1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25/**
26 * \file  programopt.c
27 * Vertex/Fragment program optimizations and transformations for program
28 * options, etc.
29 *
30 * \author Brian Paul
31 */
32
33
34#include "main/glheader.h"
35#include "main/context.h"
36#include "prog_parameter.h"
37#include "prog_statevars.h"
38#include "program.h"
39#include "programopt.h"
40#include "prog_instruction.h"
41
42
43/**
44 * This function inserts instructions for coordinate modelview * projection
45 * into a vertex program.
46 * May be used to implement the position_invariant option.
47 */
48static void
49_mesa_insert_mvp_dp4_code(struct gl_context *ctx, struct gl_vertex_program *vprog)
50{
51   struct prog_instruction *newInst;
52   const GLuint origLen = vprog->Base.NumInstructions;
53   const GLuint newLen = origLen + 4;
54   GLuint i;
55
56   /*
57    * Setup state references for the modelview/projection matrix.
58    * XXX we should check if these state vars are already declared.
59    */
60   static const gl_state_index mvpState[4][STATE_LENGTH] = {
61      { STATE_MVP_MATRIX, 0, 0, 0, 0 },  /* state.matrix.mvp.row[0] */
62      { STATE_MVP_MATRIX, 0, 1, 1, 0 },  /* state.matrix.mvp.row[1] */
63      { STATE_MVP_MATRIX, 0, 2, 2, 0 },  /* state.matrix.mvp.row[2] */
64      { STATE_MVP_MATRIX, 0, 3, 3, 0 },  /* state.matrix.mvp.row[3] */
65   };
66   GLint mvpRef[4];
67
68   for (i = 0; i < 4; i++) {
69      mvpRef[i] = _mesa_add_state_reference(vprog->Base.Parameters,
70                                            mvpState[i]);
71   }
72
73   /* Alloc storage for new instructions */
74   newInst = _mesa_alloc_instructions(newLen);
75   if (!newInst) {
76      _mesa_error(ctx, GL_OUT_OF_MEMORY,
77                  "glProgramString(inserting position_invariant code)");
78      return;
79   }
80
81   /*
82    * Generated instructions:
83    * newInst[0] = DP4 result.position.x, mvp.row[0], vertex.position;
84    * newInst[1] = DP4 result.position.y, mvp.row[1], vertex.position;
85    * newInst[2] = DP4 result.position.z, mvp.row[2], vertex.position;
86    * newInst[3] = DP4 result.position.w, mvp.row[3], vertex.position;
87    */
88   _mesa_init_instructions(newInst, 4);
89   for (i = 0; i < 4; i++) {
90      newInst[i].Opcode = OPCODE_DP4;
91      newInst[i].DstReg.File = PROGRAM_OUTPUT;
92      newInst[i].DstReg.Index = VERT_RESULT_HPOS;
93      newInst[i].DstReg.WriteMask = (WRITEMASK_X << i);
94      newInst[i].SrcReg[0].File = PROGRAM_STATE_VAR;
95      newInst[i].SrcReg[0].Index = mvpRef[i];
96      newInst[i].SrcReg[0].Swizzle = SWIZZLE_NOOP;
97      newInst[i].SrcReg[1].File = PROGRAM_INPUT;
98      newInst[i].SrcReg[1].Index = VERT_ATTRIB_POS;
99      newInst[i].SrcReg[1].Swizzle = SWIZZLE_NOOP;
100   }
101
102   /* Append original instructions after new instructions */
103   _mesa_copy_instructions (newInst + 4, vprog->Base.Instructions, origLen);
104
105   /* free old instructions */
106   _mesa_free_instructions(vprog->Base.Instructions, origLen);
107
108   /* install new instructions */
109   vprog->Base.Instructions = newInst;
110   vprog->Base.NumInstructions = newLen;
111   vprog->Base.InputsRead |= VERT_BIT_POS;
112   vprog->Base.OutputsWritten |= BITFIELD64_BIT(VERT_RESULT_HPOS);
113}
114
115
116static void
117_mesa_insert_mvp_mad_code(struct gl_context *ctx, struct gl_vertex_program *vprog)
118{
119   struct prog_instruction *newInst;
120   const GLuint origLen = vprog->Base.NumInstructions;
121   const GLuint newLen = origLen + 4;
122   GLuint hposTemp;
123   GLuint i;
124
125   /*
126    * Setup state references for the modelview/projection matrix.
