1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/* ChangeLog for this library:
30 *
31 * NDK r8d: Add android_setCpu().
32 *
33 * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
34 *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
35 *
36 *          Rewrite the code to parse /proc/self/auxv instead of
37 *          the "Features" field in /proc/cpuinfo.
38 *
39 *          Dynamically allocate the buffer that hold the content
40 *          of /proc/cpuinfo to deal with newer hardware.
41 *
42 * NDK r7c: Fix CPU count computation. The old method only reported the
43 *           number of _active_ CPUs when the library was initialized,
44 *           which could be less than the real total.
45 *
46 * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
47 *         for an ARMv6 CPU (see below).
48 *
49 *         Handle kernels that only report 'neon', and not 'vfpv3'
50 *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
51 *
52 *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
53 *
54 *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
55 *         android_getCpuFamily().
56 *
57 * NDK r4: Initial release
58 */
59#include <sys/system_properties.h>
60#ifdef __arm__
61#include <machine/cpu-features.h>
62#endif
63#include <pthread.h>
64#include "cpu-features.h"
65#include <stdio.h>
66#include <stdlib.h>
67#include <fcntl.h>
68#include <errno.h>
69
70static  pthread_once_t     g_once;
71static  int                g_inited;
72static  AndroidCpuFamily   g_cpuFamily;
73static  uint64_t           g_cpuFeatures;
74static  int                g_cpuCount;
75
76static const int  android_cpufeatures_debug = 0;
77
78#ifdef __arm__
79#  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_ARM
80#elif defined __i386__
81#  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_X86
82#else
83#  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_UNKNOWN
84#endif
85
86#define  D(...) \
87    do { \
88        if (android_cpufeatures_debug) { \
89            printf(__VA_ARGS__); fflush(stdout); \
90        } \
91    } while (0)
92
93#ifdef __i386__
94static __inline__ void x86_cpuid(int func, int values[4])
95{
96    int a, b, c, d;
97    /* We need to preserve ebx since we're compiling PIC code */
98    /* this means we can't use "=b" for the second output register */
99    __asm__ __volatile__ ( \
100      "push %%ebx\n"
101      "cpuid\n" \
102      "mov %%ebx, %1\n"
103      "pop %%ebx\n"
104      : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
105      : "a" (func) \
106    );
107    values[0] = a;
108    values[1] = b;
109    values[2] = c;
110    values[3] = d;
111}
112#endif
113
114/* Get the size of a file by reading it until the end. This is needed
115 * because files under /proc do not always return a valid size when
116 * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
117 */
118static int
119get_file_size(const char* pathname)
120{
121    int fd, ret, result = 0;
122    char buffer[256];
123
124    fd = open(pathname, O_RDONLY);
125    if (fd < 0) {
126      D("Can't open %s: %s\n", pathname, strerror(errno));
127      return -1;
128    }
129
130    for (;;) {
131      int ret = read(fd, buffer, sizeof buffer);
132      if (ret < 0) {
133        if (errno == EINTR)
134          continue;
135        D("Error while reading %s: %s\n", pathname, strerror(errno));
136        break;
137      }
138      if (ret == 0)
139        break;
140
141      result += ret;
142    }
143    close(fd);
144    return result;
145}
146
147/* Read the content of /proc/cpuinfo into a user-provided buffer.
148 * Return the length of the data, or -1 on error. Does *not*
149 * zero-terminate the content. Will not read more
150 * than 'buffsize' bytes.
151 */
152static int
153read_file(const char*  pathname, char*  buffer, size_t  buffsize)
154{
155    int  fd, count;
156
157    fd = open(pathname, O_RDONLY);
158    if (fd < 0) {
159        D("Could not open %s: %s\n", pathname, strerror(errno));
160        return -1;
161    }
162    count = 0;
163    while (count < (int)buffsize) {
164        int ret = read(fd, buffer + count, buffsize - count);
165        if (ret < 0) {
166            if (errno == EINTR)
167                continue;
168            D("Error while reading from %s: %s\n", pathname, strerror(errno));
169            if (count == 0)
170                count = -1;
171            break;
172        }
173        if (ret == 0)
174            break;
175        count += ret;
176    }
177    close(fd);
178    return count;
179}
180
181/* Extract the content of a the first occurence of a given field in
182 * the content of /proc/cpuinfo and return it as a heap-allocated
183 * string that must be freed by the caller.
