1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkScanPriv.h"
11#include "SkPath.h"
12#include "SkMatrix.h"
13#include "SkBlitter.h"
14#include "SkRegion.h"
15#include "SkAntiRun.h"
16
17#define SHIFT   2
18#define SCALE   (1 << SHIFT)
19#define MASK    (SCALE - 1)
20
21/** @file
22    We have two techniques for capturing the output of the supersampler:
23    - SUPERMASK, which records a large mask-bitmap
24        this is often faster for small, complex objects
25    - RLE, which records a rle-encoded scanline
26        this is often faster for large objects with big spans
27
28    These blitters use two coordinate systems:
29    - destination coordinates, scale equal to the output - often
30        abbreviated with 'i' or 'I' in variable names
31    - supersampled coordinates, scale equal to the output * SCALE
32
33    Enabling SK_USE_LEGACY_AA_COVERAGE keeps the aa coverage calculations as
34    they were before the fix that unified the output of the RLE and MASK
35    supersamplers.
36 */
37
38//#define FORCE_SUPERMASK
39//#define FORCE_RLE
40//#define SK_USE_LEGACY_AA_COVERAGE
41
42///////////////////////////////////////////////////////////////////////////////
43
44/// Base class for a single-pass supersampled blitter.
45class BaseSuperBlitter : public SkBlitter {
46public:
47    BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
48                     const SkRegion& clip);
49
50    /// Must be explicitly defined on subclasses.
51    virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
52                           const int16_t runs[]) SK_OVERRIDE {
53        SkDEBUGFAIL("How did I get here?");
54    }
55    /// May not be called on BaseSuperBlitter because it blits out of order.
56    virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
57        SkDEBUGFAIL("How did I get here?");
58    }
59
60protected:
61    SkBlitter*  fRealBlitter;
62    /// Current y coordinate, in destination coordinates.
63    int         fCurrIY;
64    /// Widest row of region to be blitted, in destination coordinates.
65    int         fWidth;
66    /// Leftmost x coordinate in any row, in destination coordinates.
67    int         fLeft;
68    /// Leftmost x coordinate in any row, in supersampled coordinates.
69    int         fSuperLeft;
70
71    SkDEBUGCODE(int fCurrX;)
72    /// Current y coordinate in supersampled coordinates.
73    int fCurrY;
74    /// Initial y coordinate (top of bounds).
75    int fTop;
76};
77
78BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
79                                   const SkRegion& clip) {
80    fRealBlitter = realBlitter;
81
82    /*
83     *  We use the clip bounds instead of the ir, since we may be asked to
84     *  draw outside of the rect if we're a inverse filltype
85     */
86    const int left = clip.getBounds().fLeft;
87    const int right = clip.getBounds().fRight;
88
89    fLeft = left;
90    fSuperLeft = left << SHIFT;
91    fWidth = right - left;
92#if 0
93    fCurrIY = -1;
94    fCurrY = -1;
95#else
96    fTop = ir.fTop;
97    fCurrIY = ir.fTop - 1;
98    fCurrY = (ir.fTop << SHIFT) - 1;
99#endif
100    SkDEBUGCODE(fCurrX = -1;)
101}
102
103/// Run-length-encoded supersampling antialiased blitter.
104class SuperBlitter : public BaseSuperBlitter {
105public:
106    SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
107                 const SkRegion& clip);
108
109    virtual ~SuperBlitter() {
110        this->flush();
111    }
112
113    /// Once fRuns contains a complete supersampled row, flush() blits
114    /// it out through the wrapped blitter.
115    void flush();
116
117    /// Blits a row of pixels, with location and width specified
118    /// in supersampled coordinates.
119    virtual void blitH(int x, int y, int width) SK_OVERRIDE;
120    /// Blits a rectangle of pixels, with location and size specified
121    /// in supersampled coordinates.
122    virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE;
123
124private:
125    // The next three variables are used to track a circular buffer that
126    // contains the values used in SkAlphaRuns. These variables should only
127    // ever be updated in advanceRuns(), and fRuns should always point to
128    // a valid SkAlphaRuns...