127    * XXX we should check if these state vars are already declared.
128    */
129   static const gl_state_index mvpState[4][STATE_LENGTH] = {
130      { STATE_MVP_MATRIX, 0, 0, 0, STATE_MATRIX_TRANSPOSE },
131      { STATE_MVP_MATRIX, 0, 1, 1, STATE_MATRIX_TRANSPOSE },
132      { STATE_MVP_MATRIX, 0, 2, 2, STATE_MATRIX_TRANSPOSE },
133      { STATE_MVP_MATRIX, 0, 3, 3, STATE_MATRIX_TRANSPOSE },
134   };
135   GLint mvpRef[4];
136
137   for (i = 0; i < 4; i++) {
138      mvpRef[i] = _mesa_add_state_reference(vprog->Base.Parameters,
139                                            mvpState[i]);
140   }
141
142   /* Alloc storage for new instructions */
143   newInst = _mesa_alloc_instructions(newLen);
144   if (!newInst) {
145      _mesa_error(ctx, GL_OUT_OF_MEMORY,
146                  "glProgramString(inserting position_invariant code)");
147      return;
148   }
149
150   /* TEMP hposTemp; */
151   hposTemp = vprog->Base.NumTemporaries++;
152
153   /*
154    * Generated instructions:
155    *    emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
156    *    emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
157    *    emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
158    *    emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
159    */
160   _mesa_init_instructions(newInst, 4);
161
162   newInst[0].Opcode = OPCODE_MUL;
163   newInst[0].DstReg.File = PROGRAM_TEMPORARY;
164   newInst[0].DstReg.Index = hposTemp;
165   newInst[0].DstReg.WriteMask = WRITEMASK_XYZW;
166   newInst[0].SrcReg[0].File = PROGRAM_INPUT;
167   newInst[0].SrcReg[0].Index = VERT_ATTRIB_POS;
168   newInst[0].SrcReg[0].Swizzle = SWIZZLE_XXXX;
169   newInst[0].SrcReg[1].File = PROGRAM_STATE_VAR;
170   newInst[0].SrcReg[1].Index = mvpRef[0];
171   newInst[0].SrcReg[1].Swizzle = SWIZZLE_NOOP;
172
173   for (i = 1; i <= 2; i++) {
174      newInst[i].Opcode = OPCODE_MAD;
175      newInst[i].DstReg.File = PROGRAM_TEMPORARY;
176      newInst[i].DstReg.Index = hposTemp;
177      newInst[i].DstReg.WriteMask = WRITEMASK_XYZW;
178      newInst[i].SrcReg[0].File = PROGRAM_INPUT;
179      newInst[i].SrcReg[0].Index = VERT_ATTRIB_POS;
180      newInst[i].SrcReg[0].Swizzle = MAKE_SWIZZLE4(i,i,i,i);
181      newInst[i].SrcReg[1].File = PROGRAM_STATE_VAR;
182      newInst[i].SrcReg[1].Index = mvpRef[i];
183      newInst[i].SrcReg[1].Swizzle = SWIZZLE_NOOP;
184      newInst[i].SrcReg[2].File = PROGRAM_TEMPORARY;
185      newInst[i].SrcReg[2].Index = hposTemp;
186      newInst[1].SrcReg[2].Swizzle = SWIZZLE_NOOP;
187   }
188
189   newInst[3].Opcode = OPCODE_MAD;
190   newInst[3].DstReg.File = PROGRAM_OUTPUT;
191   newInst[3].DstReg.Index = VERT_RESULT_HPOS;
192   newInst[3].DstReg.WriteMask = WRITEMASK_XYZW;
193   newInst[3].SrcReg[0].File = PROGRAM_INPUT;
194   newInst[3].SrcReg[0].Index = VERT_ATTRIB_POS;
195   newInst[3].SrcReg[0].Swizzle = SWIZZLE_WWWW;
196   newInst[3].SrcReg[1].File = PROGRAM_STATE_VAR;
197   newInst[3].SrcReg[1].Index = mvpRef[3];
198   newInst[3].SrcReg[1].Swizzle = SWIZZLE_NOOP;
199   newInst[3].SrcReg[2].File = PROGRAM_TEMPORARY;
