1/*
2** 2004 May 22
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11******************************************************************************
12**
13** This file contains the VFS implementation for unix-like operating systems
14** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
15**
16** There are actually several different VFS implementations in this file.
17** The differences are in the way that file locking is done.  The default
18** implementation uses Posix Advisory Locks.  Alternative implementations
19** use flock(), dot-files, various proprietary locking schemas, or simply
20** skip locking all together.
21**
22** This source file is organized into divisions where the logic for various
23** subfunctions is contained within the appropriate division.  PLEASE
24** KEEP THE STRUCTURE OF THIS FILE INTACT.  New code should be placed
25** in the correct division and should be clearly labeled.
26**
27** The layout of divisions is as follows:
28**
29**   *  General-purpose declarations and utility functions.
30**   *  Unique file ID logic used by VxWorks.
31**   *  Various locking primitive implementations (all except proxy locking):
32**      + for Posix Advisory Locks
33**      + for no-op locks
34**      + for dot-file locks
35**      + for flock() locking
36**      + for named semaphore locks (VxWorks only)
37**      + for AFP filesystem locks (MacOSX only)
38**   *  sqlite3_file methods not associated with locking.
39**   *  Definitions of sqlite3_io_methods objects for all locking
40**      methods plus "finder" functions for each locking method.
41**   *  sqlite3_vfs method implementations.
42**   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
43**   *  Definitions of sqlite3_vfs objects for all locking methods
44**      plus implementations of sqlite3_os_init() and sqlite3_os_end().
45*/
46#include "sqliteInt.h"
47#if SQLITE_OS_UNIX              /* This file is used on unix only */
48
49/*
50** There are various methods for file locking used for concurrency
51** control:
52**
53**   1. POSIX locking (the default),
54**   2. No locking,
55**   3. Dot-file locking,
56**   4. flock() locking,
57**   5. AFP locking (OSX only),
58**   6. Named POSIX semaphores (VXWorks only),
59**   7. proxy locking. (OSX only)
60**
61** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62** is defined to 1.  The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63** selection of the appropriate locking style based on the filesystem
64** where the database is located.
65*/
66#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67#  if defined(__APPLE__)
68#    define SQLITE_ENABLE_LOCKING_STYLE 1
69#  else
70#    define SQLITE_ENABLE_LOCKING_STYLE 0
71#  endif
72#endif
73
74/*
75** Define the OS_VXWORKS pre-processor macro to 1 if building on
76** vxworks, or 0 otherwise.
77*/
78#ifndef OS_VXWORKS
79#  if defined(__RTP__) || defined(_WRS_KERNEL)
80#    define OS_VXWORKS 1
81#  else
82#    define OS_VXWORKS 0
83#  endif
84#endif
85
86/*
87** These #defines should enable >2GB file support on Posix if the
88** underlying operating system supports it.  If the OS lacks
89** large file support, these should be no-ops.
90**
91** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
92** on the compiler command line.  This is necessary if you are compiling
93** on a recent machine (ex: RedHat 7.2) but you want your code to work
94** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
95** without this option, LFS is enable.  But LFS does not exist in the kernel
96** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
97** portability you should omit LFS.
98**
99** The previous paragraph was written in 2005.  (This paragraph is written
100** on 2008-11-28.) These days, all Linux kernels support large files, so
101** you should probably leave LFS enabled.  But some embedded platforms might
102** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
103*/
104#ifndef SQLITE_DISABLE_LFS
105# define _LARGE_FILE       1
106# ifndef _FILE_OFFSET_BITS
107#   define _FILE_OFFSET_BITS 64
108# endif
109# define _LARGEFILE_SOURCE 1
110#endif
111
112/*
113** standard include files.
114*/
115#include <sys/types.h>
116#include <sys/stat.h>
117#include <fcntl.h>
118#include <unistd.h>
119#include <time.h>
120#include <sys/time.h>
121#include <errno.h>
122#ifndef SQLITE_OMIT_WAL
123#include <sys/mman.h>
124#endif
125
126#if SQLITE_ENABLE_LOCKING_STYLE
127# include <sys/ioctl.h>
128# if OS_VXWORKS
129#  include <semaphore.h>
130#  include <limits.h>
131# else
132#  include <sys/file.h>
133#  include <sys/param.h>
134# endif
135#endif /* SQLITE_ENABLE_LOCKING_STYLE */
136
137#if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
138# include <sys/mount.h>
139#endif
140
141/*
142** Allowed values of unixFile.fsFlags
143*/
144#define SQLITE_FSFLAGS_IS_MSDOS     0x1
145
146/*
147** If we are to be thread-safe, include the pthreads header and define
148** the SQLITE_UNIX_THREADS macro.