184 *
185 * Return NULL if not found
186 */
187static char*
188extract_cpuinfo_field(char* buffer, int buflen, const char* field)
189{
190    int  fieldlen = strlen(field);
191    char* bufend = buffer + buflen;
192    char* result = NULL;
193    int len, ignore;
194    const char *p, *q;
195
196    /* Look for first field occurence, and ensures it starts the line. */
197    p = buffer;
198    bufend = buffer + buflen;
199    for (;;) {
200        p = memmem(p, bufend-p, field, fieldlen);
201        if (p == NULL)
202            goto EXIT;
203
204        if (p == buffer || p[-1] == '\n')
205            break;
206
207        p += fieldlen;
208    }
209
210    /* Skip to the first column followed by a space */
211    p += fieldlen;
212    p  = memchr(p, ':', bufend-p);
213    if (p == NULL || p[1] != ' ')
214        goto EXIT;
215
216    /* Find the end of the line */
217    p += 2;
218    q = memchr(p, '\n', bufend-p);
219    if (q == NULL)
220        q = bufend;
221
222    /* Copy the line into a heap-allocated buffer */
223    len = q-p;
224    result = malloc(len+1);
225    if (result == NULL)
226        goto EXIT;
227
228    memcpy(result, p, len);
229    result[len] = '\0';
230
231EXIT:
232    return result;
233}
234
235/* Like strlen(), but for constant string literals */
236#define STRLEN_CONST(x)  ((sizeof(x)-1)
237
238
239/* Checks that a space-separated list of items contains one given 'item'.
240 * Returns 1 if found, 0 otherwise.
241 */
242static int
243has_list_item(const char* list, const char* item)
244{
245    const char*  p = list;
246    int itemlen = strlen(item);
247
248    if (list == NULL)
249        return 0;
250
251    while (*p) {
252        const char*  q;
253
254        /* skip spaces */
255        while (*p == ' ' || *p == '\t')
256            p++;
257
258        /* find end of current list item */
259        q = p;
260        while (*q && *q != ' ' && *q != '\t')
261            q++;
262
263        if (itemlen == q-p && !memcmp(p, item, itemlen))
264            return 1;
265
266        /* skip to next item */
267        p = q;
268    }
269    return 0;
270}
271
272/* Parse an decimal integer starting from 'input', but not going further
273 * than 'limit'. Return the value into '*result'.
274 *
275 * NOTE: Does not skip over leading spaces, or deal with sign characters.
276 * NOTE: Ignores overflows.
277 *
278 * The function returns NULL in case of error (bad format), or the new
279 * position after the decimal number in case of success (which will always
280 * be <= 'limit').
281 */
282static const char*
283parse_decimal(const char* input, const char* limit, int* result)
284{
285    const char* p = input;
286    int val = 0;
287    while (p < limit) {
288        int d = (*p - '0');
289        if ((unsigned)d >= 10U)
290            break;
291        val = val*10 + d;
292        p++;
293    }
294    if (p == input)
295        return NULL;
296
297    *result = val;
298    return p;
299}
300
301/* This small data type is used to represent a CPU list / mask, as read
302 * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
303 *
304 * For now, we don't expect more than 32 cores on mobile devices, so keep
305 * everything simple.
306 */
307typedef struct {
308    uint32_t mask;
309} CpuList;
310
311static __inline__ void
312cpulist_init(CpuList* list) {
313    list->mask = 0;
314}
315
316static __inline__ void
317cpulist_and(CpuList* list1, CpuList* list2) {
318    list1->mask &= list2->mask;
319}
320
321static __inline__ void
322cpulist_set(CpuList* list, int index) {
323    if ((unsigned)index < 32) {
324        list->mask |= (uint32_t)(1U << index);
325    }
326}
327
328static __inline__ int
329cpulist_count(CpuList* list) {
330    return __builtin_popcount(list->mask);
331}
332
333/* Parse a textual list of cpus and store the result inside a CpuList object.
