1// Copyright (c) 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// This is the implementation of decompression of the proposed WOFF Ultra
6// Condensed file format.
7
8#include <cassert>
9#include <cstdlib>
10#include <vector>
11
12#include <zlib.h>
13
14#include "third_party/brotli/src/brotli/dec/decode.h"
15
16#include "opentype-sanitiser.h"
17#include "ots-memory-stream.h"
18#include "ots.h"
19#include "woff2.h"
20
21namespace {
22
23// simple glyph flags
24const int kGlyfOnCurve = 1 << 0;
25const int kGlyfXShort = 1 << 1;
26const int kGlyfYShort = 1 << 2;
27const int kGlyfRepeat = 1 << 3;
28const int kGlyfThisXIsSame = 1 << 4;
29const int kGlyfThisYIsSame = 1 << 5;
30
31// composite glyph flags
32const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0;
33const int FLAG_WE_HAVE_A_SCALE = 1 << 3;
34const int FLAG_MORE_COMPONENTS = 1 << 5;
35const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6;
36const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7;
37const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8;
38
39const size_t kSfntHeaderSize = 12;
40const size_t kSfntEntrySize = 16;
41const size_t kCheckSumAdjustmentOffset = 8;
42
43const size_t kEndPtsOfContoursOffset = 10;
44const size_t kCompositeGlyphBegin = 10;
45
46// Note that the byte order is big-endian, not the same as ots.cc
47#define TAG(a, b, c, d) ((a << 24) | (b << 16) | (c << 8) | d)
48
49const unsigned int kWoff2FlagsContinueStream = 1 << 4;
50const unsigned int kWoff2FlagsTransform = 1 << 5;
51
52// Compression type values common to both short and long formats
53const uint32_t kCompressionTypeMask = 0xf;
54const uint32_t kCompressionTypeNone = 0;
55const uint32_t kCompressionTypeGzip = 1;
56const uint32_t kCompressionTypeBrotli = 2;
57
58const uint32_t kKnownTags[] = {
59  TAG('c', 'm', 'a', 'p'),  // 0
60  TAG('h', 'e', 'a', 'd'),  // 1
61  TAG('h', 'h', 'e', 'a'),  // 2
62  TAG('h', 'm', 't', 'x'),  // 3
63  TAG('m', 'a', 'x', 'p'),  // 4
64  TAG('n', 'a', 'm', 'e'),  // 5
65  TAG('O', 'S', '/', '2'),  // 6
66  TAG('p', 'o', 's', 't'),  // 7
67  TAG('c', 'v', 't', ' '),  // 8
68  TAG('f', 'p', 'g', 'm'),  // 9
69  TAG('g', 'l', 'y', 'f'),  // 10
70  TAG('l', 'o', 'c', 'a'),  // 11
71  TAG('p', 'r', 'e', 'p'),  // 12
72  TAG('C', 'F', 'F', ' '),  // 13
73  TAG('V', 'O', 'R', 'G'),  // 14
74  TAG('E', 'B', 'D', 'T'),  // 15
75  TAG('E', 'B', 'L', 'C'),  // 16
76  TAG('g', 'a', 's', 'p'),  // 17
77  TAG('h', 'd', 'm', 'x'),  // 18
78  TAG('k', 'e', 'r', 'n'),  // 19
79  TAG('L', 'T', 'S', 'H'),  // 20
80  TAG('P', 'C', 'L', 'T'),  // 21
81  TAG('V', 'D', 'M', 'X'),  // 22
82  TAG('v', 'h', 'e', 'a'),  // 23
83  TAG('v', 'm', 't', 'x'),  // 24
84  TAG('B', 'A', 'S', 'E'),  // 25
85  TAG('G', 'D', 'E', 'F'),  // 26
86  TAG('G', 'P', 'O', 'S'),  // 27
87  TAG('G', 'S', 'U', 'B'),  // 28
88  TAG('E', 'B', 'S', 'C'),  // 29
89  TAG('J', 'S', 'T', 'F'),  // 30
90  TAG('M', 'A', 'T', 'H'),  // 31
91  TAG('C', 'B', 'D', 'T'),  // 32
92  TAG('C', 'B', 'L', 'C'),  // 33
93  TAG('C', 'O', 'L', 'R'),  // 34
94  TAG('C', 'P', 'A', 'L'),  // 35
95  TAG('S', 'V', 'G', ' '),  // 36
96  TAG('s', 'b', 'i', 'x'),  // 37
97  TAG('a', 'c', 'n', 't'),  // 38
98  TAG('a', 'v', 'a', 'r'),  // 39
99  TAG('b', 'd', 'a', 't'),  // 40
100  TAG('b', 'l', 'o', 'c'),  // 41
101  TAG('b', 's', 'l', 'n'),  // 42
102  TAG('c', 'v', 'a', 'r'),  // 43
103  TAG('f', 'd', 's', 'c'),  // 44
104  TAG('f', 'e', 'a', 't'),  // 45
105  TAG('f', 'm', 't', 'x'),  // 46
106  TAG('f', 'v', 'a', 'r'),  // 47
107  TAG('g', 'v', 'a', 'r'),  // 48
108  TAG('h', 's', 't', 'y'),  // 49
