1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// http://code.google.com/p/protobuf/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//  Based on original Protocol Buffers design by
33//  Sanjay Ghemawat, Jeff Dean, and others.
34//
35// This header is logically internal, but is made public because it is used
36// from protocol-compiler-generated code, which may reside in other components.
37
38#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
39#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
40
41#include <vector>
42#include <map>
43#include <utility>
44#include <string>
45
46
47#include <google/protobuf/stubs/common.h>
48
49namespace google {
50
51namespace protobuf {
52  class Descriptor;                                    // descriptor.h
53  class FieldDescriptor;                               // descriptor.h
54  class DescriptorPool;                                // descriptor.h
55  class MessageLite;                                   // message_lite.h
56  class Message;                                       // message.h
57  class MessageFactory;                                // message.h
58  class UnknownFieldSet;                               // unknown_field_set.h
59  namespace io {
60    class CodedInputStream;                              // coded_stream.h
61    class CodedOutputStream;                             // coded_stream.h
62  }
63  namespace internal {
64    class FieldSkipper;                                  // wire_format_lite.h
65    class RepeatedPtrFieldBase;                          // repeated_field.h
66  }
67  template <typename Element> class RepeatedField;     // repeated_field.h
68  template <typename Element> class RepeatedPtrField;  // repeated_field.h
69}
70
71namespace protobuf {
72namespace internal {
73
74// Used to store values of type WireFormatLite::FieldType without having to
75// #include wire_format_lite.h.  Also, ensures that we use only one byte to
76// store these values, which is important to keep the layout of
77// ExtensionSet::Extension small.
78typedef uint8 FieldType;
79
80// A function which, given an integer value, returns true if the number
81// matches one of the defined values for the corresponding enum type.  This
82// is used with RegisterEnumExtension, below.
83typedef bool EnumValidityFunc(int number);
84
85// Version of the above which takes an argument.  This is needed to deal with
86// extensions that are not compiled in.
87typedef bool EnumValidityFuncWithArg(const void* arg, int number);
88
89// Information about a registered extension.
90struct ExtensionInfo {
91  inline ExtensionInfo() {}
92  inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked)
93      : type(type_param), is_repeated(isrepeated), is_packed(ispacked),
94        descriptor(NULL) {}
95
96  FieldType type;
97  bool is_repeated;
98  bool is_packed;
99
100  struct EnumValidityCheck {
101    EnumValidityFuncWithArg* func;
102    const void* arg;
103  };
104
105  union {
106    EnumValidityCheck enum_validity_check;
107    const MessageLite* message_prototype;
108  };
109
110  // The descriptor for this extension, if one exists and is known.  May be
111  // NULL.  Must not be NULL if the descriptor for the extension does not
112  // live in the same pool as the descriptor for the containing type.
113  const FieldDescriptor* descriptor;
114};
115
116// Abstract interface for an object which looks up extension definitions.  Used
117// when parsing.
118class LIBPROTOBUF_EXPORT ExtensionFinder {
119 public:
120  virtual ~ExtensionFinder();
121
122  // Find the extension with the given containing type and number.
123  virtual bool Find(int number, ExtensionInfo* output) = 0;
124};
125
126// Implementation of ExtensionFinder which finds extensions defined in .proto
127// files which have been compiled into the binary.
128class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
129 public:
130  GeneratedExtensionFinder(const MessageLite* containing_type)
131      : containing_type_(containing_type) {}
132  virtual ~GeneratedExtensionFinder() {}
133
134  // Returns true and fills in *output if found, otherwise returns false.
135  virtual bool Find(int number, ExtensionInfo* output);
136
137 private:
138  const MessageLite* containing_type_;
139};
140
141// Note:  extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
142// finding extensions from a DescriptorPool.
143
144// This is an internal helper class intended for use within the protocol buffer
145// library and generated classes.  Clients should not use it directly.  Instead,
146// use the generated accessors such as GetExtension() of the class being
147// extended.
148//
149// This class manages extensions for a protocol message object.  The
150// message's HasExtension(), GetExtension(), MutableExtension(), and
151// ClearExtension() methods are just thin wrappers around the embedded
152// ExtensionSet.  When parsing, if a tag number is encountered which is
153// inside one of the message type's extension ranges, the tag is passed
154// off to the ExtensionSet for parsing.  Etc.
155class LIBPROTOBUF_EXPORT ExtensionSet {
156 public:
157  ExtensionSet();
158  ~ExtensionSet();
159
160  // These are called at startup by protocol-compiler-generated code to
161  // register known extensions.  The registrations are used by ParseField()
162  // to look up extensions for parsed field numbers.  Note that dynamic parsing
163  // does not use ParseField(); only protocol-compiler-generated parsing
164  // methods do.
