ);
439   case COND_LT: return (condCode == COND_LT);
440   case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
441   case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
442   case COND_GT: return (condCode == COND_GT);
443   case COND_TR: return GL_TRUE;
444   case COND_FL: return GL_FALSE;
445   default:      return GL_TRUE;
446   }
447}
448
449
450/**
451 * Evaluate the 4 condition codes against a predicate and return GL_TRUE
452 * or GL_FALSE to indicate result.
453 */
454static inline GLboolean
455eval_condition(const struct gl_program_machine *machine,
456               const struct prog_instruction *inst)
457{
458   const GLuint swizzle = inst->DstReg.CondSwizzle;
459   const GLuint condMask = inst->DstReg.CondMask;
460   if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
461       test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
462       test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
463       test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
464      return GL_TRUE;
465   }
466   else {
467      return GL_FALSE;
468   }
469}
470
471
472
473/**
474 * Store 4 floats into a register.  Observe the instructions saturate and
475 * set-condition-code flags.
476 */
477static void
478store_vector4(const struct prog_instruction *inst,
479              struct gl_program_machine *machine, const GLfloat value[4])
480{
481   const struct prog_dst_register *dstReg = &(inst->DstReg);
482   const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
483   GLuint writeMask = dstReg->WriteMask;
484   GLfloat clampedValue[4];
485   GLfloat *dst = get_dst_register_pointer(dstReg, machine);
486
487#if 0
488   if (value[0] > 1.0e10 ||
489       IS_INF_OR_NAN(value[0]) ||
490       IS_INF_OR_NAN(value[1]) ||
491       IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]))
492      printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
493#endif
494
495   if (clamp) {
496      clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
497      clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
498      clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
499      clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
500      value = clampedValue;
501   }
502
503   if (dstReg->CondMask != COND_TR) {
504      /* condition codes may turn off some writes */
505      if (writeMask & WRITEMASK_X) {
506         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
507                      dstReg->CondMask))
508            writeMask &= ~WRITEMASK_X;
509      }
510      if (writeMask & WRITEMASK_Y) {
511         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
512                      dstReg->CondMask))
513            writeMask &= ~WRITEMASK_Y;
514      }
515      if (writeMask & WRITEMASK_Z) {
516         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
517                      dstReg->CondMask))
518            writeMask &= ~WRITEMASK_Z;
519      }
520      if (writeMask & WRITEMASK_W) {
521         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
522                      dstReg->CondMask))
523            writeMask &= ~WRITEMASK_W;
524      }
525   }
526
527#ifdef NAN_CHECK
528   assert(!IS_INF_OR_NAN(value[0]));
529   assert(!IS_INF_OR_NAN(value[0]));
530   assert(!IS_INF_OR_NAN(value[0]));
531   assert(!IS_INF_OR_NAN(value[0]));
532#endif
533
534   if (writeMask & WRITEMASK_X)
535      dst[0] = value[0];
536   if (writeMask & WRITEMASK_Y)
537      dst[1] = value[1];
538   if (writeMask & WRITEMASK_Z)
539      dst[2] = value[2];
540   if (writeMask & WRITEMASK_W)
541      dst[3] = value[3];
542
543   if (inst->CondUpdate) {
544      if (writeMask & WRITEMASK_X)
545         machine->CondCodes[0] = generate_cc(value[0]);
546      if (writeMask & WRITEMASK_Y)
547         machine->CondCodes[1] = generate_cc(value[1]);
548      if (writeMask & WRITEMASK_Z)
549         machine->CondCodes[2] = generate_cc(value[2]);
550      if (writeMask & WRITEMASK_W)
551         machine->CondCodes[3] = generate_cc(value[3]);
552#if DEBUG_PROG
553      printf("CondCodes=(%s,%s,%s,%s) for:\n",
554             _mesa_condcode_string(machine->CondCodes[0]),
555             _mesa_condcode_string(machine->CondCodes[1]),
556             _mesa_condcode_string(machine->CondCodes[2]),
557             _mesa_condcode_string(machine->CondCodes[3]));
558#endif
559   }
560}
561
562
563/**
564 * Store 4 uints into a register.  Observe the set-condition-code flags.
565 */
566static void
567store_vector4ui(const struct prog_instruction *inst,
568                struct gl_program_machine *machine, const GLuint value[4])
569{
570   const struct prog_dst_register *dstReg = &(inst->DstReg);
571   GLuint writeMask = dstReg->WriteMask;
572   GLuint *dst = (GLuint *) get_dst_register_pointer(dstReg, machine);
573
574   if (dstReg->CondMask != COND_TR) {
575      /* condition codes may turn off some writes */
576      if (writeMask & WRITEMASK_X) {
577         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
578                      dstReg->CondMask))
579            writeMask &= ~WRITEMASK_X;
580      }
581      if (writeMask & WRITEMASK_Y) {
582         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
583                      dstReg->CondMask))
584            writeMask &= ~WRITEMASK_Y;
585      }
586      if (writeMask & WRITEMASK_Z) {
587         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
588                      dstReg->CondMask))
589            writeMask &= ~WRITEMASK_Z;
590      }
591      if (writeMask & WRITEMASK_W) {
592         if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
593                      dstReg->CondMask))
594            writeMask &= ~WRITEMASK_W;
595      }
596   }
597
598   if (writeMask & WRITEMASK_X)
599      dst[0] = value[0];
600   if (writeMask & WRITEMASK_Y)
601      dst[1] = value[1];
602   if (writeMask & WRITEMASK_Z)
603      dst[2] = value[2];
604   if (writeMask & WRITEMASK_W)
605      dst[3] = value[3];
606
607   if (inst->CondUpdate) {
608      if (writeMask & WRITEMASK_X)
609         machine->CondCodes[0] = generate_cc((float)value[0]);
610      if (writeMask & WRITEMASK_Y)
611         machine->CondCodes[1] = generate_cc((float)value[1]);
612      if (writeMask & WRITEMASK_Z)
613         machine->CondCodes[2] = generate_cc((float)value[2]);
614      if (writeMask & WRITEMASK_W)
615         machine->CondCodes[3] = generate_cc((float)value[3]);
616#if DEBUG_PROG
617      printf("CondCodes=(%s,%s,%s,%s) for:\n",
618             _mesa_condcode_string(machine->CondCodes[0]),
619             _mesa_condcode_string(machine->CondCodes[1]),
620             _mesa_condcode_string(machine->CondCodes[2]),
621             _mesa_condcode_string(machine->CondCodes[3]));
622#endif
623   }
624}
625
626
627
628/**
629 * Execute the given vertex/fragment program.
