1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkBlurMask.h"
11#include "SkMath.h"
12#include "SkTemplates.h"
13#include "SkEndian.h"
14
15
16// This constant approximates the scaling done in the software path's
17// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
18// IMHO, it actually should be 1:  we blur "less" than we should do
19// according to the CSS and canvas specs, simply because Safari does the same.
20// Firefox used to do the same too, until 4.0 where they fixed it.  So at some
21// point we should probably get rid of these scaling constants and rebaseline
22// all the blur tests.
23static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f;
24
25SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) {
26    return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
27}
28
29SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) {
30    return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f;
31}
32
33#define UNROLL_SEPARABLE_LOOPS
34
35/**
36 * This function performs a box blur in X, of the given radius.  If the
37 * "transpose" parameter is true, it will transpose the pixels on write,
38 * such that X and Y are swapped. Reads are always performed from contiguous
39 * memory in X, for speed. The destination buffer (dst) must be at least
40 * (width + leftRadius + rightRadius) * height bytes in size.
41 *
42 * This is what the inner loop looks like before unrolling, and with the two
43 * cases broken out separately (width < diameter, width >= diameter):
44 *
45 *      if (width < diameter) {
46 *          for (int x = 0; x < width; ++x) {
47 *              sum += *right++;
48 *              *dptr = (sum * scale + half) >> 24;
49 *              dptr += dst_x_stride;
50 *          }
51 *          for (int x = width; x < diameter; ++x) {
52 *              *dptr = (sum * scale + half) >> 24;
53 *              dptr += dst_x_stride;
54 *          }
55 *          for (int x = 0; x < width; ++x) {
56 *              *dptr = (sum * scale + half) >> 24;
57 *              sum -= *left++;
58 *              dptr += dst_x_stride;
59 *          }
60 *      } else {
61 *          for (int x = 0; x < diameter; ++x) {
62 *              sum += *right++;
63 *              *dptr = (sum * scale + half) >> 24;
64 *              dptr += dst_x_stride;
65 *          }
66 *          for (int x = diameter; x < width; ++x) {
67 *              sum += *right++;
68 *              *dptr = (sum * scale + half) >> 24;
69 *              sum -= *left++;
70 *              dptr += dst_x_stride;
71 *          }
72 *          for (int x = 0; x < diameter; ++x) {
73 *              *dptr = (sum * scale + half) >> 24;
74 *              sum -= *left++;
75 *              dptr += dst_x_stride;
76 *          }
77 *      }
78 */
79static int boxBlur(const uint8_t* src, int src_y_stride, uint8_t* dst,
80                   int leftRadius, int rightRadius, int width, int height,
81                   bool transpose)
82{
83    int diameter = leftRadius + rightRadius;
84    int kernelSize = diameter + 1;
85    int border = SkMin32(width, diameter);
86    uint32_t scale = (1 << 24) / kernelSize;
87    int new_width = width + SkMax32(leftRadius, rightRadius) * 2;
88    int dst_x_stride = transpose ? height : 1;
89    int dst_y_stride = transpose ? 1 : new_width;
90    uint32_t half = 1 << 23;
91    for (int y = 0; y < height; ++y) {
92        uint32_t sum = 0;
93        uint8_t* dptr = dst + y * dst_y_stride;
94        const uint8_t* right = src + y * src_y_stride;
95        const uint8_t* left = right;
96        for (int x = 0; x < rightRadius - leftRadius; x++) {
97            *dptr = 0;
98            dptr += dst_x_stride;
99        }
100#define LEFT_BORDER_ITER \
101            sum += *right++; \
102            *dptr = (sum * scale + half) >> 24; \
103            dptr += dst_x_stride;
104
105        int x = 0;
106#ifdef UNROLL_SEPARABLE_LOOPS
107        for (; x < border - 16; x += 16) {
108            LEFT_BORDER_ITER
109            LEFT_BORDER_ITER
110            LEFT_BORDER_ITER
111            LEFT_BORDER_ITER
112            LEFT_BORDER_ITER
113            LEFT_BORDER_ITER
114            LEFT_BORDER_ITER
115            LEFT_BORDER_ITER
116            LEFT_BORDER_ITER
117            LEFT_BORDER_ITER