129    int         fRunsToBuffer;
130    void*       fRunsBuffer;
131    int         fCurrentRun;
132    SkAlphaRuns fRuns;
133
134    // extra one to store the zero at the end
135    int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
136
137    // This function updates the fRuns variable to point to the next buffer space
138    // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
139    // and resets fRuns to point to an empty scanline.
140    void advanceRuns() {
141        const size_t kRunsSz = this->getRunsSz();
142        fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
143        fRuns.fRuns = reinterpret_cast<int16_t*>(
144            reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
145        fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
146        fRuns.reset(fWidth);
147    }
148
149    int         fOffsetX;
150};
151
152SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
153                           const SkRegion& clip)
154        : BaseSuperBlitter(realBlitter, ir, clip) {
155    fRunsToBuffer = realBlitter->requestRowsPreserved();
156    fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
157    fCurrentRun = -1;
158
159    this->advanceRuns();
160
161    fOffsetX = 0;
162}
163
164void SuperBlitter::flush() {
165    if (fCurrIY >= fTop) {
166
167        SkASSERT(fCurrentRun < fRunsToBuffer);
168        if (!fRuns.empty()) {
169            // SkDEBUGCODE(fRuns.dump();)
170            fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
171            this->advanceRuns();
172            fOffsetX = 0;
173        }
174
175        fCurrIY = fTop - 1;
176        SkDEBUGCODE(fCurrX = -1;)
177    }
178}
179
180/** coverage_to_partial_alpha() is being used by SkAlphaRuns, which
181    *accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)]
182    to produce a final value in [0, 255] and handles clamping 256->255
183    itself, with the same (alpha - (alpha >> 8)) correction as
184    coverage_to_exact_alpha().
185*/
186static inline int coverage_to_partial_alpha(int aa) {
187    aa <<= 8 - 2*SHIFT;
188#ifdef SK_USE_LEGACY_AA_COVERAGE
189    aa -= aa >> (8 - SHIFT - 1);
190#endif
191    return aa;
192}
193
194/** coverage_to_exact_alpha() is being used by our blitter, which wants
195    a final value in [0, 255].
196*/
197static inline int coverage_to_exact_alpha(int aa) {
198    int alpha = (256 >> SHIFT) * aa;
199    // clamp 256->255
200    return alpha - (alpha >> 8);
201}
202
203void SuperBlitter::blitH(int x, int y, int width) {
204    SkASSERT(width > 0);
205
206    int iy = y >> SHIFT;
207    SkASSERT(iy >= fCurrIY);
208
209    x -= fSuperLeft;
210    // hack, until I figure out why my cubics (I think) go beyond the bounds
211    if (x < 0) {
212        width += x;
213        x = 0;
214    }
215
216#ifdef SK_DEBUG
217    SkASSERT(y != fCurrY || x >= fCurrX);
218#endif
219    SkASSERT(y >= fCurrY);
220    if (fCurrY != y) {
221        fOffsetX = 0;
222        fCurrY = y;
223    }
224
225    if (iy != fCurrIY) {  // new scanline
226        this->flush();
227        fCurrIY = iy;
228    }
229
230    int start = x;
231    int stop = x + width;
232
233    SkASSERT(start >= 0 && stop > start);
234    // integer-pixel-aligned ends of blit, rounded out
235    int fb = start & MASK;
236    int fe = stop & MASK;
237    int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
238
239    if (n < 0) {
240        fb = fe - fb;
241        n = 0;
242        fe = 0;
243    } else {
244        if (fb == 0) {
245            n += 1;
246        } else {
247            fb = SCALE - fb;
248        }
249    }
250
251    fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb),
252                         n, coverage_to_partial_alpha(fe),
253                         (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT),
254                         fOffsetX);
255
256#ifdef SK_DEBUG
257    fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
258    fCurrX = x + width;
259#endif
260}
261
262#if 0 // UNUSED
263static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA,
264                               int n, U8CPU riteA) {
265    SkASSERT(leftA <= 0xFF);
266    SkASSERT(riteA <= 0xFF);
267
268    int16_t* run = runs.fRuns;
269    uint8_t* aa = runs.fAlpha;
