1/***********************************************************************
2Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3Redistribution and use in source and binary forms, with or without
4modification, are permitted provided that the following conditions
5are met:
6- Redistributions of source code must retain the above copyright notice,
7this list of conditions and the following disclaimer.
8- Redistributions in binary form must reproduce the above copyright
9notice, this list of conditions and the following disclaimer in the
10documentation and/or other materials provided with the distribution.
11- Neither the name of Internet Society, IETF or IETF Trust, nor the
12names of specific contributors, may be used to endorse or promote
13products derived from this software without specific prior written
14permission.
15THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25POSSIBILITY OF SUCH DAMAGE.
26***********************************************************************/
27
28#ifndef SILK_SIGPROC_FIX_H
29#define SILK_SIGPROC_FIX_H
30
31#ifdef  __cplusplus
32extern "C"
33{
34#endif
35
36/*#define silk_MACRO_COUNT */          /* Used to enable WMOPS counting */
37
38#define SILK_MAX_ORDER_LPC            16            /* max order of the LPC analysis in schur() and k2a() */
39
40#include <string.h>                                 /* for memset(), memcpy(), memmove() */
41#include "typedef.h"
42#include "resampler_structs.h"
43#include "macros.h"
44
45
46/********************************************************************/
47/*                    SIGNAL PROCESSING FUNCTIONS                   */
48/********************************************************************/
49
50/*!
51 * Initialize/reset the resampler state for a given pair of input/output sampling rates
52*/
53opus_int silk_resampler_init(
54    silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
55    opus_int32                  Fs_Hz_in,           /* I    Input sampling rate (Hz)                                    */
56    opus_int32                  Fs_Hz_out,          /* I    Output sampling rate (Hz)                                   */
57    opus_int                    forEnc              /* I    If 1: encoder; if 0: decoder                                */
58);
59
60/*!
61 * Resampler: convert from one sampling rate to another
62 */
63opus_int silk_resampler(
64    silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
65    opus_int16                  out[],              /* O    Output signal                                               */
66    const opus_int16            in[],               /* I    Input signal                                                */
67    opus_int32                  inLen               /* I    Number of input samples                                     */
68);
69
70/*!
71* Downsample 2x, mediocre quality
72*/
73void silk_resampler_down2(
74    opus_int32                  *S,                 /* I/O  State vector [ 2 ]                                          */
75    opus_int16                  *out,               /* O    Output signal [ len ]                                       */
76    const opus_int16            *in,                /* I    Input signal [ floor(len/2) ]                               */
77    opus_int32                  inLen               /* I    Number of input samples                                     */
78);
79
80/*!
81 * Downsample by a factor 2/3, low quality
82*/
83void silk_resampler_down2_3(
84    opus_int32                  *S,                 /* I/O  State vector [ 6 ]                                          */
85    opus_int16                  *out,               /* O    Output signal [ floor(2*inLen/3) ]                          */
86    const opus_int16            *in,                /* I    Input signal [ inLen ]                                      */
87    opus_int32                  inLen               /* I    Number of input samples                                     */
88);
89
90/*!
