1/*
2 * Mesa 3-D graphics library
3 * Version:  7.0.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/*
27 * Antialiased Triangle Rasterizer Template
28 *
29 * This file is #include'd to generate custom AA triangle rasterizers.
30 * NOTE: this code hasn't been optimized yet.  That'll come after it
31 * works correctly.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be copmuted across the triangle:
35 *    DO_Z         - if defined, compute Z values
36 *    DO_ATTRIBS   - if defined, compute texcoords, varying, etc.
37 */
38
39/*void triangle( struct gl_context *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
40{
41   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
42   const GLfloat *p0 = v0->attrib[FRAG_ATTRIB_WPOS];
43   const GLfloat *p1 = v1->attrib[FRAG_ATTRIB_WPOS];
44   const GLfloat *p2 = v2->attrib[FRAG_ATTRIB_WPOS];
45   const SWvertex *vMin, *vMid, *vMax;
46   GLint iyMin, iyMax;
47   GLfloat yMin, yMax;
48   GLboolean ltor;
49   GLfloat majDx, majDy;  /* major (i.e. long) edge dx and dy */
50
51   SWspan span;
52
53#ifdef DO_Z
54   GLfloat zPlane[4];
55#endif
56   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
57#if defined(DO_ATTRIBS)
58   GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
59   GLfloat wPlane[4];  /* win[3] */
60#endif
61   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign;
62
63   (void) swrast;
64
65   INIT_SPAN(span, GL_POLYGON);
66   span.arrayMask = SPAN_COVERAGE;
67
68   /* determine bottom to top order of vertices */
69   {
70      GLfloat y0 = v0->attrib[FRAG_ATTRIB_WPOS][1];
71      GLfloat y1 = v1->attrib[FRAG_ATTRIB_WPOS][1];
72      GLfloat y2 = v2->attrib[FRAG_ATTRIB_WPOS][1];
73      if (y0 <= y1) {
74	 if (y1 <= y2) {
75	    vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
76	 }
77	 else if (y2 <= y0) {
78	    vMin = v2;   vMid = v0;   vMax = v1;   /* y2<=y0<=y1 */
79	 }
80	 else {
81	    vMin = v0;   vMid = v2;   vMax = v1;  bf = -bf; /* y0<=y2<=y1 */
82	 }
83      }
84      else {
85	 if (y0 <= y2) {
86	    vMin = v1;   vMid = v0;   vMax = v2;  bf = -bf; /* y1<=y0<=y2 */
87	 }
88	 else if (y2 <= y1) {
89	    vMin = v2;   vMid = v1;   vMax = v0;  bf = -bf; /* y2<=y1<=y0 */
90	 }
91	 else {
92	    vMin = v1;   vMid = v2;   vMax = v0;   /* y1<=y2<=y0 */
93	 }
94      }
95   }
96
97   majDx = vMax->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0];
98   majDy = vMax->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1];
99
100   /* front/back-face determination and cullling */
101   {
102      const GLfloat botDx = vMid->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0];
103      const GLfloat botDy = vMid->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1];
104      const GLfloat area = majDx * botDy - botDx * majDy;
105      /* Do backface culling */
106      if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
107	 return;
108      ltor = (GLboolean) (area < 0.0F);
109
110      span.facing = area * swrast->_BackfaceSign > 0.0F;
111   }
112
113   /* Plane equation setup:
114    * We evaluate plane equations at window (x,y) coordinates in order
115    * to compute color, Z, fog, texcoords, etc.  This isn't terribly
116    * efficient but it's easy and reliable.
117    */
118#ifdef DO_Z
119   compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
120   span.arrayMask |= SPAN_Z;
121#endif
122   if (ctx->Light.ShadeModel == GL_SMOOTH) {
123      compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
124      compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
125      compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
126      compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
127   }
128   else {
129      constant_plane(v2->color[RCOMP], rPlane);
130      constant_plane(v2->color[GCOMP], gPlane);
131      constant_plane(v2->color[BCOMP], bPlane);
132      constant_plane(v2->color[ACOMP], aPlane);
133   }
134   span.arrayMask |= SPAN_RGBA;
135#if defined(DO_ATTRIBS)
136   {
137      const GLfloat invW0 = v0->attrib[FRAG_ATTRIB_WPOS][3];
138      const GLfloat invW1 = v1->attrib[FRAG_ATTRIB_WPOS][3];
139      const GLfloat invW2 = v2->attrib[FRAG_ATTRIB_WPOS][3];
140      compute_plane(p0, p1, p2, invW0, invW1, invW2, wPlane);
141      span.attrStepX[FRAG_ATTRIB_WPOS][3] = plane_dx(wPlane);
142      span.attrStepY[FRAG_ATTRIB_WPOS][3] = plane_dy(wPlane);
143      ATTRIB_LOOP_BEGIN
144         GLuint c;
145         if (swrast->_InterpMode[attr] == GL_FLAT) {
146            for (c = 0; c < 4; c++) {
147               constant_plane(v2->attrib[attr][c] * invW2, attrPlane[attr][c]);
148            }
149         }
150         else {
151            for (c = 0; c < 4; c++) {
152               const GLfloat a0 = v0->attrib[attr][c] * invW0;
153               const GLfloat a1 = v1->attrib[attr][c] * invW1;
154               const GLfloat a2 = v2->attrib[attr][c] * invW2;
155               compute_plane(p0, p1, p2, a0, a1, a2, attrPlane[attr][c]);
156            }
157         }
158         for (c = 0; c < 4; c++) {
159            span.attrStepX[attr][c] = plane_dx(attrPlane[attr][c]);
160            span.attrStepY[attr][c] = plane_dy(attrPlane[attr][c]);
161         }
162      ATTRIB_LOOP_END
163   }
164#endif
165
166   /* Begin bottom-to-top scan over the triangle.