334 * Input format is the following:
335 * - comma-separated list of items (no spaces)
336 * - each item is either a single decimal number (cpu index), or a range made
337 *   of two numbers separated by a single dash (-). Ranges are inclusive.
338 *
339 * Examples:   0
340 *             2,4-127,128-143
341 *             0-1
342 */
343static void
344cpulist_parse(CpuList* list, const char* line, int line_len)
345{
346    const char* p = line;
347    const char* end = p + line_len;
348    const char* q;
349
350    /* NOTE: the input line coming from sysfs typically contains a
351     * trailing newline, so take care of it in the code below
352     */
353    while (p < end && *p != '\n')
354    {
355        int val, start_value, end_value;
356
357        /* Find the end of current item, and put it into 'q' */
358        q = memchr(p, ',', end-p);
359        if (q == NULL) {
360            q = end;
361        }
362
363        /* Get first value */
364        p = parse_decimal(p, q, &start_value);
365        if (p == NULL)
366            goto BAD_FORMAT;
367
368        end_value = start_value;
369
370        /* If we're not at the end of the item, expect a dash and
371         * and integer; extract end value.
372         */
373        if (p < q && *p == '-') {
374            p = parse_decimal(p+1, q, &end_value);
375            if (p == NULL)
376                goto BAD_FORMAT;
377        }
378
379        /* Set bits CPU list bits */
380        for (val = start_value; val <= end_value; val++) {
381            cpulist_set(list, val);
382        }
383
384        /* Jump to next item */
385        p = q;
386        if (p < end)
387            p++;
388    }
389
390BAD_FORMAT:
391    ;
392}
393
394/* Read a CPU list from one sysfs file */
395static void
396cpulist_read_from(CpuList* list, const char* filename)
397{
398    char   file[64];
399    int    filelen;
400
401    cpulist_init(list);
402
403    filelen = read_file(filename, file, sizeof file);
404    if (filelen < 0) {
405        D("Could not read %s: %s\n", filename, strerror(errno));
406        return;
407    }
408
409    cpulist_parse(list, file, filelen);
410}
411
412// See <asm/hwcap.h> kernel header.
413#define HWCAP_VFP       (1 << 6)
414#define HWCAP_IWMMXT    (1 << 9)
415#define HWCAP_NEON      (1 << 12)
416#define HWCAP_VFPv3     (1 << 13)
417#define HWCAP_VFPv3D16  (1 << 14)
418#define HWCAP_VFPv4     (1 << 16)
419#define HWCAP_IDIVA     (1 << 17)
420#define HWCAP_IDIVT     (1 << 18)
421
422#define AT_HWCAP 16
423
424/* Read the ELF HWCAP flags by parsing /proc/self/auxv
425 */
426static uint32_t
427get_elf_hwcap(void)
428{
429    uint32_t result = 0;
430    const char filepath[] = "/proc/self/auxv";
431    int fd = open(filepath, O_RDONLY);
432    if (fd < 0) {
433        D("Could not open %s: %s\n", filepath, strerror(errno));
434        return 0;
435    }
436
437    struct { uint32_t tag; uint32_t value; } entry;
438
439    for (;;) {
440        int ret = read(fd, (char*)&entry, sizeof entry);
441        if (ret < 0) {
442            if (errno == EINTR)
443                continue;
444            D("Error while reading %s: %s\n", filepath, strerror(errno));
445            break;
446        }
447        // Detect end of list.
448        if (ret == 0 || (entry.tag == 0 && entry.value == 0))
449          break;
450        if (entry.tag == AT_HWCAP) {
451          result = entry.value;
452          break;
453        }
454    }
455    close(fd);
456    return result;
457}
458
459/* Return the number of cpus present on a given device.
460 *
461 * To handle all weird kernel configurations, we need to compute the
462 * intersection of the 'present' and 'possible' CPU lists and count
463 * the result.
464 */
465static int
466get_cpu_count(void)
467{
468    CpuList cpus_present[1];
469    CpuList cpus_possible[1];
470
471    cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
472    cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
473
474    /* Compute the intersection of both sets to get the actual number of
475     * CPU cores that can be used on this device by the kernel.