118            LEFT_BORDER_ITER
119            LEFT_BORDER_ITER
120            LEFT_BORDER_ITER
121            LEFT_BORDER_ITER
122            LEFT_BORDER_ITER
123            LEFT_BORDER_ITER
124        }
125#endif
126        for (; x < border; ++x) {
127            LEFT_BORDER_ITER
128        }
129#undef LEFT_BORDER_ITER
130#define TRIVIAL_ITER \
131            *dptr = (sum * scale + half) >> 24; \
132            dptr += dst_x_stride;
133        x = width;
134#ifdef UNROLL_SEPARABLE_LOOPS
135        for (; x < diameter - 16; x += 16) {
136            TRIVIAL_ITER
137            TRIVIAL_ITER
138            TRIVIAL_ITER
139            TRIVIAL_ITER
140            TRIVIAL_ITER
141            TRIVIAL_ITER
142            TRIVIAL_ITER
143            TRIVIAL_ITER
144            TRIVIAL_ITER
145            TRIVIAL_ITER
146            TRIVIAL_ITER
147            TRIVIAL_ITER
148            TRIVIAL_ITER
149            TRIVIAL_ITER
150            TRIVIAL_ITER
151            TRIVIAL_ITER
152        }
153#endif
154        for (; x < diameter; ++x) {
155            TRIVIAL_ITER
156        }
157#undef TRIVIAL_ITER
158#define CENTER_ITER \
159            sum += *right++; \
160            *dptr = (sum * scale + half) >> 24; \
161            sum -= *left++; \
162            dptr += dst_x_stride;
163
164        x = diameter;
165#ifdef UNROLL_SEPARABLE_LOOPS
166        for (; x < width - 16; x += 16) {
167            CENTER_ITER
168            CENTER_ITER
169            CENTER_ITER
170            CENTER_ITER
171            CENTER_ITER
172            CENTER_ITER
173            CENTER_ITER
174            CENTER_ITER
175            CENTER_ITER
176            CENTER_ITER
177            CENTER_ITER
178            CENTER_ITER
179            CENTER_ITER
180            CENTER_ITER
181            CENTER_ITER
182            CENTER_ITER
183        }
184#endif
185        for (; x < width; ++x) {
186            CENTER_ITER
187        }
188#undef CENTER_ITER
189#define RIGHT_BORDER_ITER \
190            *dptr = (sum * scale + half) >> 24; \
191            sum -= *left++; \
192            dptr += dst_x_stride;
193
194        x = 0;
195#ifdef UNROLL_SEPARABLE_LOOPS
196        for (; x < border - 16; x += 16) {
197            RIGHT_BORDER_ITER
198            RIGHT_BORDER_ITER
199            RIGHT_BORDER_ITER
200            RIGHT_BORDER_ITER
201            RIGHT_BORDER_ITER
202            RIGHT_BORDER_ITER
203            RIGHT_BORDER_ITER
204            RIGHT_BORDER_ITER
205            RIGHT_BORDER_ITER
206            RIGHT_BORDER_ITER
207            RIGHT_BORDER_ITER
208            RIGHT_BORDER_ITER
209            RIGHT_BORDER_ITER
210            RIGHT_BORDER_ITER
211            RIGHT_BORDER_ITER
212            RIGHT_BORDER_ITER
213        }
214#endif
215        for (; x < border; ++x) {
216            RIGHT_BORDER_ITER
217        }
218#undef RIGHT_BORDER_ITER
219        for (int x = 0; x < leftRadius - rightRadius; ++x) {
220            *dptr = 0;
221            dptr += dst_x_stride;
222        }
223        SkASSERT(sum == 0);
224    }
225    return new_width;
226}
227
228/**
229 * This variant of the box blur handles blurring of non-integer radii.  It
230 * keeps two running sums: an outer sum for the rounded-up kernel radius, and
231 * an inner sum for the rounded-down kernel radius.  For each pixel, it linearly
232 * interpolates between them.  In float this would be:
233 *  outer_weight * outer_sum / kernelSize +
234 *  (1.0 - outer_weight) * innerSum / (kernelSize - 2)
235 *
236 * This is what the inner loop looks like before unrolling, and with the two
237 * cases broken out separately (width < diameter, width >= diameter):
238 *
239 *      if (width < diameter) {
240 *          for (int x = 0; x < width; x++) {
241 *              inner_sum = outer_sum;
242 *              outer_sum += *right++;
243 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
244 *              dptr += dst_x_stride;
245 *          }
246 *          for (int x = width; x < diameter; ++x) {
247 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
248 *              dptr += dst_x_stride;
249 *          }
250 *          for (int x = 0; x < width; x++) {
251 *              inner_sum = outer_sum - *left++;
252 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
