1
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9#ifndef SkPathRef_DEFINED
10#define SkPathRef_DEFINED
11
12#include "SkDynamicAnnotations.h"
13#include "SkMatrix.h"
14#include "SkPoint.h"
15#include "SkRect.h"
16#include "SkRefCnt.h"
17#include "SkTDArray.h"
18#include <stddef.h> // ptrdiff_t
19
20class SkRBuffer;
21class SkWBuffer;
22
23/**
24 * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
25 * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
26 * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
27 * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
28 * constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's
29 * constructor returns.
30 *
31 * The points and verbs are stored in a single allocation. The points are at the begining of the
32 * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
33 * and verbs both grow into the middle of the allocation until the meet. To access verb i in the
34 * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
35 * logical verb or the last verb in memory).
36 */
37
38class SK_API SkPathRef : public ::SkRefCnt {
39public:
40    SK_DECLARE_INST_COUNT(SkPathRef);
41
42    class Editor {
43    public:
44        Editor(SkAutoTUnref<SkPathRef>* pathRef,
45               int incReserveVerbs = 0,
46               int incReservePoints = 0);
47
48        ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
49
50        /**
51         * Returns the array of points.
52         */
53        SkPoint* points() { return fPathRef->getPoints(); }
54        const SkPoint* points() const { return fPathRef->points(); }
55
56        /**
57         * Gets the ith point. Shortcut for this->points() + i
58         */
59        SkPoint* atPoint(int i) {
60            SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
61            return this->points() + i;
62        };
63        const SkPoint* atPoint(int i) const {
64            SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
65            return this->points() + i;
66        };
67
68        /**
69         * Adds the verb and allocates space for the number of points indicated by the verb. The
70         * return value is a pointer to where the points for the verb should be written.
71         * 'weight' is only used if 'verb' is kConic_Verb
72         */
73        SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
74            SkDEBUGCODE(fPathRef->validate();)
75            return fPathRef->growForVerb(verb, weight);
76        }
77
78        /**
79         * Allocates space for multiple instances of a particular verb and the
80         * requisite points & weights.
81         * The return pointer points at the first new point (indexed normally [<i>]).
82         * If 'verb' is kConic_Verb, 'weights' will return a pointer to the
83         * space for the conic weights (indexed normally).
84         */
85        SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
86                                     int numVbs,
87                                     SkScalar** weights = NULL) {
88            return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
89        }
90
91        /**
92         * Resets the path ref to a new verb and point count. The new verbs and points are
93         * uninitialized.
94         */
95        void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
96            fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
97        }
98
99        /**
100         * Gets the path ref that is wrapped in the Editor.
101         */
102        SkPathRef* pathRef() { return fPathRef; }
103
104        void setIsOval(bool isOval) { fPathRef->setIsOval(isOval); }
105
106        void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
107
108    private:
109        SkPathRef* fPathRef;
110    };
111
112public:
113    /**
114     * Gets a path ref with no verbs or points.
115     */
116    static SkPathRef* CreateEmpty();
117
118    /**
119     *  Returns true if all of the points in this path are finite, meaning there
120     *  are no infinities and no NaNs.
121     */
122    bool isFinite() const {
123        if (fBoundsIsDirty) {
124            this->computeBounds();
125        }
126        return SkToBool(fIsFinite);
127    }
128
129    /**
130     *  Returns a mask, where each bit corresponding to a SegmentMask is
131     *  set if the path contains 1 or more segments of that type.
132     *  Returns 0 for an empty path (no segments).
133     */
134    uint32_t getSegmentMasks() const { return fSegmentMask; }
135
136    /** Returns true if the path is an oval.
137     *
138     * @param rect      returns the bounding rect of this oval. It's a circle
139     *                  if the height and width are the same.
140     *
141     * @return true if this path is an oval.
142     *              Tracking whether a path is an oval is considered an
143     *              optimization for performance and so some paths that are in
144     *              fact ovals can report false.
145     */
146    bool isOval(SkRect* rect) const {
147        if (fIsOval && rect) {
148            *rect = getBounds();
149        }
150
151        return SkToBool(fIsOval);
152    }
153
154    bool hasComputedBounds() const {
155        return !fBoundsIsDirty;
156    }
157
158    /** Returns the bounds of the path's points. If the path contains 0 or 1
159        points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
160        Note: this bounds may be larger than the actual shape, since curves
161        do not extend as far as their control points.
162    */
163    const SkRect& getBounds() const {
164        if (fBoundsIsDirty) {
165            this->computeBounds();
166        }
167        return fBounds;
168    }
169
170    /**
171     * Transforms a path ref by a matrix, allocating a new one only if necessary.
