1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrPathUtils.h"
9
10#include "GrTypes.h"
11#include "SkGeometry.h"
12
13SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
14                                          const SkMatrix& viewM,
15                                          const SkRect& pathBounds) {
16    // In order to tesselate the path we get a bound on how much the matrix can
17    // scale when mapping to screen coordinates.
18    SkScalar stretch = viewM.getMaxScale();
19    SkScalar srcTol = devTol;
20
21    if (stretch < 0) {
22        // take worst case mapRadius amoung four corners.
23        // (less than perfect)
24        for (int i = 0; i < 4; ++i) {
25            SkMatrix mat;
26            mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
27                             (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
28            mat.postConcat(viewM);
29            stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
30        }
31    }
32    srcTol = SkScalarDiv(srcTol, stretch);
33    return srcTol;
34}
35
36static const int MAX_POINTS_PER_CURVE = 1 << 10;
37static const SkScalar gMinCurveTol = 0.0001f;
38
39uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[],
40                                          SkScalar tol) {
41    if (tol < gMinCurveTol) {
42        tol = gMinCurveTol;
43    }
44    SkASSERT(tol > 0);
45
46    SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
47    if (d <= tol) {
48        return 1;
49    } else {
50        // Each time we subdivide, d should be cut in 4. So we need to
51        // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
52        // points.
53        // 2^(log4(x)) = sqrt(x);
54        int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
55        int pow2 = GrNextPow2(temp);
56        // Because of NaNs & INFs we can wind up with a degenerate temp
57        // such that pow2 comes out negative. Also, our point generator
58        // will always output at least one pt.
59        if (pow2 < 1) {
60            pow2 = 1;
61        }
62        return SkTMin(pow2, MAX_POINTS_PER_CURVE);
63    }
64}
65
66uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
67                                              const SkPoint& p1,
68                                              const SkPoint& p2,
69                                              SkScalar tolSqd,
70                                              SkPoint** points,
71                                              uint32_t pointsLeft) {
72    if (pointsLeft < 2 ||
73        (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
74        (*points)[0] = p2;
75        *points += 1;
76        return 1;
77    }
78
79    SkPoint q[] = {
80        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
81        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
82    };
83    SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
84
85    pointsLeft >>= 1;
86    uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
87    uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
88    return a + b;
89}
90
91uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
92                                           SkScalar tol) {
93    if (tol < gMinCurveTol) {
94        tol = gMinCurveTol;
95    }
96    SkASSERT(tol > 0);
97
98    SkScalar d = SkTMax(
99        points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
100        points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
101    d = SkScalarSqrt(d);
102    if (d <= tol) {
103        return 1;
104    } else {
105        int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
106        int pow2 = GrNextPow2(temp);
107        // Because of NaNs & INFs we can wind up with a degenerate temp
108        // such that pow2 comes out negative. Also, our point generator
109        // will always output at least one pt.
110        if (pow2 < 1) {
111            pow2 = 1;
112        }
113        return SkTMin(pow2, MAX_POINTS_PER_CURVE);
114    }
115}
116
117uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
118                                          const SkPoint& p1,
119                                          const SkPoint& p2,
120                                          const SkPoint& p3,
121                                          SkScalar tolSqd,
122                                          SkPoint** points,
123                                          uint32_t pointsLeft) {
124    if (pointsLeft < 2 ||
125        (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
126         p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
127            (*points)[0] = p3;
128            *points += 1;
129            return 1;
130        }
131    SkPoint q[] = {
132        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
133        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
134        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
135    };
136    SkPoint r[] = {
137        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
138        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
139    };
140    SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
141    pointsLeft >>= 1;
142    uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
143    uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
144    return a + b;
145}
146
147int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
148                                     SkScalar tol) {
149    if (tol < gMinCurveTol) {
150        tol = gMinCurveTol;
151    }
152    SkASSERT(tol > 0);
153
154    int pointCount = 0;
155    *subpaths = 1;
156
157    bool first = true;
158
159    SkPath::Iter iter(path, false);
160    SkPath::Verb verb;
161
162    SkPoint pts[4];
163    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
164
165        switch (verb) {
166            case SkPath::kLine_Verb:
167                pointCount += 1;
168                break;
169            case SkPath::kQuad_Verb:
170                pointCount += quadraticPointCount(pts, tol);
171                break;
172            case SkPath::kCubic_Verb:
173                pointCount += cubicPointCount(pts, tol);
174                break;
175            case SkPath::kMove_Verb:
176                pointCount += 1;
177                if (!first) {
178                    ++(*subpaths);
179                }
180                break;
181            default:
182                break;
183        }
184        first = false;
185    }
186    return pointCount;
187}
188
189void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
190    SkMatrix m;
191    // We want M such that M * xy_pt = uv_pt
192    // We know M * control_pts = [0  1/2 1]
193    //                           [0  0   1]
194    //                           [1  1   1]
195    // And control_pts = [x0 x1 x2]
196    //                   [y0 y1 y2]
197    //                   [1  1  1 ]
198    // We invert the control pt matrix and post concat to both sides to get M.