253 *              dptr += dst_x_stride;
254 *              outer_sum = inner_sum;
255 *          }
256 *      } else {
257 *          for (int x = 0; x < diameter; x++) {
258 *              inner_sum = outer_sum;
259 *              outer_sum += *right++;
260 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
261 *              dptr += dst_x_stride;
262 *          }
263 *          for (int x = diameter; x < width; ++x) {
264 *              inner_sum = outer_sum - *left;
265 *              outer_sum += *right++;
266 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
267 *              dptr += dst_x_stride;
268 *              outer_sum -= *left++;
269 *          }
270 *          for (int x = 0; x < diameter; x++) {
271 *              inner_sum = outer_sum - *left++;
272 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
273 *              dptr += dst_x_stride;
274 *              outer_sum = inner_sum;
275 *          }
276 *      }
277 *  }
278 *  return new_width;
279 */
280
281static int boxBlurInterp(const uint8_t* src, int src_y_stride, uint8_t* dst,
282                         int radius, int width, int height,
283                         bool transpose, uint8_t outer_weight)
284{
285    int diameter = radius * 2;
286    int kernelSize = diameter + 1;
287    int border = SkMin32(width, diameter);
288    int inner_weight = 255 - outer_weight;
289    outer_weight += outer_weight >> 7;
290    inner_weight += inner_weight >> 7;
291    uint32_t outer_scale = (outer_weight << 16) / kernelSize;
292    uint32_t inner_scale = (inner_weight << 16) / (kernelSize - 2);
293    uint32_t half = 1 << 23;
294    int new_width = width + diameter;
295    int dst_x_stride = transpose ? height : 1;
296    int dst_y_stride = transpose ? 1 : new_width;
297    for (int y = 0; y < height; ++y) {
298        uint32_t outer_sum = 0, inner_sum = 0;
299        uint8_t* dptr = dst + y * dst_y_stride;
300        const uint8_t* right = src + y * src_y_stride;
301        const uint8_t* left = right;
302        int x = 0;
303
304#define LEFT_BORDER_ITER \
305            inner_sum = outer_sum; \
306            outer_sum += *right++; \
307            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
308            dptr += dst_x_stride;
309
310#ifdef UNROLL_SEPARABLE_LOOPS
311        for (;x < border - 16; x += 16) {
312            LEFT_BORDER_ITER
313            LEFT_BORDER_ITER
314            LEFT_BORDER_ITER
315            LEFT_BORDER_ITER
316            LEFT_BORDER_ITER
317            LEFT_BORDER_ITER
318            LEFT_BORDER_ITER
319            LEFT_BORDER_ITER
320            LEFT_BORDER_ITER
321            LEFT_BORDER_ITER
322            LEFT_BORDER_ITER
323            LEFT_BORDER_ITER
324            LEFT_BORDER_ITER
325            LEFT_BORDER_ITER
326            LEFT_BORDER_ITER
327            LEFT_BORDER_ITER
328        }
329#endif
330
331        for (;x < border; ++x) {
332            LEFT_BORDER_ITER
333        }
334#undef LEFT_BORDER_ITER
335        for (int x = width; x < diameter; ++x) {
336            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
337            dptr += dst_x_stride;
338        }
339        x = diameter;
340
341#define CENTER_ITER \
342            inner_sum = outer_sum - *left; \
343            outer_sum += *right++; \
344            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
345            dptr += dst_x_stride; \
346            outer_sum -= *left++;
347
348#ifdef UNROLL_SEPARABLE_LOOPS
349        for (; x < width - 16; x += 16) {
350            CENTER_ITER
351            CENTER_ITER
352            CENTER_ITER
353            CENTER_ITER
354            CENTER_ITER
355            CENTER_ITER
356            CENTER_ITER
357            CENTER_ITER
358            CENTER_ITER
359            CENTER_ITER
360            CENTER_ITER
361            CENTER_ITER
362            CENTER_ITER
363            CENTER_ITER
364            CENTER_ITER
365            CENTER_ITER
366        }
367#endif
368        for (; x < width; ++x) {
369            CENTER_ITER
370        }
371#undef CENTER_ITER
372
373        #define RIGHT_BORDER_ITER \
374            inner_sum = outer_sum - *left++; \
375            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