165  static void RegisterExtension(const MessageLite* containing_type,
166                                int number, FieldType type,
167                                bool is_repeated, bool is_packed);
168  static void RegisterEnumExtension(const MessageLite* containing_type,
169                                    int number, FieldType type,
170                                    bool is_repeated, bool is_packed,
171                                    EnumValidityFunc* is_valid);
172  static void RegisterMessageExtension(const MessageLite* containing_type,
173                                       int number, FieldType type,
174                                       bool is_repeated, bool is_packed,
175                                       const MessageLite* prototype);
176
177  // =================================================================
178
179  // Add all fields which are currently present to the given vector.  This
180  // is useful to implement Reflection::ListFields().
181  void AppendToList(const Descriptor* containing_type,
182                    const DescriptorPool* pool,
183                    vector<const FieldDescriptor*>* output) const;
184
185  // =================================================================
186  // Accessors
187  //
188  // Generated message classes include type-safe templated wrappers around
189  // these methods.  Generally you should use those rather than call these
190  // directly, unless you are doing low-level memory management.
191  //
192  // When calling any of these accessors, the extension number requested
193  // MUST exist in the DescriptorPool provided to the constructor.  Otheriwse,
194  // the method will fail an assert.  Normally, though, you would not call
195  // these directly; you would either call the generated accessors of your
196  // message class (e.g. GetExtension()) or you would call the accessors
197  // of the reflection interface.  In both cases, it is impossible to
198  // trigger this assert failure:  the generated accessors only accept
199  // linked-in extension types as parameters, while the Reflection interface
200  // requires you to provide the FieldDescriptor describing the extension.
201  //
202  // When calling any of these accessors, a protocol-compiler-generated
203  // implementation of the extension corresponding to the number MUST
204  // be linked in, and the FieldDescriptor used to refer to it MUST be
205  // the one generated by that linked-in code.  Otherwise, the method will
206  // die on an assert failure.  The message objects returned by the message
207  // accessors are guaranteed to be of the correct linked-in type.
208  //
209  // These methods pretty much match Reflection except that:
210  // - They're not virtual.
211  // - They identify fields by number rather than FieldDescriptors.
212  // - They identify enum values using integers rather than descriptors.
213  // - Strings provide Mutable() in addition to Set() accessors.
214
215  bool Has(int number) const;
216  int ExtensionSize(int number) const;   // Size of a repeated extension.
217  int NumExtensions() const;  // The number of extensions
218  FieldType ExtensionType(int number) const;
219  void ClearExtension(int number);
220
221  // singular fields -------------------------------------------------
222
223  int32  GetInt32 (int number, int32  default_value) const;
224  int64  GetInt64 (int number, int64  default_value) const;
225  uint32 GetUInt32(int number, uint32 default_value) const;
226  uint64 GetUInt64(int number, uint64 default_value) const;
227  float  GetFloat (int number, float  default_value) const;
228  double GetDouble(int number, double default_value) const;
229  bool   GetBool  (int number, bool   default_value) const;
230  int    GetEnum  (int number, int    default_value) const;
231  const string & GetString (int number, const string&  default_value) const;
232  const MessageLite& GetMessage(int number,
233                                const MessageLite& default_value) const;
234  const MessageLite& GetMessage(int number, const Descriptor* message_type,
235                                MessageFactory* factory) const;
236
237  // |descriptor| may be NULL so long as it is known that the descriptor for
238  // the extension lives in the same pool as the descriptor for the containing
239  // type.
240#define desc const FieldDescriptor* descriptor  // avoid line wrapping
241  void SetInt32 (int number, FieldType type, int32  value, desc);
242  void SetInt64 (int number, FieldType type, int64  value, desc);
243  void SetUInt32(int number, FieldType type, uint32 value, desc);
244  void SetUInt64(int number, FieldType type, uint64 value, desc);
245  void SetFloat (int number, FieldType type, float  value, desc);
246  void SetDouble(int number, FieldType type, double value, desc);
247  void SetBool  (int number, FieldType type, bool   value, desc);
248  void SetEnum  (int number, FieldType type, int    value, desc);
249  void SetString(int number, FieldType type, const string& value, desc);
250  string * MutableString (int number, FieldType type, desc);
251  MessageLite* MutableMessage(int number, FieldType type,
252                              const MessageLite& prototype, desc);
253  MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
254                              MessageFactory* factory);
255  // Adds the given message to the ExtensionSet, taking ownership of the
256  // message object. Existing message with the same number will be deleted.
257  // If "message" is NULL, this is equivalent to "ClearExtension(number)".
