1
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8#include "SkBitmapProcState.h"
9#include "SkBitmapProcState_filter.h"
10#include "SkColorPriv.h"
11#include "SkFilterProc.h"
12#include "SkPaint.h"
13#include "SkShader.h"   // for tilemodes
14#include "SkUtilsArm.h"
15
16// Required to ensure the table is part of the final binary.
17extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
18extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[];
19
20#define   NAME_WRAP(x)  x ## _neon
21#include "SkBitmapProcState_filter_neon.h"
22#include "SkBitmapProcState_procs.h"
23
24const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = {
25    S32_opaque_D32_nofilter_DXDY_neon,
26    S32_alpha_D32_nofilter_DXDY_neon,
27    S32_opaque_D32_nofilter_DX_neon,
28    S32_alpha_D32_nofilter_DX_neon,
29    S32_opaque_D32_filter_DXDY_neon,
30    S32_alpha_D32_filter_DXDY_neon,
31    S32_opaque_D32_filter_DX_neon,
32    S32_alpha_D32_filter_DX_neon,
33
34    S16_opaque_D32_nofilter_DXDY_neon,
35    S16_alpha_D32_nofilter_DXDY_neon,
36    S16_opaque_D32_nofilter_DX_neon,
37    S16_alpha_D32_nofilter_DX_neon,
38    S16_opaque_D32_filter_DXDY_neon,
39    S16_alpha_D32_filter_DXDY_neon,
40    S16_opaque_D32_filter_DX_neon,
41    S16_alpha_D32_filter_DX_neon,
42
43    SI8_opaque_D32_nofilter_DXDY_neon,
44    SI8_alpha_D32_nofilter_DXDY_neon,
45    SI8_opaque_D32_nofilter_DX_neon,
46    SI8_alpha_D32_nofilter_DX_neon,
47    SI8_opaque_D32_filter_DXDY_neon,
48    SI8_alpha_D32_filter_DXDY_neon,
49    SI8_opaque_D32_filter_DX_neon,
50    SI8_alpha_D32_filter_DX_neon,
51
52    S4444_opaque_D32_nofilter_DXDY_neon,
53    S4444_alpha_D32_nofilter_DXDY_neon,
54    S4444_opaque_D32_nofilter_DX_neon,
55    S4444_alpha_D32_nofilter_DX_neon,
56    S4444_opaque_D32_filter_DXDY_neon,
57    S4444_alpha_D32_filter_DXDY_neon,
58    S4444_opaque_D32_filter_DX_neon,
59    S4444_alpha_D32_filter_DX_neon,
60
61    // A8 treats alpha/opauqe the same (equally efficient)
62    SA8_alpha_D32_nofilter_DXDY_neon,
63    SA8_alpha_D32_nofilter_DXDY_neon,
64    SA8_alpha_D32_nofilter_DX_neon,
65    SA8_alpha_D32_nofilter_DX_neon,
66    SA8_alpha_D32_filter_DXDY_neon,
67    SA8_alpha_D32_filter_DXDY_neon,
68    SA8_alpha_D32_filter_DX_neon,
69    SA8_alpha_D32_filter_DX_neon
70};
71
72const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = {
73    S32_D16_nofilter_DXDY_neon,
74    S32_D16_nofilter_DX_neon,
75    S32_D16_filter_DXDY_neon,
76    S32_D16_filter_DX_neon,
77
78    S16_D16_nofilter_DXDY_neon,
79    S16_D16_nofilter_DX_neon,
80    S16_D16_filter_DXDY_neon,
81    S16_D16_filter_DX_neon,
82
83    SI8_D16_nofilter_DXDY_neon,
84    SI8_D16_nofilter_DX_neon,
85    SI8_D16_filter_DXDY_neon,
86    SI8_D16_filter_DX_neon,
87
88    // Don't support 4444 -> 565
89    NULL, NULL, NULL, NULL,
90    // Don't support A8 -> 565
91    NULL, NULL, NULL, NULL
92};
93
94///////////////////////////////////////////////////////////////////////////////
95
96#include <arm_neon.h>
97#include "SkConvolver.h"
98
99// Convolves horizontally along a single row. The row data is given in
100// |srcData| and continues for the numValues() of the filter.
101void convolveHorizontally_neon(const unsigned char* srcData,
102                               const SkConvolutionFilter1D& filter,
103                               unsigned char* outRow,
104                               bool hasAlpha) {
105    // Loop over each pixel on this row in the output image.