109  TAG('j', 'u', 's', 't'),  // 50
110  TAG('l', 'c', 'a', 'r'),  // 51
111  TAG('m', 'o', 'r', 't'),  // 52
112  TAG('m', 'o', 'r', 'x'),  // 53
113  TAG('o', 'p', 'b', 'd'),  // 54
114  TAG('p', 'r', 'o', 'p'),  // 55
115  TAG('t', 'r', 'a', 'k'),  // 56
116  TAG('Z', 'a', 'p', 'f'),  // 57
117  TAG('S', 'i', 'l', 'f'),  // 58
118  TAG('G', 'l', 'a', 't'),  // 59
119  TAG('G', 'l', 'o', 'c'),  // 60
120  TAG('F', 'e', 'a', 't'),  // 61
121  TAG('S', 'i', 'l', 'l'),  // 62
122};
123
124struct Point {
125  int x;
126  int y;
127  bool on_curve;
128};
129
130struct Table {
131  uint32_t tag;
132  uint32_t flags;
133  uint32_t src_offset;
134  uint32_t src_length;
135
136  uint32_t transform_length;
137
138  uint32_t dst_offset;
139  uint32_t dst_length;
140
141  Table()
142      : tag(0),
143        flags(0),
144        src_offset(0),
145        src_length(0),
146        transform_length(0),
147        dst_offset(0),
148        dst_length(0) {}
149};
150
151// Based on section 6.1.1 of MicroType Express draft spec
152bool Read255UShort(ots::Buffer* buf, unsigned int* value) {
153  static const int kWordCode = 253;
154  static const int kOneMoreByteCode2 = 254;
155  static const int kOneMoreByteCode1 = 255;
156  static const int kLowestUCode = 253;
157  uint8_t code = 0;
158  if (!buf->ReadU8(&code)) {
159    return OTS_FAILURE();
160  }
161  if (code == kWordCode) {
162    uint16_t result = 0;
163    if (!buf->ReadU16(&result)) {
164      return OTS_FAILURE();
165    }
166    *value = result;
167    return true;
168  } else if (code == kOneMoreByteCode1) {
169    uint8_t result = 0;
170    if (!buf->ReadU8(&result)) {
171      return OTS_FAILURE();
172    }
173    *value = result + kLowestUCode;
174    return true;
175  } else if (code == kOneMoreByteCode2) {
176    uint8_t result = 0;
177    if (!buf->ReadU8(&result)) {
178      return OTS_FAILURE();
179    }
180    *value = result + kLowestUCode * 2;
181    return true;
182  } else {
183    *value = code;
184    return true;
185  }
186}
187
188bool ReadBase128(ots::Buffer* buf, uint32_t* value) {
189  uint32_t result = 0;
190  for (size_t i = 0; i < 5; ++i) {
191    uint8_t code = 0;
192    if (!buf->ReadU8(&code)) {
193      return OTS_FAILURE();
194    }
195    // If any of the top seven bits are set then we're about to overflow.
196    if (result & 0xe0000000U) {
197      return OTS_FAILURE();
198    }
199    result = (result << 7) | (code & 0x7f);
200    if ((code & 0x80) == 0) {
201      *value = result;
202      return true;
203    }
204  }
205  // Make sure not to exceed the size bound
206  return OTS_FAILURE();
207}
208
209// Caller must ensure that buffer overrun won't happen.
210// TODO(ksakamaoto): Consider creating 'writer' version of the Buffer class
211// and use it across the code.
212size_t StoreU32(uint8_t* dst, size_t offset, uint32_t x) {
213  dst[offset] = x >> 24;
214  dst[offset + 1] = x >> 16;
215  dst[offset + 2] = x >> 8;
216  dst[offset + 3] = x;
217  return offset + 4;
218}
219
220size_t Store16(uint8_t* dst, size_t offset, int x) {
221  dst[offset] = x >> 8;
222  dst[offset + 1] = x;
223  return offset + 2;
224}
225
226int WithSign(int flag, int baseval) {
227  assert(0 <= baseval && baseval < 65536);
228  return (flag & 1) ? baseval : -baseval;
229}
230
231bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size,
232    unsigned int n_points, std::vector<Point>* result,
233    size_t* in_bytes_consumed) {
234  int x = 0;
235  int y = 0;
236
237  // Early return if |in| buffer is too small. Each point consumes 1-4 bytes.