172     */
173    static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
174                                      const SkPathRef& src,
175                                      const SkMatrix& matrix);
176
177    static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
178
179    /**
180     * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
181     * repopulated with approximately the same number of verbs and points. A new path ref is created
182     * only if necessary.
183     */
184    static void Rewind(SkAutoTUnref<SkPathRef>* pathRef);
185
186    virtual ~SkPathRef() {
187        SkDEBUGCODE(this->validate();)
188        sk_free(fPoints);
189
190        SkDEBUGCODE(fPoints = NULL;)
191        SkDEBUGCODE(fVerbs = NULL;)
192        SkDEBUGCODE(fVerbCnt = 0x9999999;)
193        SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
194        SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
195        SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
196        SkDEBUGCODE(fEditorsAttached = 0x7777777;)
197    }
198
199    int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; }
200    int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; }
201    int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); }
202
203    /**
204     * Returns a pointer one beyond the first logical verb (last verb in memory order).
205     */
206    const uint8_t* verbs() const { SkDEBUGCODE(this->validate();) return fVerbs; }
207
208    /**
209     * Returns a const pointer to the first verb in memory (which is the last logical verb).
210     */
211    const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
212
213    /**
214     * Returns a const pointer to the first point.
215     */
216    const SkPoint* points() const { SkDEBUGCODE(this->validate();) return fPoints; }
217
218    /**
219     * Shortcut for this->points() + this->countPoints()
220     */
221    const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
222
223    const SkScalar* conicWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.begin(); }
224    const SkScalar* conicWeightsEnd() const { SkDEBUGCODE(this->validate();) return fConicWeights.end(); }
225
226    /**
227     * Convenience methods for getting to a verb or point by index.
228     */
229    uint8_t atVerb(int index) const {
230        SkASSERT((unsigned) index < (unsigned) fVerbCnt);
231        return this->verbs()[~index];
232    }
233    const SkPoint& atPoint(int index) const {
234        SkASSERT((unsigned) index < (unsigned) fPointCnt);
235        return this->points()[index];
236    }
237
238    bool operator== (const SkPathRef& ref) const;
239
240    /**
241     * Writes the path points and verbs to a buffer.
242     */
243    void writeToBuffer(SkWBuffer* buffer) const;
244
245    /**
246     * Gets the number of bytes that would be written in writeBuffer()
247     */
248    uint32_t writeSize() const;
249
250    /**
251     * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
252     * same ID then they have the same verbs and points. However, two path refs may have the same
253     * contents but different genIDs.
254     */
255    uint32_t genID() const;
256
257private:
258    enum SerializationOffsets {
259        kIsFinite_SerializationShift = 25,  // requires 1 bit
260        kIsOval_SerializationShift = 24,    // requires 1 bit
261        kSegmentMask_SerializationShift = 0 // requires 4 bits
262    };
263
264    SkPathRef() {
265        fBoundsIsDirty = true;    // this also invalidates fIsFinite
266        fPointCnt = 0;
267        fVerbCnt = 0;
268        fVerbs = NULL;
269        fPoints = NULL;
270        fFreeSpace = 0;
271        fGenerationID = kEmptyGenID;
272        fSegmentMask = 0;
273        fIsOval = false;
274        SkDEBUGCODE(fEditorsAttached = 0;)
275        SkDEBUGCODE(this->validate();)
276    }
277
278    void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints);
279
280    // Return true if the computed bounds are finite.