149*/
150#if SQLITE_THREADSAFE
151# include <pthread.h>
152# define SQLITE_UNIX_THREADS 1
153#endif
154
155/*
156** Default permissions when creating a new file
157*/
158#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
159# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
160#endif
161
162/*
163 ** Default permissions when creating auto proxy dir
164 */
165#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
166# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
167#endif
168
169/*
170** Maximum supported path-length.
171*/
172#define MAX_PATHNAME 512
173
174/*
175** Only set the lastErrno if the error code is a real error and not
176** a normal expected return code of SQLITE_BUSY or SQLITE_OK
177*/
178#define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
179
180/* Forward references */
181typedef struct unixShm unixShm;               /* Connection shared memory */
182typedef struct unixShmNode unixShmNode;       /* Shared memory instance */
183typedef struct unixInodeInfo unixInodeInfo;   /* An i-node */
184typedef struct UnixUnusedFd UnixUnusedFd;     /* An unused file descriptor */
185
186/*
187** Sometimes, after a file handle is closed by SQLite, the file descriptor
188** cannot be closed immediately. In these cases, instances of the following
189** structure are used to store the file descriptor while waiting for an
190** opportunity to either close or reuse it.
191*/
192struct UnixUnusedFd {
193  int fd;                   /* File descriptor to close */
194  int flags;                /* Flags this file descriptor was opened with */
195  UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
196};
197
198/*
199** The unixFile structure is subclass of sqlite3_file specific to the unix
200** VFS implementations.
201*/
202typedef struct unixFile unixFile;
203struct unixFile {
204  sqlite3_io_methods const *pMethod;  /* Always the first entry */
205  unixInodeInfo *pInode;              /* Info about locks on this inode */
206  int h;                              /* The file descriptor */
207  unsigned char eFileLock;            /* The type of lock held on this fd */
208  unsigned char ctrlFlags;            /* Behavioral bits.  UNIXFILE_* flags */
209  int lastErrno;                      /* The unix errno from last I/O error */
210  void *lockingContext;               /* Locking style specific state */
211  UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
212  const char *zPath;                  /* Name of the file */
213  unixShm *pShm;                      /* Shared memory segment information */
214  int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
215#if SQLITE_ENABLE_LOCKING_STYLE
216  int openFlags;                      /* The flags specified at open() */
217#endif
218#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
219  unsigned fsFlags;                   /* cached details from statfs() */
220#endif
221#if OS_VXWORKS
222  int isDelete;                       /* Delete on close if true */
223  struct vxworksFileId *pId;          /* Unique file ID */
224#endif
225#ifndef NDEBUG
226  /* The next group of variables are used to track whether or not the
227  ** transaction counter in bytes 24-27 of database files are updated
228  ** whenever any part of the database changes.  An assertion fault will
229  ** occur if a file is updated without also updating the transaction
230  ** counter.  This test is made to avoid new problems similar to the
231  ** one described by ticket #3584.
232  */
233  unsigned char transCntrChng;   /* True if the transaction counter changed */
234  unsigned char dbUpdate;        /* True if any part of database file changed */
235  unsigned char inNormalWrite;   /* True if in a normal write operation */
236#endif
237#ifdef SQLITE_TEST
238  /* In test mode, increase the size of this structure a bit so that
239  ** it is larger than the struct CrashFile defined in test6.c.
240  */
241  char aPadding[32];
242#endif
243};
244
245/*
246** Allowed values for the unixFile.ctrlFlags bitmask:
247*/
248#define UNIXFILE_EXCL   0x01     /* Connections from one process only */
249#define UNIXFILE_RDONLY 0x02     /* Connection is read only */
250#define UNIXFILE_DIRSYNC 0x04    /* Directory sync needed */
251
252/*
253** Include code that is common to all os_*.c files
254*/
255#include "os_common.h"
256
257/*
258** Define various macros that are missing from some systems.