199    // Using the known form of the control point matrix and the result, we can
200    // optimize and improve precision.
201
202    double x0 = qPts[0].fX;
203    double y0 = qPts[0].fY;
204    double x1 = qPts[1].fX;
205    double y1 = qPts[1].fY;
206    double x2 = qPts[2].fX;
207    double y2 = qPts[2].fY;
208    double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
209
210    if (!sk_float_isfinite(det)
211        || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
212        // The quad is degenerate. Hopefully this is rare. Find the pts that are
213        // farthest apart to compute a line (unless it is really a pt).
214        SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
215        int maxEdge = 0;
216        SkScalar d = qPts[1].distanceToSqd(qPts[2]);
217        if (d > maxD) {
218            maxD = d;
219            maxEdge = 1;
220        }
221        d = qPts[2].distanceToSqd(qPts[0]);
222        if (d > maxD) {
223            maxD = d;
224            maxEdge = 2;
225        }
226        // We could have a tolerance here, not sure if it would improve anything
227        if (maxD > 0) {
228            // Set the matrix to give (u = 0, v = distance_to_line)
229            SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
230            // when looking from the point 0 down the line we want positive
231            // distances to be to the left. This matches the non-degenerate
232            // case.
233            lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
234            lineVec.dot(qPts[0]);
235            // first row
236            fM[0] = 0;
237            fM[1] = 0;
238            fM[2] = 0;
239            // second row
240            fM[3] = lineVec.fX;
241            fM[4] = lineVec.fY;
242            fM[5] = -lineVec.dot(qPts[maxEdge]);
243        } else {
244            // It's a point. It should cover zero area. Just set the matrix such
245            // that (u, v) will always be far away from the quad.
246            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
247            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
248        }
249    } else {
250        double scale = 1.0/det;
251
252        // compute adjugate matrix
253        double a0, a1, a2, a3, a4, a5, a6, a7, a8;
254        a0 = y1-y2;
255        a1 = x2-x1;
256        a2 = x1*y2-x2*y1;
257
258        a3 = y2-y0;
259        a4 = x0-x2;
260        a5 = x2*y0-x0*y2;
261
262        a6 = y0-y1;
263        a7 = x1-x0;
264        a8 = x0*y1-x1*y0;
265
266        // this performs the uv_pts*adjugate(control_pts) multiply,
267        // then does the scale by 1/det afterwards to improve precision
268        m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
269        m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
270        m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
271
272        m[SkMatrix::kMSkewY]  = (float)(a6*scale);
273        m[SkMatrix::kMScaleY] = (float)(a7*scale);
274        m[SkMatrix::kMTransY] = (float)(a8*scale);
275
276        m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
277        m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
278        m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
279
280        // The matrix should not have perspective.
281        SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
282        SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
283        SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
284
285        // It may not be normalized to have 1.0 in the bottom right
286        float m33 = m.get(SkMatrix::kMPersp2);
287        if (1.f != m33) {
288            m33 = 1.f / m33;
289            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
290            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
291            fM[2] = m33 * m.get(SkMatrix::kMTransX);
292            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
293            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
294            fM[5] = m33 * m.get(SkMatrix::kMTransY);
295        } else {
296            fM[0] = m.get(SkMatrix::kMScaleX);
297            fM[1] = m.get(SkMatrix::kMSkewX);
298            fM[2] = m.get(SkMatrix::kMTransX);
299            fM[3] = m.get(SkMatrix::kMSkewY);
300            fM[4] = m.get(SkMatrix::kMScaleY);
301            fM[5] = m.get(SkMatrix::kMTransY);
302        }
303    }
304}
305
306////////////////////////////////////////////////////////////////////////////////
307
308// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
309// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
310// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
311void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
312    const SkScalar w2 = 2.f * weight;
313    klm[0] = p[2].fY - p[0].fY;
314    klm[1] = p[0].fX - p[2].fX;
315    klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
316
317    klm[3] = w2 * (p[1].fY - p[0].fY);
318    klm[4] = w2 * (p[0].fX - p[1].fX);
319    klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
320
321    klm[6] = w2 * (p[2].fY - p[1].fY);
322    klm[7] = w2 * (p[1].fX - p[2].fX);
323    klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
324
325    // scale the max absolute value of coeffs to 10
326    SkScalar scale = 0.f;
327    for (int i = 0; i < 9; ++i) {
328       scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
329    }
330    SkASSERT(scale > 0.f);
331    scale = 10.f / scale;
332    for (int i = 0; i < 9; ++i) {
333        klm[i] *= scale;
334    }
335}
336
337////////////////////////////////////////////////////////////////////////////////
338
339namespace {
340
341// a is the first control point of the cubic.
