1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef GrGpu_DEFINED
9#define GrGpu_DEFINED
10
11#include "GrDrawTarget.h"
12#include "GrClipMaskManager.h"
13#include "GrPathRendering.h"
14#include "SkPath.h"
15
16class GrContext;
17class GrIndexBufferAllocPool;
18class GrPath;
19class GrPathRange;
20class GrPathRenderer;
21class GrPathRendererChain;
22class GrStencilBuffer;
23class GrVertexBufferAllocPool;
24
25class GrGpu : public GrDrawTarget {
26public:
27
28    /**
29     * Additional blend coefficients for dual source blending, not exposed
30     * through GrPaint/GrContext.
31     */
32    enum ExtendedBlendCoeffs {
33        // source 2 refers to second output color when
34        // using dual source blending.
35        kS2C_GrBlendCoeff = kPublicGrBlendCoeffCount,
36        kIS2C_GrBlendCoeff,
37        kS2A_GrBlendCoeff,
38        kIS2A_GrBlendCoeff,
39
40        kTotalGrBlendCoeffCount
41    };
42
43    /**
44     * Create an instance of GrGpu that matches the specified backend. If the requested backend is
45     * not supported (at compile-time or run-time) this returns NULL. The context will not be
46     * fully constructed and should not be used by GrGpu until after this function returns.
47     */
48    static GrGpu* Create(GrBackend, GrBackendContext, GrContext* context);
49
50    ////////////////////////////////////////////////////////////////////////////
51
52    GrGpu(GrContext* context);
53    virtual ~GrGpu();
54
55    GrContext* getContext() { return this->INHERITED::getContext(); }
56    const GrContext* getContext() const { return this->INHERITED::getContext(); }
57
58    GrPathRendering* pathRendering() {
59        return fPathRendering.get();
60    }
61
62    // Called by GrContext when the underlying backend context has been destroyed.
63    // GrGpu should use this to ensure that no backend API calls will be made from
64    // here onward, including in its destructor. Subclasses should call
65    // INHERITED::contextAbandoned() if they override this.
66    virtual void contextAbandoned();
67
68    /**
69     * The GrGpu object normally assumes that no outsider is setting state
70     * within the underlying 3D API's context/device/whatever. This call informs
71     * the GrGpu that the state was modified and it shouldn't make assumptions
72     * about the state.
73     */
74    void markContextDirty(uint32_t state = kAll_GrBackendState) {
75        fResetBits |= state;
76    }
77
78    void unimpl(const char[]);
79
80    /**
81     * Creates a texture object. If desc width or height is not a power of
82     * two but underlying API requires a power of two texture then srcData
83     * will be embedded in a power of two texture. The extra width and height
84     * is filled as though srcData were rendered clamped into the texture.
85     * The exception is when using compressed data formats. In this case, the
86     * desc width and height must be a multiple of the compressed format block
87     * size otherwise this function returns NULL. Similarly, if the underlying
88     * API requires a power of two texture and the source width and height are not
89     * a power of two, then this function returns NULL.
90     *
91     * If kRenderTarget_TextureFlag is specified the GrRenderTarget is
92     * accessible via GrTexture::asRenderTarget(). The texture will hold a ref
93     * on the render target until the texture is destroyed. Compressed textures
94     * cannot have the kRenderTarget_TextureFlag set.
95     *
96     * @param desc        describes the texture to be created.
97     * @param srcData     texel data to load texture. Begins with full-size
98     *                    palette data for paletted textures. For compressed
99     *                    formats it contains the compressed pixel data. Otherwise,
100     *                    it contains width*height texels. If NULL texture data
101     *                    is uninitialized.
102     * @param rowBytes    the number of bytes between consecutive rows. Zero
103     *                    means rows are tightly packed. This field is ignored
104     *                    for compressed formats.
105     *
106     * @return    The texture object if successful, otherwise NULL.
107     */
108    GrTexture* createTexture(const GrTextureDesc& desc,
109                             const void* srcData, size_t rowBytes);
110
111    /**
112     * Implements GrContext::wrapBackendTexture
113     */
114    GrTexture* wrapBackendTexture(const GrBackendTextureDesc&);
115
116    /**
117     * Implements GrContext::wrapBackendTexture
118     */
119    GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc&);
120
121    /**
122     * Creates a vertex buffer.