259*/
260#ifndef O_LARGEFILE
261# define O_LARGEFILE 0
262#endif
263#ifdef SQLITE_DISABLE_LFS
264# undef O_LARGEFILE
265# define O_LARGEFILE 0
266#endif
267#ifndef O_NOFOLLOW
268# define O_NOFOLLOW 0
269#endif
270#ifndef O_BINARY
271# define O_BINARY 0
272#endif
273
274/*
275** The threadid macro resolves to the thread-id or to 0.  Used for
276** testing and debugging only.
277*/
278#if SQLITE_THREADSAFE
279#define threadid pthread_self()
280#else
281#define threadid 0
282#endif
283
284/* Forward reference */
285static int openDirectory(const char*, int*);
286
287/*
288** Many system calls are accessed through pointer-to-functions so that
289** they may be overridden at runtime to facilitate fault injection during
290** testing and sandboxing.  The following array holds the names and pointers
291** to all overrideable system calls.
292*/
293static struct unix_syscall {
294  const char *zName;            /* Name of the sytem call */
295  sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
296  sqlite3_syscall_ptr pDefault; /* Default value */
297} aSyscall[] = {
298  { "open",         (sqlite3_syscall_ptr)open,       0  },
299#define osOpen      ((int(*)(const char*,int,...))aSyscall[0].pCurrent)
300
301  { "close",        (sqlite3_syscall_ptr)close,      0  },
302#define osClose     ((int(*)(int))aSyscall[1].pCurrent)
303
304  { "access",       (sqlite3_syscall_ptr)access,     0  },
305#define osAccess    ((int(*)(const char*,int))aSyscall[2].pCurrent)
306
307  { "getcwd",       (sqlite3_syscall_ptr)getcwd,     0  },
308#define osGetcwd    ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
309
310  { "stat",         (sqlite3_syscall_ptr)stat,       0  },
311#define osStat      ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
312
313/*
314** The DJGPP compiler environment looks mostly like Unix, but it
315** lacks the fcntl() system call.  So redefine fcntl() to be something
316** that always succeeds.  This means that locking does not occur under
317** DJGPP.  But it is DOS - what did you expect?
318*/
319#ifdef __DJGPP__
320  { "fstat",        0,                 0  },
321#define osFstat(a,b,c)    0
322#else
323  { "fstat",        (sqlite3_syscall_ptr)fstat,      0  },
324#define osFstat     ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
325#endif
326
327  { "ftruncate",    (sqlite3_syscall_ptr)ftruncate,  0  },
328#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
329
330  { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
331#define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)
332
333  { "read",         (sqlite3_syscall_ptr)read,       0  },
334#define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
335
336#if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
337  { "pread",        (sqlite3_syscall_ptr)pread,      0  },
338#else
339  { "pread",        (sqlite3_syscall_ptr)0,          0  },
340#endif
341#define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
342
343#if defined(USE_PREAD64)
344  { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
345#else
346  { "pread64",      (sqlite3_syscall_ptr)0,          0  },
347#endif
348#define osPread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
349
350  { "write",        (sqlite3_syscall_ptr)write,      0  },
351#define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
352
353#if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
354  { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
355#else
356  { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
357#endif
358#define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
359                    aSyscall[12].pCurrent)
360
361#if defined(USE_PREAD64)
362  { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
363#else
364  { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
365#endif
366#define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
367                    aSyscall[13].pCurrent)
368
369#if SQLITE_ENABLE_LOCKING_STYLE
370  { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
371#else
372  { "fchmod",       (sqlite3_syscall_ptr)0,          0  },
373#endif
374#define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)
375
376#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
377  { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
378#else
379  { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
380#endif
381#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
382
383  { "unlink",       (sqlite3_syscall_ptr)unlink,           0 },
384#define osUnlink    ((int(*)(const char*))aSyscall[16].pCurrent)
385
386  { "openDirectory",    (sqlite3_syscall_ptr)openDirectory,      0 },
387#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
388
389}; /* End of the overrideable system calls */
390
391/*
392** This is the xSetSystemCall() method of sqlite3_vfs for all of the
393** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
394** system call pointer, or SQLITE_NOTFOUND if there is no configurable
395** system call named zName.
396*/
397static int unixSetSystemCall(
398  sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
399  const char *zName,            /* Name of system call to override */
400  sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
401){
402  unsigned int i;
403  int rc = SQLITE_NOTFOUND;
404
405  UNUSED_PARAMETER(pNotUsed);
406  if( zName==0 ){
407    /* If no zName is given, restore all system calls to their default
408    ** settings and return NULL
409    */
410    rc = SQLITE_OK;
411    for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
412      if( aSyscall[i].pDefault ){
413        aSyscall[i].pCurrent = aSyscall[i].pDefault;
414      }
415    }
416  }else{
417    /* If zName is specified, operate on only the one system call
418    ** specified.