376            dptr += dst_x_stride; \
377            outer_sum = inner_sum;
378
379        x = 0;
380#ifdef UNROLL_SEPARABLE_LOOPS
381        for (; x < border - 16; x += 16) {
382            RIGHT_BORDER_ITER
383            RIGHT_BORDER_ITER
384            RIGHT_BORDER_ITER
385            RIGHT_BORDER_ITER
386            RIGHT_BORDER_ITER
387            RIGHT_BORDER_ITER
388            RIGHT_BORDER_ITER
389            RIGHT_BORDER_ITER
390            RIGHT_BORDER_ITER
391            RIGHT_BORDER_ITER
392            RIGHT_BORDER_ITER
393            RIGHT_BORDER_ITER
394            RIGHT_BORDER_ITER
395            RIGHT_BORDER_ITER
396            RIGHT_BORDER_ITER
397            RIGHT_BORDER_ITER
398        }
399#endif
400        for (; x < border; ++x) {
401            RIGHT_BORDER_ITER
402        }
403#undef RIGHT_BORDER_ITER
404        SkASSERT(outer_sum == 0 && inner_sum == 0);
405    }
406    return new_width;
407}
408
409static void get_adjusted_radii(SkScalar passRadius, int *loRadius, int *hiRadius)
410{
411    *loRadius = *hiRadius = SkScalarCeilToInt(passRadius);
412    if (SkIntToScalar(*hiRadius) - passRadius > 0.5f) {
413        *loRadius = *hiRadius - 1;
414    }
415}
416
417#include "SkColorPriv.h"
418
419static void merge_src_with_blur(uint8_t dst[], int dstRB,
420                                const uint8_t src[], int srcRB,
421                                const uint8_t blur[], int blurRB,
422                                int sw, int sh) {
423    dstRB -= sw;
424    srcRB -= sw;
425    blurRB -= sw;
426    while (--sh >= 0) {
427        for (int x = sw - 1; x >= 0; --x) {
428            *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*src)));
429            dst += 1;
430            src += 1;
431            blur += 1;
432        }
433        dst += dstRB;
434        src += srcRB;
435        blur += blurRB;
436    }
437}
438
439static void clamp_with_orig(uint8_t dst[], int dstRowBytes,
440                            const uint8_t src[], int srcRowBytes,
441                            int sw, int sh,
442                            SkBlurStyle style) {
443    int x;
444    while (--sh >= 0) {
445        switch (style) {
446        case kSolid_SkBlurStyle:
447            for (x = sw - 1; x >= 0; --x) {
448                int s = *src;
449                int d = *dst;
450                *dst = SkToU8(s + d - SkMulDiv255Round(s, d));
451                dst += 1;
452                src += 1;
453            }
454            break;
455        case kOuter_SkBlurStyle:
456            for (x = sw - 1; x >= 0; --x) {
457                if (*src) {
458                    *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - *src)));
459                }
460                dst += 1;
461                src += 1;
462            }
463            break;
464        default:
465            SkDEBUGFAIL("Unexpected blur style here");
466            break;
467        }
468        dst += dstRowBytes - sw;
469        src += srcRowBytes - sw;
470    }
471}
472
473///////////////////////////////////////////////////////////////////////////////
474
475// we use a local function to wrap the class static method to work around
476// a bug in gcc98
477void SkMask_FreeImage(uint8_t* image);
478void SkMask_FreeImage(uint8_t* image) {
479    SkMask::FreeImage(image);
480}
481
482bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src,
483                         SkScalar sigma, SkBlurStyle style, SkBlurQuality quality,
484                         SkIPoint* margin, bool force_quality) {
485
486    if (src.fFormat != SkMask::kA8_Format) {
487        return false;
488    }
489
490    // Force high quality off for small radii (performance)
491    if (!force_quality && sigma <= SkIntToScalar(2)) {
492        quality = kLow_SkBlurQuality;
493    }
494
495    SkScalar passRadius;
496    if (kHigh_SkBlurQuality == quality) {
497        // For the high quality path the 3 pass box blur kernel width is
498        // 6*rad+1 while the full Gaussian width is 6*sigma.
499        passRadius = sigma - (1/6.0f);
500    } else {
501        // For the low quality path we only attempt to cover 3*sigma of the
502        // Gaussian blur area (1.5*sigma on each side). The single pass box
503        // blur's kernel size is 2*rad+1.