91 * second order ARMA filter;
92 * slower than biquad() but uses more precise coefficients
93 * can handle (slowly) varying coefficients
94 */
95void silk_biquad_alt(
96    const opus_int16            *in,                /* I     input signal                                               */
97    const opus_int32            *B_Q28,             /* I     MA coefficients [3]                                        */
98    const opus_int32            *A_Q28,             /* I     AR coefficients [2]                                        */
99    opus_int32                  *S,                 /* I/O   State vector [2]                                           */
100    opus_int16                  *out,               /* O     output signal                                              */
101    const opus_int32            len,                /* I     signal length (must be even)                               */
102    opus_int                    stride              /* I     Operate on interleaved signal if > 1                       */
103);
104
105/* Variable order MA prediction error filter. */
106void silk_LPC_analysis_filter(
107    opus_int16                  *out,               /* O    Output signal                                               */
108    const opus_int16            *in,                /* I    Input signal                                                */
109    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order]                     */
110    const opus_int32            len,                /* I    Signal length                                               */
111    const opus_int32            d                   /* I    Filter order                                                */
112);
113
114/* Chirp (bandwidth expand) LP AR filter */
115void silk_bwexpander(
116    opus_int16                  *ar,                /* I/O  AR filter to be expanded (without leading 1)                */
117    const opus_int              d,                  /* I    Length of ar                                                */
118    opus_int32                  chirp_Q16           /* I    Chirp factor (typically in the range 0 to 1)                */
119);
120
121/* Chirp (bandwidth expand) LP AR filter */
122void silk_bwexpander_32(
123    opus_int32                  *ar,                /* I/O  AR filter to be expanded (without leading 1)                */
124    const opus_int              d,                  /* I    Length of ar                                                */
125    opus_int32                  chirp_Q16           /* I    Chirp factor in Q16                                         */
126);
127
128/* Compute inverse of LPC prediction gain, and                           */
129/* test if LPC coefficients are stable (all poles within unit circle)    */
130opus_int32 silk_LPC_inverse_pred_gain(              /* O   Returns inverse prediction gain in energy domain, Q30        */
131    const opus_int16            *A_Q12,             /* I   Prediction coefficients, Q12 [order]                         */
132    const opus_int              order               /* I   Prediction order                                             */
133);
134
135/* For input in Q24 domain */
136opus_int32 silk_LPC_inverse_pred_gain_Q24(          /* O    Returns inverse prediction gain in energy domain, Q30       */
137    const opus_int32            *A_Q24,             /* I    Prediction coefficients [order]                             */
138    const opus_int              order               /* I    Prediction order                                            */
139);
140
141/* Split signal in two decimated bands using first-order allpass filters */
142void silk_ana_filt_bank_1(
143    const opus_int16            *in,                /* I    Input signal [N]                                            */
144    opus_int32                  *S,                 /* I/O  State vector [2]                                            */
145    opus_int16                  *outL,              /* O    Low band [N/2]                                              */
146    opus_int16                  *outH,              /* O    High band [N/2]                                             */
147    const opus_int32            N                   /* I    Number of input samples                                     */
148);
149
150/********************************************************************/
151/*                        SCALAR FUNCTIONS                          */
152/********************************************************************/
153
154/* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
155/* Convert input to a log scale    */
156opus_int32 silk_lin2log(
157    const opus_int32            inLin               /* I  input in linear scale                                         */
158);
159
160/* Approximation of a sigmoid function */
161opus_int silk_sigm_Q15(
162    opus_int                    in_Q5               /* I                                                                */
163);
164
165/* Approximation of 2^() (exact inverse of approx log2() above) */
166/* Convert input to a linear scale */
167opus_int32 silk_log2lin(
168    const opus_int32            inLog_Q7            /* I  input on log scale                                            */
169);
170
171/* Compute number of bits to right shift the sum of squares of a vector    */
172/* of int16s to make it fit in an int32                                    */
173void silk_sum_sqr_shift(
174    opus_int32                  *energy,            /* O   Energy of x, after shifting to the right                     */
175    opus_int                    *shift,             /* O   Number of bits right shift applied to energy                 */
176    const opus_int16            *x,                 /* I   Input vector                                                 */
177    opus_int                    len                 /* I   Length of input vector                                       */
178);
179
180/* Calculates the reflection coefficients from the correlation sequence    */
181/* Faster than schur64(), but much less accurate.                          */
182/* uses SMLAWB(), requiring armv5E and higher.                             */
183opus_int32 silk_schur(                              /* O    Returns residual energy                                     */
184    opus_int16                  *rc_Q15,            /* O    reflection coefficients [order] Q15                         */
185    const opus_int32            *c,                 /* I    correlations [order+1]                                      */