342// ab is the vector from a to the second control point.
343// dc is the vector from the fourth to the third control point.
344// d is the fourth control point.
345// p is the candidate quadratic control point.
346// this assumes that the cubic doesn't inflect and is simple
347bool is_point_within_cubic_tangents(const SkPoint& a,
348                                    const SkVector& ab,
349                                    const SkVector& dc,
350                                    const SkPoint& d,
351                                    SkPath::Direction dir,
352                                    const SkPoint p) {
353    SkVector ap = p - a;
354    SkScalar apXab = ap.cross(ab);
355    if (SkPath::kCW_Direction == dir) {
356        if (apXab > 0) {
357            return false;
358        }
359    } else {
360        SkASSERT(SkPath::kCCW_Direction == dir);
361        if (apXab < 0) {
362            return false;
363        }
364    }
365
366    SkVector dp = p - d;
367    SkScalar dpXdc = dp.cross(dc);
368    if (SkPath::kCW_Direction == dir) {
369        if (dpXdc < 0) {
370            return false;
371        }
372    } else {
373        SkASSERT(SkPath::kCCW_Direction == dir);
374        if (dpXdc > 0) {
375            return false;
376        }
377    }
378    return true;
379}
380
381void convert_noninflect_cubic_to_quads(const SkPoint p[4],
382                                       SkScalar toleranceSqd,
383                                       bool constrainWithinTangents,
384                                       SkPath::Direction dir,
385                                       SkTArray<SkPoint, true>* quads,
386                                       int sublevel = 0) {
387
388    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
389    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
390
391    SkVector ab = p[1] - p[0];
392    SkVector dc = p[2] - p[3];
393
394    if (ab.isZero()) {
395        if (dc.isZero()) {
396            SkPoint* degQuad = quads->push_back_n(3);
397            degQuad[0] = p[0];
398            degQuad[1] = p[0];
399            degQuad[2] = p[3];
400            return;
401        }
402        ab = p[2] - p[0];
403    }
404    if (dc.isZero()) {
405        dc = p[1] - p[3];
406    }
407
408    // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
409    // constraint that the quad point falls between the tangents becomes hard to enforce and we are
410    // likely to hit the max subdivision count. However, in this case the cubic is approaching a
411    // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
412    // control points are very close to the baseline vector. If so then we just pick quadratic
413    // points on the control polygon.
414
415    if (constrainWithinTangents) {
416        SkVector da = p[0] - p[3];
417        bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
418                       ab.lengthSqd() < SK_ScalarNearlyZero;
419        if (!doQuads) {
420            SkScalar invDALengthSqd = da.lengthSqd();
421            if (invDALengthSqd > SK_ScalarNearlyZero) {
422                invDALengthSqd = SkScalarInvert(invDALengthSqd);
423                // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
424                // same goes for point c using vector cd.
425                SkScalar detABSqd = ab.cross(da);
426                detABSqd = SkScalarSquare(detABSqd);
427                SkScalar detDCSqd = dc.cross(da);
428                detDCSqd = SkScalarSquare(detDCSqd);
429                if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
430                    SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
431                    doQuads = true;
432                }
433            }
434        }
435        if (doQuads) {
436            SkPoint b = p[0] + ab;
437            SkPoint c = p[3] + dc;
438            SkPoint mid = b + c;
439            mid.scale(SK_ScalarHalf);
440            // Insert two quadratics to cover the case when ab points away from d and/or dc
441            // points away from a.