630 *
631 * \param ctx  rendering context
632 * \param program  the program to execute
633 * \param machine  machine state (must be initialized)
634 * \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
635 */
636GLboolean
637_mesa_execute_program(struct gl_context * ctx,
638                      const struct gl_program *program,
639                      struct gl_program_machine *machine)
640{
641   const GLuint numInst = program->NumInstructions;
642   const GLuint maxExec = 65536;
643   GLuint pc, numExec = 0;
644
645   machine->CurProgram = program;
646
647   if (DEBUG_PROG) {
648      printf("execute program %u --------------------\n", program->Id);
649   }
650
651   if (program->Target == GL_VERTEX_PROGRAM_ARB) {
652      machine->EnvParams = ctx->VertexProgram.Parameters;
653   }
654   else {
655      machine->EnvParams = ctx->FragmentProgram.Parameters;
656   }
657
658   for (pc = 0; pc < numInst; pc++) {
659      const struct prog_instruction *inst = program->Instructions + pc;
660
661      if (DEBUG_PROG) {
662         _mesa_print_instruction(inst);
663      }
664
665      switch (inst->Opcode) {
666      case OPCODE_ABS:
667         {
668            GLfloat a[4], result[4];
669            fetch_vector4(&inst->SrcReg[0], machine, a);
670            result[0] = FABSF(a[0]);
671            result[1] = FABSF(a[1]);
672            result[2] = FABSF(a[2]);
673            result[3] = FABSF(a[3]);
674            store_vector4(inst, machine, result);
675         }
676         break;
677      case OPCODE_ADD:
678         {
679            GLfloat a[4], b[4], result[4];
680            fetch_vector4(&inst->SrcReg[0], machine, a);
681            fetch_vector4(&inst->SrcReg[1], machine, b);
682            result[0] = a[0] + b[0];
683            result[1] = a[1] + b[1];
684            result[2] = a[2] + b[2];
685            result[3] = a[3] + b[3];
686            store_vector4(inst, machine, result);
687            if (DEBUG_PROG) {
688               printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
689                      result[0], result[1], result[2], result[3],
690                      a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
691            }
692         }
693         break;
694      case OPCODE_AND:     /* bitwise AND */
695         {
696            GLuint a[4], b[4], result[4];
697            fetch_vector4ui(&inst->SrcReg[0], machine, a);
698            fetch_vector4ui(&inst->SrcReg[1], machine, b);
699            result[0] = a[0] & b[0];
700            result[1] = a[1] & b[1];
701            result[2] = a[2] & b[2];
702            result[3] = a[3] & b[3];
703            store_vector4ui(inst, machine, result);
704         }
705         break;
706      case OPCODE_ARL:
707         {
708            GLfloat t[4];
709            fetch_vector4(&inst->SrcReg[0], machine, t);
710            machine->AddressReg[0][0] = IFLOOR(t[0]);
711            if (DEBUG_PROG) {
712               printf("ARL %d\n", machine->AddressReg[0][0]);
713            }
714         }
715         break;
716      case OPCODE_BGNLOOP:
717         /* no-op */
718         ASSERT(program->Instructions[inst->BranchTarget].Opcode
719                == OPCODE_ENDLOOP);
720         break;
721      case OPCODE_ENDLOOP:
722         /* subtract 1 here since pc is incremented by for(pc) loop */
723         ASSERT(program->Instructions[inst->BranchTarget].Opcode
724                == OPCODE_BGNLOOP);
725         pc = inst->BranchTarget - 1;   /* go to matching BNGLOOP */
726         break;
727      case OPCODE_BGNSUB:      /* begin subroutine */
728         break;
729      case OPCODE_ENDSUB:      /* end subroutine */
730         break;
731      case OPCODE_BRA:         /* branch (conditional) */
732         if (eval_condition(machine, inst)) {
733            /* take branch */
734            /* Subtract 1 here since we'll do pc++ below */
735            pc = inst->BranchTarget - 1;
736         }
737         break;
738      case OPCODE_BRK:         /* break out of loop (conditional) */
739         ASSERT(program->Instructions[inst->BranchTarget].Opcode
740                == OPCODE_ENDLOOP);
741         if (eval_condition(machine, inst)) {
742            /* break out of loop */
743            /* pc++ at end of for-loop will put us after the ENDLOOP inst */
744            pc = inst->BranchTarget;
745         }
746         break;
747      case OPCODE_CONT:        /* continue loop (conditional) */
748         ASSERT(program->Instructions[inst->BranchTarget].Opcode
749                == OPCODE_ENDLOOP);
750         if (eval_condition(machine, inst)) {
751            /* continue at ENDLOOP */
752            /* Subtract 1 here since we'll do pc++ at end of for-loop */
753            pc = inst->BranchTarget - 1;
754         }
755         break;
756      case OPCODE_CAL:         /* Call subroutine (conditional) */
757         if (eval_condition(machine, inst)) {
758            /* call the subroutine */
759            if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
760               return GL_TRUE;  /* Per GL_NV_vertex_program2 spec */
761            }
762            machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */
763            /* Subtract 1 here since we'll do pc++ at end of for-loop */
764            pc = inst->BranchTarget - 1;
765         }
766         break;
767      case OPCODE_CMP:
768         {
769            GLfloat a[4], b[4], c[4], result[4];
770            fetch_vector4(&inst->SrcReg[0], machine, a);
771            fetch_vector4(&inst->SrcReg[1], machine, b);
772            fetch_vector4(&inst->SrcReg[2], machine, c);
773            result[0] = a[0] < 0.0F ? b[0] : c[0];
774            result[1] = a[1] < 0.0F ? b[1] : c[1];
775            result[2] = a[2] < 0.0F ? b[2] : c[2];
776            result[3] = a[3] < 0.0F ? b[3] : c[3];
777            store_vector4(inst, machine, result);
778            if (DEBUG_PROG) {
779               printf("CMP (%g %g %g %g) = (%g %g %g %g) < 0 ? (%g %g %g %g) : (%g %g %g %g)\n",
780                      result[0], result[1], result[2], result[3],
781                      a[0], a[1], a[2], a[3],
782                      b[0], b[1], b[2], b[3],
783                      c[0], c[1], c[2], c[3]);
784            }
785         }
786         break;
787      case OPCODE_COS:
788         {
789            GLfloat a[4], result[4];
790            fetch_vector1(&inst->SrcReg[0], machine, a);
791            result[0] = result[1] = result[2] = result[3]
792               = (GLfloat) cos(a[0]);
793            store_vector4(inst, machine, result);
794         }
795         break;
796      case OPCODE_DDX:         /* Partial derivative with respect to X */
797         {
798            GLfloat result[4];
799            fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
800                                'X', result);
801            store_vector4(inst, machine, result);
802         }
803         break;
804      case OPCODE_DDY:         /* Partial derivative with respect to Y */
805         {
806            GLfloat result[4];
807            fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
808                                'Y', result);
809            store_vector4(inst, machine, result);
810         }
811         break;
812      case OPCODE_DP2:
813         {
814            GLfloat a[4], b[4], result[4];
815            fetch_vector4(&inst->SrcReg[0], machine, a);
816            fetch_vector4(&inst->SrcReg[1], machine, b);