186    const opus_int32            order               /* I    prediction order                                            */
187);
188
189/* Calculates the reflection coefficients from the correlation sequence    */
190/* Slower than schur(), but more accurate.                                 */
191/* Uses SMULL(), available on armv4                                        */
192opus_int32 silk_schur64(                            /* O    returns residual energy                                     */
193    opus_int32                  rc_Q16[],           /* O    Reflection coefficients [order] Q16                         */
194    const opus_int32            c[],                /* I    Correlations [order+1]                                      */
195    opus_int32                  order               /* I    Prediction order                                            */
196);
197
198/* Step up function, converts reflection coefficients to prediction coefficients */
199void silk_k2a(
200    opus_int32                  *A_Q24,             /* O    Prediction coefficients [order] Q24                         */
201    const opus_int16            *rc_Q15,            /* I    Reflection coefficients [order] Q15                         */
202    const opus_int32            order               /* I    Prediction order                                            */
203);
204
205/* Step up function, converts reflection coefficients to prediction coefficients */
206void silk_k2a_Q16(
207    opus_int32                  *A_Q24,             /* O    Prediction coefficients [order] Q24                         */
208    const opus_int32            *rc_Q16,            /* I    Reflection coefficients [order] Q16                         */
209    const opus_int32            order               /* I    Prediction order                                            */
210);
211
212/* Apply sine window to signal vector.                              */
213/* Window types:                                                    */
214/*    1 -> sine window from 0 to pi/2                               */
215/*    2 -> sine window from pi/2 to pi                              */
216/* every other sample of window is linearly interpolated, for speed */
217void silk_apply_sine_window(
218    opus_int16                  px_win[],           /* O    Pointer to windowed signal                                  */
219    const opus_int16            px[],               /* I    Pointer to input signal                                     */
220    const opus_int              win_type,           /* I    Selects a window type                                       */
221    const opus_int              length              /* I    Window length, multiple of 4                                */
222);
223
224/* Compute autocorrelation */
225void silk_autocorr(
226    opus_int32                  *results,           /* O    Result (length correlationCount)                            */
227    opus_int                    *scale,             /* O    Scaling of the correlation vector                           */
228    const opus_int16            *inputData,         /* I    Input data to correlate                                     */
229    const opus_int              inputDataSize,      /* I    Length of input                                             */
230    const opus_int              correlationCount,   /* I    Number of correlation taps to compute                       */
231    int                         arch                /* I    Run-time architecture                                       */
232);
233
234void silk_decode_pitch(
235    opus_int16                  lagIndex,           /* I                                                                */
236    opus_int8                   contourIndex,       /* O                                                                */
237    opus_int                    pitch_lags[],       /* O    4 pitch values                                              */
238    const opus_int              Fs_kHz,             /* I    sampling frequency (kHz)                                    */
239    const opus_int              nb_subfr            /* I    number of sub frames                                        */
240);
241
242opus_int silk_pitch_analysis_core(                  /* O    Voicing estimate: 0 voiced, 1 unvoiced                      */
243    const opus_int16            *frame,             /* I    Signal of length PE_FRAME_LENGTH_MS*Fs_kHz                  */
244    opus_int                    *pitch_out,         /* O    4 pitch lag values                                          */
245    opus_int16                  *lagIndex,          /* O    Lag Index                                                   */
246    opus_int8                   *contourIndex,      /* O    Pitch contour Index                                         */
247    opus_int                    *LTPCorr_Q15,       /* I/O  Normalized correlation; input: value from previous frame    */
248    opus_int                    prevLag,            /* I    Last lag of previous frame; set to zero is unvoiced         */
249    const opus_int32            search_thres1_Q16,  /* I    First stage threshold for lag candidates 0 - 1              */
250    const opus_int              search_thres2_Q13,  /* I    Final threshold for lag candidates 0 - 1                    */
251    const opus_int              Fs_kHz,             /* I    Sample frequency (kHz)                                      */
252    const opus_int              complexity,         /* I    Complexity setting, 0-2, where 2 is highest                 */
253    const opus_int              nb_subfr,           /* I    number of 5 ms subframes                                    */
254    int                         arch                /* I    Run-time architecture                                       */
255);
256
257/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients      */
258/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
259void silk_A2NLSF(
260    opus_int16                  *NLSF,              /* O    Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
261    opus_int32                  *a_Q16,             /* I/O  Monic whitening filter coefficients in Q16 [d]              */
262    const opus_int              d                   /* I    Filter order (must be even)                                 */
263);
264
265/* compute whitening filter coefficients from normalized line spectral frequencies */
266void silk_NLSF2A(