123     *
124     * @param size    size in bytes of the vertex buffer
125     * @param dynamic hints whether the data will be frequently changed
126     *                by either GrVertexBuffer::map() or
127     *                GrVertexBuffer::updateData().
128     *
129     * @return    The vertex buffer if successful, otherwise NULL.
130     */
131    GrVertexBuffer* createVertexBuffer(size_t size, bool dynamic);
132
133    /**
134     * Creates an index buffer.
135     *
136     * @param size    size in bytes of the index buffer
137     * @param dynamic hints whether the data will be frequently changed
138     *                by either GrIndexBuffer::map() or
139     *                GrIndexBuffer::updateData().
140     *
141     * @return The index buffer if successful, otherwise NULL.
142     */
143    GrIndexBuffer* createIndexBuffer(size_t size, bool dynamic);
144
145    /**
146     * Returns an index buffer that can be used to render quads.
147     * Six indices per quad: 0, 1, 2, 0, 2, 3, etc.
148     * The max number of quads can be queried using GrIndexBuffer::maxQuads().
149     * Draw with kTriangles_GrPrimitiveType
150     * @ return the quad index buffer
151     */
152    const GrIndexBuffer* getQuadIndexBuffer() const;
153
154    /**
155     * Resolves MSAA.
156     */
157    void resolveRenderTarget(GrRenderTarget* target);
158
159    /**
160     * Gets a preferred 8888 config to use for writing/reading pixel data to/from a surface with
161     * config surfaceConfig. The returned config must have at least as many bits per channel as the
162     * readConfig or writeConfig param.
163     */
164    virtual GrPixelConfig preferredReadPixelsConfig(GrPixelConfig readConfig,
165                                                    GrPixelConfig surfaceConfig) const {
166        return readConfig;
167    }
168    virtual GrPixelConfig preferredWritePixelsConfig(GrPixelConfig writeConfig,
169                                                     GrPixelConfig surfaceConfig) const {
170        return writeConfig;
171    }
172
173    /**
174     * Called before uploading writing pixels to a GrTexture when the src pixel config doesn't
175     * match the texture's config.
176     */
177    virtual bool canWriteTexturePixels(const GrTexture*, GrPixelConfig srcConfig) const = 0;
178
179    /**
180     * OpenGL's readPixels returns the result bottom-to-top while the skia
181     * API is top-to-bottom. Thus we have to do a y-axis flip. The obvious
182     * solution is to have the subclass do the flip using either the CPU or GPU.
183     * However, the caller (GrContext) may have transformations to apply and can
184     * simply fold in the y-flip for free. On the other hand, the subclass may
185     * be able to do it for free itself. For example, the subclass may have to
186     * do memcpys to handle rowBytes that aren't tight. It could do the y-flip
187     * concurrently.
188     *
189     * This function returns true if a y-flip is required to put the pixels in
190     * top-to-bottom order and the subclass cannot do it for free.
191     *
192     * See read pixels for the params
193     * @return true if calling readPixels with the same set of params will
194     *              produce bottom-to-top data
195     */
196     virtual bool readPixelsWillPayForYFlip(GrRenderTarget* renderTarget,
197                                            int left, int top,
198                                            int width, int height,
199                                            GrPixelConfig config,
200                                            size_t rowBytes) const = 0;
201     /**
202      * This should return true if reading a NxM rectangle of pixels from a
203      * render target is faster if the target has dimensons N and M and the read
204      * rectangle has its top-left at 0,0.
205      */
206     virtual bool fullReadPixelsIsFasterThanPartial() const { return false; };
207
208    /**
209     * Reads a rectangle of pixels from a render target.
210     *
211     * @param renderTarget  the render target to read from. NULL means the
212     *                      current render target.
213     * @param left          left edge of the rectangle to read (inclusive)
214     * @param top           top edge of the rectangle to read (inclusive)
215     * @param width         width of rectangle to read in pixels.
216     * @param height        height of rectangle to read in pixels.
217     * @param config        the pixel config of the destination buffer
218     * @param buffer        memory to read the rectangle into.
219     * @param rowBytes      the number of bytes between consecutive rows. Zero
220     *                      means rows are tightly packed.
221     * @param invertY       buffer should be populated bottom-to-top as opposed
222     *                      to top-to-bottom (skia's usual order)
223     *
224     * @return true if the read succeeded, false if not. The read can fail
225     *              because of a unsupported pixel config or because no render
226     *              target is currently set.