106    int numValues = filter.numValues();
107    for (int outX = 0; outX < numValues; outX++) {
108        uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
109        uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
110        uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
111        uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
112        // Get the filter that determines the current output pixel.
113        int filterOffset, filterLength;
114        const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
115            filter.FilterForValue(outX, &filterOffset, &filterLength);
116
117        // Compute the first pixel in this row that the filter affects. It will
118        // touch |filterLength| pixels (4 bytes each) after this.
119        const unsigned char* rowToFilter = &srcData[filterOffset * 4];
120
121        // Apply the filter to the row to get the destination pixel in |accum|.
122        int32x4_t accum = vdupq_n_s32(0);
123        for (int filterX = 0; filterX < filterLength >> 2; filterX++) {
124            // Load 4 coefficients
125            int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
126            coeffs = vld1_s16(filterValues);
127            coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
128            coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
129            coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
130            coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
131
132            // Load pixels and calc
133            uint8x16_t pixels = vld1q_u8(rowToFilter);
134            int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
135            int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
136
137            int16x4_t p0_src = vget_low_s16(p01_16);
138            int16x4_t p1_src = vget_high_s16(p01_16);
139            int16x4_t p2_src = vget_low_s16(p23_16);
140            int16x4_t p3_src = vget_high_s16(p23_16);
141
142            int32x4_t p0 = vmull_s16(p0_src, coeff0);
143            int32x4_t p1 = vmull_s16(p1_src, coeff1);
144            int32x4_t p2 = vmull_s16(p2_src, coeff2);
145            int32x4_t p3 = vmull_s16(p3_src, coeff3);
146
147            accum += p0;
148            accum += p1;
149            accum += p2;
150            accum += p3;
151
152            // Advance the pointers
153            rowToFilter += 16;
154            filterValues += 4;
155        }
156        int r = filterLength & 3;
157        if (r) {
158            const uint16_t mask[4][4] = {
159                {0, 0, 0, 0},
160                {0xFFFF, 0, 0, 0},
161                {0xFFFF, 0xFFFF, 0, 0},
162                {0xFFFF, 0xFFFF, 0xFFFF, 0}
163            };
164            uint16x4_t coeffs;
165            int16x4_t coeff0, coeff1, coeff2;
166            coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues));
167            coeffs &= vld1_u16(&mask[r][0]);
168            coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0));
169            coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1));
170            coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2));
171
172            // Load pixels and calc
173            uint8x16_t pixels = vld1q_u8(rowToFilter);
174            int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
175            int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
176            int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0);
177            int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1);
178            int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2);
179
180            accum += p0;
181            accum += p1;
182            accum += p2;
183        }
184
185        // Bring this value back in range. All of the filter scaling factors
186        // are in fixed point with kShiftBits bits of fractional part.
187        accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);
188
189        // Pack and store the new pixel.
190        int16x4_t accum16 = vqmovn_s32(accum);
191        uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16));
192        vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0);
193        outRow += 4;
194    }
195}
196
197// Does vertical convolution to produce one output row. The filter values and
198// length are given in the first two parameters. These are applied to each
199// of the rows pointed to in the |sourceDataRows| array, with each row
200// being |pixelWidth| wide.
201//
202// The output must have room for |pixelWidth * 4| bytes.
203template<bool hasAlpha>
204void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
205                             int filterLength,
206                             unsigned char* const* sourceDataRows,
207                             int pixelWidth,
208                             unsigned char* outRow) {
209    int width = pixelWidth & ~3;
210
211    int32x4_t accum0, accum1, accum2, accum3;
212    int16x4_t coeff16;
213
214    // Output four pixels per iteration (16 bytes).
215    for (int outX = 0; outX < width; outX += 4) {
216
217        // Accumulated result for each pixel. 32 bits per RGBA channel.
218        accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0);
219
220        // Convolve with one filter coefficient per iteration.
221        for (int filterY = 0; filterY < filterLength; filterY++) {
222
223            // Duplicate the filter coefficient 4 times.
224            // [16] cj cj cj cj
225            coeff16 = vdup_n_s16(filterValues[filterY]);
226
227            // Load four pixels (16 bytes) together.