258  void SetAllocatedMessage(int number, FieldType type,
259                           const FieldDescriptor* descriptor,
260                           MessageLite* message);
261  MessageLite* ReleaseMessage(int number, const MessageLite& prototype);
262  MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
263                              MessageFactory* factory);
264#undef desc
265
266  // repeated fields -------------------------------------------------
267
268  void* MutableRawRepeatedField(int number);
269
270  int32  GetRepeatedInt32 (int number, int index) const;
271  int64  GetRepeatedInt64 (int number, int index) const;
272  uint32 GetRepeatedUInt32(int number, int index) const;
273  uint64 GetRepeatedUInt64(int number, int index) const;
274  float  GetRepeatedFloat (int number, int index) const;
275  double GetRepeatedDouble(int number, int index) const;
276  bool   GetRepeatedBool  (int number, int index) const;
277  int    GetRepeatedEnum  (int number, int index) const;
278  const string & GetRepeatedString (int number, int index) const;
279  const MessageLite& GetRepeatedMessage(int number, int index) const;
280
281  void SetRepeatedInt32 (int number, int index, int32  value);
282  void SetRepeatedInt64 (int number, int index, int64  value);
283  void SetRepeatedUInt32(int number, int index, uint32 value);
284  void SetRepeatedUInt64(int number, int index, uint64 value);
285  void SetRepeatedFloat (int number, int index, float  value);
286  void SetRepeatedDouble(int number, int index, double value);
287  void SetRepeatedBool  (int number, int index, bool   value);
288  void SetRepeatedEnum  (int number, int index, int    value);
289  void SetRepeatedString(int number, int index, const string& value);
290  string * MutableRepeatedString (int number, int index);
291  MessageLite* MutableRepeatedMessage(int number, int index);
292
293#define desc const FieldDescriptor* descriptor  // avoid line wrapping
294  void AddInt32 (int number, FieldType type, bool packed, int32  value, desc);
295  void AddInt64 (int number, FieldType type, bool packed, int64  value, desc);
296  void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
297  void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
298  void AddFloat (int number, FieldType type, bool packed, float  value, desc);
299  void AddDouble(int number, FieldType type, bool packed, double value, desc);
300  void AddBool  (int number, FieldType type, bool packed, bool   value, desc);
301  void AddEnum  (int number, FieldType type, bool packed, int    value, desc);
302  void AddString(int number, FieldType type, const string& value, desc);
303  string * AddString (int number, FieldType type, desc);
304  MessageLite* AddMessage(int number, FieldType type,
305                          const MessageLite& prototype, desc);
306  MessageLite* AddMessage(const FieldDescriptor* descriptor,
307                          MessageFactory* factory);
308#undef desc
309
310  void RemoveLast(int number);
311  MessageLite* ReleaseLast(int number);
312  void SwapElements(int number, int index1, int index2);
313
314  // -----------------------------------------------------------------
315  // TODO(kenton):  Hardcore memory management accessors
316
317  // =================================================================
318  // convenience methods for implementing methods of Message
319  //
320  // These could all be implemented in terms of the other methods of this
321  // class, but providing them here helps keep the generated code size down.
322
323  void Clear();
324  void MergeFrom(const ExtensionSet& other);
325  void Swap(ExtensionSet* other);
326  bool IsInitialized() const;
327
328  // Parses a single extension from the input. The input should start out
329  // positioned immediately after the tag.
330  bool ParseField(uint32 tag, io::CodedInputStream* input,
331                  ExtensionFinder* extension_finder,
332                  FieldSkipper* field_skipper);
333
334  // Specific versions for lite or full messages (constructs the appropriate
335  // FieldSkipper automatically).  |containing_type| is the default
336  // instance for the containing message; it is used only to look up the
337  // extension by number.  See RegisterExtension(), above.  Unlike the other
338  // methods of ExtensionSet, this only works for generated message types --
339  // it looks up extensions registered using RegisterExtension().
340  bool ParseField(uint32 tag, io::CodedInputStream* input,
341                  const MessageLite* containing_type,
342                  UnknownFieldSet* unknown_fields);
343  bool ParseFieldHeavy(uint32 tag, io::CodedInputStream* input,
344                       const Message* containing_type,
345                       UnknownFieldSet* unknown_fields);
346
347  // Parse an entire message in MessageSet format.  Such messages have no
348  // fields, only extensions.
349  bool ParseMessageSet(io::CodedInputStream* input,
350                       ExtensionFinder* extension_finder,
351                       FieldSkipper* field_skipper);
352
353  // Specific versions for lite or full messages (constructs the appropriate
354  // FieldSkipper automatically).
355  bool ParseMessageSet(io::CodedInputStream* input,
356                       const MessageLite* containing_type,
357                       UnknownFieldSet* unknown_fields);
358  bool ParseMessageSetHeavy(io::CodedInputStream* input,
359                            const Message* containing_type,
360                            UnknownFieldSet* unknown_fields);
361
362  // Write all extension fields with field numbers in the range
363  //   [start_field_number, end_field_number)
364  // to the output stream, using the cached sizes computed when ByteSize() was
365  // last called.  Note that the range bounds are inclusive-exclusive.
366  void SerializeWithCachedSizes(int start_field_number,
367                                int end_field_number,
368                                io::CodedOutputStream* output) const;
369
370  // Same as SerializeWithCachedSizes, but without any bounds checking.
371  // The caller must ensure that target has sufficient capacity for the
372  // serialized extensions.
373  //
374  // Returns a pointer past the last written byte.
375  uint8* SerializeWithCachedSizesToArray(int start_field_number,
376                                         int end_field_number,
377                                         uint8* target) const;
378
379  // Like above but serializes in MessageSet format.