238  if (n_points > in_size) {
239    return OTS_FAILURE();
240  }
241  unsigned int triplet_index = 0;
242
243  for (unsigned int i = 0; i < n_points; ++i) {
244    uint8_t flag = flags_in[i];
245    bool on_curve = !(flag >> 7);
246    flag &= 0x7f;
247    unsigned int n_data_bytes;
248    if (flag < 84) {
249      n_data_bytes = 1;
250    } else if (flag < 120) {
251      n_data_bytes = 2;
252    } else if (flag < 124) {
253      n_data_bytes = 3;
254    } else {
255      n_data_bytes = 4;
256    }
257    if (triplet_index + n_data_bytes > in_size ||
258        triplet_index + n_data_bytes < triplet_index) {
259      return OTS_FAILURE();
260    }
261    int dx, dy;
262    if (flag < 10) {
263      dx = 0;
264      dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]);
265    } else if (flag < 20) {
266      dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]);
267      dy = 0;
268    } else if (flag < 84) {
269      int b0 = flag - 20;
270      int b1 = in[triplet_index];
271      dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4));
272      dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f));
273    } else if (flag < 120) {
274      int b0 = flag - 84;
275      dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]);
276      dy = WithSign(flag >> 1,
277                    1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]);
278    } else if (flag < 124) {
279      int b2 = in[triplet_index + 1];
280      dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4));
281      dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]);
282    } else {
283      dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]);
284      dy = WithSign(flag >> 1,
285          (in[triplet_index + 2] << 8) + in[triplet_index + 3]);
286    }
287    triplet_index += n_data_bytes;
288    // Possible overflow but coordinate values are not security sensitive
289    x += dx;
290    y += dy;
291    result->push_back(Point());
292    Point& back = result->back();
293    back.x = x;
294    back.y = y;
295    back.on_curve = on_curve;
296  }
297  *in_bytes_consumed = triplet_index;
298  return true;
299}
300
301// This function stores just the point data. On entry, dst points to the
302// beginning of a simple glyph. Returns true on success.
303bool StorePoints(const std::vector<Point>& points,
304    unsigned int n_contours, unsigned int instruction_length,
305    uint8_t* dst, size_t dst_size, size_t* glyph_size) {
306  // I believe that n_contours < 65536, in which case this is safe. However, a
307  // comment and/or an assert would be good.
308  unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 +
309    instruction_length;
310  int last_flag = -1;
311  int repeat_count = 0;
312  int last_x = 0;
313  int last_y = 0;
314  unsigned int x_bytes = 0;
315  unsigned int y_bytes = 0;
316
317  for (size_t i = 0; i < points.size(); ++i) {
318    const Point& point = points.at(i);
319    int flag = point.on_curve ? kGlyfOnCurve : 0;
320    int dx = point.x - last_x;
321    int dy = point.y - last_y;
322    if (dx == 0) {
323      flag |= kGlyfThisXIsSame;
324    } else if (dx > -256 && dx < 256) {
325      flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0);
326      x_bytes += 1;
327    } else {
328      x_bytes += 2;
329    }
330    if (dy == 0) {
331      flag |= kGlyfThisYIsSame;
332    } else if (dy > -256 && dy < 256) {
333      flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0);
334      y_bytes += 1;
335    } else {
336      y_bytes += 2;
337    }
338
339    if (flag == last_flag && repeat_count != 255) {
340      dst[flag_offset - 1] |= kGlyfRepeat;
341      repeat_count++;
342    } else {
343      if (repeat_count != 0) {
344        if (flag_offset >= dst_size) {
345          return OTS_FAILURE();
346        }
347        dst[flag_offset++] = repeat_count;
348      }
349      if (flag_offset >= dst_size) {
350        return OTS_FAILURE();
351      }
352      dst[flag_offset++] = flag;
353      repeat_count = 0;
354    }
355    last_x = point.x;
356    last_y = point.y;
357    last_flag = flag;
358  }
359
360  if (repeat_count != 0) {
361    if (flag_offset >= dst_size) {
362      return OTS_FAILURE();
363    }
364    dst[flag_offset++] = repeat_count;
365  }
366  unsigned int xy_bytes = x_bytes + y_bytes;
367  if (xy_bytes < x_bytes ||
368      flag_offset + xy_bytes < flag_offset ||
369      flag_offset + xy_bytes > dst_size) {
370    return OTS_FAILURE();
371  }
372
373  int x_offset = flag_offset;
374  int y_offset = flag_offset + x_bytes;
375  last_x = 0;
376  last_y = 0;
377  for (size_t i = 0; i < points.size(); ++i) {
378    int dx = points.at(i).x - last_x;
379    if (dx == 0) {
380      // pass
381    } else if (dx > -256 && dx < 256) {
382      dst[x_offset++] = std::abs(dx);
383    } else {
384      // will always fit for valid input, but overflow is harmless
385      x_offset = Store16(dst, x_offset, dx);
386    }
387    last_x += dx;
388    int dy = points.at(i).y - last_y;
389    if (dy == 0) {
390      // pass
391    } else if (dy > -256 && dy < 256) {
392      dst[y_offset++] = std::abs(dy);
393    } else {
394      y_offset = Store16(dst, y_offset, dy);
395    }
396    last_y += dy;
397  }
398  *glyph_size = y_offset;
399  return true;
400}
401
402// Compute the bounding box of the coordinates, and store into a glyf buffer.
403// A precondition is that there are at least 10 bytes available.
404void ComputeBbox(const std::vector<Point>& points, uint8_t* dst) {
405  int x_min = 0;
406  int y_min = 0;
407  int x_max = 0;
408  int y_max = 0;
409
410  for (size_t i = 0; i < points.size(); ++i) {
411    int x = points.at(i).x;
412    int y = points.at(i).y;
413    if (i == 0 || x < x_min) x_min = x;
414    if (i == 0 || x > x_max) x_max = x;
415    if (i == 0 || y < y_min) y_min = y;
416    if (i == 0 || y > y_max) y_max = y;
417  }
418  size_t offset = 2;
419  offset = Store16(dst, offset, x_min);
420  offset = Store16(dst, offset, y_min);
421  offset = Store16(dst, offset, x_max);
422  offset = Store16(dst, offset, y_max);
423}
424
425// Process entire bbox stream. This is done as a separate pass to allow for
426// composite bbox computations (an optional more aggressive transform).