228            // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
229            uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]);
230
231            int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
232            int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
233            int16x4_t src16_0 = vget_low_s16(src16_01);
234            int16x4_t src16_1 = vget_high_s16(src16_01);
235            int16x4_t src16_2 = vget_low_s16(src16_23);
236            int16x4_t src16_3 = vget_high_s16(src16_23);
237
238            accum0 += vmull_s16(src16_0, coeff16);
239            accum1 += vmull_s16(src16_1, coeff16);
240            accum2 += vmull_s16(src16_2, coeff16);
241            accum3 += vmull_s16(src16_3, coeff16);
242        }
243
244        // Shift right for fixed point implementation.
245        accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
246        accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
247        accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
248        accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits);
249
250        // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
251        // [16] a1 b1 g1 r1 a0 b0 g0 r0
252        int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
253        // [16] a3 b3 g3 r3 a2 b2 g2 r2
254        int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3));
255
256        // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
257        // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
258        uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
259
260        if (hasAlpha) {
261            // Compute the max(ri, gi, bi) for each pixel.
262            // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
263            uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
264            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
265            uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
266            // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
267            a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
268            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
269            b = vmaxq_u8(a, b); // Max of r and g and b.
270            // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
271            b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
272
273            // Make sure the value of alpha channel is always larger than maximum
274            // value of color channels.
275            accum8 = vmaxq_u8(b, accum8);
276        } else {
277            // Set value of alpha channels to 0xFF.
278            accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
279        }
280
281        // Store the convolution result (16 bytes) and advance the pixel pointers.
282        vst1q_u8(outRow, accum8);
283        outRow += 16;
284    }
285
286    // Process the leftovers when the width of the output is not divisible
287    // by 4, that is at most 3 pixels.
288    int r = pixelWidth & 3;
289    if (r) {
290
291        accum0 = accum1 = accum2 = vdupq_n_s32(0);
292
293        for (int filterY = 0; filterY < filterLength; ++filterY) {
294            coeff16 = vdup_n_s16(filterValues[filterY]);
295
296            // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
297            uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]);
298
299            int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
300            int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
301            int16x4_t src16_0 = vget_low_s16(src16_01);
302            int16x4_t src16_1 = vget_high_s16(src16_01);
303            int16x4_t src16_2 = vget_low_s16(src16_23);
304
305            accum0 += vmull_s16(src16_0, coeff16);
306            accum1 += vmull_s16(src16_1, coeff16);
307            accum2 += vmull_s16(src16_2, coeff16);
308        }
309
310        accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
311        accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
312        accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
313
314        int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
315        int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2));
316
317        uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
318
319        if (hasAlpha) {
320            // Compute the max(ri, gi, bi) for each pixel.
321            // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
322            uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
323            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
324            uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
325            // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
326            a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
327            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
328            b = vmaxq_u8(a, b); // Max of r and g and b.
329            // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
330            b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
331
332            // Make sure the value of alpha channel is always larger than maximum
333            // value of color channels.
334            accum8 = vmaxq_u8(b, accum8);
335        } else {
336            // Set value of alpha channels to 0xFF.
337            accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
338        }
339
340        switch(r) {
341        case 1:
342            vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0);
343            break;
344        case 2:
345            vst1_u32(reinterpret_cast<uint32_t*>(outRow),
346                     vreinterpret_u32_u8(vget_low_u8(accum8)));
347            break;
348        case 3:
349            vst1_u32(reinterpret_cast<uint32_t*>(outRow),
350                     vreinterpret_u32_u8(vget_low_u8(accum8)));
351            vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2);
352            break;
353        }
354    }
355}
356
357void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
358                             int filterLength,
359                             unsigned char* const* sourceDataRows,
360                             int pixelWidth,
361                             unsigned char* outRow,
362                             bool sourceHasAlpha) {
363    if (sourceHasAlpha) {
364        convolveVertically_neon<true>(filterValues, filterLength,
365                                      sourceDataRows, pixelWidth,
366                                      outRow);
367    } else {
368        convolveVertically_neon<false>(filterValues, filterLength,
369                                       sourceDataRows, pixelWidth,
370                                       outRow);
371    }
372}
373
374// Convolves horizontally along four rows. The row data is given in
375// |src_data| and continues for the num_values() of the filter.
376// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
377// refer to that function for detailed comments.
378void convolve4RowsHorizontally_neon(const unsigned char* srcData[4],
379                                    const SkConvolutionFilter1D& filter,
380                                    unsigned char* outRow[4]) {
381
382    uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
383    uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
384    uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
385    uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
386    int num_values = filter.numValues();
387
388    int filterOffset, filterLength;
389    // |mask| will be used to decimate all extra filter coefficients that are
390    // loaded by SIMD when |filter_length| is not divisible by 4.