227     */
228    bool readPixels(GrRenderTarget* renderTarget,
229                    int left, int top, int width, int height,
230                    GrPixelConfig config, void* buffer, size_t rowBytes);
231
232    /**
233     * Updates the pixels in a rectangle of a texture.
234     *
235     * @param left          left edge of the rectangle to write (inclusive)
236     * @param top           top edge of the rectangle to write (inclusive)
237     * @param width         width of rectangle to write in pixels.
238     * @param height        height of rectangle to write in pixels.
239     * @param config        the pixel config of the source buffer
240     * @param buffer        memory to read pixels from
241     * @param rowBytes      number of bytes between consecutive rows. Zero
242     *                      means rows are tightly packed.
243     */
244    bool writeTexturePixels(GrTexture* texture,
245                            int left, int top, int width, int height,
246                            GrPixelConfig config, const void* buffer,
247                            size_t rowBytes);
248
249    // GrDrawTarget overrides
250    virtual void clear(const SkIRect* rect,
251                       GrColor color,
252                       bool canIgnoreRect,
253                       GrRenderTarget* renderTarget = NULL) SK_OVERRIDE;
254
255    virtual void purgeResources() SK_OVERRIDE {
256        // The clip mask manager can rebuild all its clip masks so just
257        // get rid of them all.
258        fClipMaskManager.purgeResources();
259    }
260
261    // After the client interacts directly with the 3D context state the GrGpu
262    // must resync its internal state and assumptions about 3D context state.
263    // Each time this occurs the GrGpu bumps a timestamp.
264    // state of the 3D context
265    // At 10 resets / frame and 60fps a 64bit timestamp will overflow in about
266    // a billion years.
267    typedef uint64_t ResetTimestamp;
268
269    // This timestamp is always older than the current timestamp
270    static const ResetTimestamp kExpiredTimestamp = 0;
271    // Returns a timestamp based on the number of times the context was reset.
272    // This timestamp can be used to lazily detect when cached 3D context state
273    // is dirty.
274    ResetTimestamp getResetTimestamp() const {
275        return fResetTimestamp;
276    }
277
278    /**
279     * These methods are called by the clip manager's setupClipping function
280     * which (called as part of GrGpu's implementation of onDraw and
281     * onStencilPath member functions.) The GrGpu subclass should flush the
282     * stencil state to the 3D API in its implementation of flushGraphicsState.
283     */
284    void enableScissor(const SkIRect& rect) {
285        fScissorState.fEnabled = true;
286        fScissorState.fRect = rect;
287    }
288    void disableScissor() { fScissorState.fEnabled = false; }
289
290    /**
291     * Like the scissor methods above this is called by setupClipping and
292     * should be flushed by the GrGpu subclass in flushGraphicsState. These
293     * stencil settings should be used in place of those on the GrDrawState.
294     * They have been adjusted to account for any interactions between the
295     * GrDrawState's stencil settings and stencil clipping.
296     */
297    void setStencilSettings(const GrStencilSettings& settings) {
298        fStencilSettings = settings;
299    }
300    void disableStencil() { fStencilSettings.setDisabled(); }
301
302    // GrGpu subclass sets clip bit in the stencil buffer. The subclass is
303    // free to clear the remaining bits to zero if masked clears are more
304    // expensive than clearing all bits.
305    virtual void clearStencilClip(GrRenderTarget*, const SkIRect& rect, bool insideClip) = 0;
306
307    enum PrivateDrawStateStateBits {
308        kFirstBit = (GrDrawState::kLastPublicStateBit << 1),
309
310        kModifyStencilClip_StateBit = kFirstBit, // allows draws to modify
311                                                 // stencil bits used for
312                                                 // clipping.