427bool ProcessBboxStream(ots::Buffer* bbox_stream, unsigned int n_glyphs,
428    const std::vector<uint32_t>& loca_values, uint8_t* glyf_buf,
429    size_t glyf_buf_length) {
430  const uint8_t* buf = bbox_stream->buffer();
431  if (n_glyphs >= 65536 || loca_values.size() != n_glyphs + 1) {
432    return OTS_FAILURE();
433  }
434  // Safe because n_glyphs is bounded
435  unsigned int bitmap_length = ((n_glyphs + 31) >> 5) << 2;
436  if (!bbox_stream->Skip(bitmap_length)) {
437    return OTS_FAILURE();
438  }
439  for (unsigned int i = 0; i < n_glyphs; ++i) {
440    if (buf[i >> 3] & (0x80 >> (i & 7))) {
441      uint32_t loca_offset = loca_values.at(i);
442      if (loca_values.at(i + 1) - loca_offset < kEndPtsOfContoursOffset) {
443        return OTS_FAILURE();
444      }
445      if (glyf_buf_length < 2 + 10 ||
446          loca_offset > glyf_buf_length - 2 - 10) {
447        return OTS_FAILURE();
448      }
449      if (!bbox_stream->Read(glyf_buf + loca_offset + 2, 8)) {
450        return OTS_FAILURE();
451      }
452    }
453  }
454  return true;
455}
456
457bool ProcessComposite(ots::Buffer* composite_stream, uint8_t* dst,
458    size_t dst_size, size_t* glyph_size, bool* have_instructions) {
459  size_t start_offset = composite_stream->offset();
460  bool we_have_instructions = false;
461
462  uint16_t flags = FLAG_MORE_COMPONENTS;
463  while (flags & FLAG_MORE_COMPONENTS) {
464    if (!composite_stream->ReadU16(&flags)) {
465      return OTS_FAILURE();
466    }
467    we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0;
468    size_t arg_size = 2;  // glyph index
469    if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) {
470      arg_size += 4;
471    } else {
472      arg_size += 2;
473    }
474    if (flags & FLAG_WE_HAVE_A_SCALE) {
475      arg_size += 2;
476    } else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) {
477      arg_size += 4;
478    } else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) {
479      arg_size += 8;
480    }
481    if (!composite_stream->Skip(arg_size)) {
482      return OTS_FAILURE();
483    }
484  }
485  size_t composite_glyph_size = composite_stream->offset() - start_offset;
486  if (composite_glyph_size + kCompositeGlyphBegin > dst_size) {
487    return OTS_FAILURE();
488  }
489  Store16(dst, 0, 0xffff);  // nContours = -1 for composite glyph
490  std::memcpy(dst + kCompositeGlyphBegin,
491      composite_stream->buffer() + start_offset,
492      composite_glyph_size);
493  *glyph_size = kCompositeGlyphBegin + composite_glyph_size;
494  *have_instructions = we_have_instructions;
495  return true;
496}
497
498// Build TrueType loca table
499bool StoreLoca(const std::vector<uint32_t>& loca_values, int index_format,
500    uint8_t* dst, size_t dst_size) {
501  const uint64_t loca_size = loca_values.size();
502  const uint64_t offset_size = index_format ? 4 : 2;
503  if ((loca_size << 2) >> 2 != loca_size) {
504    return OTS_FAILURE();
505  }
506  // No integer overflow here (loca_size <= 2^16).