200   newInst[3].SrcReg[2].Index = hposTemp;
201   newInst[3].SrcReg[2].Swizzle = SWIZZLE_NOOP;
202
203
204   /* Append original instructions after new instructions */
205   _mesa_copy_instructions (newInst + 4, vprog->Base.Instructions, origLen);
206
207   /* free old instructions */
208   _mesa_free_instructions(vprog->Base.Instructions, origLen);
209
210   /* install new instructions */
211   vprog->Base.Instructions = newInst;
212   vprog->Base.NumInstructions = newLen;
213   vprog->Base.InputsRead |= VERT_BIT_POS;
214   vprog->Base.OutputsWritten |= BITFIELD64_BIT(VERT_RESULT_HPOS);
215}
216
217
218void
219_mesa_insert_mvp_code(struct gl_context *ctx, struct gl_vertex_program *vprog)
220{
221   if (ctx->mvp_with_dp4)
222      _mesa_insert_mvp_dp4_code( ctx, vprog );
223   else
224      _mesa_insert_mvp_mad_code( ctx, vprog );
225}
226
227
228
229
230
231
232/**
233 * Append instructions to implement fog
234 *
235 * The \c fragment.fogcoord input is used to compute the fog blend factor.
236 *
237 * \param ctx      The GL context
238 * \param fprog    Fragment program that fog instructions will be appended to.
239 * \param fog_mode Fog mode.  One of \c GL_EXP, \c GL_EXP2, or \c GL_LINEAR.
240 * \param saturate True if writes to color outputs should be clamped to [0, 1]
241 *
242 * \note
243 * This function sets \c FRAG_BIT_FOGC in \c fprog->Base.InputsRead.
244 *
245 * \todo With a little work, this function could be adapted to add fog code
246 * to vertex programs too.
247 */
248void
249_mesa_append_fog_code(struct gl_context *ctx,
250		      struct gl_fragment_program *fprog, GLenum fog_mode,
251		      GLboolean saturate)
252{
253   static const gl_state_index fogPStateOpt[STATE_LENGTH]
254      = { STATE_INTERNAL, STATE_FOG_PARAMS_OPTIMIZED, 0, 0, 0 };
255   static const gl_state_index fogColorState[STATE_LENGTH]
256      = { STATE_FOG_COLOR, 0, 0, 0, 0};
257   struct prog_instruction *newInst, *inst;
258   const GLuint origLen = fprog->Base.NumInstructions;
259   const GLuint newLen = origLen + 5;
260   GLuint i;
261   GLint fogPRefOpt, fogColorRef; /* state references */
262   GLuint colorTemp, fogFactorTemp; /* temporary registerss */
263
264   if (fog_mode == GL_NONE) {
265      _mesa_problem(ctx, "_mesa_append_fog_code() called for fragment program"
266                    " with fog_mode == GL_NONE");
267      return;
268   }
269
270   if (!(fprog->Base.OutputsWritten & (1 << FRAG_RESULT_COLOR))) {
271      /* program doesn't output color, so nothing to do */
272      return;
273   }
274
275   /* Alloc storage for new instructions */
276   newInst = _mesa_alloc_instructions(newLen);
277   if (!newInst) {
278      _mesa_error(ctx, GL_OUT_OF_MEMORY,
279                  "glProgramString(inserting fog_option code)");
280      return;
281   }
282
283   /* Copy orig instructions into new instruction buffer */
284   _mesa_copy_instructions(newInst, fprog->Base.Instructions, origLen);
285
286   /* PARAM fogParamsRefOpt = internal optimized fog params; */
287   fogPRefOpt
288      = _mesa_add_state_reference(fprog->Base.Parameters, fogPStateOpt);