313    };
314
315    void getPathStencilSettingsForFillType(SkPath::FillType fill, GrStencilSettings* outStencilSettings);
316
317    enum DrawType {
318        kDrawPoints_DrawType,
319        kDrawLines_DrawType,
320        kDrawTriangles_DrawType,
321        kStencilPath_DrawType,
322        kDrawPath_DrawType,
323        kDrawPaths_DrawType,
324    };
325
326    static bool IsPathRenderingDrawType(DrawType type) {
327        return kDrawPath_DrawType == type || kDrawPaths_DrawType == type;
328    }
329
330    GrContext::GPUStats* gpuStats() { return &fGPUStats; }
331
332protected:
333    DrawType PrimTypeToDrawType(GrPrimitiveType type) {
334        switch (type) {
335            case kTriangles_GrPrimitiveType:
336            case kTriangleStrip_GrPrimitiveType:
337            case kTriangleFan_GrPrimitiveType:
338                return kDrawTriangles_DrawType;
339            case kPoints_GrPrimitiveType:
340                return kDrawPoints_DrawType;
341            case kLines_GrPrimitiveType:
342            case kLineStrip_GrPrimitiveType:
343                return kDrawLines_DrawType;
344            default:
345                SkFAIL("Unexpected primitive type");
346                return kDrawTriangles_DrawType;
347        }
348    }
349
350    // prepares clip flushes gpu state before a draw
351    bool setupClipAndFlushState(DrawType,
352                                const GrDeviceCoordTexture* dstCopy,
353                                GrDrawState::AutoRestoreEffects* are,
354                                const SkRect* devBounds);
355
356    // Functions used to map clip-respecting stencil tests into normal
357    // stencil funcs supported by GPUs.
358    static GrStencilFunc ConvertStencilFunc(bool stencilInClip,
359                                            GrStencilFunc func);
360    static void ConvertStencilFuncAndMask(GrStencilFunc func,
361                                          bool clipInStencil,
362                                          unsigned int clipBit,
363                                          unsigned int userBits,
364                                          unsigned int* ref,
365                                          unsigned int* mask);
366
367    GrClipMaskManager           fClipMaskManager;
368
369    GrContext::GPUStats         fGPUStats;
370
371    struct GeometryPoolState {
372        const GrVertexBuffer* fPoolVertexBuffer;
373        int                   fPoolStartVertex;
374
375        const GrIndexBuffer*  fPoolIndexBuffer;
376        int                   fPoolStartIndex;
377    };
378    const GeometryPoolState& getGeomPoolState() {
379        return fGeomPoolStateStack.back();
380    }
381
382    // The state of the scissor is controlled by the clip manager
383    struct ScissorState {
384        bool    fEnabled;
385        SkIRect fRect;
386    } fScissorState;
387
388    // The final stencil settings to use as determined by the clip manager.
389    GrStencilSettings fStencilSettings;
390
391    // Helpers for setting up geometry state
392    void finalizeReservedVertices();
393    void finalizeReservedIndices();
394
395    SkAutoTDelete<GrPathRendering> fPathRendering;
396
397private:
398    // GrDrawTarget overrides
399    virtual bool onReserveVertexSpace(size_t vertexSize, int vertexCount, void** vertices) SK_OVERRIDE;
400    virtual bool onReserveIndexSpace(int indexCount, void** indices) SK_OVERRIDE;
401    virtual void releaseReservedVertexSpace() SK_OVERRIDE;
402    virtual void releaseReservedIndexSpace() SK_OVERRIDE;
403    virtual void onSetVertexSourceToArray(const void* vertexArray, int vertexCount) SK_OVERRIDE;
404    virtual void onSetIndexSourceToArray(const void* indexArray, int indexCount) SK_OVERRIDE;
405    virtual void releaseVertexArray() SK_OVERRIDE;
406    virtual void releaseIndexArray() SK_OVERRIDE;
407    virtual void geometrySourceWillPush() SK_OVERRIDE;
408    virtual void geometrySourceWillPop(const GeometrySrcState& restoredState) SK_OVERRIDE;
409
410
411    // called when the 3D context state is unknown. Subclass should emit any
412    // assumed 3D context state and dirty any state cache.
413    virtual void onResetContext(uint32_t resetBits) = 0;
414
415    // overridden by backend-specific derived class to create objects.
416    virtual GrTexture* onCreateTexture(const GrTextureDesc& desc,
417                                       const void* srcData,
418                                       size_t rowBytes) = 0;
419    virtual GrTexture* onCreateCompressedTexture(const GrTextureDesc& desc,
420                                                 const void* srcData) = 0;
421    virtual GrTexture* onWrapBackendTexture(const GrBackendTextureDesc&) = 0;
422    virtual GrRenderTarget* onWrapBackendRenderTarget(const GrBackendRenderTargetDesc&) = 0;
423    virtual GrVertexBuffer* onCreateVertexBuffer(size_t size, bool dynamic) = 0;
424    virtual GrIndexBuffer* onCreateIndexBuffer(size_t size, bool dynamic) = 0;
425
426    // overridden by backend-specific derived class to perform the clear and
427    // clearRect. NULL rect means clear whole target. If canIgnoreRect is
428    // true, it is okay to perform a full clear instead of a partial clear
429    virtual void onClear(GrRenderTarget*, const SkIRect* rect, GrColor color,
430                         bool canIgnoreRect) = 0;
431
432    // overridden by backend-specific derived class to perform the draw call.