507  if (offset_size * loca_size > dst_size) {
508    return OTS_FAILURE();
509  }
510  size_t offset = 0;
511  for (size_t i = 0; i < loca_values.size(); ++i) {
512    uint32_t value = loca_values.at(i);
513    if (index_format) {
514      offset = StoreU32(dst, offset, value);
515    } else {
516      offset = Store16(dst, offset, value >> 1);
517    }
518  }
519  return true;
520}
521
522// Reconstruct entire glyf table based on transformed original
523bool ReconstructGlyf(const uint8_t* data, size_t data_size,
524    uint8_t* dst, size_t dst_size,
525    uint8_t* loca_buf, size_t loca_size) {
526  static const int kNumSubStreams = 7;
527  ots::Buffer file(data, data_size);
528  uint32_t version;
529  std::vector<std::pair<const uint8_t*, size_t> > substreams(kNumSubStreams);
530
531  if (!file.ReadU32(&version)) {
532    return OTS_FAILURE();
533  }
534  uint16_t num_glyphs;
535  uint16_t index_format;
536  if (!file.ReadU16(&num_glyphs) ||
537      !file.ReadU16(&index_format)) {
538    return OTS_FAILURE();
539  }
540  unsigned int offset = (2 + kNumSubStreams) * 4;
541  if (offset > data_size) {
542    return OTS_FAILURE();
543  }
544  // Invariant from here on: data_size >= offset
545  for (int i = 0; i < kNumSubStreams; ++i) {
546    uint32_t substream_size;
547    if (!file.ReadU32(&substream_size)) {
548      return OTS_FAILURE();
549    }
550    if (substream_size > data_size - offset) {
551      return OTS_FAILURE();
552    }
553    substreams.at(i) = std::make_pair(data + offset, substream_size);
554    offset += substream_size;
555  }
556  ots::Buffer n_contour_stream(substreams.at(0).first, substreams.at(0).second);
557  ots::Buffer n_points_stream(substreams.at(1).first, substreams.at(1).second);
558  ots::Buffer flag_stream(substreams.at(2).first, substreams.at(2).second);
559  ots::Buffer glyph_stream(substreams.at(3).first, substreams.at(3).second);
560  ots::Buffer composite_stream(substreams.at(4).first, substreams.at(4).second);
561  ots::Buffer bbox_stream(substreams.at(5).first, substreams.at(5).second);
562  ots::Buffer instruction_stream(substreams.at(6).first,
563                                 substreams.at(6).second);
564
565  std::vector<uint32_t> loca_values;
566  loca_values.reserve(num_glyphs + 1);
567  std::vector<unsigned int> n_points_vec;
568  std::vector<Point> points;
569  uint32_t loca_offset = 0;
570  for (unsigned int i = 0; i < num_glyphs; ++i) {
571    size_t glyph_size = 0;
572    uint16_t n_contours = 0;
573    if (!n_contour_stream.ReadU16(&n_contours)) {
574      return OTS_FAILURE();
575    }
576    uint8_t* glyf_dst = dst + loca_offset;
577    size_t glyf_dst_size = dst_size - loca_offset;
578    if (n_contours == 0xffff) {
579      // composite glyph
580      bool have_instructions = false;
581      unsigned int instruction_size = 0;
582      if (!ProcessComposite(&composite_stream, glyf_dst, glyf_dst_size,
583            &glyph_size, &have_instructions)) {
584        return OTS_FAILURE();
585      }
586      if (have_instructions) {
587        if (!Read255UShort(&glyph_stream, &instruction_size)) {
588          return OTS_FAILURE();
589        }
590        // No integer overflow here (instruction_size < 2^16).
591        if (instruction_size + 2 > glyf_dst_size - glyph_size) {
592          return OTS_FAILURE();
593        }
594        Store16(glyf_dst, glyph_size, instruction_size);
595        if (!instruction_stream.Read(glyf_dst + glyph_size + 2,
596              instruction_size)) {
597          return OTS_FAILURE();
598        }
599        glyph_size += instruction_size + 2;
600      }
601    } else if (n_contours > 0) {
602      // simple glyph
603      n_points_vec.clear();
604      points.clear();
605      unsigned int total_n_points = 0;
606      unsigned int n_points_contour;
607      for (unsigned int j = 0; j < n_contours; ++j) {
608        if (!Read255UShort(&n_points_stream, &n_points_contour)) {
609          return OTS_FAILURE();
610        }
611        n_points_vec.push_back(n_points_contour);
612        if (total_n_points + n_points_contour < total_n_points) {
613          return OTS_FAILURE();
614        }
615        total_n_points += n_points_contour;
616      }
617      unsigned int flag_size = total_n_points;
618      if (flag_size > flag_stream.length() - flag_stream.offset()) {
619        return OTS_FAILURE();
620      }
621      const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset();
622      const uint8_t* triplet_buf = glyph_stream.buffer() +
623        glyph_stream.offset();
624      size_t triplet_size = glyph_stream.length() - glyph_stream.offset();
625      size_t triplet_bytes_consumed = 0;
626      if (!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points,
627            &points, &triplet_bytes_consumed)) {
628        return OTS_FAILURE();
629      }
630      const uint32_t header_and_endpts_contours_size =
631          kEndPtsOfContoursOffset + 2 * n_contours;
632      if (glyf_dst_size < header_and_endpts_contours_size) {
633        return OTS_FAILURE();
634      }
635      Store16(glyf_dst, 0, n_contours);
636      ComputeBbox(points, glyf_dst);
637      size_t offset = kEndPtsOfContoursOffset;
638      int end_point = -1;
639      for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) {
640        end_point += n_points_vec.at(contour_ix);
641        if (end_point >= 65536) {
642          return OTS_FAILURE();
643        }
644        offset = Store16(glyf_dst, offset, end_point);
645      }
646      if (!flag_stream.Skip(flag_size)) {
647        return OTS_FAILURE();
648      }
649      if (!glyph_stream.Skip(triplet_bytes_consumed)) {
650        return OTS_FAILURE();
651      }
652      unsigned int instruction_size;
653      if (!Read255UShort(&glyph_stream, &instruction_size)) {
654        return OTS_FAILURE();
655      }
656      // No integer overflow here (instruction_size < 2^16).