504        passRadius = 1.5f*sigma - 0.5f;
505    }
506
507    // highQuality: use three box blur passes as a cheap way
508    // to approximate a Gaussian blur
509    int passCount = (kHigh_SkBlurQuality == quality) ? 3 : 1;
510
511    int rx = SkScalarCeilToInt(passRadius);
512    int outerWeight = 255 - SkScalarRoundToInt((SkIntToScalar(rx) - passRadius) * 255);
513
514    SkASSERT(rx >= 0);
515    SkASSERT((unsigned)outerWeight <= 255);
516    if (rx <= 0) {
517        return false;
518    }
519
520    int ry = rx;    // only do square blur for now
521
522    int padx = passCount * rx;
523    int pady = passCount * ry;
524
525    if (margin) {
526        margin->set(padx, pady);
527    }
528    dst->fBounds.set(src.fBounds.fLeft - padx, src.fBounds.fTop - pady,
529                     src.fBounds.fRight + padx, src.fBounds.fBottom + pady);
530
531    dst->fRowBytes = dst->fBounds.width();
532    dst->fFormat = SkMask::kA8_Format;
533    dst->fImage = NULL;
534
535    if (src.fImage) {
536        size_t dstSize = dst->computeImageSize();
537        if (0 == dstSize) {
538            return false;   // too big to allocate, abort
539        }
540
541        int             sw = src.fBounds.width();
542        int             sh = src.fBounds.height();
543        const uint8_t*  sp = src.fImage;
544        uint8_t*        dp = SkMask::AllocImage(dstSize);
545        SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dp);
546
547        // build the blurry destination
548        SkAutoTMalloc<uint8_t>  tmpBuffer(dstSize);
549        uint8_t*                tp = tmpBuffer.get();
550        int w = sw, h = sh;
551
552        if (outerWeight == 255) {
553            int loRadius, hiRadius;
554            get_adjusted_radii(passRadius, &loRadius, &hiRadius);
555            if (kHigh_SkBlurQuality == quality) {
556                // Do three X blurs, with a transpose on the final one.
557                w = boxBlur(sp, src.fRowBytes, tp, loRadius, hiRadius, w, h, false);
558                w = boxBlur(tp, w,             dp, hiRadius, loRadius, w, h, false);
559                w = boxBlur(dp, w,             tp, hiRadius, hiRadius, w, h, true);
560                // Do three Y blurs, with a transpose on the final one.
561                h = boxBlur(tp, h,             dp, loRadius, hiRadius, h, w, false);
562                h = boxBlur(dp, h,             tp, hiRadius, loRadius, h, w, false);
563                h = boxBlur(tp, h,             dp, hiRadius, hiRadius, h, w, true);
564            } else {
565                w = boxBlur(sp, src.fRowBytes, tp, rx, rx, w, h, true);
566                h = boxBlur(tp, h,             dp, ry, ry, h, w, true);
567            }
568        } else {
569            if (kHigh_SkBlurQuality == quality) {
570                // Do three X blurs, with a transpose on the final one.
571                w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, false, outerWeight);
572                w = boxBlurInterp(tp, w,             dp, rx, w, h, false, outerWeight);
573                w = boxBlurInterp(dp, w,             tp, rx, w, h, true, outerWeight);
574                // Do three Y blurs, with a transpose on the final one.
575                h = boxBlurInterp(tp, h,             dp, ry, h, w, false, outerWeight);
576                h = boxBlurInterp(dp, h,             tp, ry, h, w, false, outerWeight);
577                h = boxBlurInterp(tp, h,             dp, ry, h, w, true, outerWeight);
578            } else {
579                w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, true, outerWeight);
580                h = boxBlurInterp(tp, h,             dp, ry, h, w, true, outerWeight);
581            }
582        }
583
584        dst->fImage = dp;
585        // if need be, alloc the "real" dst (same size as src) and copy/merge
586        // the blur into it (applying the src)
587        if (style == kInner_SkBlurStyle) {
588            // now we allocate the "real" dst, mirror the size of src
589            size_t srcSize = src.computeImageSize();
590            if (0 == srcSize) {
591                return false;   // too big to allocate, abort
592            }
593            dst->fImage = SkMask::AllocImage(srcSize);
594            merge_src_with_blur(dst->fImage, src.fRowBytes,
595                                sp, src.fRowBytes,
596                                dp + passCount * (rx + ry * dst->fRowBytes),
597                                dst->fRowBytes, sw, sh);
598            SkMask::FreeImage(dp);
599        } else if (style != kNormal_SkBlurStyle) {
600            clamp_with_orig(dp + passCount * (rx + ry * dst->fRowBytes),