419    */
420    for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
421      if( strcmp(zName, aSyscall[i].zName)==0 ){
422        if( aSyscall[i].pDefault==0 ){
423          aSyscall[i].pDefault = aSyscall[i].pCurrent;
424        }
425        rc = SQLITE_OK;
426        if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
427        aSyscall[i].pCurrent = pNewFunc;
428        break;
429      }
430    }
431  }
432  return rc;
433}
434
435/*
436** Return the value of a system call.  Return NULL if zName is not a
437** recognized system call name.  NULL is also returned if the system call
438** is currently undefined.
439*/
440static sqlite3_syscall_ptr unixGetSystemCall(
441  sqlite3_vfs *pNotUsed,
442  const char *zName
443){
444  unsigned int i;
445
446  UNUSED_PARAMETER(pNotUsed);
447  for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
448    if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
449  }
450  return 0;
451}
452
453/*
454** Return the name of the first system call after zName.  If zName==NULL
455** then return the name of the first system call.  Return NULL if zName
456** is the last system call or if zName is not the name of a valid
457** system call.
458*/
459static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
460  int i = -1;
461
462  UNUSED_PARAMETER(p);
463  if( zName ){
464    for(i=0; i<ArraySize(aSyscall)-1; i++){
465      if( strcmp(zName, aSyscall[i].zName)==0 ) break;
466    }
467  }
468  for(i++; i<ArraySize(aSyscall); i++){
469    if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
470  }
471  return 0;
472}
473
474/*
475** Retry open() calls that fail due to EINTR
476*/
477static int robust_open(const char *z, int f, int m){
478  int rc;
479  do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
480  return rc;
481}
482
483/*
484** Helper functions to obtain and relinquish the global mutex. The
485** global mutex is used to protect the unixInodeInfo and
486** vxworksFileId objects used by this file, all of which may be
487** shared by multiple threads.
488**
489** Function unixMutexHeld() is used to assert() that the global mutex
490** is held when required. This function is only used as part of assert()
491** statements. e.g.
492**
493**   unixEnterMutex()
494**     assert( unixMutexHeld() );
495**   unixEnterLeave()
496*/
497static void unixEnterMutex(void){
498  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
499}
500static void unixLeaveMutex(void){
501  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
502}
503#ifdef SQLITE_DEBUG
504static int unixMutexHeld(void) {
505  return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
506}
507#endif
508
509
510#ifdef SQLITE_DEBUG
511/*
512** Helper function for printing out trace information from debugging
513** binaries. This returns the string represetation of the supplied
514** integer lock-type.
515*/
516static const char *azFileLock(int eFileLock){
517  switch( eFileLock ){
518    case NO_LOCK: return "NONE";
519    case SHARED_LOCK: return "SHARED";
520    case RESERVED_LOCK: return "RESERVED";
521    case PENDING_LOCK: return "PENDING";
522    case EXCLUSIVE_LOCK: return "EXCLUSIVE";
523  }
524  return "ERROR";
525}
526#endif
527
528#ifdef SQLITE_LOCK_TRACE
529/*
530** Print out information about all locking operations.
531**
532** This routine is used for troubleshooting locks on multithreaded
533** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
534** command-line option on the compiler.  This code is normally
535** turned off.