657      if (glyf_dst_size - header_and_endpts_contours_size <
658          instruction_size + 2) {
659        return OTS_FAILURE();
660      }
661      uint8_t* instruction_dst = glyf_dst + header_and_endpts_contours_size;
662      Store16(instruction_dst, 0, instruction_size);
663      if (!instruction_stream.Read(instruction_dst + 2, instruction_size)) {
664        return OTS_FAILURE();
665      }
666      if (!StorePoints(points, n_contours, instruction_size,
667            glyf_dst, glyf_dst_size, &glyph_size)) {
668        return OTS_FAILURE();
669      }
670    } else {
671      glyph_size = 0;
672    }
673    loca_values.push_back(loca_offset);
674    if (glyph_size + 3 < glyph_size) {
675      return OTS_FAILURE();
676    }
677    glyph_size = ots::Round2(glyph_size);
678    if (glyph_size > dst_size - loca_offset) {
679      // This shouldn't happen, but this test defensively maintains the
680      // invariant that loca_offset <= dst_size.
681      return OTS_FAILURE();
682    }
683    loca_offset += glyph_size;
684  }
685  loca_values.push_back(loca_offset);
686  assert(loca_values.size() == static_cast<size_t>(num_glyphs + 1));
687  if (!ProcessBboxStream(&bbox_stream, num_glyphs, loca_values,
688          dst, dst_size)) {
689    return OTS_FAILURE();
690  }
691  return StoreLoca(loca_values, index_format, loca_buf, loca_size);
692}
693
694// This is linear search, but could be changed to binary because we
695// do have a guarantee that the tables are sorted by tag. But the total
696// cpu time is expected to be very small in any case.
697const Table* FindTable(const std::vector<Table>& tables, uint32_t tag) {
698  size_t n_tables = tables.size();
699  for (size_t i = 0; i < n_tables; ++i) {
700    if (tables.at(i).tag == tag) {
701      return &tables.at(i);
702    }
703  }
704  return NULL;
705}
706
707bool ReconstructTransformed(const std::vector<Table>& tables, uint32_t tag,
708    const uint8_t* transformed_buf, size_t transformed_size,
709    uint8_t* dst, size_t dst_length) {
710  if (tag == TAG('g', 'l', 'y', 'f')) {
711    const Table* glyf_table = FindTable(tables, tag);
712    const Table* loca_table = FindTable(tables, TAG('l', 'o', 'c', 'a'));
713    if (glyf_table == NULL || loca_table == NULL) {
714      return OTS_FAILURE();
715    }
716    if (static_cast<uint64_t>(glyf_table->dst_offset) + glyf_table->dst_length >
717        dst_length) {
718      return OTS_FAILURE();
719    }
720    if (static_cast<uint64_t>(loca_table->dst_offset) + loca_table->dst_length >
721        dst_length) {
722      return OTS_FAILURE();
723    }
724    return ReconstructGlyf(transformed_buf, transformed_size,
725        dst + glyf_table->dst_offset, glyf_table->dst_length,
726        dst + loca_table->dst_offset, loca_table->dst_length);
727  } else if (tag == TAG('l', 'o', 'c', 'a')) {
728    // processing was already done by glyf table, but validate
729    if (!FindTable(tables, TAG('g', 'l', 'y', 'f'))) {
730      return OTS_FAILURE();
731    }
732  } else {
733    // transform for the tag is not known
734    return OTS_FAILURE();
735  }
736  return true;
737}
738
739uint32_t ComputeChecksum(const uint8_t* buf, size_t size) {
740  uint32_t checksum = 0;
741  for (size_t i = 0; i < size; i += 4) {
742    // We assume the addition is mod 2^32, which is valid because unsigned
743    checksum += (buf[i] << 24) | (buf[i + 1] << 16) |
744      (buf[i + 2] << 8) | buf[i + 3];
745  }
746  return checksum;
747}
748
749bool FixChecksums(const std::vector<Table>& tables, uint8_t* dst) {
750  const Table* head_table = FindTable(tables, TAG('h', 'e', 'a', 'd'));
751  if (head_table == NULL ||
752      head_table->dst_length < kCheckSumAdjustmentOffset + 4) {
753    return OTS_FAILURE();
754  }
755  size_t adjustment_offset = head_table->dst_offset + kCheckSumAdjustmentOffset;
756  if (adjustment_offset < head_table->dst_offset) {
757    return OTS_FAILURE();
758  }
759  StoreU32(dst, adjustment_offset, 0);
760  size_t n_tables = tables.size();
761  uint32_t file_checksum = 0;
762  for (size_t i = 0; i < n_tables; ++i) {
763    const Table* table = &tables.at(i);
764    size_t table_length = table->dst_length;
765    uint8_t* table_data = dst + table->dst_offset;
766    uint32_t checksum = ComputeChecksum(table_data, table_length);
767    StoreU32(dst, kSfntHeaderSize + i * kSfntEntrySize + 4, checksum);
768    file_checksum += checksum;  // The addition is mod 2^32
769  }
770  file_checksum += ComputeChecksum(dst,
771      kSfntHeaderSize + kSfntEntrySize * n_tables);
772  uint32_t checksum_adjustment = 0xb1b0afba - file_checksum;
773  StoreU32(dst, adjustment_offset, checksum_adjustment);