601                            dst->fRowBytes, sp, src.fRowBytes, sw, sh, style);
602        }
603        (void)autoCall.detach();
604    }
605
606    if (style == kInner_SkBlurStyle) {
607        dst->fBounds = src.fBounds; // restore trimmed bounds
608        dst->fRowBytes = src.fRowBytes;
609    }
610
611    return true;
612}
613
614/* Convolving a box with itself three times results in a piecewise
615   quadratic function:
616
617   0                              x <= -1.5
618   9/8 + 3/2 x + 1/2 x^2   -1.5 < x <= -.5
619   3/4 - x^2                -.5 < x <= .5
620   9/8 - 3/2 x + 1/2 x^2    0.5 < x <= 1.5
621   0                        1.5 < x
622
623   Mathematica:
624
625   g[x_] := Piecewise [ {
626     {9/8 + 3/2 x + 1/2 x^2 ,  -1.5 < x <= -.5},
627     {3/4 - x^2             ,   -.5 < x <= .5},
628     {9/8 - 3/2 x + 1/2 x^2 ,   0.5 < x <= 1.5}
629   }, 0]
630
631   To get the profile curve of the blurred step function at the rectangle
632   edge, we evaluate the indefinite integral, which is piecewise cubic:
633
634   0                                        x <= -1.5
635   9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3   -1.5 < x <= -0.5
636   1/2 + 3/4 x - 1/3 x^3              -.5 < x <= .5
637   7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3     .5 < x <= 1.5
638   1                                  1.5 < x
639
640   in Mathematica code:
641
642   gi[x_] := Piecewise[ {
643     { 0 , x <= -1.5 },
644     { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 },
645     { 1/2 + 3/4 x - 1/3 x^3          ,  -.5 < x <= .5},
646     { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3,   .5 < x <= 1.5}
647   },1]
648*/
649
650static float gaussianIntegral(float x) {
651    if (x > 1.5f) {
652        return 0.0f;
653    }
654    if (x < -1.5f) {
655        return 1.0f;
656    }
657
658    float x2 = x*x;
659    float x3 = x2*x;
660
661    if ( x > 0.5f ) {
662        return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x);
663    }
664    if ( x > -0.5f ) {
665        return 0.5f - (0.75f * x - x3 / 3.0f);
666    }
667    return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x);
668}
669
670/*  ComputeBlurProfile allocates and fills in an array of floating
671    point values between 0 and 255 for the profile signature of
672    a blurred half-plane with the given blur radius.  Since we're
673    going to be doing screened multiplications (i.e., 1 - (1-x)(1-y))
674    all the time, we actually fill in the profile pre-inverted
675    (already done 255-x).
676
677    It's the responsibility of the caller to delete the
678    memory returned in profile_out.
679*/
680
681void SkBlurMask::ComputeBlurProfile(SkScalar sigma, uint8_t **profile_out) {
682    int size = SkScalarCeilToInt(6*sigma);
683
684    int center = size >> 1;
685    uint8_t *profile = SkNEW_ARRAY(uint8_t, size);
686
687    float invr = 1.f/(2*sigma);
688
689    profile[0] = 255;
690    for (int x = 1 ; x < size ; ++x) {
691        float scaled_x = (center - x - .5f) * invr;
692        float gi = gaussianIntegral(scaled_x);
693        profile[x] = 255 - (uint8_t) (255.f * gi);
694    }
695
696    *profile_out = profile;
697}
698
699// TODO MAYBE: Maintain a profile cache to avoid recomputing this for
700// commonly used radii.  Consider baking some of the most common blur radii
701// directly in as static data?
702
703// Implementation adapted from Michael Herf's approach:
704// http://stereopsis.com/shadowrect/
705
706uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc, int blurred_width, int sharp_width) {
707    int dx = SkAbs32(((loc << 1) + 1) - blurred_width) - sharp_width; // how far are we from the original edge?
708    int ox = dx >> 1;
709    if (ox < 0) {
710        ox = 0;
711    }
712
713    return profile[ox];
714}
715
716void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile,
717                                        unsigned int width, SkScalar sigma) {
718
719    unsigned int profile_size = SkScalarCeilToInt(6*sigma);
720    SkAutoTMalloc<uint8_t> horizontalScanline(width);
721
722    unsigned int sw = width - profile_size;
723    // nearest odd number less than the profile size represents the center
724    // of the (2x scaled) profile
725    int center = ( profile_size & ~1 ) - 1;
726
727    int w = sw - center;
728
729    for (unsigned int x = 0 ; x < width ; ++x) {
730       if (profile_size <= sw) {
731           pixels[x] = ProfileLookup(profile, x, width, w);
732       } else {
733           float span = float(sw)/(2*sigma);
734           float giX = 1.5f - (x+.5f)/(2*sigma);