536*/
537static int lockTrace(int fd, int op, struct flock *p){
538  char *zOpName, *zType;
539  int s;
540  int savedErrno;
541  if( op==F_GETLK ){
542    zOpName = "GETLK";
543  }else if( op==F_SETLK ){
544    zOpName = "SETLK";
545  }else{
546    s = osFcntl(fd, op, p);
547    sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
548    return s;
549  }
550  if( p->l_type==F_RDLCK ){
551    zType = "RDLCK";
552  }else if( p->l_type==F_WRLCK ){
553    zType = "WRLCK";
554  }else if( p->l_type==F_UNLCK ){
555    zType = "UNLCK";
556  }else{
557    assert( 0 );
558  }
559  assert( p->l_whence==SEEK_SET );
560  s = osFcntl(fd, op, p);
561  savedErrno = errno;
562  sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
563     threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
564     (int)p->l_pid, s);
565  if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
566    struct flock l2;
567    l2 = *p;
568    osFcntl(fd, F_GETLK, &l2);
569    if( l2.l_type==F_RDLCK ){
570      zType = "RDLCK";
571    }else if( l2.l_type==F_WRLCK ){
572      zType = "WRLCK";
573    }else if( l2.l_type==F_UNLCK ){
574      zType = "UNLCK";
575    }else{
576      assert( 0 );
577    }
578    sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
579       zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
580  }
581  errno = savedErrno;
582  return s;
583}
584#undef osFcntl
585#define osFcntl lockTrace
586#endif /* SQLITE_LOCK_TRACE */
587
588/*
589** Retry ftruncate() calls that fail due to EINTR
590*/
591static int robust_ftruncate(int h, sqlite3_int64 sz){
592  int rc;
593  do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
594  return rc;
595}
596
597/*
598** This routine translates a standard POSIX errno code into something
599** useful to the clients of the sqlite3 functions.  Specifically, it is
600** intended to translate a variety of "try again" errors into SQLITE_BUSY
601** and a variety of "please close the file descriptor NOW" errors into
602** SQLITE_IOERR
603**
604** Errors during initialization of locks, or file system support for locks,
605** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
606*/
607static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
608  switch (posixError) {
609#if 0
610  /* At one point this code was not commented out. In theory, this branch
611  ** should never be hit, as this function should only be called after
612  ** a locking-related function (i.e. fcntl()) has returned non-zero with
613  ** the value of errno as the first argument. Since a system call has failed,
614  ** errno should be non-zero.
615  **
616  ** Despite this, if errno really is zero, we still don't want to return
617  ** SQLITE_OK. The system call failed, and *some* SQLite error should be
618  ** propagated back to the caller. Commenting this branch out means errno==0
619  ** will be handled by the "default:" case below.
620  */
621  case 0:
622    return SQLITE_OK;
623#endif
624
625  case EAGAIN:
626  case ETIMEDOUT:
627  case EBUSY:
628  case EINTR:
629  case ENOLCK:
630    /* random NFS retry error, unless during file system support
631     * introspection, in which it actually means what it says */
632    return SQLITE_BUSY;
633
634  case EACCES:
635    /* EACCES is like EAGAIN during locking operations, but not any other time*/
636    if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
637	(sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
638	(sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
639	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
640      return SQLITE_BUSY;
641    }
642    /* else fall through */
643  case EPERM:
644    return SQLITE_PERM;
645
646  /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
647  ** this module never makes such a call. And the code in SQLite itself
648  ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
649  ** this case is also commented out. If the system does set errno to EDEADLK,
650  ** the default SQLITE_IOERR_XXX code will be returned. */
651#if 0
652  case EDEADLK:
653    return SQLITE_IOERR_BLOCKED;
654#endif
655
656#if EOPNOTSUPP!=ENOTSUP
657  case EOPNOTSUPP:
658    /* something went terribly awry, unless during file system support
659     * introspection, in which it actually means what it says */
660#endif
661#ifdef ENOTSUP
662  case ENOTSUP:
663    /* invalid fd, unless during file system support introspection, in which
664     * it actually means what it says */
665#endif
666  case EIO:
667  case EBADF:
668  case EINVAL:
669  case ENOTCONN:
670  case ENODEV:
671  case ENXIO:
672  case ENOENT:
673  case ESTALE:
674  case ENOSYS:
675    /* these should force the client to close the file and reconnect */
676
677  default:
678    return sqliteIOErr;
679  }
680}
681
682
683
684/******************************************************************************
685****************** Begin Unique File ID Utility Used By VxWorks ***************
686**
687** On most versions of unix, we can get a unique ID for a file by concatenating
688** the device number and the inode number.  But this does not work on VxWorks.
689** On VxWorks, a unique file id must be based on the canonical filename.
690**
691** A pointer to an instance of the following structure can be used as a
692** unique file ID in VxWorks.  Each instance of this structure contains
693** a copy of the canonical filename.  There is also a reference count.
694** The structure is reclaimed when the number of pointers to it drops to
695** zero.
696**
697** There are never very many files open at one time and lookups are not
698** a performance-critical path, so it is sufficient to put these
699** structures on a linked list.