270
271    if (ileft > 0) {
272        run[0] = ileft;
273        aa[0] = 0;
274        run += ileft;
275        aa += ileft;
276    }
277
278    SkASSERT(leftA < 0xFF);
279    if (leftA > 0) {
280        *run++ = 1;
281        *aa++ = leftA;
282    }
283
284    if (n > 0) {
285        run[0] = n;
286        aa[0] = 0xFF;
287        run += n;
288        aa += n;
289    }
290
291    SkASSERT(riteA < 0xFF);
292    if (riteA > 0) {
293        *run++ = 1;
294        *aa++ = riteA;
295    }
296    run[0] = 0;
297}
298#endif
299
300void SuperBlitter::blitRect(int x, int y, int width, int height) {
301    SkASSERT(width > 0);
302    SkASSERT(height > 0);
303
304    // blit leading rows
305    while ((y & MASK)) {
306        this->blitH(x, y++, width);
307        if (--height <= 0) {
308            return;
309        }
310    }
311    SkASSERT(height > 0);
312
313    // Since this is a rect, instead of blitting supersampled rows one at a
314    // time and then resolving to the destination canvas, we can blit
315    // directly to the destintion canvas one row per SCALE supersampled rows.
316    int start_y = y >> SHIFT;
317    int stop_y = (y + height) >> SHIFT;
318    int count = stop_y - start_y;
319    if (count > 0) {
320        y += count << SHIFT;
321        height -= count << SHIFT;
322
323        // save original X for our tail blitH() loop at the bottom
324        int origX = x;
325
326        x -= fSuperLeft;
327        // hack, until I figure out why my cubics (I think) go beyond the bounds
328        if (x < 0) {
329            width += x;
330            x = 0;
331        }
332
333        // There is always a left column, a middle, and a right column.
334        // ileft is the destination x of the first pixel of the entire rect.
335        // xleft is (SCALE - # of covered supersampled pixels) in that
336        // destination pixel.
337        int ileft = x >> SHIFT;
338        int xleft = x & MASK;
339        // irite is the destination x of the last pixel of the OPAQUE section.
340        // xrite is the number of supersampled pixels extending beyond irite;
341        // xrite/SCALE should give us alpha.
342        int irite = (x + width) >> SHIFT;
343        int xrite = (x + width) & MASK;
344        if (!xrite) {
345            xrite = SCALE;
346            irite--;
347        }
348
349        // Need to call flush() to clean up pending draws before we
350        // even consider blitV(), since otherwise it can look nonmonotonic.
351        SkASSERT(start_y > fCurrIY);
352        this->flush();
353
354        int n = irite - ileft - 1;
355        if (n < 0) {
356            // If n < 0, we'll only have a single partially-transparent column
357            // of pixels to render.
358            xleft = xrite - xleft;
359            SkASSERT(xleft <= SCALE);
360            SkASSERT(xleft > 0);
361            xrite = 0;
362            fRealBlitter->blitV(ileft + fLeft, start_y, count,
363                coverage_to_exact_alpha(xleft));
364        } else {
365            // With n = 0, we have two possibly-transparent columns of pixels
366            // to render; with n > 0, we have opaque columns between them.
367
368            xleft = SCALE - xleft;
369
370            // Using coverage_to_exact_alpha is not consistent with blitH()
371            const int coverageL = coverage_to_exact_alpha(xleft);
372            const int coverageR = coverage_to_exact_alpha(xrite);
373
374            SkASSERT(coverageL > 0 || n > 0 || coverageR > 0);
375            SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth);
376
377            fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count,
378                                       coverageL, coverageR);
379        }
380
381        // preamble for our next call to blitH()
382        fCurrIY = stop_y - 1;
383        fOffsetX = 0;
384        fCurrY = y - 1;
385        fRuns.reset(fWidth);
386        x = origX;
387    }
388
389    // catch any remaining few rows
390    SkASSERT(height <= MASK);
391    while (--height >= 0) {
392        this->blitH(x, y++, width);
393    }
394}
395
396///////////////////////////////////////////////////////////////////////////////
397
398/// Masked supersampling antialiased blitter.