380  void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const;
381  uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
382
383  // Returns the total serialized size of all the extensions.
384  int ByteSize() const;
385
386  // Like ByteSize() but uses MessageSet format.
387  int MessageSetByteSize() const;
388
389  // Returns (an estimate of) the total number of bytes used for storing the
390  // extensions in memory, excluding sizeof(*this).  If the ExtensionSet is
391  // for a lite message (and thus possibly contains lite messages), the results
392  // are undefined (might work, might crash, might corrupt data, might not even
393  // be linked in).  It's up to the protocol compiler to avoid calling this on
394  // such ExtensionSets (easy enough since lite messages don't implement
395  // SpaceUsed()).
396  int SpaceUsedExcludingSelf() const;
397
398 private:
399
400  // Interface of a lazily parsed singular message extension.
401  class LIBPROTOBUF_EXPORT LazyMessageExtension {
402   public:
403    LazyMessageExtension() {}
404    virtual ~LazyMessageExtension() {}
405
406    virtual LazyMessageExtension* New() const = 0;
407    virtual const MessageLite& GetMessage(
408        const MessageLite& prototype) const = 0;
409    virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0;
410    virtual void SetAllocatedMessage(MessageLite *message) = 0;
411    virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0;
412
413    virtual bool IsInitialized() const = 0;
414    virtual int ByteSize() const = 0;
415    virtual int SpaceUsed() const = 0;
416
417    virtual void MergeFrom(const LazyMessageExtension& other) = 0;
418    virtual void Clear() = 0;
419
420    virtual bool ReadMessage(const MessageLite& prototype,
421                             io::CodedInputStream* input) = 0;
422    virtual void WriteMessage(int number,
423                              io::CodedOutputStream* output) const = 0;
424    virtual uint8* WriteMessageToArray(int number, uint8* target) const = 0;
425   private:
426    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
427  };
428  struct Extension {
429    // The order of these fields packs Extension into 24 bytes when using 8
430    // byte alignment. Consider this when adding or removing fields here.
431    union {
432      int32                 int32_value;
433      int64                 int64_value;
434      uint32                uint32_value;
435      uint64                uint64_value;
436      float                 float_value;
437      double                double_value;
438      bool                  bool_value;
439      int                   enum_value;
440      string*               string_value;
441      MessageLite*          message_value;
442      LazyMessageExtension* lazymessage_value;
443
444      RepeatedField   <int32      >* repeated_int32_value;
445      RepeatedField   <int64      >* repeated_int64_value;
446      RepeatedField   <uint32     >* repeated_uint32_value;
447      RepeatedField   <uint64     >* repeated_uint64_value;
448      RepeatedField   <float      >* repeated_float_value;
449      RepeatedField   <double     >* repeated_double_value;
450      RepeatedField   <bool       >* repeated_bool_value;
451      RepeatedField   <int        >* repeated_enum_value;
452      RepeatedPtrField<string     >* repeated_string_value;
453      RepeatedPtrField<MessageLite>* repeated_message_value;
454    };
455
456    FieldType type;
457    bool is_repeated;
458
459    // For singular types, indicates if the extension is "cleared".  This
460    // happens when an extension is set and then later cleared by the caller.
461    // We want to keep the Extension object around for reuse, so instead of
462    // removing it from the map, we just set is_cleared = true.  This has no
463    // meaning for repeated types; for those, the size of the RepeatedField
464    // simply becomes zero when cleared.
465    bool is_cleared : 4;
466
467    // For singular message types, indicates whether lazy parsing is enabled
468    // for this extension. This field is only valid when type == TYPE_MESSAGE
469    // and !is_repeated because we only support lazy parsing for singular
470    // message types currently. If is_lazy = true, the extension is stored in
471    // lazymessage_value. Otherwise, the extension will be message_value.
472    bool is_lazy : 4;
473
474    // For repeated types, this indicates if the [packed=true] option is set.
475    bool is_packed;
476
477    // For packed fields, the size of the packed data is recorded here when
478    // ByteSize() is called then used during serialization.
479    // TODO(kenton):  Use atomic<int> when C++ supports it.
480    mutable int cached_size;
481
482    // The descriptor for this extension, if one exists and is known.  May be
483    // NULL.  Must not be NULL if the descriptor for the extension does not
484    // live in the same pool as the descriptor for the containing type.
485    const FieldDescriptor* descriptor;
486
487    // Some helper methods for operations on a single Extension.
488    void SerializeFieldWithCachedSizes(
489        int number,
490        io::CodedOutputStream* output) const;
491    uint8* SerializeFieldWithCachedSizesToArray(
492        int number,
493        uint8* target) const;
494    void SerializeMessageSetItemWithCachedSizes(
495        int number,
496        io::CodedOutputStream* output) const;
497    uint8* SerializeMessageSetItemWithCachedSizesToArray(
498        int number,
499        uint8* target) const;
500    int ByteSize(int number) const;
501    int MessageSetItemByteSize(int number) const;
502    void Clear();
503    int GetSize() const;
504    void Free();
505    int SpaceUsedExcludingSelf() const;
506  };
507
508
509  // Returns true and fills field_number and extension if extension is found.