700*/
701struct vxworksFileId {
702  struct vxworksFileId *pNext;  /* Next in a list of them all */
703  int nRef;                     /* Number of references to this one */
704  int nName;                    /* Length of the zCanonicalName[] string */
705  char *zCanonicalName;         /* Canonical filename */
706};
707
708#if OS_VXWORKS
709/*
710** All unique filenames are held on a linked list headed by this
711** variable:
712*/
713static struct vxworksFileId *vxworksFileList = 0;
714
715/*
716** Simplify a filename into its canonical form
717** by making the following changes:
718**
719**  * removing any trailing and duplicate /
720**  * convert /./ into just /
721**  * convert /A/../ where A is any simple name into just /
722**
723** Changes are made in-place.  Return the new name length.
724**
725** The original filename is in z[0..n-1].  Return the number of
726** characters in the simplified name.
727*/
728static int vxworksSimplifyName(char *z, int n){
729  int i, j;
730  while( n>1 && z[n-1]=='/' ){ n--; }
731  for(i=j=0; i<n; i++){
732    if( z[i]=='/' ){
733      if( z[i+1]=='/' ) continue;
734      if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
735        i += 1;
736        continue;
737      }
738      if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
739        while( j>0 && z[j-1]!='/' ){ j--; }
740        if( j>0 ){ j--; }
741        i += 2;
742        continue;
743      }
744    }
745    z[j++] = z[i];
746  }
747  z[j] = 0;
748  return j;
749}
750
751/*
752** Find a unique file ID for the given absolute pathname.  Return
753** a pointer to the vxworksFileId object.  This pointer is the unique
754** file ID.
755**
756** The nRef field of the vxworksFileId object is incremented before
757** the object is returned.  A new vxworksFileId object is created
758** and added to the global list if necessary.
759**
760** If a memory allocation error occurs, return NULL.
761*/
762static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
763  struct vxworksFileId *pNew;         /* search key and new file ID */
764  struct vxworksFileId *pCandidate;   /* For looping over existing file IDs */
765  int n;                              /* Length of zAbsoluteName string */
766
767  assert( zAbsoluteName[0]=='/' );
768  n = (int)strlen(zAbsoluteName);
769  pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
770  if( pNew==0 ) return 0;
771  pNew->zCanonicalName = (char*)&pNew[1];
772  memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
773  n = vxworksSimplifyName(pNew->zCanonicalName, n);
774
775  /* Search for an existing entry that matching the canonical name.
776  ** If found, increment the reference count and return a pointer to
777  ** the existing file ID.
778  */
779  unixEnterMutex();
780  for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
781    if( pCandidate->nName==n
782     && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
783    ){
784       sqlite3_free(pNew);
785       pCandidate->nRef++;
786       unixLeaveMutex();
787       return pCandidate;
788    }
789  }
790
791  /* No match was found.  We will make a new file ID */
792  pNew->nRef = 1;
793  pNew->nName = n;
794  pNew->pNext = vxworksFileList;
795  vxworksFileList = pNew;
796  unixLeaveMutex();
797  return pNew;
798}
799
800/*
801** Decrement the reference count on a vxworksFileId object.  Free
802** the object when the reference count reaches zero.
803*/
804static void vxworksReleaseFileId(struct vxworksFileId *pId){
805  unixEnterMutex();
806  assert( pId->nRef>0 );
807  pId->nRef--;
808  if( pId->nRef==0 ){
809    struct vxworksFileId **pp;
810    for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
811    assert( *pp==pId );
812    *pp = pId->pNext;
813    sqlite3_free(pId);
814  }
815  unixLeaveMutex();
816}
817#endif /* OS_VXWORKS */
818/*************** End of Unique File ID Utility Used By VxWorks ****************
819******************************************************************************/
820
821
822/******************************************************************************
823*************************** Posix Advisory Locking ****************************
824**
825** POSIX advisory locks are broken by design.  ANSI STD 1003.1 (1996)
826** section 6.5.2.2 lines 483 through 490 specify that when a process
827** sets or clears a lock, that operation overrides any prior locks set
828** by the same process.  It does not explicitly say so, but this implies
829** that it overrides locks set by the same process using a different
830** file descriptor.  Consider this test case:
831**
832**       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
833**       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
834**
835** Suppose ./file1 and ./file2 are really the same file (because
836** one is a hard or symbolic link to the other) then if you set
837** an exclusive lock on fd1, then try to get an exclusive lock
838** on fd2, it works.  I would have expected the second lock to
839** fail since there was already a lock on the file due to fd1.