442            if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
443                SkPoint* qpts = quads->push_back_n(6);
444                qpts[0] = p[0];
445                qpts[1] = b;
446                qpts[2] = mid;
447                qpts[3] = mid;
448                qpts[4] = c;
449                qpts[5] = p[3];
450            } else {
451                SkPoint* qpts = quads->push_back_n(3);
452                qpts[0] = p[0];
453                qpts[1] = mid;
454                qpts[2] = p[3];
455            }
456            return;
457        }
458    }
459
460    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
461    static const int kMaxSubdivs = 10;
462
463    ab.scale(kLengthScale);
464    dc.scale(kLengthScale);
465
466    // e0 and e1 are extrapolations along vectors ab and dc.
467    SkVector c0 = p[0];
468    c0 += ab;
469    SkVector c1 = p[3];
470    c1 += dc;
471
472    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
473    if (dSqd < toleranceSqd) {
474        SkPoint cAvg = c0;
475        cAvg += c1;
476        cAvg.scale(SK_ScalarHalf);
477
478        bool subdivide = false;
479
480        if (constrainWithinTangents &&
481            !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
482            // choose a new cAvg that is the intersection of the two tangent lines.
483            ab.setOrthog(ab);
484            SkScalar z0 = -ab.dot(p[0]);
485            dc.setOrthog(dc);
486            SkScalar z1 = -dc.dot(p[3]);
487            cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
488            cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
489            SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
490            z = SkScalarInvert(z);
491            cAvg.fX *= z;
492            cAvg.fY *= z;
493            if (sublevel <= kMaxSubdivs) {
494                SkScalar d0Sqd = c0.distanceToSqd(cAvg);
495                SkScalar d1Sqd = c1.distanceToSqd(cAvg);
496                // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
497                // the distances and tolerance can't be negative.
498                // (d0 + d1)^2 > toleranceSqd
499                // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
500                SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
501                subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
502            }
503        }
504        if (!subdivide) {
505            SkPoint* pts = quads->push_back_n(3);
506            pts[0] = p[0];
507            pts[1] = cAvg;
508            pts[2] = p[3];
509            return;
510        }
511    }
512    SkPoint choppedPts[7];
513    SkChopCubicAtHalf(p, choppedPts);
514    convert_noninflect_cubic_to_quads(choppedPts + 0,
515                                      toleranceSqd,
516                                      constrainWithinTangents,
517                                      dir,
518                                      quads,
519                                      sublevel + 1);
520    convert_noninflect_cubic_to_quads(choppedPts + 3,
521                                      toleranceSqd,
522                                      constrainWithinTangents,
523                                      dir,
524                                      quads,
525                                      sublevel + 1);
526}
527}
528
529void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
530                                      SkScalar tolScale,
531                                      bool constrainWithinTangents,
532                                      SkPath::Direction dir,
533                                      SkTArray<SkPoint, true>* quads) {
534    SkPoint chopped[10];
535    int count = SkChopCubicAtInflections(p, chopped);
536
537    // base tolerance is 1 pixel.
538    static const SkScalar kTolerance = SK_Scalar1;
539    const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
540
541    for (int i = 0; i < count; ++i) {
542        SkPoint* cubic = chopped + 3*i;
543        convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
544    }
545
546}
547
548////////////////////////////////////////////////////////////////////////////////
549
550enum CubicType {
551    kSerpentine_CubicType,
552    kCusp_CubicType,
553    kLoop_CubicType,
554    kQuadratic_CubicType,
555    kLine_CubicType,
556    kPoint_CubicType
557};
558
559// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
560// Classification:
561// discr(I) > 0        Serpentine
562// discr(I) = 0        Cusp
563// discr(I) < 0        Loop
564// d0 = d1 = 0         Quadratic
565// d0 = d1 = d2 = 0    Line
566// p0 = p1 = p2 = p3   Point
567static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
568    if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
569        return kPoint_CubicType;
570    }
571    const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
572    if (discr > SK_ScalarNearlyZero) {
573        return kSerpentine_CubicType;
574    } else if (discr < -SK_ScalarNearlyZero) {
575        return kLoop_CubicType;
576    } else {
577        if (0.f == d[0] && 0.f == d[1]) {
578            return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
579        } else {
580            return kCusp_CubicType;
581        }
582    }
583}
584
585// Assumes the third component of points is 1.