817            result[0] = result[1] = result[2] = result[3] = DOT2(a, b);
818            store_vector4(inst, machine, result);
819            if (DEBUG_PROG) {
820               printf("DP2 %g = (%g %g) . (%g %g)\n",
821                      result[0], a[0], a[1], b[0], b[1]);
822            }
823         }
824         break;
825      case OPCODE_DP2A:
826         {
827            GLfloat a[4], b[4], c, result[4];
828            fetch_vector4(&inst->SrcReg[0], machine, a);
829            fetch_vector4(&inst->SrcReg[1], machine, b);
830            fetch_vector1(&inst->SrcReg[1], machine, &c);
831            result[0] = result[1] = result[2] = result[3] = DOT2(a, b) + c;
832            store_vector4(inst, machine, result);
833            if (DEBUG_PROG) {
834               printf("DP2A %g = (%g %g) . (%g %g) + %g\n",
835                      result[0], a[0], a[1], b[0], b[1], c);
836            }
837         }
838         break;
839      case OPCODE_DP3:
840         {
841            GLfloat a[4], b[4], result[4];
842            fetch_vector4(&inst->SrcReg[0], machine, a);
843            fetch_vector4(&inst->SrcReg[1], machine, b);
844            result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
845            store_vector4(inst, machine, result);
846            if (DEBUG_PROG) {
847               printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
848                      result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
849            }
850         }
851         break;
852      case OPCODE_DP4:
853         {
854            GLfloat a[4], b[4], result[4];
855            fetch_vector4(&inst->SrcReg[0], machine, a);
856            fetch_vector4(&inst->SrcReg[1], machine, b);
857            result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
858            store_vector4(inst, machine, result);
859            if (DEBUG_PROG) {
860               printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
861                      result[0], a[0], a[1], a[2], a[3],
862                      b[0], b[1], b[2], b[3]);
863            }
864         }
865         break;
866      case OPCODE_DPH:
867         {
868            GLfloat a[4], b[4], result[4];
869            fetch_vector4(&inst->SrcReg[0], machine, a);
870            fetch_vector4(&inst->SrcReg[1], machine, b);
871            result[0] = result[1] = result[2] = result[3] = DOT3(a, b) + b[3];
872            store_vector4(inst, machine, result);
873         }
874         break;
875      case OPCODE_DST:         /* Distance vector */
876         {
877            GLfloat a[4], b[4], result[4];
878            fetch_vector4(&inst->SrcReg[0], machine, a);
879            fetch_vector4(&inst->SrcReg[1], machine, b);
880            result[0] = 1.0F;
881            result[1] = a[1] * b[1];
882            result[2] = a[2];
883            result[3] = b[3];
884            store_vector4(inst, machine, result);
885         }
886         break;
887      case OPCODE_EXP:
888         {
889            GLfloat t[4], q[4], floor_t0;
890            fetch_vector1(&inst->SrcReg[0], machine, t);
891            floor_t0 = FLOORF(t[0]);
892            if (floor_t0 > FLT_MAX_EXP) {
893               SET_POS_INFINITY(q[0]);
894               SET_POS_INFINITY(q[2]);
895            }
896            else if (floor_t0 < FLT_MIN_EXP) {
897               q[0] = 0.0F;
898               q[2] = 0.0F;
899            }
900            else {
901               q[0] = LDEXPF(1.0, (int) floor_t0);
902               /* Note: GL_NV_vertex_program expects
903                * result.z = result.x * APPX(result.y)
904                * We do what the ARB extension says.
905                */
906               q[2] = (GLfloat) pow(2.0, t[0]);
907            }
908            q[1] = t[0] - floor_t0;
909            q[3] = 1.0F;
910            store_vector4( inst, machine, q );
911         }
912         break;
913      case OPCODE_EX2:         /* Exponential base 2 */
914         {
915            GLfloat a[4], result[4], val;
916            fetch_vector1(&inst->SrcReg[0], machine, a);
917            val = (GLfloat) pow(2.0, a[0]);
918            /*
919            if (IS_INF_OR_NAN(val))
920               val = 1.0e10;
921            */
922            result[0] = result[1] = result[2] = result[3] = val;
923            store_vector4(inst, machine, result);
924         }
925         break;
926      case OPCODE_FLR:
927         {
928            GLfloat a[4], result[4];
929            fetch_vector4(&inst->SrcReg[0], machine, a);
930            result[0] = FLOORF(a[0]);
931            result[1] = FLOORF(a[1]);
932            result[2] = FLOORF(a[2]);
933            result[3] = FLOORF(a[3]);
934            store_vector4(inst, machine, result);
935         }
936         break;
937      case OPCODE_FRC:
938         {
939            GLfloat a[4], result[4];
940            fetch_vector4(&inst->SrcReg[0], machine, a);
941            result[0] = a[0] - FLOORF(a[0]);
942            result[1] = a[1] - FLOORF(a[1]);
943            result[2] = a[2] - FLOORF(a[2]);
944            result[3] = a[3] - FLOORF(a[3]);
945            store_vector4(inst, machine, result);
946         }
947         break;
948      case OPCODE_IF:
949         {
950            GLboolean cond;
951            ASSERT(program->Instructions[inst->BranchTarget].Opcode
952                   == OPCODE_ELSE ||
953                   program->Instructions[inst->BranchTarget].Opcode
954                   == OPCODE_ENDIF);
955            /* eval condition */
956            if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
957               GLfloat a[4];
958               fetch_vector1(&inst->SrcReg[0], machine, a);
959               cond = (a[0] != 0.0);
960            }
961            else {
962               cond = eval_condition(machine, inst);
963            }
964            if (DEBUG_PROG) {
965               printf("IF: %d\n", cond);
966            }
967            /* do if/else */
968            if (cond) {
969               /* do if-clause (just continue execution) */
970            }
971            else {
972               /* go to the instruction after ELSE or ENDIF */
973               assert(inst->BranchTarget >= 0);
974               pc = inst->BranchTarget;
975            }
976         }
977         break;
978      case OPCODE_ELSE:
979         /* goto ENDIF */
980         ASSERT(program->Instructions[inst->BranchTarget].Opcode
981                == OPCODE_ENDIF);
982         assert(inst->BranchTarget >= 0);
983         pc = inst->BranchTarget;
984         break;
985      case OPCODE_ENDIF:
986         /* nothing */
987         break;
988      case OPCODE_KIL_NV:      /* NV_f_p only (conditional) */
989         if (eval_condition(machine, inst)) {
990            return GL_FALSE;
991         }
992         break;
993      case OPCODE_KIL:         /* ARB_f_p only */
994         {
995            GLfloat a[4];
996            fetch_vector4(&inst->SrcReg[0], machine, a);
997            if (DEBUG_PROG) {
998               printf("KIL if (%g %g %g %g) <= 0.0\n",
999                      a[0], a[1], a[2], a[3]);
1000            }
1001
1002            if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
1003               return GL_FALSE;
1004            }
1005         }
1006         break;
1007      case OPCODE_LG2:         /* log base 2 */
1008         {
1009            GLfloat a[4], result[4], val;
1010            fetch_vector1(&inst->SrcReg[0], machine, a);
1011	    /* The fast LOG2 macro doesn't meet the precision requirements.