735           pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span)));
736       }
737    }
738}
739
740bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst,
741                          const SkRect &src, SkBlurStyle style,
742                          SkIPoint *margin, SkMask::CreateMode createMode) {
743    int profile_size = SkScalarCeilToInt(6*sigma);
744
745    int pad = profile_size/2;
746    if (margin) {
747        margin->set( pad, pad );
748    }
749
750    dst->fBounds.set(SkScalarRoundToInt(src.fLeft - pad),
751                     SkScalarRoundToInt(src.fTop - pad),
752                     SkScalarRoundToInt(src.fRight + pad),
753                     SkScalarRoundToInt(src.fBottom + pad));
754
755    dst->fRowBytes = dst->fBounds.width();
756    dst->fFormat = SkMask::kA8_Format;
757    dst->fImage = NULL;
758
759    int             sw = SkScalarFloorToInt(src.width());
760    int             sh = SkScalarFloorToInt(src.height());
761
762    if (createMode == SkMask::kJustComputeBounds_CreateMode) {
763        if (style == kInner_SkBlurStyle) {
764            dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
765                             SkScalarRoundToInt(src.fTop),
766                             SkScalarRoundToInt(src.fRight),
767                             SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
768            dst->fRowBytes = sw;
769        }
770        return true;
771    }
772    uint8_t *profile = NULL;
773
774    ComputeBlurProfile(sigma, &profile);
775    SkAutoTDeleteArray<uint8_t> ada(profile);
776
777    size_t dstSize = dst->computeImageSize();
778    if (0 == dstSize) {
779        return false;   // too big to allocate, abort
780    }
781
782    uint8_t*        dp = SkMask::AllocImage(dstSize);
783
784    dst->fImage = dp;
785
786    int dstHeight = dst->fBounds.height();
787    int dstWidth = dst->fBounds.width();
788
789    uint8_t *outptr = dp;
790
791    SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth);
792    SkAutoTMalloc<uint8_t> verticalScanline(dstHeight);
793
794    ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma);
795    ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma);
796
797    for (int y = 0 ; y < dstHeight ; ++y) {
798        for (int x = 0 ; x < dstWidth ; x++) {
799            unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]);
800            *(outptr++) = maskval;
801        }
802    }
803
804    if (style == kInner_SkBlurStyle) {
805        // now we allocate the "real" dst, mirror the size of src
806        size_t srcSize = (size_t)(src.width() * src.height());
807        if (0 == srcSize) {
808            return false;   // too big to allocate, abort
809        }
810        dst->fImage = SkMask::AllocImage(srcSize);
811        for (int y = 0 ; y < sh ; y++) {
812            uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad;
813            uint8_t *inner_scanline = dst->fImage + y*sw;
814            memcpy(inner_scanline, blur_scanline, sw);
815        }
816        SkMask::FreeImage(dp);
817
818        dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
819                         SkScalarRoundToInt(src.fTop),
820                         SkScalarRoundToInt(src.fRight),
821                         SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
822        dst->fRowBytes = sw;
823
824    } else if (style == kOuter_SkBlurStyle) {
825        for (int y = pad ; y < dstHeight-pad ; y++) {
826            uint8_t *dst_scanline = dp + y*dstWidth + pad;
827            memset(dst_scanline, 0, sw);
828        }
829    } else if (style == kSolid_SkBlurStyle) {
830        for (int y = pad ; y < dstHeight-pad ; y++) {
831            uint8_t *dst_scanline = dp + y*dstWidth + pad;
832            memset(dst_scanline, 0xff, sw);
833        }
834    }
835    // normal and solid styles are the same for analytic rect blurs, so don't
836    // need to handle solid specially.
837
838    return true;
839}
840
841bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst,
842                           const SkRRect &src, SkBlurStyle style,
843                           SkIPoint *margin, SkMask::CreateMode createMode) {
844    // Temporary for now -- always fail, should cause caller to fall back
845    // to old path.  Plumbing just to land API and parallelize effort.
846
847    return false;
848}
849
850// The "simple" blur is a direct implementation of separable convolution with a discrete
851// gaussian kernel.  It's "ground truth" in a sense; too slow to be used, but very
852// useful for correctness comparisons.