510  bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder,
511                                int* field_number, ExtensionInfo* extension);
512
513  // Parses a single extension from the input. The input should start out
514  // positioned immediately after the wire tag. This method is called in
515  // ParseField() after field number is extracted from the wire tag and
516  // ExtensionInfo is found by the field number.
517  bool ParseFieldWithExtensionInfo(int field_number,
518                                   const ExtensionInfo& extension,
519                                   io::CodedInputStream* input,
520                                   FieldSkipper* field_skipper);
521
522  // Like ParseField(), but this method may parse singular message extensions
523  // lazily depending on the value of FLAGS_eagerly_parse_message_sets.
524  bool ParseFieldMaybeLazily(uint32 tag, io::CodedInputStream* input,
525                             ExtensionFinder* extension_finder,
526                             FieldSkipper* field_skipper);
527
528  // Gets the extension with the given number, creating it if it does not
529  // already exist.  Returns true if the extension did not already exist.
530  bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
531                         Extension** result);
532
533  // Parse a single MessageSet item -- called just after the item group start
534  // tag has been read.
535  bool ParseMessageSetItem(io::CodedInputStream* input,
536                           ExtensionFinder* extension_finder,
537                           FieldSkipper* field_skipper);
538
539
540  // Hack:  RepeatedPtrFieldBase declares ExtensionSet as a friend.  This
541  //   friendship should automatically extend to ExtensionSet::Extension, but
542  //   unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
543  //   correctly.  So, we must provide helpers for calling methods of that
544  //   class.
545
546  // Defined in extension_set_heavy.cc.
547  static inline int RepeatedMessage_SpaceUsedExcludingSelf(
548      RepeatedPtrFieldBase* field);
549
550  // The Extension struct is small enough to be passed by value, so we use it
551  // directly as the value type in the map rather than use pointers.  We use
552  // a map rather than hash_map here because we expect most ExtensionSets will
553  // only contain a small number of extensions whereas hash_map is optimized
554  // for 100 elements or more.  Also, we want AppendToList() to order fields
555  // by field number.
556  std::map<int, Extension> extensions_;
557
558  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
559};
560
561// These are just for convenience...
562inline void ExtensionSet::SetString(int number, FieldType type,
563                                    const string& value,
564                                    const FieldDescriptor* descriptor) {
565  MutableString(number, type, descriptor)->assign(value);
566}
567inline void ExtensionSet::SetRepeatedString(int number, int index,
568                                            const string& value) {
569  MutableRepeatedString(number, index)->assign(value);
570}
571inline void ExtensionSet::AddString(int number, FieldType type,
572                                    const string& value,
573                                    const FieldDescriptor* descriptor) {
574  AddString(number, type, descriptor)->assign(value);
575}
576
577// ===================================================================
578// Glue for generated extension accessors
579
580// -------------------------------------------------------------------
581// Template magic
582
583// First we have a set of classes representing "type traits" for different
584// field types.  A type traits class knows how to implement basic accessors
585// for extensions of a particular type given an ExtensionSet.  The signature
586// for a type traits class looks like this:
587//
588//   class TypeTraits {
589//    public:
590//     typedef ? ConstType;
591//     typedef ? MutableType;
592//
593//     static inline ConstType Get(int number, const ExtensionSet& set);
594//     static inline void Set(int number, ConstType value, ExtensionSet* set);
595//     static inline MutableType Mutable(int number, ExtensionSet* set);
596//
597//     // Variants for repeated fields.
598//     static inline ConstType Get(int number, const ExtensionSet& set,
599//                                 int index);
600//     static inline void Set(int number, int index,
601//                            ConstType value, ExtensionSet* set);
602//     static inline MutableType Mutable(int number, int index,
603//                                       ExtensionSet* set);
604//     static inline void Add(int number, ConstType value, ExtensionSet* set);
605//     static inline MutableType Add(int number, ExtensionSet* set);
606//   };
607//
608// Not all of these methods make sense for all field types.  For example, the
609// "Mutable" methods only make sense for strings and messages, and the
610// repeated methods only make sense for repeated types.  So, each type
611// traits class implements only the set of methods from this signature that it
612// actually supports.  This will cause a compiler error if the user tries to
613// access an extension using a method that doesn't make sense for its type.
614// For example, if "foo" is an extension of type "optional int32", then if you
615// try to write code like:
616//   my_message.MutableExtension(foo)
617// you will get a compile error because PrimitiveTypeTraits<int32> does not
618// have a "Mutable()" method.
619
620// -------------------------------------------------------------------
621// PrimitiveTypeTraits
622
623// Since the ExtensionSet has different methods for each primitive type,
624// we must explicitly define the methods of the type traits class for each
625// known type.