1012	     */
1013            if (a[0] == 0.0F) {
1014               val = -FLT_MAX;
1015            }
1016            else {
1017               val = (float)(log(a[0]) * 1.442695F);
1018            }
1019            result[0] = result[1] = result[2] = result[3] = val;
1020            store_vector4(inst, machine, result);
1021         }
1022         break;
1023      case OPCODE_LIT:
1024         {
1025            const GLfloat epsilon = 1.0F / 256.0F;      /* from NV VP spec */
1026            GLfloat a[4], result[4];
1027            fetch_vector4(&inst->SrcReg[0], machine, a);
1028            a[0] = MAX2(a[0], 0.0F);
1029            a[1] = MAX2(a[1], 0.0F);
1030            /* XXX ARB version clamps a[3], NV version doesn't */
1031            a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
1032            result[0] = 1.0F;
1033            result[1] = a[0];
1034            /* XXX we could probably just use pow() here */
1035            if (a[0] > 0.0F) {
1036               if (a[1] == 0.0 && a[3] == 0.0)
1037                  result[2] = 1.0F;
1038               else
1039                  result[2] = (GLfloat) pow(a[1], a[3]);
1040            }
1041            else {
1042               result[2] = 0.0F;
1043            }
1044            result[3] = 1.0F;
1045            store_vector4(inst, machine, result);
1046            if (DEBUG_PROG) {
1047               printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
1048                      result[0], result[1], result[2], result[3],
1049                      a[0], a[1], a[2], a[3]);
1050            }
1051         }
1052         break;
1053      case OPCODE_LOG:
1054         {
1055            GLfloat t[4], q[4], abs_t0;
1056            fetch_vector1(&inst->SrcReg[0], machine, t);
1057            abs_t0 = FABSF(t[0]);
1058            if (abs_t0 != 0.0F) {
1059               /* Since we really can't handle infinite values on VMS
1060                * like other OSes we'll use __MAXFLOAT to represent
1061                * infinity.  This may need some tweaking.
1062                */
1063#ifdef VMS
1064               if (abs_t0 == __MAXFLOAT)
1065#else
1066               if (IS_INF_OR_NAN(abs_t0))
1067#endif
1068               {
1069                  SET_POS_INFINITY(q[0]);
1070                  q[1] = 1.0F;
1071                  SET_POS_INFINITY(q[2]);
1072               }
1073               else {
1074                  int exponent;
1075                  GLfloat mantissa = FREXPF(t[0], &exponent);
1076                  q[0] = (GLfloat) (exponent - 1);
1077                  q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
1078
1079		  /* The fast LOG2 macro doesn't meet the precision
1080		   * requirements.
1081		   */
1082                  q[2] = (float)(log(t[0]) * 1.442695F);
1083               }
1084            }
1085            else {
1086               SET_NEG_INFINITY(q[0]);
1087               q[1] = 1.0F;
1088               SET_NEG_INFINITY(q[2]);
1089            }
1090            q[3] = 1.0;
1091            store_vector4(inst, machine, q);
1092         }
1093         break;
1094      case OPCODE_LRP:
1095         {
1096            GLfloat a[4], b[4], c[4], result[4];
1097            fetch_vector4(&inst->SrcReg[0], machine, a);
1098            fetch_vector4(&inst->SrcReg[1], machine, b);
1099            fetch_vector4(&inst->SrcReg[2], machine, c);
1100            result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
1101            result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
1102            result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
1103            result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
1104            store_vector4(inst, machine, result);
1105            if (DEBUG_PROG) {
1106               printf("LRP (%g %g %g %g) = (%g %g %g %g), "
1107                      "(%g %g %g %g), (%g %g %g %g)\n",
1108                      result[0], result[1], result[2], result[3],
1109                      a[0], a[1], a[2], a[3],
1110                      b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
1111            }
1112         }
1113         break;
1114      case OPCODE_MAD:
1115         {
1116            GLfloat a[4], b[4], c[4], result[4];
1117            fetch_vector4(&inst->SrcReg[0], machine, a);
1118            fetch_vector4(&inst->SrcReg[1], machine, b);
1119            fetch_vector4(&inst->SrcReg[2], machine, c);
1120            result[0] = a[0] * b[0] + c[0];
1121            result[1] = a[1] * b[1] + c[1];
1122            result[2] = a[2] * b[2] + c[2];
1123            result[3] = a[3] * b[3] + c[3];
1124            store_vector4(inst, machine, result);
1125            if (DEBUG_PROG) {
1126               printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
1127                      "(%g %g %g %g) + (%g %g %g %g)\n",
1128                      result[0], result[1], result[2], result[3],
1129                      a[0], a[1], a[2], a[3],
1130                      b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
1131            }
1132         }
1133         break;
1134      case OPCODE_MAX:
1135         {
1136            GLfloat a[4], b[4], result[4];
1137            fetch_vector4(&inst->SrcReg[0], machine, a);
1138            fetch_vector4(&inst->SrcReg[1], machine, b);
1139            result[0] = MAX2(a[0], b[0]);
1140            result[1] = MAX2(a[1], b[1]);
1141            result[2] = MAX2(a[2], b[2]);
1142            result[3] = MAX2(a[3], b[3]);
1143            store_vector4(inst, machine, result);
1144            if (DEBUG_PROG) {
1145               printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
1146                      result[0], result[1], result[2], result[3],
1147                      a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1148            }
1149         }
1150         break;
1151      case OPCODE_MIN:
1152         {
1153            GLfloat a[4], b[4], result[4];
1154            fetch_vector4(&inst->SrcReg[0], machine, a);
1155            fetch_vector4(&inst->SrcReg[1], machine, b);
1156            result[0] = MIN2(a[0], b[0]);
1157            result[1] = MIN2(a[1], b[1]);
1158            result[2] = MIN2(a[2], b[2]);
1159            result[3] = MIN2(a[3], b[3]);
1160            store_vector4(inst, machine, result);
1161         }
1162         break;
1163      case OPCODE_MOV:
1164         {
1165            GLfloat result[4];
1166            fetch_vector4(&inst->SrcReg[0], machine, result);
1167            store_vector4(inst, machine, result);
1168            if (DEBUG_PROG) {
1169               printf("MOV (%g %g %g %g)\n",
1170                      result[0], result[1], result[2], result[3]);
1171            }
1172         }
1173         break;
1174      case OPCODE_MUL:
1175         {
1176            GLfloat a[4], b[4], result[4];
1177            fetch_vector4(&inst->SrcReg[0], machine, a);
1178            fetch_vector4(&inst->SrcReg[1], machine, b);
1179            result[0] = a[0] * b[0];
1180            result[1] = a[1] * b[1];
1181            result[2] = a[2] * b[2];
1182            result[3] = a[3] * b[3];
1183            store_vector4(inst, machine, result);
1184            if (DEBUG_PROG) {
1185               printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
1186                      result[0], result[1], result[2], result[3],
1187                      a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1188            }
1189         }
1190         break;
1191      case OPCODE_NOISE1:
1192         {
1193            GLfloat a[4], result[4];
1194            fetch_vector1(&inst->SrcReg[0], machine, a);
1195            result[0] =
1196               result[1] =
1197               result[2] =
1198               result[3] = _mesa_noise1(a[0]);