433    virtual void onGpuDraw(const DrawInfo&) = 0;
434
435    // overridden by backend-specific derived class to perform the read pixels.
436    virtual bool onReadPixels(GrRenderTarget* target,
437                              int left, int top, int width, int height,
438                              GrPixelConfig,
439                              void* buffer,
440                              size_t rowBytes) = 0;
441
442    // overridden by backend-specific derived class to perform the texture update
443    virtual bool onWriteTexturePixels(GrTexture* texture,
444                                      int left, int top, int width, int height,
445                                      GrPixelConfig config, const void* buffer,
446                                      size_t rowBytes) = 0;
447
448    // overridden by backend-specific derived class to perform the resolve
449    virtual void onResolveRenderTarget(GrRenderTarget* target) = 0;
450
451    // width and height may be larger than rt (if underlying API allows it).
452    // Should attach the SB to the RT. Returns false if compatible sb could
453    // not be created.
454    virtual bool createStencilBufferForRenderTarget(GrRenderTarget*, int width, int height) = 0;
455
456    // attaches an existing SB to an existing RT.
457    virtual bool attachStencilBufferToRenderTarget(GrStencilBuffer*, GrRenderTarget*) = 0;
458
459    // The GrGpu typically records the clients requested state and then flushes
460    // deltas from previous state at draw time. This function does the
461    // backend-specific flush of the state.
462    // returns false if current state is unsupported.
463    virtual bool flushGraphicsState(DrawType, const GrDeviceCoordTexture* dstCopy) = 0;
464
465    // clears target's entire stencil buffer to 0
466    virtual void clearStencil(GrRenderTarget* target) = 0;
467
468    // Given a rt, find or create a stencil buffer and attach it
469    bool attachStencilBufferToRenderTarget(GrRenderTarget* target);
470
471    // GrDrawTarget overrides
472    virtual void onDraw(const DrawInfo&) SK_OVERRIDE;
473    virtual void onStencilPath(const GrPath*, SkPath::FillType) SK_OVERRIDE;
474    virtual void onDrawPath(const GrPath*, SkPath::FillType,
475                            const GrDeviceCoordTexture* dstCopy) SK_OVERRIDE;
476    virtual void onDrawPaths(const GrPathRange*,
477                             const uint32_t indices[], int count,
478                             const float transforms[], PathTransformType,
479                             SkPath::FillType, const GrDeviceCoordTexture*) SK_OVERRIDE;
480
481    // readies the pools to provide vertex/index data.
482    void prepareVertexPool();
483    void prepareIndexPool();
484
485    void resetContext() {
486        // We call this because the client may have messed with the
487        // stencil buffer. Perhaps we should detect whether it is a
488        // internally created stencil buffer and if so skip the invalidate.
489        fClipMaskManager.invalidateStencilMask();
490        this->onResetContext(fResetBits);
491        fResetBits = 0;
492        ++fResetTimestamp;
493    }
494
495    void handleDirtyContext() {
496        if (fResetBits) {
497            this->resetContext();
498        }
499    }
500
501    enum {
502        kPreallocGeomPoolStateStackCnt = 4,
503    };
504    SkSTArray<kPreallocGeomPoolStateStackCnt, GeometryPoolState, true>  fGeomPoolStateStack;
505    ResetTimestamp                                                      fResetTimestamp;
506    uint32_t                                                            fResetBits;
507    GrVertexBufferAllocPool*                                            fVertexPool;
508    GrIndexBufferAllocPool*                                             fIndexPool;
509    // counts number of uses of vertex/index pool in the geometry stack
510    int                                                                 fVertexPoolUseCnt;
511    int                                                                 fIndexPoolUseCnt;
512    // these are mutable so they can be created on-demand
513    mutable GrIndexBuffer*                                              fQuadIndexBuffer;
514
515    typedef GrDrawTarget INHERITED;
516};
517
518#endif
519