774  return true;
775}
776
777bool Woff2Uncompress(uint8_t* dst_buf, size_t dst_size,
778    const uint8_t* src_buf, size_t src_size, uint32_t compression_type) {
779  if (compression_type == kCompressionTypeGzip) {
780    uLongf uncompressed_length = dst_size;
781    int r = uncompress(reinterpret_cast<Bytef *>(dst_buf), &uncompressed_length,
782        src_buf, src_size);
783    if (r != Z_OK || uncompressed_length != dst_size) {
784      return OTS_FAILURE();
785    }
786    return true;
787  } else if (compression_type == kCompressionTypeBrotli) {
788    size_t uncompressed_size = dst_size;
789    int ok = BrotliDecompressBuffer(src_size, src_buf,
790                                    &uncompressed_size, dst_buf);
791    if (!ok || uncompressed_size != dst_size) {
792      return OTS_FAILURE();
793    }
794    return true;
795  }
796  // Unknown compression type
797  return OTS_FAILURE();
798}
799
800bool ReadShortDirectory(ots::Buffer* file, std::vector<Table>* tables,
801    size_t num_tables) {
802  for (size_t i = 0; i < num_tables; ++i) {
803    Table* table = &tables->at(i);
804    uint8_t flag_byte;
805    if (!file->ReadU8(&flag_byte)) {
806      return OTS_FAILURE();
807    }
808    uint32_t tag;
809    if ((flag_byte & 0x3f) == 0x3f) {
810      if (!file->ReadU32(&tag)) {
811        return OTS_FAILURE();
812      }
813    } else {
814      tag = kKnownTags[flag_byte & 0x3f];
815    }
816    // Bits 6 and 7 are reserved and must be 0.
817    if ((flag_byte & 0xc0) != 0) {
818      return OTS_FAILURE();
819    }
820    uint32_t flags = kCompressionTypeBrotli;
821    if (i > 0) {
822      flags |= kWoff2FlagsContinueStream;
823    }
824    // Always transform the glyf and loca tables
825    if (tag == TAG('g', 'l', 'y', 'f') ||
826        tag == TAG('l', 'o', 'c', 'a')) {
827      flags |= kWoff2FlagsTransform;
828    }
829    uint32_t dst_length;
830    if (!ReadBase128(file, &dst_length)) {
831      return OTS_FAILURE();
832    }
833    uint32_t transform_length = dst_length;
834    if ((flags & kWoff2FlagsTransform) != 0) {
835      if (!ReadBase128(file, &transform_length)) {
836        return OTS_FAILURE();
837      }
838    }
839    // Disallow huge numbers (> 1GB) for sanity.
840    if (transform_length > 1024 * 1024 * 1024 ||
841        dst_length > 1024 * 1024 * 1024) {
842      return OTS_FAILURE();
843    }
844    table->tag = tag;
845    table->flags = flags;
846    table->transform_length = transform_length;
847    table->dst_length = dst_length;
848  }
849  return true;
850}
851
852}  // namespace
853
854namespace ots {
855
856size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) {
857  ots::Buffer file(data, length);
858  uint32_t total_length;
859
860  if (!file.Skip(16) ||
861      !file.ReadU32(&total_length)) {
862    return 0;
863  }
864  return total_length;
865}
866
867bool ConvertWOFF2ToTTF(uint8_t* result, size_t result_length,
868                       const uint8_t* data, size_t length) {
869  static const uint32_t kWoff2Signature = 0x774f4632;  // "wOF2"
870  ots::Buffer file(data, length);
871
872  uint32_t signature;
873  uint32_t flavor;
874  if (!file.ReadU32(&signature) || signature != kWoff2Signature ||
875      !file.ReadU32(&flavor)) {
876    return OTS_FAILURE();
877  }
878
879  if (!IsValidVersionTag(ntohl(flavor))) {
880    return OTS_FAILURE();
881  }
882
883  uint32_t reported_length;
884  if (!file.ReadU32(&reported_length) || length != reported_length) {
885    return OTS_FAILURE();
886  }
887  uint16_t num_tables;
888  if (!file.ReadU16(&num_tables) || !num_tables) {
889    return OTS_FAILURE();
890  }
891  // We don't care about these fields of the header:
892  //   uint16_t reserved
893  //   uint32_t total_sfnt_size
894  if (!file.Skip(6)) {
895    return OTS_FAILURE();
896  }
897  uint32_t compressed_length;
898  if (!file.ReadU32(&compressed_length)) {
899    return OTS_FAILURE();
900  }
901  // We don't care about these fields of the header:
902  //   uint16_t major_version, minor_version
903  //   uint32_t meta_offset, meta_length, meta_orig_length
904  //   uint32_t priv_offset, priv_length
905  if (!file.Skip(24)) {
906    return OTS_FAILURE();
907  }
908  std::vector<Table> tables(num_tables);
909  if (!ReadShortDirectory(&file, &tables, num_tables)) {
910    return OTS_FAILURE();
911  }
912  uint64_t src_offset = file.offset();
913  uint64_t dst_offset = kSfntHeaderSize +
914      kSfntEntrySize * static_cast<uint64_t>(num_tables);
915  uint64_t uncompressed_sum = 0;
916  for (uint16_t i = 0; i < num_tables; ++i) {
917    Table* table = &tables.at(i);
918    table->src_offset = src_offset;
919    table->src_length = (i == 0 ? compressed_length : 0);