289   /* PARAM fogColorRef = state.fog.color; */
290   fogColorRef
291      = _mesa_add_state_reference(fprog->Base.Parameters, fogColorState);
292
293   /* TEMP colorTemp; */
294   colorTemp = fprog->Base.NumTemporaries++;
295   /* TEMP fogFactorTemp; */
296   fogFactorTemp = fprog->Base.NumTemporaries++;
297
298   /* Scan program to find where result.color is written */
299   inst = newInst;
300   for (i = 0; i < fprog->Base.NumInstructions; i++) {
301      if (inst->Opcode == OPCODE_END)
302         break;
303      if (inst->DstReg.File == PROGRAM_OUTPUT &&
304          inst->DstReg.Index == FRAG_RESULT_COLOR) {
305         /* change the instruction to write to colorTemp w/ clamping */
306         inst->DstReg.File = PROGRAM_TEMPORARY;
307         inst->DstReg.Index = colorTemp;
308         inst->SaturateMode = saturate;
309         /* don't break (may be several writes to result.color) */
310      }
311      inst++;
312   }
313   assert(inst->Opcode == OPCODE_END); /* we'll overwrite this inst */
314
315   _mesa_init_instructions(inst, 5);
316
317   /* emit instructions to compute fog blending factor */
318   /* this is always clamped to [0, 1] regardless of fragment clamping */
319   if (fog_mode == GL_LINEAR) {
320      /* MAD fogFactorTemp.x, fragment.fogcoord.x, fogPRefOpt.x, fogPRefOpt.y; */
321      inst->Opcode = OPCODE_MAD;
322      inst->DstReg.File = PROGRAM_TEMPORARY;
323      inst->DstReg.Index = fogFactorTemp;
324      inst->DstReg.WriteMask = WRITEMASK_X;
325      inst->SrcReg[0].File = PROGRAM_INPUT;
326      inst->SrcReg[0].Index = FRAG_ATTRIB_FOGC;
327      inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
328      inst->SrcReg[1].File = PROGRAM_STATE_VAR;
329      inst->SrcReg[1].Index = fogPRefOpt;
330      inst->SrcReg[1].Swizzle = SWIZZLE_XXXX;
331      inst->SrcReg[2].File = PROGRAM_STATE_VAR;
332      inst->SrcReg[2].Index = fogPRefOpt;
333      inst->SrcReg[2].Swizzle = SWIZZLE_YYYY;
334      inst->SaturateMode = SATURATE_ZERO_ONE;
335      inst++;
336   }
337   else {
338      ASSERT(fog_mode == GL_EXP || fog_mode == GL_EXP2);
339      /* fogPRefOpt.z = d/ln(2), fogPRefOpt.w = d/sqrt(ln(2) */
340      /* EXP: MUL fogFactorTemp.x, fogPRefOpt.z, fragment.fogcoord.x; */
341      /* EXP2: MUL fogFactorTemp.x, fogPRefOpt.w, fragment.fogcoord.x; */
342      inst->Opcode = OPCODE_MUL;
343      inst->DstReg.File = PROGRAM_TEMPORARY;
344      inst->DstReg.Index = fogFactorTemp;
345      inst->DstReg.WriteMask = WRITEMASK_X;
346      inst->SrcReg[0].File = PROGRAM_STATE_VAR;
347      inst->SrcReg[0].Index = fogPRefOpt;
348      inst->SrcReg[0].Swizzle
349         = (fog_mode == GL_EXP) ? SWIZZLE_ZZZZ : SWIZZLE_WWWW;
350      inst->SrcReg[1].File = PROGRAM_INPUT;
351      inst->SrcReg[1].Index = FRAG_ATTRIB_FOGC;
352      inst->SrcReg[1].Swizzle = SWIZZLE_XXXX;
353      inst++;
354      if (fog_mode == GL_EXP2) {
355         /* MUL fogFactorTemp.x, fogFactorTemp.x, fogFactorTemp.x; */
356         inst->Opcode = OPCODE_MUL;
357         inst->DstReg.File = PROGRAM_TEMPORARY;
358         inst->DstReg.Index = fogFactorTemp;