626template <typename Type>
627class PrimitiveTypeTraits {
628 public:
629  typedef Type ConstType;
630
631  static inline ConstType Get(int number, const ExtensionSet& set,
632                              ConstType default_value);
633  static inline void Set(int number, FieldType field_type,
634                         ConstType value, ExtensionSet* set);
635};
636
637template <typename Type>
638class RepeatedPrimitiveTypeTraits {
639 public:
640  typedef Type ConstType;
641
642  static inline Type Get(int number, const ExtensionSet& set, int index);
643  static inline void Set(int number, int index, Type value, ExtensionSet* set);
644  static inline void Add(int number, FieldType field_type,
645                         bool is_packed, Type value, ExtensionSet* set);
646};
647
648#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD)                       \
649template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get(                     \
650    int number, const ExtensionSet& set, TYPE default_value) {             \
651  return set.Get##METHOD(number, default_value);                           \
652}                                                                          \
653template<> inline void PrimitiveTypeTraits<TYPE>::Set(                     \
654    int number, FieldType field_type, TYPE value, ExtensionSet* set) {     \
655  set->Set##METHOD(number, field_type, value, NULL);                       \
656}                                                                          \
657                                                                           \
658template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get(             \
659    int number, const ExtensionSet& set, int index) {                      \
660  return set.GetRepeated##METHOD(number, index);                           \
661}                                                                          \
662template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set(             \
663    int number, int index, TYPE value, ExtensionSet* set) {                \
664  set->SetRepeated##METHOD(number, index, value);                          \
665}                                                                          \
666template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add(             \
667    int number, FieldType field_type, bool is_packed,                      \
668    TYPE value, ExtensionSet* set) {                                       \
669  set->Add##METHOD(number, field_type, is_packed, value, NULL);            \
670}
671
672PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32,  Int32)
673PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64,  Int64)
674PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
675PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
676PROTOBUF_DEFINE_PRIMITIVE_TYPE( float,  Float)
677PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
678PROTOBUF_DEFINE_PRIMITIVE_TYPE(  bool,   Bool)
679
680#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
681
682// -------------------------------------------------------------------
683// StringTypeTraits
684
685// Strings support both Set() and Mutable().
686class LIBPROTOBUF_EXPORT StringTypeTraits {
687 public:
688  typedef const string& ConstType;
689  typedef string* MutableType;
690
691  static inline const string& Get(int number, const ExtensionSet& set,
692                                  ConstType default_value) {
693    return set.GetString(number, default_value);
694  }
695  static inline void Set(int number, FieldType field_type,
696                         const string& value, ExtensionSet* set) {
697    set->SetString(number, field_type, value, NULL);
698  }
699  static inline string* Mutable(int number, FieldType field_type,
700                                ExtensionSet* set) {
701    return set->MutableString(number, field_type, NULL);
702  }
703};
704
705class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits {
706 public:
707  typedef const string& ConstType;
708  typedef string* MutableType;
709
710  static inline const string& Get(int number, const ExtensionSet& set,
711                                  int index) {
712    return set.GetRepeatedString(number, index);
713  }
714  static inline void Set(int number, int index,
715                         const string& value, ExtensionSet* set) {
716    set->SetRepeatedString(number, index, value);
717  }
718  static inline string* Mutable(int number, int index, ExtensionSet* set) {
719    return set->MutableRepeatedString(number, index);
720  }
721  static inline void Add(int number, FieldType field_type,
722                         bool /*is_packed*/, const string& value,
723                         ExtensionSet* set) {
724    set->AddString(number, field_type, value, NULL);
725  }
726  static inline string* Add(int number, FieldType field_type,
727                            ExtensionSet* set) {
728    return set->AddString(number, field_type, NULL);
729  }
730};
731
732// -------------------------------------------------------------------
733// EnumTypeTraits
734
735// ExtensionSet represents enums using integers internally, so we have to
736// static_cast around.
737template <typename Type, bool IsValid(int)>
738class EnumTypeTraits {
739 public:
740  typedef Type ConstType;
741
742  static inline ConstType Get(int number, const ExtensionSet& set,
743                              ConstType default_value) {
744    return static_cast<Type>(set.GetEnum(number, default_value));
745  }
746  static inline void Set(int number, FieldType field_type,
747                         ConstType value, ExtensionSet* set) {
748    GOOGLE_DCHECK(IsValid(value));
749    set->SetEnum(number, field_type, value, NULL);
750  }
751};
752
753template <typename Type, bool IsValid(int)>
754class RepeatedEnumTypeTraits {
755 public:
756  typedef Type ConstType;
757
758  static inline ConstType Get(int number, const ExtensionSet& set, int index) {
759    return static_cast<Type>(set.GetRepeatedEnum(number, index));
760  }
761  static inline void Set(int number, int index,
762                         ConstType value, ExtensionSet* set) {
763    GOOGLE_DCHECK(IsValid(value));
764    set->SetRepeatedEnum(number, index, value);
765  }
766  static inline void Add(int number, FieldType field_type,
767                         bool is_packed, ConstType value, ExtensionSet* set) {
768    GOOGLE_DCHECK(IsValid(value));
769    set->AddEnum(number, field_type, is_packed, value, NULL);
770  }
771};
772
773// -------------------------------------------------------------------
774// MessageTypeTraits
775
776// ExtensionSet guarantees that when manipulating extensions with message
777// types, the implementation used will be the compiled-in class representing
778// that type.  So, we can static_cast down to the exact type we expect.