267    opus_int16                  *a_Q12,             /* O    monic whitening filter coefficients in Q12,  [ d ]          */
268    const opus_int16            *NLSF,              /* I    normalized line spectral frequencies in Q15, [ d ]          */
269    const opus_int              d                   /* I    filter order (should be even)                               */
270);
271
272void silk_insertion_sort_increasing(
273    opus_int32                  *a,                 /* I/O   Unsorted / Sorted vector                                   */
274    opus_int                    *idx,               /* O     Index vector for the sorted elements                       */
275    const opus_int              L,                  /* I     Vector length                                              */
276    const opus_int              K                   /* I     Number of correctly sorted positions                       */
277);
278
279void silk_insertion_sort_decreasing_int16(
280    opus_int16                  *a,                 /* I/O   Unsorted / Sorted vector                                   */
281    opus_int                    *idx,               /* O     Index vector for the sorted elements                       */
282    const opus_int              L,                  /* I     Vector length                                              */
283    const opus_int              K                   /* I     Number of correctly sorted positions                       */
284);
285
286void silk_insertion_sort_increasing_all_values_int16(
287     opus_int16                 *a,                 /* I/O   Unsorted / Sorted vector                                   */
288     const opus_int             L                   /* I     Vector length                                              */
289);
290
291/* NLSF stabilizer, for a single input data vector */
292void silk_NLSF_stabilize(
293          opus_int16            *NLSF_Q15,          /* I/O   Unstable/stabilized normalized LSF vector in Q15 [L]       */
294    const opus_int16            *NDeltaMin_Q15,     /* I     Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1]   */
295    const opus_int              L                   /* I     Number of NLSF parameters in the input vector              */
296);
297
298/* Laroia low complexity NLSF weights */
299void silk_NLSF_VQ_weights_laroia(
300    opus_int16                  *pNLSFW_Q_OUT,      /* O     Pointer to input vector weights [D]                        */
301    const opus_int16            *pNLSF_Q15,         /* I     Pointer to input vector         [D]                        */
302    const opus_int              D                   /* I     Input vector dimension (even)                              */
303);
304
305/* Compute reflection coefficients from input signal */
306void silk_burg_modified(
307    opus_int32                  *res_nrg,           /* O    Residual energy                                             */
308    opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
309    opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
310    const opus_int16            x[],                /* I    Input signal, length: nb_subfr * ( D + subfr_length )       */
311    const opus_int32            minInvGain_Q30,     /* I    Inverse of max prediction gain                              */
312    const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceding samples)    */
313    const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
314    const opus_int              D,                  /* I    Order                                                       */
315    int                         arch                /* I    Run-time architecture                                       */
316);
317
318/* Copy and multiply a vector by a constant */
319void silk_scale_copy_vector16(
320    opus_int16                  *data_out,
321    const opus_int16            *data_in,
322    opus_int32                  gain_Q16,           /* I    Gain in Q16                                                 */
323    const opus_int              dataSize            /* I    Length                                                      */
324);
325
326/* Some for the LTP related function requires Q26 to work.*/
327void silk_scale_vector32_Q26_lshift_18(
328    opus_int32                  *data1,             /* I/O  Q0/Q18                                                      */
329    opus_int32                  gain_Q26,           /* I    Q26                                                         */
330    opus_int                    dataSize            /* I    length                                                      */
331);
332
333/********************************************************************/
334/*                        INLINE ARM MATH                           */
335/********************************************************************/
336
337/*    return sum( inVec1[i] * inVec2[i] ) */
338opus_int32 silk_inner_prod_aligned(
339    const opus_int16 *const     inVec1,             /*    I input vector 1                                              */
340    const opus_int16 *const     inVec2,             /*    I input vector 2                                              */
341    const opus_int              len                 /*    I vector lengths                                              */
342);
343
344opus_int32 silk_inner_prod_aligned_scale(
345    const opus_int16 *const     inVec1,             /*    I input vector 1                                              */
346    const opus_int16 *const     inVec2,             /*    I input vector 2                                              */
347    const opus_int              scale,              /*    I number of bits to shift                                     */
348    const opus_int              len                 /*    I vector lengths                                              */
349);
350
351opus_int64 silk_inner_prod16_aligned_64(
352    const opus_int16            *inVec1,            /*    I input vector 1                                              */
353    const opus_int16            *inVec2,            /*    I input vector 2                                              */
354    const opus_int              len                 /*    I vector lengths                                              */
355);
356
357/********************************************************************/
358/*                                MACROS                            */
359/********************************************************************/
360
361/* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
362   left. Output is 32bit int.