1199            store_vector4(inst, machine, result);
1200         }
1201         break;
1202      case OPCODE_NOISE2:
1203         {
1204            GLfloat a[4], result[4];
1205            fetch_vector4(&inst->SrcReg[0], machine, a);
1206            result[0] =
1207               result[1] =
1208               result[2] = result[3] = _mesa_noise2(a[0], a[1]);
1209            store_vector4(inst, machine, result);
1210         }
1211         break;
1212      case OPCODE_NOISE3:
1213         {
1214            GLfloat a[4], result[4];
1215            fetch_vector4(&inst->SrcReg[0], machine, a);
1216            result[0] =
1217               result[1] =
1218               result[2] =
1219               result[3] = _mesa_noise3(a[0], a[1], a[2]);
1220            store_vector4(inst, machine, result);
1221         }
1222         break;
1223      case OPCODE_NOISE4:
1224         {
1225            GLfloat a[4], result[4];
1226            fetch_vector4(&inst->SrcReg[0], machine, a);
1227            result[0] =
1228               result[1] =
1229               result[2] =
1230               result[3] = _mesa_noise4(a[0], a[1], a[2], a[3]);
1231            store_vector4(inst, machine, result);
1232         }
1233         break;
1234      case OPCODE_NOP:
1235         break;
1236      case OPCODE_NOT:         /* bitwise NOT */
1237         {
1238            GLuint a[4], result[4];
1239            fetch_vector4ui(&inst->SrcReg[0], machine, a);
1240            result[0] = ~a[0];
1241            result[1] = ~a[1];
1242            result[2] = ~a[2];
1243            result[3] = ~a[3];
1244            store_vector4ui(inst, machine, result);
1245         }
1246         break;
1247      case OPCODE_NRM3:        /* 3-component normalization */
1248         {
1249            GLfloat a[4], result[4];
1250            GLfloat tmp;
1251            fetch_vector4(&inst->SrcReg[0], machine, a);
1252            tmp = a[0] * a[0] + a[1] * a[1] + a[2] * a[2];
1253            if (tmp != 0.0F)
1254               tmp = INV_SQRTF(tmp);
1255            result[0] = tmp * a[0];
1256            result[1] = tmp * a[1];
1257            result[2] = tmp * a[2];
1258            result[3] = 0.0;  /* undefined, but prevent valgrind warnings */
1259            store_vector4(inst, machine, result);
1260         }
1261         break;
1262      case OPCODE_NRM4:        /* 4-component normalization */
1263         {
1264            GLfloat a[4], result[4];
1265            GLfloat tmp;
1266            fetch_vector4(&inst->SrcReg[0], machine, a);
1267            tmp = a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3];
1268            if (tmp != 0.0F)
1269               tmp = INV_SQRTF(tmp);
1270            result[0] = tmp * a[0];
1271            result[1] = tmp * a[1];
1272            result[2] = tmp * a[2];
1273            result[3] = tmp * a[3];
1274            store_vector4(inst, machine, result);
1275         }
1276         break;
1277      case OPCODE_OR:          /* bitwise OR */
1278         {
1279            GLuint a[4], b[4], result[4];
1280            fetch_vector4ui(&inst->SrcReg[0], machine, a);
1281            fetch_vector4ui(&inst->SrcReg[1], machine, b);
1282            result[0] = a[0] | b[0];
1283            result[1] = a[1] | b[1];
1284            result[2] = a[2] | b[2];
1285            result[3] = a[3] | b[3];
1286            store_vector4ui(inst, machine, result);
1287         }
1288         break;
1289      case OPCODE_PK2H:        /* pack two 16-bit floats in one 32-bit float */
1290         {
1291            GLfloat a[4];
1292            GLuint result[4];
1293            GLhalfNV hx, hy;
1294            fetch_vector4(&inst->SrcReg[0], machine, a);
1295            hx = _mesa_float_to_half(a[0]);
1296            hy = _mesa_float_to_half(a[1]);
1297            result[0] =
1298            result[1] =
1299            result[2] =
1300            result[3] = hx | (hy << 16);
1301            store_vector4ui(inst, machine, result);
1302         }
1303         break;
1304      case OPCODE_PK2US:       /* pack two GLushorts into one 32-bit float */
1305         {
1306            GLfloat a[4];
1307            GLuint result[4], usx, usy;
1308            fetch_vector4(&inst->SrcReg[0], machine, a);
1309            a[0] = CLAMP(a[0], 0.0F, 1.0F);
1310            a[1] = CLAMP(a[1], 0.0F, 1.0F);
1311            usx = F_TO_I(a[0] * 65535.0F);
1312            usy = F_TO_I(a[1] * 65535.0F);
1313            result[0] =
1314            result[1] =
1315            result[2] =
1316            result[3] = usx | (usy << 16);
1317            store_vector4ui(inst, machine, result);
1318         }
1319         break;
1320      case OPCODE_PK4B:        /* pack four GLbytes into one 32-bit float */
1321         {
1322            GLfloat a[4];
1323            GLuint result[4], ubx, uby, ubz, ubw;
1324            fetch_vector4(&inst->SrcReg[0], machine, a);
1325            a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
1326            a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
1327            a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
1328            a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
1329            ubx = F_TO_I(127.0F * a[0] + 128.0F);
1330            uby = F_TO_I(127.0F * a[1] + 128.0F);
1331            ubz = F_TO_I(127.0F * a[2] + 128.0F);
1332            ubw = F_TO_I(127.0F * a[3] + 128.0F);
1333            result[0] =
1334            result[1] =
1335            result[2] =
1336            result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1337            store_vector4ui(inst, machine, result);
1338         }
1339         break;
1340      case OPCODE_PK4UB:       /* pack four GLubytes into one 32-bit float */
1341         {
1342            GLfloat a[4];
1343            GLuint result[4], ubx, uby, ubz, ubw;
1344            fetch_vector4(&inst->SrcReg[0], machine, a);
1345            a[0] = CLAMP(a[0], 0.0F, 1.0F);
1346            a[1] = CLAMP(a[1], 0.0F, 1.0F);
1347            a[2] = CLAMP(a[2], 0.0F, 1.0F);
1348            a[3] = CLAMP(a[3], 0.0F, 1.0F);
1349            ubx = F_TO_I(255.0F * a[0]);
1350            uby = F_TO_I(255.0F * a[1]);
1351            ubz = F_TO_I(255.0F * a[2]);
1352            ubw = F_TO_I(255.0F * a[3]);
1353            result[0] =
1354            result[1] =
1355            result[2] =
1356            result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1357            store_vector4ui(inst, machine, result);
1358         }
1359         break;
1360      case OPCODE_POW:
1361         {
1362            GLfloat a[4], b[4], result[4];
1363            fetch_vector1(&inst->SrcReg[0], machine, a);
1364            fetch_vector1(&inst->SrcReg[1], machine, b);
1365            result[0] = result[1] = result[2] = result[3]
1366               = (GLfloat) pow(a[0], b[0]);
1367            store_vector4(inst, machine, result);
1368         }
1369         break;
1370      case OPCODE_RCC:  /* clamped riciprocal */
1371         {
1372            const float largest = 1.884467e+19, smallest = 5.42101e-20;
1373            GLfloat a[4], r, result[4];
1374            fetch_vector1(&inst->SrcReg[0], machine, a);
1375            if (DEBUG_PROG) {
1376               if (a[0] == 0)
1377                  printf("RCC(0)\n");
1378               else if (IS_INF_OR_NAN(a[0]))
1379                  printf("RCC(inf)\n");
1380            }
1381            if (a[0] == 1.0F) {
1382               r = 1.0F;
1383            }
1384            else {
1385               r = 1.0F / a[0];
1386            }
1387            if (positive(r)) {
1388               if (r > largest) {
1389                  r = largest;
1390               }
1391               else if (r < smallest) {
1392                  r = smallest;
1393               }
1394            }