399class MaskSuperBlitter : public BaseSuperBlitter {
400public:
401    MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
402                     const SkRegion& clip);
403    virtual ~MaskSuperBlitter() {
404        fRealBlitter->blitMask(fMask, fClipRect);
405    }
406
407    virtual void blitH(int x, int y, int width) SK_OVERRIDE;
408
409    static bool CanHandleRect(const SkIRect& bounds) {
410#ifdef FORCE_RLE
411        return false;
412#endif
413        int width = bounds.width();
414        int64_t rb = SkAlign4(width);
415        // use 64bits to detect overflow
416        int64_t storage = rb * bounds.height();
417
418        return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
419               (storage <= MaskSuperBlitter::kMAX_STORAGE);
420    }
421
422private:
423    enum {
424#ifdef FORCE_SUPERMASK
425        kMAX_WIDTH = 2048,
426        kMAX_STORAGE = 1024 * 1024 * 2
427#else
428        kMAX_WIDTH = 32,    // so we don't try to do very wide things, where the RLE blitter would be faster
429        kMAX_STORAGE = 1024
430#endif
431    };
432
433    SkMask      fMask;
434    SkIRect     fClipRect;
435    // we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
436    // perform a test to see if stopAlpha != 0
437    uint32_t    fStorage[(kMAX_STORAGE >> 2) + 1];
438};
439
440MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
441                                   const SkRegion& clip)
442        : BaseSuperBlitter(realBlitter, ir, clip) {
443    SkASSERT(CanHandleRect(ir));
444
445    fMask.fImage    = (uint8_t*)fStorage;
446    fMask.fBounds   = ir;
447    fMask.fRowBytes = ir.width();
448    fMask.fFormat   = SkMask::kA8_Format;
449
450    fClipRect = ir;
451    fClipRect.intersect(clip.getBounds());
452
453    // For valgrind, write 1 extra byte at the end so we don't read
454    // uninitialized memory. See comment in add_aa_span and fStorage[].
455    memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
456}
457
458static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) {
459    /*  I should be able to just add alpha[x] + startAlpha.
460        However, if the trailing edge of the previous span and the leading
461        edge of the current span round to the same super-sampled x value,
462        I might overflow to 256 with this add, hence the funny subtract.
463    */
464    unsigned tmp = *alpha + startAlpha;
465    SkASSERT(tmp <= 256);
466    *alpha = SkToU8(tmp - (tmp >> 8));
467}
468
469static inline uint32_t quadplicate_byte(U8CPU value) {
470    uint32_t pair = (value << 8) | value;
471    return (pair << 16) | pair;
472}
473
474// Perform this tricky subtract, to avoid overflowing to 256. Our caller should
475// only ever call us with at most enough to hit 256 (never larger), so it is
476// enough to just subtract the high-bit. Actually clamping with a branch would
477// be slower (e.g. if (tmp > 255) tmp = 255;)
478//
479static inline void saturated_add(uint8_t* ptr, U8CPU add) {
480    unsigned tmp = *ptr + add;
481    SkASSERT(tmp <= 256);
482    *ptr = SkToU8(tmp - (tmp >> 8));
483}
484
485// minimum count before we want to setup an inner loop, adding 4-at-a-time
486#define MIN_COUNT_FOR_QUAD_LOOP  16
487
488static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount,
489                        U8CPU stopAlpha, U8CPU maxValue) {
490    SkASSERT(middleCount >= 0);
491
492    saturated_add(alpha, startAlpha);
493    alpha += 1;
494
495    if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) {
496        // loop until we're quad-byte aligned
497        while (SkTCast<intptr_t>(alpha) & 0x3) {
498            alpha[0] = SkToU8(alpha[0] + maxValue);
499            alpha += 1;
500            middleCount -= 1;
501        }
502
503        int bigCount = middleCount >> 2;
504        uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha);
505        uint32_t qval = quadplicate_byte(maxValue);
506        do {
507            *qptr++ += qval;
508        } while (--bigCount > 0);
509
510        middleCount &= 3;
511        alpha = reinterpret_cast<uint8_t*> (qptr);
512        // fall through to the following while-loop
513    }
514
515    while (--middleCount >= 0) {
516        alpha[0] = SkToU8(alpha[0] + maxValue);
517        alpha += 1;
518    }
519
520    // potentially this can be off the end of our "legal" alpha values, but that
521    // only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
522    // every time (slow), we just do it, and ensure that we've allocated extra space
523    // (see the + 1 comment in fStorage[]
524    saturated_add(alpha, stopAlpha);
525}
526
527void MaskSuperBlitter::blitH(int x, int y, int width) {
528    int iy = (y >> SHIFT);
529
530    SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
531    iy -= fMask.fBounds.fTop;   // make it relative to 0
532
533    // This should never happen, but it does.  Until the true cause is
534    // discovered, let's skip this span instead of crashing.