391    // mask[0] is not used in following algorithm.
392    const uint16_t mask[4][4] = {
393        {0, 0, 0, 0},
394        {0xFFFF, 0, 0, 0},
395        {0xFFFF, 0xFFFF, 0, 0},
396        {0xFFFF, 0xFFFF, 0xFFFF, 0}
397    };
398
399    // Output one pixel each iteration, calculating all channels (RGBA) together.
400    for (int outX = 0; outX < num_values; outX++) {
401
402        const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
403        filter.FilterForValue(outX, &filterOffset, &filterLength);
404
405        // four pixels in a column per iteration.
406        int32x4_t accum0 = vdupq_n_s32(0);
407        int32x4_t accum1 = vdupq_n_s32(0);
408        int32x4_t accum2 = vdupq_n_s32(0);
409        int32x4_t accum3 = vdupq_n_s32(0);
410
411        int start = (filterOffset<<2);
412
413        // We will load and accumulate with four coefficients per iteration.
414        for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) {
415            int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
416
417            coeffs = vld1_s16(filterValues);
418            coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
419            coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
420            coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
421            coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
422
423            uint8x16_t pixels;
424            int16x8_t p01_16, p23_16;
425            int32x4_t p0, p1, p2, p3;
426
427
428#define ITERATION(src, accum)                                       \
429    pixels = vld1q_u8(src);                                         \
430    p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));  \
431    p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \
432    p0 = vmull_s16(vget_low_s16(p01_16), coeff0);                   \
433    p1 = vmull_s16(vget_high_s16(p01_16), coeff1);                  \
434    p2 = vmull_s16(vget_low_s16(p23_16), coeff2);                   \
435    p3 = vmull_s16(vget_high_s16(p23_16), coeff3);                  \
436    accum += p0;                                                    \
437    accum += p1;                                                    \
438    accum += p2;                                                    \
439    accum += p3
440
441            ITERATION(srcData[0] + start, accum0);
442            ITERATION(srcData[1] + start, accum1);
443            ITERATION(srcData[2] + start, accum2);
444            ITERATION(srcData[3] + start, accum3);
445
446            start += 16;
447            filterValues += 4;
448        }
449
450        int r = filterLength & 3;
451        if (r) {
452            int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
453            coeffs = vld1_s16(filterValues);
454            coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0]));
455            coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
456            coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
457            coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
458            coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
459
460            uint8x16_t pixels;
461            int16x8_t p01_16, p23_16;
462            int32x4_t p0, p1, p2, p3;
463
464            ITERATION(srcData[0] + start, accum0);
465            ITERATION(srcData[1] + start, accum1);
466            ITERATION(srcData[2] + start, accum2);
467            ITERATION(srcData[3] + start, accum3);
468        }
469
470        int16x4_t accum16;
471        uint8x8_t res0, res1, res2, res3;
472
473#define PACK_RESULT(accum, res)                                         \
474        accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);  \
475        accum16 = vqmovn_s32(accum);                                    \
476        res = vqmovun_s16(vcombine_s16(accum16, accum16));
477
478        PACK_RESULT(accum0, res0);
479        PACK_RESULT(accum1, res1);
480        PACK_RESULT(accum2, res2);
481        PACK_RESULT(accum3, res3);
482
483        vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0);
484        vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0);
485        vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0);
486        vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0);
487        outRow[0] += 4;
488        outRow[1] += 4;
489        outRow[2] += 4;
490        outRow[3] += 4;
491    }
492}
493
494void applySIMDPadding_neon(SkConvolutionFilter1D *filter) {
495    // Padding |paddingCount| of more dummy coefficients after the coefficients
496    // of last filter to prevent SIMD instructions which load 8 or 16 bytes
497    // together to access invalid memory areas. We are not trying to align the
498    // coefficients right now due to the opaqueness of <vector> implementation.
499    // This has to be done after all |AddFilter| calls.
500    for (int i = 0; i < 8; ++i) {
501        filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
502    }
503}
504
505void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) {
506    procs->fExtraHorizontalReads = 3;
507    procs->fConvolveVertically = &convolveVertically_neon;
508    procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon;
509    procs->fConvolveHorizontally = &convolveHorizontally_neon;
510    procs->fApplySIMDPadding = &applySIMDPadding_neon;
511}
512