476     */
477    cpulist_and(cpus_present, cpus_possible);
478
479    return cpulist_count(cpus_present);
480}
481
482static void
483android_cpuInitFamily(void)
484{
485#if defined(__ARM_ARCH__)
486    g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
487#elif defined(__i386__)
488    g_cpuFamily = ANDROID_CPU_FAMILY_X86;
489#elif defined(_MIPS_ARCH)
490    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
491#else
492    g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
493#endif
494}
495
496static void
497android_cpuInit(void)
498{
499    char* cpuinfo = NULL;
500    int   cpuinfo_len;
501
502    android_cpuInitFamily();
503
504    g_cpuFeatures = 0;
505    g_cpuCount    = 1;
506    g_inited      = 1;
507
508    cpuinfo_len = get_file_size("/proc/cpuinfo");
509    if (cpuinfo_len < 0) {
510      D("cpuinfo_len cannot be computed!");
511      return;
512    }
513    cpuinfo = malloc(cpuinfo_len);
514    if (cpuinfo == NULL) {
515      D("cpuinfo buffer could not be allocated");
516      return;
517    }
518    cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
519    D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
520      cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
521
522    if (cpuinfo_len < 0)  /* should not happen */ {
523        free(cpuinfo);
524        return;
525    }
526
527    /* Count the CPU cores, the value may be 0 for single-core CPUs */
528    g_cpuCount = get_cpu_count();
529    if (g_cpuCount == 0) {
530        g_cpuCount = 1;
531    }
532
533    D("found cpuCount = %d\n", g_cpuCount);
534
535#ifdef __ARM_ARCH__
536    {
537        char*  features = NULL;
538        char*  architecture = NULL;
539
540        /* Extract architecture from the "CPU Architecture" field.
541         * The list is well-known, unlike the the output of
542         * the 'Processor' field which can vary greatly.
543         *
544         * See the definition of the 'proc_arch' array in
545         * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
546         * same file.
547         */
548        char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
549
550        if (cpuArch != NULL) {
551            char*  end;
552            long   archNumber;
553            int    hasARMv7 = 0;
554
555            D("found cpuArch = '%s'\n", cpuArch);
556
557            /* read the initial decimal number, ignore the rest */
558            archNumber = strtol(cpuArch, &end, 10);
559
560            /* Here we assume that ARMv8 will be upwards compatible with v7
561             * in the future. Unfortunately, there is no 'Features' field to
562             * indicate that Thumb-2 is supported.
563             */
564            if (end > cpuArch && archNumber >= 7) {
565                hasARMv7 = 1;
566            }
567
568            /* Unfortunately, it seems that certain ARMv6-based CPUs
569             * report an incorrect architecture number of 7!
570             *
571             * See http://code.google.com/p/android/issues/detail?id=10812
572             *
573             * We try to correct this by looking at the 'elf_format'
574             * field reported by the 'Processor' field, which is of the
575             * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
576             * an ARMv6-one.
577             */
578            if (hasARMv7) {
579                char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
580                                                      "Processor");
581                if (cpuProc != NULL) {
582                    D("found cpuProc = '%s'\n", cpuProc);
583                    if (has_list_item(cpuProc, "(v6l)")) {
584                        D("CPU processor and architecture mismatch!!\n");
585                        hasARMv7 = 0;
586                    }
587                    free(cpuProc);
588                }
589            }
590
591            if (hasARMv7) {
592                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
593            }
594
595            /* The LDREX / STREX instructions are available from ARMv6 */
596            if (archNumber >= 6) {
597                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
598            }
599
600            free(cpuArch);
601        }
602
603        /* Extract the list of CPU features from ELF hwcaps */
604        uint32_t hwcaps = get_elf_hwcap();
605
606        if (hwcaps != 0) {
607            int has_vfp = (hwcaps & HWCAP_VFP);
608            int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
609            int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
610            int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
611            int has_neon = (hwcaps & HWCAP_NEON);
612            int has_idiva = (hwcaps & HWCAP_IDIVA);
613            int has_idivt = (hwcaps & HWCAP_IDIVT);
614            int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
615
616            // The kernel does a poor job at ensuring consistency when
617            // describing CPU features. So lots of guessing is needed.