363   Note: contemporary compilers recognize the C expression below and
364   compile it into a 'ror' instruction if available. No need for OPUS_INLINE ASM! */
365static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
366{
367    opus_uint32 x = (opus_uint32) a32;
368    opus_uint32 r = (opus_uint32) rot;
369    opus_uint32 m = (opus_uint32) -rot;
370    if( rot == 0 ) {
371        return a32;
372    } else if( rot < 0 ) {
373        return (opus_int32) ((x << m) | (x >> (32 - m)));
374    } else {
375        return (opus_int32) ((x << (32 - r)) | (x >> r));
376    }
377}
378
379/* Allocate opus_int16 aligned to 4-byte memory address */
380#if EMBEDDED_ARM
381#define silk_DWORD_ALIGN __attribute__((aligned(4)))
382#else
383#define silk_DWORD_ALIGN
384#endif
385
386/* Useful Macros that can be adjusted to other platforms */
387#define silk_memcpy(dest, src, size)        memcpy((dest), (src), (size))
388#define silk_memset(dest, src, size)        memset((dest), (src), (size))
389#define silk_memmove(dest, src, size)       memmove((dest), (src), (size))
390
391/* Fixed point macros */
392
393/* (a32 * b32) output have to be 32bit int */
394#define silk_MUL(a32, b32)                  ((a32) * (b32))
395
396/* (a32 * b32) output have to be 32bit uint */
397#define silk_MUL_uint(a32, b32)             silk_MUL(a32, b32)
398
399/* a32 + (b32 * c32) output have to be 32bit int */
400#define silk_MLA(a32, b32, c32)             silk_ADD32((a32),((b32) * (c32)))
401
402/* a32 + (b32 * c32) output have to be 32bit uint */
403#define silk_MLA_uint(a32, b32, c32)        silk_MLA(a32, b32, c32)
404
405/* ((a32 >> 16)  * (b32 >> 16)) output have to be 32bit int */
406#define silk_SMULTT(a32, b32)               (((a32) >> 16) * ((b32) >> 16))
407
408/* a32 + ((a32 >> 16)  * (b32 >> 16)) output have to be 32bit int */
409#define silk_SMLATT(a32, b32, c32)          silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
410
411#define silk_SMLALBB(a64, b16, c16)         silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16)))
412
413/* (a32 * b32) */
414#define silk_SMULL(a32, b32)                ((opus_int64)(a32) * /*(opus_int64)*/(b32))
415
416/* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
417   (just standard two's complement implementation-specific behaviour) */
418#define silk_ADD32_ovflw(a, b)              ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b)))
419/* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
420   (just standard two's complement implementation-specific behaviour) */
421#define silk_SUB32_ovflw(a, b)              ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
422
423/* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
424#define silk_MLA_ovflw(a32, b32, c32)       silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
425#define silk_SMLABB_ovflw(a32, b32, c32)    (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
426
427#define silk_DIV32_16(a32, b16)             ((opus_int32)((a32) / (b16)))
428#define silk_DIV32(a32, b32)                ((opus_int32)((a32) / (b32)))
429
430/* These macros enables checking for overflow in silk_API_Debug.h*/
431#define silk_ADD16(a, b)                    ((a) + (b))
432#define silk_ADD32(a, b)                    ((a) + (b))
433#define silk_ADD64(a, b)                    ((a) + (b))
434
435#define silk_SUB16(a, b)                    ((a) - (b))
436#define silk_SUB32(a, b)                    ((a) - (b))
437#define silk_SUB64(a, b)                    ((a) - (b))
438
439#define silk_SAT8(a)                        ((a) > silk_int8_MAX ? silk_int8_MAX  :       \
440                                            ((a) < silk_int8_MIN ? silk_int8_MIN  : (a)))
441#define silk_SAT16(a)                       ((a) > silk_int16_MAX ? silk_int16_MAX :      \
442                                            ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
443#define silk_SAT32(a)                       ((a) > silk_int32_MAX ? silk_int32_MAX :      \
444                                            ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
445
446#define silk_CHECK_FIT8(a)                  (a)
447#define silk_CHECK_FIT16(a)                 (a)
448#define silk_CHECK_FIT32(a)                 (a)