586// Calcs p0 . (p1 x p2)
587static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
588    const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
589    const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
590    const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
591    return (xComp + yComp + wComp);
592}
593
594// Solves linear system to extract klm
595// P.K = k (similarly for l, m)
596// Where P is matrix of control points
597// K is coefficients for the line K
598// k is vector of values of K evaluated at the control points
599// Solving for K, thus K = P^(-1) . k
600static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
601                           const SkScalar controlL[4], const SkScalar controlM[4],
602                           SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
603    SkMatrix matrix;
604    matrix.setAll(p[0].fX, p[0].fY, 1.f,
605                  p[1].fX, p[1].fY, 1.f,
606                  p[2].fX, p[2].fY, 1.f);
607    SkMatrix inverse;
608    if (matrix.invert(&inverse)) {
609       inverse.mapHomogeneousPoints(k, controlK, 1);
610       inverse.mapHomogeneousPoints(l, controlL, 1);
611       inverse.mapHomogeneousPoints(m, controlM, 1);
612    }
613
614}
615
616static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
617    SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
618    SkScalar ls = 3.f * d[1] - tempSqrt;
619    SkScalar lt = 6.f * d[0];
620    SkScalar ms = 3.f * d[1] + tempSqrt;
621    SkScalar mt = 6.f * d[0];
622
623    k[0] = ls * ms;
624    k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
625    k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
626    k[3] = (lt - ls) * (mt - ms);
627
628    l[0] = ls * ls * ls;
629    const SkScalar lt_ls = lt - ls;
630    l[1] = ls * ls * lt_ls * -1.f;
631    l[2] = lt_ls * lt_ls * ls;
632    l[3] = -1.f * lt_ls * lt_ls * lt_ls;
633
634    m[0] = ms * ms * ms;
635    const SkScalar mt_ms = mt - ms;
636    m[1] = ms * ms * mt_ms * -1.f;
637    m[2] = mt_ms * mt_ms * ms;
638    m[3] = -1.f * mt_ms * mt_ms * mt_ms;
639
640    // If d0 < 0 we need to flip the orientation of our curve
641    // This is done by negating the k and l values
642    // We want negative distance values to be on the inside
643    if ( d[0] > 0) {
644        for (int i = 0; i < 4; ++i) {
645            k[i] = -k[i];
646            l[i] = -l[i];
647        }
648    }
649}
650
651static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
652    SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
653    SkScalar ls = d[1] - tempSqrt;
654    SkScalar lt = 2.f * d[0];
655    SkScalar ms = d[1] + tempSqrt;
656    SkScalar mt = 2.f * d[0];
657
658    k[0] = ls * ms;
659    k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
660    k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
661    k[3] = (lt - ls) * (mt - ms);
662
663    l[0] = ls * ls * ms;
664    l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
665    l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
666    l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
667
668    m[0] = ls * ms * ms;
669    m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
670    m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
671    m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
672
673
674    // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
675    // we need to flip the orientation of our curve.
676    // This is done by negating the k and l values
677    if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
678        for (int i = 0; i < 4; ++i) {
679            k[i] = -k[i];
680            l[i] = -l[i];
681        }
682    }
683}
684
685static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
686    const SkScalar ls = d[2];
687    const SkScalar lt = 3.f * d[1];
688
689    k[0] = ls;
690    k[1] = ls - lt / 3.f;
691    k[2] = ls - 2.f * lt / 3.f;
692    k[3] = ls - lt;
693
694    l[0] = ls * ls * ls;
695    const SkScalar ls_lt = ls - lt;
696    l[1] = ls * ls * ls_lt;
697    l[2] = ls_lt * ls_lt * ls;
698    l[3] = ls_lt * ls_lt * ls_lt;
699
700    m[0] = 1.f;
701    m[1] = 1.f;
702    m[2] = 1.f;
703    m[3] = 1.f;
704}
705
706// For the case when a cubic is actually a quadratic
707// M =
708// 0     0     0
709// 1/3   0     1/3
710// 2/3   1/3   2/3
711// 1     1     1
712static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
713    k[0] = 0.f;
714    k[1] = 1.f/3.f;
715    k[2] = 2.f/3.f;
716    k[3] = 1.f;
717
718    l[0] = 0.f;
719    l[1] = 0.f;
720    l[2] = 1.f/3.f;
721    l[3] = 1.f;
722
723    m[0] = 0.f;
724    m[1] = 1.f/3.f;
725    m[2] = 2.f/3.f;
726    m[3] = 1.f;
727
728    // If d2 < 0 we need to flip the orientation of our curve
729    // This is done by negating the k and l values
730    if ( d[2] > 0) {
731        for (int i = 0; i < 4; ++i) {
732            k[i] = -k[i];