1395            else {
1396               if (r < -largest) {
1397                  r = -largest;
1398               }
1399               else if (r > -smallest) {
1400                  r = -smallest;
1401               }
1402            }
1403            result[0] = result[1] = result[2] = result[3] = r;
1404            store_vector4(inst, machine, result);
1405         }
1406         break;
1407
1408      case OPCODE_RCP:
1409         {
1410            GLfloat a[4], result[4];
1411            fetch_vector1(&inst->SrcReg[0], machine, a);
1412            if (DEBUG_PROG) {
1413               if (a[0] == 0)
1414                  printf("RCP(0)\n");
1415               else if (IS_INF_OR_NAN(a[0]))
1416                  printf("RCP(inf)\n");
1417            }
1418            result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
1419            store_vector4(inst, machine, result);
1420         }
1421         break;
1422      case OPCODE_RET:         /* return from subroutine (conditional) */
1423         if (eval_condition(machine, inst)) {
1424            if (machine->StackDepth == 0) {
1425               return GL_TRUE;  /* Per GL_NV_vertex_program2 spec */
1426            }
1427            /* subtract one because of pc++ in the for loop */
1428            pc = machine->CallStack[--machine->StackDepth] - 1;
1429         }
1430         break;
1431      case OPCODE_RFL:         /* reflection vector */
1432         {
1433            GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
1434            fetch_vector4(&inst->SrcReg[0], machine, axis);
1435            fetch_vector4(&inst->SrcReg[1], machine, dir);
1436            tmpW = DOT3(axis, axis);
1437            tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
1438            result[0] = tmpX * axis[0] - dir[0];
1439            result[1] = tmpX * axis[1] - dir[1];
1440            result[2] = tmpX * axis[2] - dir[2];
1441            /* result[3] is never written! XXX enforce in parser! */
1442            store_vector4(inst, machine, result);
1443         }
1444         break;
1445      case OPCODE_RSQ:         /* 1 / sqrt() */
1446         {
1447            GLfloat a[4], result[4];
1448            fetch_vector1(&inst->SrcReg[0], machine, a);
1449            a[0] = FABSF(a[0]);
1450            result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
1451            store_vector4(inst, machine, result);
1452            if (DEBUG_PROG) {
1453               printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
1454            }
1455         }
1456         break;
1457      case OPCODE_SCS:         /* sine and cos */
1458         {
1459            GLfloat a[4], result[4];
1460            fetch_vector1(&inst->SrcReg[0], machine, a);
1461            result[0] = (GLfloat) cos(a[0]);
1462            result[1] = (GLfloat) sin(a[0]);
1463            result[2] = 0.0;    /* undefined! */
1464            result[3] = 0.0;    /* undefined! */
1465            store_vector4(inst, machine, result);
1466         }
1467         break;
1468      case OPCODE_SEQ:         /* set on equal */
1469         {
1470            GLfloat a[4], b[4], result[4];
1471            fetch_vector4(&inst->SrcReg[0], machine, a);
1472            fetch_vector4(&inst->SrcReg[1], machine, b);
1473            result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
1474            result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
1475            result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
1476            result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
1477            store_vector4(inst, machine, result);
1478            if (DEBUG_PROG) {
1479               printf("SEQ (%g %g %g %g) = (%g %g %g %g) == (%g %g %g %g)\n",
1480                      result[0], result[1], result[2], result[3],
1481                      a[0], a[1], a[2], a[3],
1482                      b[0], b[1], b[2], b[3]);
1483            }
1484         }
1485         break;
1486      case OPCODE_SFL:         /* set false, operands ignored */
1487         {
1488            static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
1489            store_vector4(inst, machine, result);
1490         }
1491         break;
1492      case OPCODE_SGE:         /* set on greater or equal */
1493         {
1494            GLfloat a[4], b[4], result[4];
1495            fetch_vector4(&inst->SrcReg[0], machine, a);
1496            fetch_vector4(&inst->SrcReg[1], machine, b);
1497            result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
1498            result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
1499            result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
1500            result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
1501            store_vector4(inst, machine, result);
1502            if (DEBUG_PROG) {
1503               printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n",
1504                      result[0], result[1], result[2], result[3],
1505                      a[0], a[1], a[2], a[3],
1506                      b[0], b[1], b[2], b[3]);
1507            }
1508         }
1509         break;
1510      case OPCODE_SGT:         /* set on greater */
1511         {
1512            GLfloat a[4], b[4], result[4];
1513            fetch_vector4(&inst->SrcReg[0], machine, a);
1514            fetch_vector4(&inst->SrcReg[1], machine, b);
1515            result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
1516            result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
1517            result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
1518            result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
1519            store_vector4(inst, machine, result);
1520            if (DEBUG_PROG) {
1521               printf("SGT (%g %g %g %g) = (%g %g %g %g) > (%g %g %g %g)\n",
1522                      result[0], result[1], result[2], result[3],
1523                      a[0], a[1], a[2], a[3],
1524                      b[0], b[1], b[2], b[3]);
1525            }
1526         }
1527         break;
1528      case OPCODE_SIN:
1529         {
1530            GLfloat a[4], result[4];
1531            fetch_vector1(&inst->SrcReg[0], machine, a);
1532            result[0] = result[1] = result[2] = result[3]
1533               = (GLfloat) sin(a[0]);
1534            store_vector4(inst, machine, result);
1535         }
1536         break;
1537      case OPCODE_SLE:         /* set on less or equal */
1538         {
1539            GLfloat a[4], b[4], result[4];
1540            fetch_vector4(&inst->SrcReg[0], machine, a);
1541            fetch_vector4(&inst->SrcReg[1], machine, b);
1542            result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
1543            result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
1544            result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
1545            result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
1546            store_vector4(inst, machine, result);
1547            if (DEBUG_PROG) {
1548               printf("SLE (%g %g %g %g) = (%g %g %g %g) <= (%g %g %g %g)\n",
1549                      result[0], result[1], result[2], result[3],
1550                      a[0], a[1], a[2], a[3],
1551                      b[0], b[1], b[2], b[3]);
1552            }
1553         }
1554         break;
1555      case OPCODE_SLT:         /* set on less */
1556         {
1557            GLfloat a[4], b[4], result[4];
1558            fetch_vector4(&inst->SrcReg[0], machine, a);
1559            fetch_vector4(&inst->SrcReg[1], machine, b);
1560            result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
1561            result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