779template <typename Type>
780class MessageTypeTraits {
781 public:
782  typedef const Type& ConstType;
783  typedef Type* MutableType;
784
785  static inline ConstType Get(int number, const ExtensionSet& set,
786                              ConstType default_value) {
787    return static_cast<const Type&>(
788        set.GetMessage(number, default_value));
789  }
790  static inline MutableType Mutable(int number, FieldType field_type,
791                                    ExtensionSet* set) {
792    return static_cast<Type*>(
793      set->MutableMessage(number, field_type, Type::default_instance(), NULL));
794  }
795  static inline void SetAllocated(int number, FieldType field_type,
796                                  MutableType message, ExtensionSet* set) {
797    set->SetAllocatedMessage(number, field_type, NULL, message);
798  }
799  static inline MutableType Release(int number, FieldType field_type,
800                                    ExtensionSet* set) {
801    return static_cast<Type*>(set->ReleaseMessage(
802        number, Type::default_instance()));
803  }
804};
805
806template <typename Type>
807class RepeatedMessageTypeTraits {
808 public:
809  typedef const Type& ConstType;
810  typedef Type* MutableType;
811
812  static inline ConstType Get(int number, const ExtensionSet& set, int index) {
813    return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
814  }
815  static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
816    return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
817  }
818  static inline MutableType Add(int number, FieldType field_type,
819                                ExtensionSet* set) {
820    return static_cast<Type*>(
821        set->AddMessage(number, field_type, Type::default_instance(), NULL));
822  }
823};
824
825// -------------------------------------------------------------------
826// ExtensionIdentifier
827
828// This is the type of actual extension objects.  E.g. if you have:
829//   extends Foo with optional int32 bar = 1234;
830// then "bar" will be defined in C++ as:
831//   ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234);
832//
833// Note that we could, in theory, supply the field number as a template
834// parameter, and thus make an instance of ExtensionIdentifier have no
835// actual contents.  However, if we did that, then using at extension
836// identifier would not necessarily cause the compiler to output any sort
837// of reference to any simple defined in the extension's .pb.o file.  Some
838// linkers will actually drop object files that are not explicitly referenced,
839// but that would be bad because it would cause this extension to not be
840// registered at static initialization, and therefore using it would crash.
841
842template <typename ExtendeeType, typename TypeTraitsType,
843          FieldType field_type, bool is_packed>
844class ExtensionIdentifier {
845 public:
846  typedef TypeTraitsType TypeTraits;
847  typedef ExtendeeType Extendee;
848
849  ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
850      : number_(number), default_value_(default_value) {}
851  inline int number() const { return number_; }
852  typename TypeTraits::ConstType default_value() const {
853    return default_value_;
854  }
855
856 private:
857  const int number_;
858  typename TypeTraits::ConstType default_value_;
859};
860
861// -------------------------------------------------------------------
862// Generated accessors
863
864// This macro should be expanded in the context of a generated type which
865// has extensions.
866//
867// We use "_proto_TypeTraits" as a type name below because "TypeTraits"
868// causes problems if the class has a nested message or enum type with that
869// name and "_TypeTraits" is technically reserved for the C++ library since
870// it starts with an underscore followed by a capital letter.
871//
872// For similar reason, we use "_field_type" and "_is_packed" as parameter names
873// below, so that "field_type" and "is_packed" can be used as field names.