167    * The long edge will either be on the left or right side of the
168    * triangle.  We always scan from the long edge toward the shorter
169    * edges, stopping when we find that coverage = 0.  If the long edge
170    * is on the left we scan left-to-right.  Else, we scan right-to-left.
171    */
172   yMin = vMin->attrib[FRAG_ATTRIB_WPOS][1];
173   yMax = vMax->attrib[FRAG_ATTRIB_WPOS][1];
174   iyMin = (GLint) yMin;
175   iyMax = (GLint) yMax + 1;
176
177   if (ltor) {
178      /* scan left to right */
179      const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS];
180      const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS];
181      const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
182      const GLfloat dxdy = majDx / majDy;
183      const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
184      GLint iy;
185#ifdef _OPENMP
186#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
187#endif
188      for (iy = iyMin; iy < iyMax; iy++) {
189         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
190         GLint ix, startX = (GLint) (x - xAdj);
191         GLuint count;
192         GLfloat coverage = 0.0F;
193
194#ifdef _OPENMP
195         /* each thread needs to use a different (global) SpanArrays variable */
196         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
197#endif
198         /* skip over fragments with zero coverage */
199         while (startX < SWRAST_MAX_WIDTH) {
200            coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
201            if (coverage > 0.0F)
202               break;
203            startX++;
204         }
205
206         /* enter interior of triangle */
207         ix = startX;
208
209#if defined(DO_ATTRIBS)
210         /* compute attributes at left-most fragment */
211         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 0.5F, iy + 0.5F, wPlane);
212         ATTRIB_LOOP_BEGIN
213            GLuint c;
214            for (c = 0; c < 4; c++) {
215               span.attrStart[attr][c] = solve_plane(ix + 0.5F, iy + 0.5F, attrPlane[attr][c]);
216            }
217         ATTRIB_LOOP_END
218#endif
219
220         count = 0;
221         while (coverage > 0.0F) {
222            /* (cx,cy) = center of fragment */
223            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
224            SWspanarrays *array = span.array;
225            array->coverage[count] = coverage;
226#ifdef DO_Z
227            array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
228#endif
229            array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
230            array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
231            array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
232            array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
233            ix++;
234            count++;
235            coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
236         }
237
238         if (ix > startX) {
239            span.x = startX;
240            span.y = iy;
241            span.end = (GLuint) ix - (GLuint) startX;
242            _swrast_write_rgba_span(ctx, &span);
243         }
244      }
245   }
246   else {
247      /* scan right to left */
248      const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS];
249      const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS];
250      const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
251      const GLfloat dxdy = majDx / majDy;
252      const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
253      GLint iy;
254#ifdef _OPENMP
255#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
256#endif
257      for (iy = iyMin; iy < iyMax; iy++) {
258         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
259         GLint ix, left, startX = (GLint) (x + xAdj);
260         GLuint count, n;
261         GLfloat coverage = 0.0F;
262
263#ifdef _OPENMP
264         /* each thread needs to use a different (global) SpanArrays variable */
265         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
266#endif
267         /* make sure we're not past the window edge */
268         if (startX >= ctx->DrawBuffer->_Xmax) {
269            startX = ctx->DrawBuffer->_Xmax - 1;
270         }
271
272         /* skip fragments with zero coverage */
273         while (startX > 0) {
274            coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
275            if (coverage > 0.0F)
276               break;
277            startX--;
278         }
279
280         /* enter interior of triangle */
281         ix = startX;
282         count = 0;
283         while (coverage > 0.0F) {
284            /* (cx,cy) = center of fragment */
285            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
286            SWspanarrays *array = span.array;
287            ASSERT(ix >= 0);
288            array->coverage[ix] = coverage;
289#ifdef DO_Z
290            array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
291#endif
292            array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
293            array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
294            array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
295            array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
296            ix--;
297            count++;
298            coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
299         }
300
301#if defined(DO_ATTRIBS)
302         /* compute attributes at left-most fragment */
303         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 1.5F, iy + 0.5F, wPlane);
304         ATTRIB_LOOP_BEGIN
305            GLuint c;
306            for (c = 0; c < 4; c++) {
307               span.attrStart[attr][c] = solve_plane(ix + 1.5F, iy + 0.5F, attrPlane[attr][c]);
308            }
309         ATTRIB_LOOP_END
310#endif
311
312         if (startX > ix) {
313            n = (GLuint) startX - (GLuint) ix;
314
315            left = ix + 1;
316
317            /* shift all values to the left */
318            /* XXX this is temporary */
319            {
320               SWspanarrays *array = span.array;
321               GLint j;
322               for (j = 0; j < (GLint) n; j++) {
323                  array->coverage[j] = array->coverage[j + left];
324                  COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
325#ifdef DO_Z
326                  array->z[j] = array->z[j + left];
327#endif
328               }
329            }
330
331            span.x = left;
332            span.y = iy;
333            span.end = n;
334            _swrast_write_rgba_span(ctx, &span);
335         }
336      }
337   }
338}
339
340
341#undef DO_Z
342#undef DO_ATTRIBS
343#undef DO_OCCLUSION_TEST
344