359         inst->DstReg.WriteMask = WRITEMASK_X;
360         inst->SrcReg[0].File = PROGRAM_TEMPORARY;
361         inst->SrcReg[0].Index = fogFactorTemp;
362         inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
363         inst->SrcReg[1].File = PROGRAM_TEMPORARY;
364         inst->SrcReg[1].Index = fogFactorTemp;
365         inst->SrcReg[1].Swizzle = SWIZZLE_XXXX;
366         inst++;
367      }
368      /* EX2_SAT fogFactorTemp.x, -fogFactorTemp.x; */
369      inst->Opcode = OPCODE_EX2;
370      inst->DstReg.File = PROGRAM_TEMPORARY;
371      inst->DstReg.Index = fogFactorTemp;
372      inst->DstReg.WriteMask = WRITEMASK_X;
373      inst->SrcReg[0].File = PROGRAM_TEMPORARY;
374      inst->SrcReg[0].Index = fogFactorTemp;
375      inst->SrcReg[0].Negate = NEGATE_XYZW;
376      inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
377      inst->SaturateMode = SATURATE_ZERO_ONE;
378      inst++;
379   }
380   /* LRP result.color.xyz, fogFactorTemp.xxxx, colorTemp, fogColorRef; */
381   inst->Opcode = OPCODE_LRP;
382   inst->DstReg.File = PROGRAM_OUTPUT;
383   inst->DstReg.Index = FRAG_RESULT_COLOR;
384   inst->DstReg.WriteMask = WRITEMASK_XYZ;
385   inst->SrcReg[0].File = PROGRAM_TEMPORARY;
386   inst->SrcReg[0].Index = fogFactorTemp;
387   inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
388   inst->SrcReg[1].File = PROGRAM_TEMPORARY;
389   inst->SrcReg[1].Index = colorTemp;
390   inst->SrcReg[1].Swizzle = SWIZZLE_NOOP;
391   inst->SrcReg[2].File = PROGRAM_STATE_VAR;
392   inst->SrcReg[2].Index = fogColorRef;
393   inst->SrcReg[2].Swizzle = SWIZZLE_NOOP;
394   inst++;
395   /* MOV result.color.w, colorTemp.x;  # copy alpha */
396   inst->Opcode = OPCODE_MOV;
397   inst->DstReg.File = PROGRAM_OUTPUT;
398   inst->DstReg.Index = FRAG_RESULT_COLOR;
399   inst->DstReg.WriteMask = WRITEMASK_W;
400   inst->SrcReg[0].File = PROGRAM_TEMPORARY;
401   inst->SrcReg[0].Index = colorTemp;
402   inst->SrcReg[0].Swizzle = SWIZZLE_NOOP;
403   inst++;
404   /* END; */
405   inst->Opcode = OPCODE_END;
406   inst++;
407
408   /* free old instructions */
409   _mesa_free_instructions(fprog->Base.Instructions, origLen);
410
411   /* install new instructions */
412   fprog->Base.Instructions = newInst;
413   fprog->Base.NumInstructions = inst - newInst;
414   fprog->Base.InputsRead |= FRAG_BIT_FOGC;
415   assert(fprog->Base.OutputsWritten & (1 << FRAG_RESULT_COLOR));
416}
417
418
419
420static GLboolean
421is_texture_instruction(const struct prog_instruction *inst)
422{
423   switch (inst->Opcode) {
424   case OPCODE_TEX:
425   case OPCODE_TXB:
426   case OPCODE_TXD:
427   case OPCODE_TXL:
428   case OPCODE_TXP:
429   case OPCODE_TXP_NV:
430      return GL_TRUE;
431   default:
432      return GL_FALSE;
433   }
434}
435
436
437/**
438 * Count the number of texure indirections in the given program.
439 * The program's NumTexIndirections field will be updated.
440 * See the GL_ARB_fragment_program spec (issue 24) for details.
441 * XXX we count texture indirections in texenvprogram.c (maybe use this code
442 * instead and elsewhere).