920    src_offset += table->src_length;
921    if (src_offset > std::numeric_limits<uint32_t>::max()) {
922      return OTS_FAILURE();
923    }
924    src_offset = ots::Round4(src_offset);
925    table->dst_offset = dst_offset;
926    dst_offset += table->dst_length;
927    if (dst_offset > std::numeric_limits<uint32_t>::max()) {
928      return OTS_FAILURE();
929    }
930    dst_offset = ots::Round4(dst_offset);
931    if ((table->flags & kCompressionTypeMask) != kCompressionTypeNone) {
932      uncompressed_sum += table->src_length;
933      if (uncompressed_sum > std::numeric_limits<uint32_t>::max()) {
934        return OTS_FAILURE();
935      }
936    }
937  }
938  // Enforce same 30M limit on uncompressed tables as OTS
939  if (uncompressed_sum > 30 * 1024 * 1024) {
940    return OTS_FAILURE();
941  }
942  if (src_offset > length || dst_offset > result_length) {
943    return OTS_FAILURE();
944  }
945
946  const uint32_t sfnt_header_and_table_directory_size = 12 + 16 * num_tables;
947  if (sfnt_header_and_table_directory_size > result_length) {
948    return OTS_FAILURE();
949  }
950
951  // Start building the font
952  size_t offset = 0;
953  offset = StoreU32(result, offset, flavor);
954  offset = Store16(result, offset, num_tables);
955  unsigned max_pow2 = 0;
956  while (1u << (max_pow2 + 1) <= num_tables) {
957    max_pow2++;
958  }
959  const uint16_t output_search_range = (1u << max_pow2) << 4;
960  offset = Store16(result, offset, output_search_range);
961  offset = Store16(result, offset, max_pow2);
962  offset = Store16(result, offset, (num_tables << 4) - output_search_range);
963  for (uint16_t i = 0; i < num_tables; ++i) {
964    const Table* table = &tables.at(i);
965    offset = StoreU32(result, offset, table->tag);
966    offset = StoreU32(result, offset, 0);  // checksum, to fill in later
967    offset = StoreU32(result, offset, table->dst_offset);
968    offset = StoreU32(result, offset, table->dst_length);
969  }
970  std::vector<uint8_t> uncompressed_buf;
971  bool continue_valid = false;
972  const uint8_t* transform_buf = NULL;
973  for (uint16_t i = 0; i < num_tables; ++i) {
974    const Table* table = &tables.at(i);
975    uint32_t flags = table->flags;
976    const uint8_t* src_buf = data + table->src_offset;
977    uint32_t compression_type = flags & kCompressionTypeMask;
978    size_t transform_length = table->transform_length;
979    if ((flags & kWoff2FlagsContinueStream) != 0) {
980      if (!continue_valid) {
981        return OTS_FAILURE();
982      }
983    } else if (compression_type == kCompressionTypeNone) {
984      if (transform_length != table->src_length) {
985        return OTS_FAILURE();
986      }
987      transform_buf = src_buf;
988      continue_valid = false;
989    } else if ((flags & kWoff2FlagsContinueStream) == 0) {
990      uint64_t total_size = transform_length;
991      for (uint16_t j = i + 1; j < num_tables; ++j) {
992        if ((tables.at(j).flags & kWoff2FlagsContinueStream) == 0) {
993          break;
994        }
995        total_size += tables.at(j).transform_length;
996        if (total_size > std::numeric_limits<uint32_t>::max()) {
997          return OTS_FAILURE();
998        }
999      }
1000      // Enforce same 30M limit on uncompressed tables as OTS
1001      if (total_size > 30 * 1024 * 1024) {
1002        return OTS_FAILURE();
1003      }
1004      uncompressed_buf.resize(total_size);
1005      if (!Woff2Uncompress(&uncompressed_buf[0], total_size,
1006          src_buf, compressed_length, compression_type)) {
1007        return OTS_FAILURE();
1008      }
1009      transform_buf = &uncompressed_buf[0];
1010      continue_valid = true;
1011    } else {
1012      return OTS_FAILURE();
1013    }
1014
1015    if ((flags & kWoff2FlagsTransform) == 0) {
1016      if (transform_length != table->dst_length) {
1017        return OTS_FAILURE();
1018      }
1019      if (static_cast<uint64_t>(table->dst_offset) + transform_length >
1020          result_length) {
1021        return OTS_FAILURE();
1022      }
1023      std::memcpy(result + table->dst_offset, transform_buf,
1024          transform_length);
1025    } else {
1026      if (!ReconstructTransformed(tables, table->tag,
1027            transform_buf, transform_length, result, result_length)) {
1028        return OTS_FAILURE();
1029      }
1030    }
1031    if (continue_valid) {
1032      transform_buf += transform_length;
1033      if (transform_buf > &uncompressed_buf[0] + uncompressed_buf.size()) {
1034        return OTS_FAILURE();
1035      }
1036    }
1037  }
1038
1039  return FixChecksums(tables, result);
1040}
1041
1042}  // namespace ots
1043