1562            result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
1563            result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
1564            store_vector4(inst, machine, result);
1565            if (DEBUG_PROG) {
1566               printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n",
1567                      result[0], result[1], result[2], result[3],
1568                      a[0], a[1], a[2], a[3],
1569                      b[0], b[1], b[2], b[3]);
1570            }
1571         }
1572         break;
1573      case OPCODE_SNE:         /* set on not equal */
1574         {
1575            GLfloat a[4], b[4], result[4];
1576            fetch_vector4(&inst->SrcReg[0], machine, a);
1577            fetch_vector4(&inst->SrcReg[1], machine, b);
1578            result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
1579            result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
1580            result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
1581            result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
1582            store_vector4(inst, machine, result);
1583            if (DEBUG_PROG) {
1584               printf("SNE (%g %g %g %g) = (%g %g %g %g) != (%g %g %g %g)\n",
1585                      result[0], result[1], result[2], result[3],
1586                      a[0], a[1], a[2], a[3],
1587                      b[0], b[1], b[2], b[3]);
1588            }
1589         }
1590         break;
1591      case OPCODE_SSG:         /* set sign (-1, 0 or +1) */
1592         {
1593            GLfloat a[4], result[4];
1594            fetch_vector4(&inst->SrcReg[0], machine, a);
1595            result[0] = (GLfloat) ((a[0] > 0.0F) - (a[0] < 0.0F));
1596            result[1] = (GLfloat) ((a[1] > 0.0F) - (a[1] < 0.0F));
1597            result[2] = (GLfloat) ((a[2] > 0.0F) - (a[2] < 0.0F));
1598            result[3] = (GLfloat) ((a[3] > 0.0F) - (a[3] < 0.0F));
1599            store_vector4(inst, machine, result);
1600         }
1601         break;
1602      case OPCODE_STR:         /* set true, operands ignored */
1603         {
1604            static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
1605            store_vector4(inst, machine, result);
1606         }
1607         break;
1608      case OPCODE_SUB:
1609         {
1610            GLfloat a[4], b[4], result[4];
1611            fetch_vector4(&inst->SrcReg[0], machine, a);
1612            fetch_vector4(&inst->SrcReg[1], machine, b);
1613            result[0] = a[0] - b[0];
1614            result[1] = a[1] - b[1];
1615            result[2] = a[2] - b[2];
1616            result[3] = a[3] - b[3];
1617            store_vector4(inst, machine, result);
1618            if (DEBUG_PROG) {
1619               printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
1620                      result[0], result[1], result[2], result[3],
1621                      a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1622            }
1623         }
1624         break;
1625      case OPCODE_SWZ:         /* extended swizzle */
1626         {
1627            const struct prog_src_register *source = &inst->SrcReg[0];
1628            const GLfloat *src = get_src_register_pointer(source, machine);
1629            GLfloat result[4];
1630            GLuint i;
1631            for (i = 0; i < 4; i++) {
1632               const GLuint swz = GET_SWZ(source->Swizzle, i);
1633               if (swz == SWIZZLE_ZERO)
1634                  result[i] = 0.0;
1635               else if (swz == SWIZZLE_ONE)
1636                  result[i] = 1.0;
1637               else {
1638                  ASSERT(swz >= 0);
1639                  ASSERT(swz <= 3);
1640                  result[i] = src[swz];
1641               }
1642               if (source->Negate & (1 << i))
1643                  result[i] = -result[i];
1644            }
1645            store_vector4(inst, machine, result);
1646         }
1647         break;
1648      case OPCODE_TEX:         /* Both ARB and NV frag prog */
1649         /* Simple texel lookup */
1650         {
1651            GLfloat texcoord[4], color[4];
1652            fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1653
1654            /* For TEX, texcoord.Q should not be used and its value should not
1655             * matter (at most, we pass coord.xyz to texture3D() in GLSL).
1656             * Set Q=1 so that FetchTexelDeriv() doesn't get a garbage value
1657             * which is effectively what happens when the texcoord swizzle
1658             * is .xyzz
1659             */
1660            texcoord[3] = 1.0f;
1661
1662            fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1663
1664            if (DEBUG_PROG) {
1665               printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n",
1666                      color[0], color[1], color[2], color[3],
1667                      inst->TexSrcUnit,
1668                      texcoord[0], texcoord[1], texcoord[2], texcoord[3]);
1669            }
1670            store_vector4(inst, machine, color);
1671         }
1672         break;
1673      case OPCODE_TXB:         /* GL_ARB_fragment_program only */
1674         /* Texel lookup with LOD bias */
1675         {
1676            GLfloat texcoord[4], color[4], lodBias;
1677
1678            fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1679
1680            /* texcoord[3] is the bias to add to lambda */
1681            lodBias = texcoord[3];
1682
1683            fetch_texel(ctx, machine, inst, texcoord, lodBias, color);
1684
1685            if (DEBUG_PROG) {
1686               printf("TXB (%g, %g, %g, %g) = texture[%d][%g %g %g %g]"
1687                      "  bias %g\n",
1688                      color[0], color[1], color[2], color[3],
1689                      inst->TexSrcUnit,
1690                      texcoord[0],
1691                      texcoord[1],
1692                      texcoord[2],
1693                      texcoord[3],
1694                      lodBias);
1695            }
1696
1697            store_vector4(inst, machine, color);
1698         }
1699         break;
1700      case OPCODE_TXD:         /* GL_NV_fragment_program only */
1701         /* Texture lookup w/ partial derivatives for LOD */
1702         {
1703            GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
1704            fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1705            fetch_vector4(&inst->SrcReg[1], machine, dtdx);
1706            fetch_vector4(&inst->SrcReg[2], machine, dtdy);
1707            machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
1708                                     0.0, /* lodBias */
1709                                     inst->TexSrcUnit, color);
1710            store_vector4(inst, machine, color);
1711         }
1712         break;
1713      case OPCODE_TXL:
1714         /* Texel lookup with explicit LOD */
1715         {
1716            GLfloat texcoord[4], color[4], lod;
1717
1718            fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1719
1720            /* texcoord[3] is the LOD */
1721            lod = texcoord[3];
1722
1723	    machine->FetchTexelLod(ctx, texcoord, lod,
1724				   machine->Samplers[inst->TexSrcUnit], color);
1725
1726            store_vector4(inst, machine, color);
1727         }
1728         break;
1729      case OPCODE_TXP:         /* GL_ARB_fragment_program only */
1730         /* Texture lookup w/ projective divide */
1731         {
1732            GLfloat texcoord[4], color[4];
1733
1734            fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1735            /* Not so sure about this test - if texcoord[3] is
1736             * zero, we'd probably be fine except for an ASSERT in
1737             * IROUND_POS() which gets triggered by the inf values created.