618
619            // 'vfpv4' implies VFPv3|VFP_FMA|FP16
620            if (has_vfpv4)
621              g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
622                               ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
623                               ANDROID_CPU_ARM_FEATURE_VFP_FMA;
624
625            // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
626            // a value of 'vfpv3' doesn't necessarily mean that the D32
627            // feature is present, so be conservative. All CPUs in the
628            // field that support D32 also support NEON, so this should
629            // not be a problem in practice.
630            if (has_vfpv3 || has_vfpv3d16)
631              g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
632
633            // 'vfp' is super ambiguous. Depending on the kernel, it can
634            // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
635            if (has_vfp) {
636              if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
637                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
638              else
639                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
640            }
641
642            // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
643            if (has_neon) {
644              g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
645                               ANDROID_CPU_ARM_FEATURE_NEON |
646                               ANDROID_CPU_ARM_FEATURE_VFP_D32;
647              if (has_vfpv4)
648                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
649            }
650
651            // VFPv3 implies VFPv2 and ARMv7
652            if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
653              g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
654                               ANDROID_CPU_ARM_FEATURE_ARMv7;
655
656            // Note that some buggy kernels do not report these even when
657            // the CPU actually support the division instructions. However,
658            // assume that if 'vfpv4' is detected, then the CPU supports
659            // sdiv/udiv properly.
660            if (has_idiva || has_vfpv4)
661              g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
662            if (has_idivt || has_vfpv4)
663              g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
664
665            if (has_iwmmxt)
666              g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
667        }
668    }
669#endif /* __ARM_ARCH__ */
670
671#ifdef __i386__
672    int regs[4];
673
674/* According to http://en.wikipedia.org/wiki/CPUID */
675#define VENDOR_INTEL_b  0x756e6547
676#define VENDOR_INTEL_c  0x6c65746e
677#define VENDOR_INTEL_d  0x49656e69
678
679    x86_cpuid(0, regs);
680    int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
681                         regs[2] == VENDOR_INTEL_c &&
682                         regs[3] == VENDOR_INTEL_d);
683
684    x86_cpuid(1, regs);
685    if ((regs[2] & (1 << 9)) != 0) {
686        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
687    }
688    if ((regs[2] & (1 << 23)) != 0) {
689        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
690    }
691    if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
692        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
693    }
694#endif
695
696    free(cpuinfo);
697}
698
699
700AndroidCpuFamily
701android_getCpuFamily(void)
702{
703    pthread_once(&g_once, android_cpuInit);
704    return g_cpuFamily;
705}
706
707
708uint64_t
709android_getCpuFeatures(void)
710{
711    pthread_once(&g_once, android_cpuInit);
712    return g_cpuFeatures;
713}
714
715
716int
717android_getCpuCount(void)
718{
719    pthread_once(&g_once, android_cpuInit);
720    return g_cpuCount;
721}
722
723static void
724android_cpuInitDummy(void)
725{
726    g_inited = 1;
727}
728
729int
730android_setCpu(int cpu_count, uint64_t cpu_features)
731{
732    /* Fail if the library was already initialized. */
733    if (g_inited)
734        return 0;
735
736    android_cpuInitFamily();
737    g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
738    g_cpuFeatures = cpu_features;
739    pthread_once(&g_once, android_cpuInitDummy);
740
741    return 1;
742}
743
744/*
745 * Technical note: Making sense of ARM's FPU architecture versions.
746 *
747 * FPA was ARM's first attempt at an FPU architecture. There is no Android
748 * device that actually uses it since this technology was already obsolete
749 * when the project started. If you see references to FPA instructions
750 * somewhere, you can be sure that this doesn't apply to Android at all.
751 *
752 * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
753 * new versions / additions to it. ARM considers this obsolete right now,
754 * and no known Android device implements it either.
755 *
756 * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
757 * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
758 * supporting the 'armeabi' ABI doesn't necessarily support these.
759 *
760 * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
761 * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
762 * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
763 * that it provides 16 double-precision FPU registers (d0-d15) and 32
764 * single-precision ones (s0-s31) which happen to be mapped to the same
765 * register banks.