853
854bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src,
855                                 SkBlurStyle style, SkIPoint* margin) {
856
857    if (src.fFormat != SkMask::kA8_Format) {
858        return false;
859    }
860
861    float variance = sigma * sigma;
862
863    int windowSize = SkScalarCeilToInt(sigma*6);
864    // round window size up to nearest odd number
865    windowSize |= 1;
866
867    SkAutoTMalloc<float> gaussWindow(windowSize);
868
869    int halfWindow = windowSize >> 1;
870
871    gaussWindow[halfWindow] = 1;
872
873    float windowSum = 1;
874    for (int x = 1 ; x <= halfWindow ; ++x) {
875        float gaussian = expf(-x*x / (2*variance));
876        gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian;
877        windowSum += 2*gaussian;
878    }
879
880    // leave the filter un-normalized for now; we will divide by the normalization
881    // sum later;
882
883    int pad = halfWindow;
884    if (margin) {
885        margin->set( pad, pad );
886    }
887
888    dst->fBounds = src.fBounds;
889    dst->fBounds.outset(pad, pad);
890
891    dst->fRowBytes = dst->fBounds.width();
892    dst->fFormat = SkMask::kA8_Format;
893    dst->fImage = NULL;
894
895    if (src.fImage) {
896
897        size_t dstSize = dst->computeImageSize();
898        if (0 == dstSize) {
899            return false;   // too big to allocate, abort
900        }
901
902        int             srcWidth = src.fBounds.width();
903        int             srcHeight = src.fBounds.height();
904        int             dstWidth = dst->fBounds.width();
905
906        const uint8_t*  srcPixels = src.fImage;
907        uint8_t*        dstPixels = SkMask::AllocImage(dstSize);
908        SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dstPixels);
909
910        // do the actual blur.  First, make a padded copy of the source.
911        // use double pad so we never have to check if we're outside anything
912
913        int padWidth = srcWidth + 4*pad;
914        int padHeight = srcHeight;
915        int padSize = padWidth * padHeight;
916
917        SkAutoTMalloc<uint8_t> padPixels(padSize);
918        memset(padPixels, 0, padSize);
919
920        for (int y = 0 ; y < srcHeight; ++y) {
921            uint8_t* padptr = padPixels + y * padWidth + 2*pad;
922            const uint8_t* srcptr = srcPixels + y * srcWidth;
923            memcpy(padptr, srcptr, srcWidth);
924        }
925
926        // blur in X, transposing the result into a temporary floating point buffer.
927        // also double-pad the intermediate result so that the second blur doesn't
928        // have to do extra conditionals.
929
930        int tmpWidth = padHeight + 4*pad;
931        int tmpHeight = padWidth - 2*pad;
932        int tmpSize = tmpWidth * tmpHeight;
933
934        SkAutoTMalloc<float> tmpImage(tmpSize);
935        memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0]));
936
937        for (int y = 0 ; y < padHeight ; ++y) {
938            uint8_t *srcScanline = padPixels + y*padWidth;
939            for (int x = pad ; x < padWidth - pad ; ++x) {
940                float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output
941                uint8_t *windowCenter = srcScanline + x;
942                for (int i = -pad ; i <= pad ; ++i) {
943                    *outPixel += gaussWindow[pad+i]*windowCenter[i];
944                }
945                *outPixel /= windowSum;
946            }
947        }
948
949        // blur in Y; now filling in the actual desired destination.  We have to do
950        // the transpose again; these transposes guarantee that we read memory in
951        // linear order.
952
953        for (int y = 0 ; y < tmpHeight ; ++y) {
954            float *srcScanline = tmpImage + y*tmpWidth;
955            for (int x = pad ; x < tmpWidth - pad ; ++x) {
956                float *windowCenter = srcScanline + x;
957                float finalValue = 0;
958                for (int i = -pad ; i <= pad ; ++i) {
959                    finalValue += gaussWindow[pad+i]*windowCenter[i];
960                }
961                finalValue /= windowSum;
962                uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output
963                int integerPixel = int(finalValue + 0.5f);
964                *outPixel = SkClampMax( SkClampPos(integerPixel), 255 );
965            }
966        }
967
968        dst->fImage = dstPixels;
969        // if need be, alloc the "real" dst (same size as src) and copy/merge
970        // the blur into it (applying the src)
971        if (style == kInner_SkBlurStyle) {
972            // now we allocate the "real" dst, mirror the size of src
973            size_t srcSize = src.computeImageSize();
974            if (0 == srcSize) {
975                return false;   // too big to allocate, abort
976            }
977            dst->fImage = SkMask::AllocImage(srcSize);
978            merge_src_with_blur(dst->fImage, src.fRowBytes,
979                srcPixels, src.fRowBytes,
980                dstPixels + pad*dst->fRowBytes + pad,
981                dst->fRowBytes, srcWidth, srcHeight);
982            SkMask::FreeImage(dstPixels);
983        } else if (style != kNormal_SkBlurStyle) {
984            clamp_with_orig(dstPixels + pad*dst->fRowBytes + pad,
985                dst->fRowBytes, srcPixels, src.fRowBytes, srcWidth, srcHeight, style);
986        }
987        (void)autoCall.detach();
988    }
989
990    if (style == kInner_SkBlurStyle) {
991        dst->fBounds = src.fBounds; // restore trimmed bounds
992        dst->fRowBytes = src.fRowBytes;
993    }
994
995    return true;
996}
997