535    // See http://crbug.com/17569.
536    if (iy < 0) {
537        return;
538    }
539
540#ifdef SK_DEBUG
541    {
542        int ix = x >> SHIFT;
543        SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
544    }
545#endif
546
547    x -= (fMask.fBounds.fLeft << SHIFT);
548
549    // hack, until I figure out why my cubics (I think) go beyond the bounds
550    if (x < 0) {
551        width += x;
552        x = 0;
553    }
554
555    uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
556
557    int start = x;
558    int stop = x + width;
559
560    SkASSERT(start >= 0 && stop > start);
561    int fb = start & MASK;
562    int fe = stop & MASK;
563    int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
564
565
566    if (n < 0) {
567        SkASSERT(row >= fMask.fImage);
568        SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
569        add_aa_span(row, coverage_to_partial_alpha(fe - fb));
570    } else {
571        fb = SCALE - fb;
572        SkASSERT(row >= fMask.fImage);
573        SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
574        add_aa_span(row,  coverage_to_partial_alpha(fb),
575                    n, coverage_to_partial_alpha(fe),
576                    (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
577    }
578
579#ifdef SK_DEBUG
580    fCurrX = x + width;
581#endif
582}
583
584///////////////////////////////////////////////////////////////////////////////
585
586static bool fitsInsideLimit(const SkRect& r, SkScalar max) {
587    const SkScalar min = -max;
588    return  r.fLeft > min && r.fTop > min &&
589            r.fRight < max && r.fBottom < max;
590}
591
592static int overflows_short_shift(int value, int shift) {
593    const int s = 16 + shift;
594    return (value << s >> s) - value;
595}
596
597/**
598  Would any of the coordinates of this rectangle not fit in a short,
599  when left-shifted by shift?
600*/
601static int rect_overflows_short_shift(SkIRect rect, int shift) {
602    SkASSERT(!overflows_short_shift(8191, SHIFT));
603    SkASSERT(overflows_short_shift(8192, SHIFT));
604    SkASSERT(!overflows_short_shift(32767, 0));
605    SkASSERT(overflows_short_shift(32768, 0));
606
607    // Since we expect these to succeed, we bit-or together
608    // for a tiny extra bit of speed.
609    return overflows_short_shift(rect.fLeft, SHIFT) |
610           overflows_short_shift(rect.fRight, SHIFT) |
611           overflows_short_shift(rect.fTop, SHIFT) |
612           overflows_short_shift(rect.fBottom, SHIFT);
613}
614
615static bool safeRoundOut(const SkRect& src, SkIRect* dst, int32_t maxInt) {
616    const SkScalar maxScalar = SkIntToScalar(maxInt);
617
618    if (fitsInsideLimit(src, maxScalar)) {
619        src.roundOut(dst);
620        return true;
621    }
622    return false;
623}
624
625void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip,
626                          SkBlitter* blitter, bool forceRLE) {
627    if (origClip.isEmpty()) {
628        return;
629    }
630
631    SkIRect ir;
632
633    if (!safeRoundOut(path.getBounds(), &ir, SK_MaxS32 >> SHIFT)) {
634#if 0
635        const SkRect& r = path.getBounds();
636        SkDebugf("--- bounds can't fit in SkIRect\n", r.fLeft, r.fTop, r.fRight, r.fBottom);
637#endif
638        return;
639    }
640    if (ir.isEmpty()) {
641        if (path.isInverseFillType()) {
642            blitter->blitRegion(origClip);
643        }
644        return;
645    }
646
647    // If the intersection of the path bounds and the clip bounds
648    // will overflow 32767 when << by SHIFT, we can't supersample,
649    // so draw without antialiasing.