449
450#define silk_ADD_SAT16(a, b)                (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
451#define silk_ADD_SAT64(a, b)                ((((a) + (b)) & 0x8000000000000000LL) == 0 ?                            \
452                                            ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
453                                            ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
454
455#define silk_SUB_SAT16(a, b)                (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
456#define silk_SUB_SAT64(a, b)                ((((a)-(b)) & 0x8000000000000000LL) == 0 ?                                               \
457                                            (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
458                                            ((((a)^0x8000000000000000LL) & (b)  & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
459
460/* Saturation for positive input values */
461#define silk_POS_SAT32(a)                   ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
462
463/* Add with saturation for positive input values */
464#define silk_ADD_POS_SAT8(a, b)             ((((a)+(b)) & 0x80)                 ? silk_int8_MAX  : ((a)+(b)))
465#define silk_ADD_POS_SAT16(a, b)            ((((a)+(b)) & 0x8000)               ? silk_int16_MAX : ((a)+(b)))
466#define silk_ADD_POS_SAT32(a, b)            ((((a)+(b)) & 0x80000000)           ? silk_int32_MAX : ((a)+(b)))
467#define silk_ADD_POS_SAT64(a, b)            ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)))
468
469#define silk_LSHIFT8(a, shift)              ((opus_int8)((opus_uint8)(a)<<(shift)))         /* shift >= 0, shift < 8  */
470#define silk_LSHIFT16(a, shift)             ((opus_int16)((opus_uint16)(a)<<(shift)))       /* shift >= 0, shift < 16 */
471#define silk_LSHIFT32(a, shift)             ((opus_int32)((opus_uint32)(a)<<(shift)))       /* shift >= 0, shift < 32 */
472#define silk_LSHIFT64(a, shift)             ((opus_int64)((opus_uint64)(a)<<(shift)))       /* shift >= 0, shift < 64 */
473#define silk_LSHIFT(a, shift)               silk_LSHIFT32(a, shift)                         /* shift >= 0, shift < 32 */
474
475#define silk_RSHIFT8(a, shift)              ((a)>>(shift))                                  /* shift >= 0, shift < 8  */
476#define silk_RSHIFT16(a, shift)             ((a)>>(shift))                                  /* shift >= 0, shift < 16 */
477#define silk_RSHIFT32(a, shift)             ((a)>>(shift))                                  /* shift >= 0, shift < 32 */
478#define silk_RSHIFT64(a, shift)             ((a)>>(shift))                                  /* shift >= 0, shift < 64 */
479#define silk_RSHIFT(a, shift)               silk_RSHIFT32(a, shift)                         /* shift >= 0, shift < 32 */
480
481/* saturates before shifting */
482#define silk_LSHIFT_SAT32(a, shift)         (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
483                                                    silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
484
485#define silk_LSHIFT_ovflw(a, shift)         ((opus_int32)((opus_uint32)(a) << (shift)))     /* shift >= 0, allowed to overflow */
486#define silk_LSHIFT_uint(a, shift)          ((a) << (shift))                                /* shift >= 0 */
487#define silk_RSHIFT_uint(a, shift)          ((a) >> (shift))                                /* shift >= 0 */
488
489#define silk_ADD_LSHIFT(a, b, shift)        ((a) + silk_LSHIFT((b), (shift)))               /* shift >= 0 */
490#define silk_ADD_LSHIFT32(a, b, shift)      silk_ADD32((a), silk_LSHIFT32((b), (shift)))    /* shift >= 0 */
491#define silk_ADD_LSHIFT_uint(a, b, shift)   ((a) + silk_LSHIFT_uint((b), (shift)))          /* shift >= 0 */
492#define silk_ADD_RSHIFT(a, b, shift)        ((a) + silk_RSHIFT((b), (shift)))               /* shift >= 0 */
493#define silk_ADD_RSHIFT32(a, b, shift)      silk_ADD32((a), silk_RSHIFT32((b), (shift)))    /* shift >= 0 */
494#define silk_ADD_RSHIFT_uint(a, b, shift)   ((a) + silk_RSHIFT_uint((b), (shift)))          /* shift >= 0 */
495#define silk_SUB_LSHIFT32(a, b, shift)      silk_SUB32((a), silk_LSHIFT32((b), (shift)))    /* shift >= 0 */