733            l[i] = -l[i];
734        }
735    }
736}
737
738// Calc coefficients of I(s,t) where roots of I are inflection points of curve
739// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
740// d0 = a1 - 2*a2+3*a3
741// d1 = -a2 + 3*a3
742// d2 = 3*a3
743// a1 = p0 . (p3 x p2)
744// a2 = p1 . (p0 x p3)
745// a3 = p2 . (p1 x p0)
746// Places the values of d1, d2, d3 in array d passed in
747static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
748    SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
749    SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
750    SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
751
752    // need to scale a's or values in later calculations will grow to high
753    SkScalar max = SkScalarAbs(a1);
754    max = SkMaxScalar(max, SkScalarAbs(a2));
755    max = SkMaxScalar(max, SkScalarAbs(a3));
756    max = 1.f/max;
757    a1 = a1 * max;
758    a2 = a2 * max;
759    a3 = a3 * max;
760
761    d[2] = 3.f * a3;
762    d[1] = d[2] - a2;
763    d[0] = d[1] - a2 + a1;
764}
765
766int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
767                                             SkScalar klm_rev[3]) {
768    // Variable to store the two parametric values at the loop double point
769    SkScalar smallS = 0.f;
770    SkScalar largeS = 0.f;
771
772    SkScalar d[3];
773    calc_cubic_inflection_func(src, d);
774
775    CubicType cType = classify_cubic(src, d);
776
777    int chop_count = 0;
778    if (kLoop_CubicType == cType) {
779        SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
780        SkScalar ls = d[1] - tempSqrt;
781        SkScalar lt = 2.f * d[0];
782        SkScalar ms = d[1] + tempSqrt;
783        SkScalar mt = 2.f * d[0];
784        ls = ls / lt;
785        ms = ms / mt;
786        // need to have t values sorted since this is what is expected by SkChopCubicAt
787        if (ls <= ms) {
788            smallS = ls;
789            largeS = ms;
790        } else {
791            smallS = ms;
792            largeS = ls;
793        }
794
795        SkScalar chop_ts[2];
796        if (smallS > 0.f && smallS < 1.f) {
797            chop_ts[chop_count++] = smallS;
798        }
799        if (largeS > 0.f && largeS < 1.f) {
800            chop_ts[chop_count++] = largeS;
801        }
802        if(dst) {
803            SkChopCubicAt(src, dst, chop_ts, chop_count);
804        }
805    } else {
806        if (dst) {
807            memcpy(dst, src, sizeof(SkPoint) * 4);
808        }
809    }
810
811    if (klm && klm_rev) {
812        // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
813        // flipped. This will always be the section that is the "loop"
814        if (2 == chop_count) {
815            klm_rev[0] = 1.f;
816            klm_rev[1] = -1.f;
817            klm_rev[2] = 1.f;
818        } else if (1 == chop_count) {
819            if (smallS < 0.f) {
820                klm_rev[0] = -1.f;
821                klm_rev[1] = 1.f;
822            } else {
823                klm_rev[0] = 1.f;
824                klm_rev[1] = -1.f;
825            }
826        } else {
827            if (smallS < 0.f && largeS > 1.f) {
828                klm_rev[0] = -1.f;
829            } else {
830                klm_rev[0] = 1.f;
831            }
832        }
833        SkScalar controlK[4];
834        SkScalar controlL[4];
835        SkScalar controlM[4];
836
837        if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
838            set_serp_klm(d, controlK, controlL, controlM);
839        } else if (kLoop_CubicType == cType) {
840            set_loop_klm(d, controlK, controlL, controlM);
841        } else if (kCusp_CubicType == cType) {
842            SkASSERT(0.f == d[0]);
843            set_cusp_klm(d, controlK, controlL, controlM);
844        } else if (kQuadratic_CubicType == cType) {
845            set_quadratic_klm(d, controlK, controlL, controlM);
846        }
847
848        calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
849    }
850    return chop_count + 1;
851}
852
853void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
854    SkScalar d[3];
855    calc_cubic_inflection_func(p, d);
856
857    CubicType cType = classify_cubic(p, d);
858
859    SkScalar controlK[4];
860    SkScalar controlL[4];
861    SkScalar controlM[4];
862
863    if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
864        set_serp_klm(d, controlK, controlL, controlM);
865    } else if (kLoop_CubicType == cType) {
866        set_loop_klm(d, controlK, controlL, controlM);
867    } else if (kCusp_CubicType == cType) {
868        SkASSERT(0.f == d[0]);
869        set_cusp_klm(d, controlK, controlL, controlM);
870    } else if (kQuadratic_CubicType == cType) {
871        set_quadratic_klm(d, controlK, controlL, controlM);
872    }
873
874    calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
875}
876