1738             */
1739            if (texcoord[3] != 0.0) {
1740               texcoord[0] /= texcoord[3];
1741               texcoord[1] /= texcoord[3];
1742               texcoord[2] /= texcoord[3];
1743            }
1744
1745            fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1746
1747            store_vector4(inst, machine, color);
1748         }
1749         break;
1750      case OPCODE_TXP_NV:      /* GL_NV_fragment_program only */
1751         /* Texture lookup w/ projective divide, as above, but do not
1752          * do the divide by w if sampling from a cube map.
1753          */
1754         {
1755            GLfloat texcoord[4], color[4];
1756
1757            fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1758            if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
1759                texcoord[3] != 0.0) {
1760               texcoord[0] /= texcoord[3];
1761               texcoord[1] /= texcoord[3];
1762               texcoord[2] /= texcoord[3];
1763            }
1764
1765            fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1766
1767            store_vector4(inst, machine, color);
1768         }
1769         break;
1770      case OPCODE_TRUNC:       /* truncate toward zero */
1771         {
1772            GLfloat a[4], result[4];
1773            fetch_vector4(&inst->SrcReg[0], machine, a);
1774            result[0] = (GLfloat) (GLint) a[0];
1775            result[1] = (GLfloat) (GLint) a[1];
1776            result[2] = (GLfloat) (GLint) a[2];
1777            result[3] = (GLfloat) (GLint) a[3];
1778            store_vector4(inst, machine, result);
1779         }
1780         break;
1781      case OPCODE_UP2H:        /* unpack two 16-bit floats */
1782         {
1783            const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1784            GLfloat result[4];
1785            GLushort hx, hy;
1786            hx = raw & 0xffff;
1787            hy = raw >> 16;
1788            result[0] = result[2] = _mesa_half_to_float(hx);
1789            result[1] = result[3] = _mesa_half_to_float(hy);
1790            store_vector4(inst, machine, result);
1791         }
1792         break;
1793      case OPCODE_UP2US:       /* unpack two GLushorts */
1794         {
1795            const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1796            GLfloat result[4];
1797            GLushort usx, usy;
1798            usx = raw & 0xffff;
1799            usy = raw >> 16;
1800            result[0] = result[2] = usx * (1.0f / 65535.0f);
1801            result[1] = result[3] = usy * (1.0f / 65535.0f);
1802            store_vector4(inst, machine, result);
1803         }
1804         break;
1805      case OPCODE_UP4B:        /* unpack four GLbytes */
1806         {
1807            const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1808            GLfloat result[4];
1809            result[0] = (((raw >> 0) & 0xff) - 128) / 127.0F;
1810            result[1] = (((raw >> 8) & 0xff) - 128) / 127.0F;
1811            result[2] = (((raw >> 16) & 0xff) - 128) / 127.0F;
1812            result[3] = (((raw >> 24) & 0xff) - 128) / 127.0F;
1813            store_vector4(inst, machine, result);
1814         }
1815         break;
1816      case OPCODE_UP4UB:       /* unpack four GLubytes */
1817         {
1818            const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1819            GLfloat result[4];
1820            result[0] = ((raw >> 0) & 0xff) / 255.0F;
1821            result[1] = ((raw >> 8) & 0xff) / 255.0F;
1822            result[2] = ((raw >> 16) & 0xff) / 255.0F;
1823            result[3] = ((raw >> 24) & 0xff) / 255.0F;
1824            store_vector4(inst, machine, result);
1825         }
1826         break;
1827      case OPCODE_XOR:         /* bitwise XOR */
1828         {
1829            GLuint a[4], b[4], result[4];
1830            fetch_vector4ui(&inst->SrcReg[0], machine, a);
1831            fetch_vector4ui(&inst->SrcReg[1], machine, b);
1832            result[0] = a[0] ^ b[0];
1833            result[1] = a[1] ^ b[1];
1834            result[2] = a[2] ^ b[2];
1835            result[3] = a[3] ^ b[3];
1836            store_vector4ui(inst, machine, result);
1837         }
1838         break;
1839      case OPCODE_XPD:         /* cross product */
1840         {
1841            GLfloat a[4], b[4], result[4];
1842            fetch_vector4(&inst->SrcReg[0], machine, a);
1843            fetch_vector4(&inst->SrcReg[1], machine, b);
1844            result[0] = a[1] * b[2] - a[2] * b[1];
1845            result[1] = a[2] * b[0] - a[0] * b[2];
1846            result[2] = a[0] * b[1] - a[1] * b[0];
1847            result[3] = 1.0;
1848            store_vector4(inst, machine, result);
1849            if (DEBUG_PROG) {
1850               printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n",
1851                      result[0], result[1], result[2], result[3],
1852                      a[0], a[1], a[2], b[0], b[1], b[2]);
1853            }
1854         }
1855         break;
1856      case OPCODE_X2D:         /* 2-D matrix transform */
1857         {
1858            GLfloat a[4], b[4], c[4], result[4];
1859            fetch_vector4(&inst->SrcReg[0], machine, a);
1860            fetch_vector4(&inst->SrcReg[1], machine, b);
1861            fetch_vector4(&inst->SrcReg[2], machine, c);
1862            result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
1863            result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
1864            result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
1865            result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
1866            store_vector4(inst, machine, result);
1867         }
1868         break;
1869      case OPCODE_PRINT:
1870         {
1871            if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
1872               GLfloat a[4];
1873               fetch_vector4(&inst->SrcReg[0], machine, a);
1874               printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
1875                            a[0], a[1], a[2], a[3]);
1876            }
1877            else {
1878               printf("%s\n", (const char *) inst->Data);
1879            }
1880         }
1881         break;
1882      case OPCODE_END:
1883         return GL_TRUE;
1884      default:
1885         _mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program",
1886                       inst->Opcode);
1887         return GL_TRUE;        /* return value doesn't matter */
1888      }
1889
1890      numExec++;
1891      if (numExec > maxExec) {
1892	 static GLboolean reported = GL_FALSE;
1893	 if (!reported) {
1894	    _mesa_problem(ctx, "Infinite loop detected in fragment program");
1895	    reported = GL_TRUE;
1896	 }
1897         return GL_TRUE;
1898      }
1899
1900   } /* for pc */
1901
1902   return GL_TRUE;
1903}
1904