281    static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
282        int count = ref.countPoints();
283        if (count <= 1) {  // we ignore just 1 point (moveto)
284            bounds->setEmpty();
285            return count ? ref.points()->isFinite() : true;
286        } else {
287            return bounds->setBoundsCheck(ref.points(), count);
288        }
289    }
290
291    // called, if dirty, by getBounds()
292    void computeBounds() const {
293        SkDEBUGCODE(this->validate();)
294        // TODO(mtklein): remove fBoundsIsDirty and fIsFinite,
295        // using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
296        //SkASSERT(fBoundsIsDirty);
297
298        fIsFinite = ComputePtBounds(fBounds.get(), *this);
299        fBoundsIsDirty = false;
300    }
301
302    void setBounds(const SkRect& rect) {
303        SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
304        fBounds = rect;
305        fBoundsIsDirty = false;
306        fIsFinite = fBounds->isFinite();
307    }
308
309    /** Makes additional room but does not change the counts or change the genID */
310    void incReserve(int additionalVerbs, int additionalPoints) {
311        SkDEBUGCODE(this->validate();)
312        size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
313        this->makeSpace(space);
314        SkDEBUGCODE(this->validate();)
315    }
316
317    /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
318     *  allocates space for reserveVerb additional verbs and reservePoints additional points.*/
319    void resetToSize(int verbCount, int pointCount, int conicCount,
320                     int reserveVerbs = 0, int reservePoints = 0) {
321        SkDEBUGCODE(this->validate();)
322        fBoundsIsDirty = true;      // this also invalidates fIsFinite
323        fGenerationID = 0;
324
325        fSegmentMask = 0;
326        fIsOval = false;
327
328        size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
329        size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
330        size_t minSize = newSize + newReserve;
331
332        ptrdiff_t sizeDelta = this->currSize() - minSize;
333
334        if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
335            sk_free(fPoints);
336            fPoints = NULL;
337            fVerbs = NULL;
338            fFreeSpace = 0;
339            fVerbCnt = 0;
340            fPointCnt = 0;
341            this->makeSpace(minSize);
342            fVerbCnt = verbCount;
343            fPointCnt = pointCount;
344            fFreeSpace -= newSize;
345        } else {
346            fPointCnt = pointCount;
347            fVerbCnt = verbCount;
348            fFreeSpace = this->currSize() - minSize;
349        }
350        fConicWeights.setCount(conicCount);
351        SkDEBUGCODE(this->validate();)
352    }
353
354    /**
355     * Increases the verb count by numVbs and point count by the required amount.
356     * The new points are uninitialized. All the new verbs are set to the specified
357     * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
358     * uninitialized conic weights.
359     */
360    SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
361
362    /**
363     * Increases the verb count 1, records the new verb, and creates room for the requisite number
364     * of additional points. A pointer to the first point is returned. Any new points are
365     * uninitialized.
366     */
367    SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
368
369    /**
370     * Ensures that the free space available in the path ref is >= size. The verb and point counts
371     * are not changed.
372     */
373    void makeSpace(size_t size) {
374        SkDEBUGCODE(this->validate();)
375        ptrdiff_t growSize = size - fFreeSpace;
376        if (growSize <= 0) {
377            return;
378        }
379        size_t oldSize = this->currSize();
380        // round to next multiple of 8 bytes
381        growSize = (growSize + 7) & ~static_cast<size_t>(7);
382        // we always at least double the allocation
383        if (static_cast<size_t>(growSize) < oldSize) {
384            growSize = oldSize;
385        }
386        if (growSize < kMinSize) {
387            growSize = kMinSize;
388        }
389        size_t newSize = oldSize + growSize;
390        // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
391        // encapsulate this.
392        fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
393        size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
394        void* newVerbsDst = reinterpret_cast<void*>(
395                                reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
396        void* oldVerbsSrc = reinterpret_cast<void*>(
397                                reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
398        memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
399        fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
400        fFreeSpace += growSize;
401        SkDEBUGCODE(this->validate();)
402    }
403
404    /**
405     * Private, non-const-ptr version of the public function verbsMemBegin().
406     */
407    uint8_t* verbsMemWritable() {
408        SkDEBUGCODE(this->validate();)
409        return fVerbs - fVerbCnt;
410    }
411
412    /**
413     * Gets the total amount of space allocated for verbs, points, and reserve.
414     */
415    size_t currSize() const {
416        return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
417    }
418
419    SkDEBUGCODE(void validate() const;)
420
421    /**
422     * Called the first time someone calls CreateEmpty to actually create the singleton.
423     */
424    static SkPathRef* CreateEmptyImpl();
425
426    void setIsOval(bool isOval) { fIsOval = isOval; }
427
428    SkPoint* getPoints() {
429        SkDEBUGCODE(this->validate();)
430        fIsOval = false;
431        return fPoints;
432    }
433
434    enum {
435        kMinSize = 256,
436    };
437
438    mutable SkTRacyReffable<SkRect> fBounds;
439    mutable SkTRacy<uint8_t>        fBoundsIsDirty;
440    mutable SkTRacy<SkBool8>        fIsFinite;    // only meaningful if bounds are valid
441
442    SkBool8  fIsOval;
443    uint8_t  fSegmentMask;
444
445    SkPoint*            fPoints; // points to begining of the allocation
446    uint8_t*            fVerbs; // points just past the end of the allocation (verbs grow backwards)
447    int                 fVerbCnt;
448    int                 fPointCnt;
449    size_t              fFreeSpace; // redundant but saves computation
450    SkTDArray<SkScalar> fConicWeights;
451
452    enum {
453        kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
454    };
455    mutable uint32_t    fGenerationID;
456    SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
457
458    friend class PathRefTest_Private;
459    typedef SkRefCnt INHERITED;
460};
461
462#endif
463