766 *
767 * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
768 * additional double precision registers (d16-d31). Note that there are
769 * still only 32 single precision registers.
770 *
771 * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
772 * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
773 * are not supported by Android. Note that it is not compatible with VFPv2.
774 *
775 * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
776 *       depending on context. For example GCC uses it for VFPv3-D32, but
777 *       the Linux kernel code uses it for VFPv3-D16 (especially in
778 *       /proc/cpuinfo). Always try to use the full designation when
779 *       possible.
780 *
781 * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
782 * instructions to perform parallel computations on vectors of 8, 16,
783 * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
784 * NEON registers are also mapped to the same register banks.
785 *
786 * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
787 * perform fused multiply-accumulate on VFP registers, as well as
788 * half-precision (16-bit) conversion operations.
789 *
790 * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
791 * registers.
792 *
793 * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
794 * multiply-accumulate instructions that work on the NEON registers.
795 *
796 * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
797 *       depending on context.
798 *
799 * The following information was determined by scanning the binutils-2.22
800 * sources:
801 *
802 * Basic VFP instruction subsets:
803 *
804 * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
805 * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
806 * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
807 * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
808 * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
809 * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
810 * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
811 * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
812 * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
813 * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
814 *
815 * FPU types (excluding NEON)
816 *
817 * FPU_VFP_V1xD (EXT_V1xD)
818 *    |
819 *    +--------------------------+
820 *    |                          |
821 * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
822 *    |                          |
823 *    |                          |
824 * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
825 *    |
826 * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
827 *    |
828 *    +--------------------------+
829 *    |                          |
830 * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
831 *    |                          |
832 *    |                      FPU_VFP_V4 (+EXT_D32)
833 *    |
834 * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
835 *
836 * VFP architectures:
837 *
838 * ARCH_VFP_V1xD  (EXT_V1xD)
839 *   |
840 *   +------------------+
841 *   |                  |
842 *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
843 *   |                  |
844 *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
845 *   |                  |
846 *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
847 *   |
848 * ARCH_VFP_V1 (+EXT_V1)
849 *   |
850 * ARCH_VFP_V2 (+EXT_V2)
851 *   |
852 * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
853 *   |
854 *   +-------------------+
855 *   |                   |
856 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
857 *   |
858 *   +-------------------+
859 *   |                   |
860 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
861 *   |                   |
862 *   |         ARCH_VFP_V4 (+EXT_D32)
863 *   |                   |
864 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
865 *   |
866 * ARCH_VFP_V3 (+EXT_D32)
867 *   |
868 *   +-------------------+
869 *   |                   |
870 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
871 *   |
872 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
873 *   |
874 * ARCH_NEON_FP16 (+EXT_FP16)
875 *
876 * -fpu=<name> values and their correspondance with FPU architectures above:
877 *
878 *   {"vfp",               FPU_ARCH_VFP_V2},
879 *   {"vfp9",              FPU_ARCH_VFP_V2},
880 *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
881 *   {"vfp10",             FPU_ARCH_VFP_V2},
882 *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
883 *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
884 *   {"vfpv2",             FPU_ARCH_VFP_V2},
885 *   {"vfpv3",             FPU_ARCH_VFP_V3},
886 *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
887 *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
888 *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
889 *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
890 *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
891 *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
892 *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
893 *   {"vfpv4",             FPU_ARCH_VFP_V4},
894 *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
895 *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
896 *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
897 *
898 *
899 * Simplified diagram that only includes FPUs supported by Android:
900 * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
901 * all others are optional and must be probed at runtime.
902 *
903 * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
904 *   |
905 *   +-------------------+
906 *   |                   |
907 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
908 *   |
909 *   +-------------------+
910 *   |                   |
911 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
912 *   |                   |
913 *   |         ARCH_VFP_V4 (+EXT_D32)
914 *   |                   |
915 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
916 *   |
917 * ARCH_VFP_V3 (+EXT_D32)
918 *   |
919 *   +-------------------+
920 *   |                   |
921 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
922 *   |
923 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
924 *   |
925 * ARCH_NEON_FP16 (+EXT_FP16)
926 *
927 */
928