874#define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME)                        \
875  /* Has, Size, Clear */                                                      \
876  template <typename _proto_TypeTraits,                                       \
877            ::google::protobuf::internal::FieldType _field_type,                        \
878            bool _is_packed>                                                  \
879  inline bool HasExtension(                                                   \
880      const ::google::protobuf::internal::ExtensionIdentifier<                          \
881        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const {   \
882    return _extensions_.Has(id.number());                                     \
883  }                                                                           \
884                                                                              \
885  template <typename _proto_TypeTraits,                                       \
886            ::google::protobuf::internal::FieldType _field_type,                        \
887            bool _is_packed>                                                  \
888  inline void ClearExtension(                                                 \
889      const ::google::protobuf::internal::ExtensionIdentifier<                          \
890        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {         \
891    _extensions_.ClearExtension(id.number());                                 \
892  }                                                                           \
893                                                                              \
894  template <typename _proto_TypeTraits,                                       \
895            ::google::protobuf::internal::FieldType _field_type,                        \
896            bool _is_packed>                                                  \
897  inline int ExtensionSize(                                                   \
898      const ::google::protobuf::internal::ExtensionIdentifier<                          \
899        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const {   \
900    return _extensions_.ExtensionSize(id.number());                           \
901  }                                                                           \
902                                                                              \
903  /* Singular accessors */                                                    \
904  template <typename _proto_TypeTraits,                                       \
905            ::google::protobuf::internal::FieldType _field_type,                        \
906            bool _is_packed>                                                  \
907  inline typename _proto_TypeTraits::ConstType GetExtension(                  \
908      const ::google::protobuf::internal::ExtensionIdentifier<                          \
909        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const {   \
910    return _proto_TypeTraits::Get(id.number(), _extensions_,                  \
911                                  id.default_value());                        \
912  }                                                                           \
913                                                                              \
914  template <typename _proto_TypeTraits,                                       \
915            ::google::protobuf::internal::FieldType _field_type,                        \
916            bool _is_packed>                                                  \
917  inline typename _proto_TypeTraits::MutableType MutableExtension(            \
918      const ::google::protobuf::internal::ExtensionIdentifier<                          \
919        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {         \
920    return _proto_TypeTraits::Mutable(id.number(), _field_type,               \
921                                      &_extensions_);                         \
922  }                                                                           \
923                                                                              \
924  template <typename _proto_TypeTraits,                                       \
925            ::google::protobuf::internal::FieldType _field_type,                        \
926            bool _is_packed>                                                  \
927  inline void SetExtension(                                                   \
928      const ::google::protobuf::internal::ExtensionIdentifier<                          \
929        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,           \
930      typename _proto_TypeTraits::ConstType value) {                          \
931    _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_);   \
932  }                                                                           \
933                                                                              \
934  template <typename _proto_TypeTraits,                                       \
935            ::google::protobuf::internal::FieldType _field_type,                        \
936            bool _is_packed>                                                  \
937  inline void SetAllocatedExtension(                                          \
938      const ::google::protobuf::internal::ExtensionIdentifier<                          \
939        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,           \
940      typename _proto_TypeTraits::MutableType value) {                        \
941    _proto_TypeTraits::SetAllocated(id.number(), _field_type,                 \
942                                    value, &_extensions_);                    \
943  }                                                                           \
944  template <typename _proto_TypeTraits,                                       \
945            ::google::protobuf::internal::FieldType _field_type,                        \
946            bool _is_packed>                                                  \
947  inline typename _proto_TypeTraits::MutableType ReleaseExtension(            \
948      const ::google::protobuf::internal::ExtensionIdentifier<                          \
949        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {         \
950    return _proto_TypeTraits::Release(id.number(), _field_type,               \
951                                      &_extensions_);                         \
952  }                                                                           \
953                                                                              \
954  /* Repeated accessors */                                                    \
955  template <typename _proto_TypeTraits,                                       \
956            ::google::protobuf::internal::FieldType _field_type,                        \
957            bool _is_packed>                                                  \
958  inline typename _proto_TypeTraits::ConstType GetExtension(                  \
959      const ::google::protobuf::internal::ExtensionIdentifier<                          \
960        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,           \
961      int index) const {                                                      \
962    return _proto_TypeTraits::Get(id.number(), _extensions_, index);          \
963  }                                                                           \
964                                                                              \
965  template <typename _proto_TypeTraits,                                       \
966            ::google::protobuf::internal::FieldType _field_type,                        \
967            bool _is_packed>                                                  \
968  inline typename _proto_TypeTraits::MutableType MutableExtension(            \
969      const ::google::protobuf::internal::ExtensionIdentifier<                          \
970        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,           \
971      int index) {                                                            \
972    return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_);     \
973  }                                                                           \
974                                                                              \
975  template <typename _proto_TypeTraits,                                       \
976            ::google::protobuf::internal::FieldType _field_type,                        \
977            bool _is_packed>                                                  \
978  inline void SetExtension(                                                   \
979      const ::google::protobuf::internal::ExtensionIdentifier<                          \
980        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,           \
981      int index, typename _proto_TypeTraits::ConstType value) {               \
982    _proto_TypeTraits::Set(id.number(), index, value, &_extensions_);         \
983  }                                                                           \
984                                                                              \
985  template <typename _proto_TypeTraits,                                       \
986            ::google::protobuf::internal::FieldType _field_type,                        \
987            bool _is_packed>                                                  \
988  inline typename _proto_TypeTraits::MutableType AddExtension(                \
989      const ::google::protobuf::internal::ExtensionIdentifier<                          \
990        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {         \
991    return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_);   \
992  }                                                                           \
993                                                                              \
994  template <typename _proto_TypeTraits,                                       \
995            ::google::protobuf::internal::FieldType _field_type,                        \
996            bool _is_packed>                                                  \
997  inline void AddExtension(                                                   \
998      const ::google::protobuf::internal::ExtensionIdentifier<                          \
999        CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,           \
1000      typename _proto_TypeTraits::ConstType value) {                          \
1001    _proto_TypeTraits::Add(id.number(), _field_type, _is_packed,              \
1002                           value, &_extensions_);                             \
1003  }
1004
1005}  // namespace internal
1006}  // namespace protobuf
1007
1008}  // namespace google
1009#endif  // GOOGLE_PROTOBUF_EXTENSION_SET_H__
1010