443 */
444void
445_mesa_count_texture_indirections(struct gl_program *prog)
446{
447   GLuint indirections = 1;
448   GLbitfield tempsOutput = 0x0;
449   GLbitfield aluTemps = 0x0;
450   GLuint i;
451
452   for (i = 0; i < prog->NumInstructions; i++) {
453      const struct prog_instruction *inst = prog->Instructions + i;
454
455      if (is_texture_instruction(inst)) {
456         if (((inst->SrcReg[0].File == PROGRAM_TEMPORARY) &&
457              (tempsOutput & (1 << inst->SrcReg[0].Index))) ||
458             ((inst->Opcode != OPCODE_KIL) &&
459              (inst->DstReg.File == PROGRAM_TEMPORARY) &&
460              (aluTemps & (1 << inst->DstReg.Index))))
461            {
462               indirections++;
463               tempsOutput = 0x0;
464               aluTemps = 0x0;
465            }
466      }
467      else {
468         GLuint j;
469         for (j = 0; j < 3; j++) {
470            if (inst->SrcReg[j].File == PROGRAM_TEMPORARY)
471               aluTemps |= (1 << inst->SrcReg[j].Index);
472         }
473         if (inst->DstReg.File == PROGRAM_TEMPORARY)
474            aluTemps |= (1 << inst->DstReg.Index);
475      }
476
477      if ((inst->Opcode != OPCODE_KIL) && (inst->DstReg.File == PROGRAM_TEMPORARY))
478         tempsOutput |= (1 << inst->DstReg.Index);
479   }
480
481   prog->NumTexIndirections = indirections;
482}
483
484
485/**
486 * Count number of texture instructions in given program and update the
487 * program's NumTexInstructions field.
488 */
489void
490_mesa_count_texture_instructions(struct gl_program *prog)
491{
492   GLuint i;
493   prog->NumTexInstructions = 0;
494   for (i = 0; i < prog->NumInstructions; i++) {
495      prog->NumTexInstructions += is_texture_instruction(prog->Instructions + i);
496   }
497}
498
499
500/**
501 * Scan/rewrite program to remove reads of custom (output) registers.
502 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
503 * (for vertex shaders).
504 * In GLSL shaders, varying vars can be read and written.
505 * On some hardware, trying to read an output register causes trouble.
506 * So, rewrite the program to use a temporary register in this case.
507 */
508void
509_mesa_remove_output_reads(struct gl_program *prog, gl_register_file type)
510{
511   GLuint i;
512   GLint outputMap[VERT_RESULT_MAX];
513   GLuint numVaryingReads = 0;
514   GLboolean usedTemps[MAX_PROGRAM_TEMPS];
515   GLuint firstTemp = 0;
516
517   _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
518                             usedTemps, MAX_PROGRAM_TEMPS);
519
520   assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
521   assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
522
523   for (i = 0; i < VERT_RESULT_MAX; i++)
524      outputMap[i] = -1;
525
526   /* look for instructions which read from varying vars */
527   for (i = 0; i < prog->NumInstructions; i++) {
528      struct prog_instruction *inst = prog->Instructions + i;
529      const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
530      GLuint j;
531      for (j = 0; j < numSrc; j++) {
532         if (inst->SrcReg[j].File == type) {
533            /* replace the read with a temp reg */
534            const GLuint var = inst->SrcReg[j].Index;
535            if (outputMap[var] == -1) {
536               numVaryingReads++;
537               outputMap[var] = _mesa_find_free_register(usedTemps,
538                                                         MAX_PROGRAM_TEMPS,
539                                                         firstTemp);
540               firstTemp = outputMap[var] + 1;
541            }
542            inst->SrcReg[j].File = PROGRAM_TEMPORARY;
543            inst->SrcReg[j].Index = outputMap[var];
544         }
545      }
546   }
547
548   if (numVaryingReads == 0)
549      return; /* nothing to be done */
550
551   /* look for instructions which write to the varying vars identified above */
552   for (i = 0; i < prog->NumInstructions; i++) {
553      struct prog_instruction *inst = prog->Instructions + i;
554      if (inst->DstReg.File == type &&
555          outputMap[inst->DstReg.Index] >= 0) {
556         /* change inst to write to the temp reg, instead of the varying */
557         inst->DstReg.File = PROGRAM_TEMPORARY;
558         inst->DstReg.Index = outputMap[inst->DstReg.Index];
559      }
560   }
561
562   /* insert new instructions to copy the temp vars to the varying vars */
563   {
564      struct prog_instruction *inst;
565      GLint endPos, var;
566
567      /* Look for END instruction and insert the new varying writes */
568      endPos = -1;
569      for (i = 0; i < prog->NumInstructions; i++) {
570         struct prog_instruction *inst = prog->Instructions + i;
571         if (inst->Opcode == OPCODE_END) {
572            endPos = i;
573            _mesa_insert_instructions(prog, i, numVaryingReads);
574            break;
575         }
576      }
577
578      assert(endPos >= 0);
579
580      /* insert new MOV instructions here */
581      inst = prog->Instructions + endPos;
582      for (var = 0; var < VERT_RESULT_MAX; var++) {
583         if (outputMap[var] >= 0) {
584            /* MOV VAR[var], TEMP[tmp]; */
585            inst->Opcode = OPCODE_MOV;
586            inst->DstReg.File = type;
587            inst->DstReg.Index = var;
588            inst->SrcReg[0].File = PROGRAM_TEMPORARY;
589            inst->SrcReg[0].Index = outputMap[var];
590            inst++;
591         }
592      }
593   }
594}
595
596
597/**
598 * Make the given fragment program into a "no-op" shader.