840** But not so.  Since both locks came from the same process, the
841** second overrides the first, even though they were on different
842** file descriptors opened on different file names.
843**
844** This means that we cannot use POSIX locks to synchronize file access
845** among competing threads of the same process.  POSIX locks will work fine
846** to synchronize access for threads in separate processes, but not
847** threads within the same process.
848**
849** To work around the problem, SQLite has to manage file locks internally
850** on its own.  Whenever a new database is opened, we have to find the
851** specific inode of the database file (the inode is determined by the
852** st_dev and st_ino fields of the stat structure that fstat() fills in)
853** and check for locks already existing on that inode.  When locks are
854** created or removed, we have to look at our own internal record of the
855** locks to see if another thread has previously set a lock on that same
856** inode.
857**
858** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
859** For VxWorks, we have to use the alternative unique ID system based on
860** canonical filename and implemented in the previous division.)
861**
862** The sqlite3_file structure for POSIX is no longer just an integer file
863** descriptor.  It is now a structure that holds the integer file
864** descriptor and a pointer to a structure that describes the internal
865** locks on the corresponding inode.  There is one locking structure
866** per inode, so if the same inode is opened twice, both unixFile structures
867** point to the same locking structure.  The locking structure keeps
868** a reference count (so we will know when to delete it) and a "cnt"
869** field that tells us its internal lock status.  cnt==0 means the
870** file is unlocked.  cnt==-1 means the file has an exclusive lock.
871** cnt>0 means there are cnt shared locks on the file.
872**
873** Any attempt to lock or unlock a file first checks the locking
874** structure.  The fcntl() system call is only invoked to set a
875** POSIX lock if the internal lock structure transitions between
876** a locked and an unlocked state.
877**
878** But wait:  there are yet more problems with POSIX advisory locks.
879**
880** If you close a file descriptor that points to a file that has locks,
881** all locks on that file that are owned by the current process are
882** released.  To work around this problem, each unixInodeInfo object
883** maintains a count of the number of pending locks on tha inode.
884** When an attempt is made to close an unixFile, if there are
885** other unixFile open on the same inode that are holding locks, the call
886** to close() the file descriptor is deferred until all of the locks clear.
887** The unixInodeInfo structure keeps a list of file descriptors that need to
888** be closed and that list is walked (and cleared) when the last lock
889** clears.
890**
891** Yet another problem:  LinuxThreads do not play well with posix locks.
892**
893** Many older versions of linux use the LinuxThreads library which is
894** not posix compliant.  Under LinuxThreads, a lock created by thread
895** A cannot be modified or overridden by a different thread B.
896** Only thread A can modify the lock.  Locking behavior is correct
897** if the appliation uses the newer Native Posix Thread Library (NPTL)
898** on linux - with NPTL a lock created by thread A can override locks
899** in thread B.  But there is no way to know at compile-time which
900** threading library is being used.  So there is no way to know at
901** compile-time whether or not thread A can override locks on thread B.
902** One has to do a run-time check to discover the behavior of the
903** current process.
904**
905** SQLite used to support LinuxThreads.  But support for LinuxThreads
906** was dropped beginning with version 3.7.0.  SQLite will still work with
907** LinuxThreads provided that (1) there is no more than one connection
908** per database file in the same process and (2) database connections
909** do not move across threads.
910*/
911
912/*
913** An instance of the following structure serves as the key used
914** to locate a particular unixInodeInfo object.
915*/
916struct unixFileId {
917  dev_t dev;                  /* Device number */
918#if OS_VXWORKS
919  struct vxworksFileId *pId;  /* Unique file ID for vxworks. */
920#else
921  ino_t ino;                  /* Inode number */
922#endif
923};
924
925/*
926** An instance of the following structure is allocated for each open
927** inode.  Or, on LinuxThreads, there is one of these structures for
928** each inode opened by each thread.
929**
930** A single inode can have multiple file descriptors, so each unixFile
931** structure contains a pointer to an instance of this object and this
932** object keeps a count of the number of unixFile pointing to it.
933*/
934struct unixInodeInfo {
935  struct unixFileId fileId;       /* The lookup key */
936  int nShared;                    /* Number of SHARED locks held */
937  unsigned char eFileLock;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
938  unsigned char bProcessLock;     /* An exclusive process lock is held */
939  int nRef;                       /* