1// Copyright 2006 The RE2 Authors.  All Rights Reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// DESCRIPTION
6//
7// SparseArray<T>(m) is a map from integers in [0, m) to T values.
8// It requires (sizeof(T)+sizeof(int))*m memory, but it provides
9// fast iteration through the elements in the array and fast clearing
10// of the array.  The array has a concept of certain elements being
11// uninitialized (having no value).
12//
13// Insertion and deletion are constant time operations.
14//
15// Allocating the array is a constant time operation
16// when memory allocation is a constant time operation.
17//
18// Clearing the array is a constant time operation (unusual!).
19//
20// Iterating through the array is an O(n) operation, where n
21// is the number of items in the array (not O(m)).
22//
23// The array iterator visits entries in the order they were first
24// inserted into the array.  It is safe to add items to the array while
25// using an iterator: the iterator will visit indices added to the array
26// during the iteration, but will not re-visit indices whose values
27// change after visiting.  Thus SparseArray can be a convenient
28// implementation of a work queue.
29//
30// The SparseArray implementation is NOT thread-safe.  It is up to the
31// caller to make sure only one thread is accessing the array.  (Typically
32// these arrays are temporary values and used in situations where speed is
33// important.)
34//
35// The SparseArray interface does not present all the usual STL bells and
36// whistles.
37//
38// Implemented with reference to Briggs & Torczon, An Efficient
39// Representation for Sparse Sets, ACM Letters on Programming Languages
40// and Systems, Volume 2, Issue 1-4 (March-Dec.  1993), pp.  59-69.
41//
42// Briggs & Torczon popularized this technique, but it had been known
43// long before their paper.  They point out that Aho, Hopcroft, and
44// Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
45// 1986 Programming Pearls both hint at the technique in exercises to the
46// reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
47// exercise 8).
48//
49// Briggs & Torczon describe a sparse set implementation.  I have
50// trivially generalized it to create a sparse array (actually the original
51// target of the AHU and Bentley exercises).
52
53// IMPLEMENTATION
54//
55// SparseArray uses a vector dense_ and an array sparse_to_dense_, both of
56// size max_size_. At any point, the number of elements in the sparse array is
57// size_.
58//
59// The vector dense_ contains the size_ elements in the sparse array (with
60// their indices),
61// in the order that the elements were first inserted.  This array is dense:
62// the size_ pairs are dense_[0] through dense_[size_-1].
63//
64// The array sparse_to_dense_ maps from indices in [0,m) to indices in
65// [0,size_).
66// For indices present in the array, dense_[sparse_to_dense_[i]].index_ == i.
67// For indices not present in the array, sparse_to_dense_ can contain
68// any value at all, perhaps outside the range [0, size_) but perhaps not.
69//
70// The lax requirement on sparse_to_dense_ values makes clearing
71// the array very easy: set size_ to 0.  Lookups are slightly more
72// complicated.  An index i has a value in the array if and only if:
73//   sparse_to_dense_[i] is in [0, size_) AND
74//   dense_[sparse_to_dense_[i]].index_ == i.
75// If both these properties hold, only then it is safe to refer to
76//   dense_[sparse_to_dense_[i]].value_
77// as the value associated with index i.
78//
79// To insert a new entry, set sparse_to_dense_[i] to size_,
80// initialize dense_[size_], and then increment size_.
81//
82// Deletion of specific values from the array is implemented by
83// swapping dense_[size_-1] and the dense_ being deleted and then
84// updating the appropriate sparse_to_dense_ entries.
85//
86// To make the sparse array as efficient as possible for non-primitive types,
87// elements may or may not be destroyed when they are deleted from the sparse
88// array through a call to erase(), erase_existing() or resize(). They
89// immediately become inaccessible, but they are only guaranteed to be
90// destroyed when the SparseArray destructor is called.
91
92#ifndef RE2_UTIL_SPARSE_ARRAY_H__
93#define RE2_UTIL_SPARSE_ARRAY_H__
94
95#include "util/util.h"
96
97namespace re2 {
98
99template<typename Value>
100class SparseArray {
101 public:
102  SparseArray();
103  SparseArray(int max_size);
104  ~SparseArray();
105
106  // IndexValue pairs: exposed in SparseArray::iterator.
107  class IndexValue;
108
109  typedef IndexValue value_type;
110  typedef typename vector<IndexValue>::iterator iterator;
111  typedef typename vector<IndexValue>::const_iterator const_iterator;
112
113  inline const IndexValue& iv(int i) const;
114
115  // Return the number of entries in the array.
116  int size() const {
117    return size_;
118  }
119
120  // Iterate over the array.
121  iterator begin() {
122    return dense_.begin();
123  }
124  iterator end() {
125    return dense_.begin() + size_;
126  }
127
128  const_iterator begin() const {
129    return dense_.begin();
130  }
131  const_iterator end() const {
132    return dense_.begin() + size_;
133  }
134
135  // Change the maximum size of the array.
136  // Invalidates all iterators.
137  void resize(int max_size);
138
139  // Return the maximum size of the array.
140  // Indices can be in the range [0, max_size).
141  int max_size() const {
142    return max_size_;
143  }
144
145  // Clear the array.
146  void clear() {
147    size_ = 0;
148  }
149
150  // Check whether index i is in the array.
151  inline bool has_index(int i) const;
152
153  // Comparison function for sorting.
154  // Can sort the sparse array so that future iterations
155  // will visit indices in increasing order using
156  // sort(arr.begin(), arr.end(), arr.less);
157  static bool less(const IndexValue& a, const IndexValue& b);
158
159 public:
160  // Set the value at index i to v.
161  inline iterator set(int i, Value v);
162
163  pair<iterator, bool> insert(const value_type& new_value);
164
165  // Returns the value at index i
166  // or defaultv if index i is not initialized in the array.
167  inline Value get(int i, Value defaultv) const;
168
169  iterator find(int i);
170
171  const_iterator find(int i) const;
172
173  // Change the value at index i to v.
174  // Fast but unsafe: only use if has_index(i) is true.
175  inline iterator set_existing(int i, Value v);
176
177  // Set the value at the new index i to v.
178  // Fast but unsafe: only use if has_index(i) is false.
179  inline iterator set_new(int i, Value v);
180
181  // Get the value at index i from the array..
182  // Fast but unsafe: only use if has_index(i) is true.
183  inline Value get_existing(int i) const;
184
185  // Erasing items from the array during iteration is in general
186  // NOT safe.  There is one special case, which is that the current
187  // index-value pair can be erased as long as the iterator is then
188  // checked for being at the end before being incremented.
189  // For example:
190  //
191  //   for (i = m.begin(); i != m.end(); ++i) {
192  //     if (ShouldErase(i->index(), i->value())) {
193  //       m.erase(i->index());
194  //       --i;
195  //     }
196  //   }
197  //
198  // Except in the specific case just described, elements must
199  // not be erased from the array (including clearing the array)
200  // while iterators are walking over the array.  Otherwise,
201  // the iterators could walk past the end of the array.
202
203  // Erases the element at index i from the array.
204  inline void erase(int i);
205
206  // Erases the element at index i from the array.
207  // Fast but unsafe: only use if has_index(i) is true.
208  inline void erase_existing(int i);
209
210 private:
211  // Add the index i to the array.
212  // Only use if has_index(i) is known to be false.
213  // Since it doesn't set the value associated with i,
214  // this function is private, only intended as a helper
215  // for other methods.
216  inline void create_index(int i);
217
218  // In debug mode, verify that some invariant properties of the class
219  // are being maintained. This is called at the end of the constructor
220  // and at the beginning and end of all public non-const member functions.
221  inline void DebugCheckInvariants() const;
222
223  int size_;
224  int max_size_;
225  int* sparse_to_dense_;
226  vector<IndexValue> dense_;
227  bool valgrind_;
228
229  DISALLOW_EVIL_CONSTRUCTORS(SparseArray);
230};
231
232template<typename Value>
233SparseArray<Value>::SparseArray()
234    : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(),
235      valgrind_(RunningOnValgrindOrMemorySanitizer()) {}
236
237// IndexValue pairs: exposed in SparseArray::iterator.
238template<typename Value>
239class SparseArray<Value>::IndexValue {
240  friend class SparseArray;
241 public:
242  typedef int first_type;
243  typedef Value second_type;
244
245  IndexValue() {}
246  IndexValue(int index, const Value& value) : second(value), index_(index) {}
247
248  int index() const { return index_; }
249  Value value() const { return second; }
250
251  // Provide the data in the 'second' member so that the utilities
252  // in map-util work.
253  Value second;
254
255 private:
256  int index_;
257};
258
259template<typename Value>
260const typename SparseArray<Value>::IndexValue&
261SparseArray<Value>::iv(int i) const {
262  DCHECK_GE(i, 0);
263  DCHECK_LT(i, size_);
264  return dense_[i];
265}
266
267// Change the maximum size of the array.
268// Invalidates all iterators.
269template<typename Value>
270void SparseArray<Value>::resize(int new_max_size) {
271  DebugCheckInvariants();
272  if (new_max_size > max_size_) {
273    int* a = new int[new_max_size];
274    if (sparse_to_dense_) {
275      memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
276      // Don't need to zero the memory but appease Valgrind.
277      if (valgrind_) {
278        for (int i = max_size_; i < new_max_size; i++)
279          a[i] = 0xababababU;
280      }
281      delete[] sparse_to_dense_;
282    }
283    sparse_to_dense_ = a;
284
285    dense_.resize(new_max_size);
286  }
287  max_size_ = new_max_size;
288  if (size_ > max_size_)
289    size_ = max_size_;
290  DebugCheckInvariants();
291}
292
293// Check whether index i is in the array.
294template<typename Value>
295bool SparseArray<Value>::has_index(int i) const {
296  DCHECK_GE(i, 0);
297  DCHECK_LT(i, max_size_);
298  if (static_cast<uint>(i) >= max_size_) {
299    return false;
300  }
301  // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
302  return (uint)sparse_to_dense_[i] < (uint)size_ &&
303    dense_[sparse_to_dense_[i]].index_ == i;
304}
305
306// Set the value at index i to v.
307template<typename Value>
308typename SparseArray<Value>::iterator SparseArray<Value>::set(int i, Value v) {
309  DebugCheckInvariants();
310  if (static_cast<uint>(i) >= max_size_) {
311    // Semantically, end() would be better here, but we already know
312    // the user did something stupid, so begin() insulates them from
313    // dereferencing an invalid pointer.
314    return begin();
315  }
316  if (!has_index(i))
317    create_index(i);
318  return set_existing(i, v);
319}
320
321template<typename Value>
322pair<typename SparseArray<Value>::iterator, bool> SparseArray<Value>::insert(
323    const value_type& new_value) {
324  DebugCheckInvariants();
325  pair<typename SparseArray<Value>::iterator, bool> p;
326  if (has_index(new_value.index_)) {
327    p = make_pair(dense_.begin() + sparse_to_dense_[new_value.index_], false);
328  } else {
329    p = make_pair(set_new(new_value.index_, new_value.second), true);
330  }
331  DebugCheckInvariants();
332  return p;
333}
334
335template<typename Value>
336Value SparseArray<Value>::get(int i, Value defaultv) const {
337  if (!has_index(i))
338    return defaultv;
339  return get_existing(i);
340}
341
342template<typename Value>
343typename SparseArray<Value>::iterator SparseArray<Value>::find(int i) {
344  if (has_index(i))
345    return dense_.begin() + sparse_to_dense_[i];
346  return end();
347}
348
349template<typename Value>
350typename SparseArray<Value>::const_iterator
351SparseArray<Value>::find(int i) const {
352  if (has_index(i)) {
353    return dense_.begin() + sparse_to_dense_[i];
354  }
355  return end();
356}
357
358template<typename Value>
359typename SparseArray<Value>::iterator
360SparseArray<Value>::set_existing(int i, Value v) {
361  DebugCheckInvariants();
362  DCHECK(has_index(i));
363  dense_[sparse_to_dense_[i]].second = v;
364  DebugCheckInvariants();
365  return dense_.begin() + sparse_to_dense_[i];
366}
367
368template<typename Value>
369typename SparseArray<Value>::iterator
370SparseArray<Value>::set_new(int i, Value v) {
371  DebugCheckInvariants();
372  if (static_cast<uint>(i) >= max_size_) {
373    // Semantically, end() would be better here, but we already know
374    // the user did something stupid, so begin() insulates them from
375    // dereferencing an invalid pointer.
376    return begin();
377  }
378  DCHECK(!has_index(i));
379  create_index(i);
380  return set_existing(i, v);
381}
382
383template<typename Value>
384Value SparseArray<Value>::get_existing(int i) const {
385  DCHECK(has_index(i));
386  return dense_[sparse_to_dense_[i]].second;
387}
388
389template<typename Value>
390void SparseArray<Value>::erase(int i) {
391  DebugCheckInvariants();
392  if (has_index(i))
393    erase_existing(i);
394  DebugCheckInvariants();
395}
396
397template<typename Value>
398void SparseArray<Value>::erase_existing(int i) {
399  DebugCheckInvariants();
400  DCHECK(has_index(i));
401  int di = sparse_to_dense_[i];
402  if (di < size_ - 1) {
403    dense_[di] = dense_[size_ - 1];
404    sparse_to_dense_[dense_[di].index_] = di;
405  }
406  size_--;
407  DebugCheckInvariants();
408}
409
410template<typename Value>
411void SparseArray<Value>::create_index(int i) {
412  DCHECK(!has_index(i));
413  DCHECK_LT(size_, max_size_);
414  sparse_to_dense_[i] = size_;
415  dense_[size_].index_ = i;
416  size_++;
417}
418
419template<typename Value> SparseArray<Value>::SparseArray(int max_size) {
420  max_size_ = max_size;
421  sparse_to_dense_ = new int[max_size];
422  valgrind_ = RunningOnValgrindOrMemorySanitizer();
423  dense_.resize(max_size);
424  // Don't need to zero the new memory, but appease Valgrind.
425  if (valgrind_) {
426    for (int i = 0; i < max_size; i++) {
427      sparse_to_dense_[i] = 0xababababU;
428      dense_[i].index_ = 0xababababU;
429    }
430  }
431  size_ = 0;
432  DebugCheckInvariants();
433}
434
435template<typename Value> SparseArray<Value>::~SparseArray() {
436  DebugCheckInvariants();
437  delete[] sparse_to_dense_;
438}
439
440template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
441  DCHECK_LE(0, size_);
442  DCHECK_LE(size_, max_size_);
443  DCHECK(size_ == 0 || sparse_to_dense_ != NULL);
444}
445
446// Comparison function for sorting.
447template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
448                                                       const IndexValue& b) {
449  return a.index_ < b.index_;
450}
451
452}  // namespace re2
453
454#endif  // RE2_UTIL_SPARSE_ARRAY_H__
455