599 * Actually, just copy the incoming fragment color (or texcoord)
600 * to the output color.
601 * This is for debug/test purposes.
602 */
603void
604_mesa_nop_fragment_program(struct gl_context *ctx, struct gl_fragment_program *prog)
605{
606   struct prog_instruction *inst;
607   GLuint inputAttr;
608
609   inst = _mesa_alloc_instructions(2);
610   if (!inst) {
611      _mesa_error(ctx, GL_OUT_OF_MEMORY, "_mesa_nop_fragment_program");
612      return;
613   }
614
615   _mesa_init_instructions(inst, 2);
616
617   inst[0].Opcode = OPCODE_MOV;
618   inst[0].DstReg.File = PROGRAM_OUTPUT;
619   inst[0].DstReg.Index = FRAG_RESULT_COLOR;
620   inst[0].SrcReg[0].File = PROGRAM_INPUT;
621   if (prog->Base.InputsRead & FRAG_BIT_COL0)
622      inputAttr = FRAG_ATTRIB_COL0;
623   else
624      inputAttr = FRAG_ATTRIB_TEX0;
625   inst[0].SrcReg[0].Index = inputAttr;
626
627   inst[1].Opcode = OPCODE_END;
628
629   _mesa_free_instructions(prog->Base.Instructions,
630                           prog->Base.NumInstructions);
631
632   prog->Base.Instructions = inst;
633   prog->Base.NumInstructions = 2;
634   prog->Base.InputsRead = BITFIELD64_BIT(inputAttr);
635   prog->Base.OutputsWritten = BITFIELD64_BIT(FRAG_RESULT_COLOR);
636}
637
638
639/**
640 * \sa _mesa_nop_fragment_program
641 * Replace the given vertex program with a "no-op" program that just
642 * transforms vertex position and emits color.
643 */
644void
645_mesa_nop_vertex_program(struct gl_context *ctx, struct gl_vertex_program *prog)
646{
647   struct prog_instruction *inst;
648   GLuint inputAttr;
649
650   /*
651    * Start with a simple vertex program that emits color.
652    */
653   inst = _mesa_alloc_instructions(2);
654   if (!inst) {
655      _mesa_error(ctx, GL_OUT_OF_MEMORY, "_mesa_nop_vertex_program");
656      return;
657   }
658
659   _mesa_init_instructions(inst, 2);
660
661   inst[0].Opcode = OPCODE_MOV;
662   inst[0].DstReg.File = PROGRAM_OUTPUT;
663   inst[0].DstReg.Index = VERT_RESULT_COL0;
664   inst[0].SrcReg[0].File = PROGRAM_INPUT;
665   if (prog->Base.InputsRead & VERT_BIT_COLOR0)
666      inputAttr = VERT_ATTRIB_COLOR0;
667   else
668      inputAttr = VERT_ATTRIB_TEX0;
669   inst[0].SrcReg[0].Index = inputAttr;
670
671   inst[1].Opcode = OPCODE_END;
672
673   _mesa_free_instructions(prog->Base.Instructions,
674                           prog->Base.NumInstructions);
675
676   prog->Base.Instructions = inst;
677   prog->Base.NumInstructions = 2;
678   prog->Base.InputsRead = BITFIELD64_BIT(inputAttr);
679   prog->Base.OutputsWritten = BITFIELD64_BIT(VERT_RESULT_COL0);
680
681   /*
682    * Now insert code to do standard modelview/projection transformation.
683    */
684   _mesa_insert_mvp_code(ctx, prog);
685}
686