650    SkIRect clippedIR;
651    if (path.isInverseFillType()) {
652       // If the path is an inverse fill, it's going to fill the entire
653       // clip, and we care whether the entire clip exceeds our limits.
654       clippedIR = origClip.getBounds();
655    } else {
656       if (!clippedIR.intersect(ir, origClip.getBounds())) {
657           return;
658       }
659    }
660    if (rect_overflows_short_shift(clippedIR, SHIFT)) {
661        SkScan::FillPath(path, origClip, blitter);
662        return;
663    }
664
665    // Our antialiasing can't handle a clip larger than 32767, so we restrict
666    // the clip to that limit here. (the runs[] uses int16_t for its index).
667    //
668    // A more general solution (one that could also eliminate the need to
669    // disable aa based on ir bounds (see overflows_short_shift) would be
670    // to tile the clip/target...
671    SkRegion tmpClipStorage;
672    const SkRegion* clipRgn = &origClip;
673    {
674        static const int32_t kMaxClipCoord = 32767;
675        const SkIRect& bounds = origClip.getBounds();
676        if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
677            SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
678            tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
679            clipRgn = &tmpClipStorage;
680        }
681    }
682    // for here down, use clipRgn, not origClip
683
684    SkScanClipper   clipper(blitter, clipRgn, ir);
685    const SkIRect*  clipRect = clipper.getClipRect();
686
687    if (clipper.getBlitter() == NULL) { // clipped out
688        if (path.isInverseFillType()) {
689            blitter->blitRegion(*clipRgn);
690        }
691        return;
692    }
693
694    // now use the (possibly wrapped) blitter
695    blitter = clipper.getBlitter();
696
697    if (path.isInverseFillType()) {
698        sk_blit_above(blitter, ir, *clipRgn);
699    }
700
701    SkIRect superRect, *superClipRect = NULL;
702
703    if (clipRect) {
704        superRect.set(  clipRect->fLeft << SHIFT, clipRect->fTop << SHIFT,
705                        clipRect->fRight << SHIFT, clipRect->fBottom << SHIFT);
706        superClipRect = &superRect;
707    }
708
709    SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
710
711    // MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
712    // if we're an inverse filltype
713    if (!path.isInverseFillType() && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) {
714        MaskSuperBlitter    superBlit(blitter, ir, *clipRgn);
715        SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
716        sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
717    } else {
718        SuperBlitter    superBlit(blitter, ir, *clipRgn);
719        sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
720    }
721
722    if (path.isInverseFillType()) {
723        sk_blit_below(blitter, ir, *clipRgn);
724    }
725}
726
727///////////////////////////////////////////////////////////////////////////////
728
729#include "SkRasterClip.h"
730
731void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip,
732                          SkBlitter* blitter) {
733    if (clip.isEmpty()) {
734        return;
735    }
736
737    if (clip.isBW()) {
738        FillPath(path, clip.bwRgn(), blitter);
739    } else {
740        SkRegion        tmp;
741        SkAAClipBlitter aaBlitter;
742
743        tmp.setRect(clip.getBounds());
744        aaBlitter.init(blitter, &clip.aaRgn());
745        SkScan::FillPath(path, tmp, &aaBlitter);
746    }
747}
748
749void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
750                          SkBlitter* blitter) {
751    if (clip.isEmpty()) {
752        return;
753    }
754
755    if (clip.isBW()) {
756        AntiFillPath(path, clip.bwRgn(), blitter);
757    } else {
758        SkRegion        tmp;
759        SkAAClipBlitter aaBlitter;
760
761        tmp.setRect(clip.getBounds());
762        aaBlitter.init(blitter, &clip.aaRgn());
763        SkScan::AntiFillPath(path, tmp, &aaBlitter, true);
764    }
765}
766