496#define silk_SUB_RSHIFT32(a, b, shift)      silk_SUB32((a), silk_RSHIFT32((b), (shift)))    /* shift >= 0 */
497
498/* Requires that shift > 0 */
499#define silk_RSHIFT_ROUND(a, shift)         ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
500#define silk_RSHIFT_ROUND64(a, shift)       ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
501
502/* Number of rightshift required to fit the multiplication */
503#define silk_NSHIFT_MUL_32_32(a, b)         ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
504#define silk_NSHIFT_MUL_16_16(a, b)         ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
505
506
507#define silk_min(a, b)                      (((a) < (b)) ? (a) : (b))
508#define silk_max(a, b)                      (((a) > (b)) ? (a) : (b))
509
510/* Macro to convert floating-point constants to fixed-point */
511#define SILK_FIX_CONST( C, Q )              ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
512
513/* silk_min() versions with typecast in the function call */
514static OPUS_INLINE opus_int silk_min_int(opus_int a, opus_int b)
515{
516    return (((a) < (b)) ? (a) : (b));
517}
518static OPUS_INLINE opus_int16 silk_min_16(opus_int16 a, opus_int16 b)
519{
520    return (((a) < (b)) ? (a) : (b));
521}
522static OPUS_INLINE opus_int32 silk_min_32(opus_int32 a, opus_int32 b)
523{
524    return (((a) < (b)) ? (a) : (b));
525}
526static OPUS_INLINE opus_int64 silk_min_64(opus_int64 a, opus_int64 b)
527{
528    return (((a) < (b)) ? (a) : (b));
529}
530
531/* silk_min() versions with typecast in the function call */
532static OPUS_INLINE opus_int silk_max_int(opus_int a, opus_int b)
533{
534    return (((a) > (b)) ? (a) : (b));
535}
536static OPUS_INLINE opus_int16 silk_max_16(opus_int16 a, opus_int16 b)
537{
538    return (((a) > (b)) ? (a) : (b));
539}
540static OPUS_INLINE opus_int32 silk_max_32(opus_int32 a, opus_int32 b)
541{
542    return (((a) > (b)) ? (a) : (b));
543}
544static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
545{
546    return (((a) > (b)) ? (a) : (b));
547}
548
549#define silk_LIMIT( a, limit1, limit2)      ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
550                                                                 : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
551
552#define silk_LIMIT_int                      silk_LIMIT
553#define silk_LIMIT_16                       silk_LIMIT
554#define silk_LIMIT_32                       silk_LIMIT
555
556#define silk_abs(a)                         (((a) >  0)  ? (a) : -(a))            /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
557#define silk_abs_int(a)                     (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
558#define silk_abs_int32(a)                   (((a) ^ ((a) >> 31)) - ((a) >> 31))
559#define silk_abs_int64(a)                   (((a) >  0)  ? (a) : -(a))
560
561#define silk_sign(a)                        ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
562
563/* PSEUDO-RANDOM GENERATOR                                                          */
564/* Make sure to store the result as the seed for the next call (also in between     */
565/* frames), otherwise result won't be random at all. When only using some of the    */
566/* bits, take the most significant bits by right-shifting.                          */
567#define silk_RAND(seed)                     (silk_MLA_ovflw(907633515, (seed), 196314165))
568
569/*  Add some multiplication functions that can be easily mapped to ARM. */
570
571/*    silk_SMMUL: Signed top word multiply.
572          ARMv6        2 instruction cycles.
573          ARMv3M+      3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
574/*#define silk_SMMUL(a32, b32)                (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
575/* the following seems faster on x86 */
576#define silk_SMMUL(a32, b32)                (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
577
578#include "Inlines.h"
579#include "MacroCount.h"
580#include "MacroDebug.h"
581
582#ifdef OPUS_ARM_INLINE_ASM
583#include "arm/SigProc_FIX_armv4.h"
584#endif
585
586#ifdef OPUS_ARM_INLINE_EDSP
587#include "arm/SigProc_FIX_armv5e.h"
588#endif
589
590#ifdef  __cplusplus
591}
592#endif
593
594#endif /* SILK_SIGPROC_FIX_H */
595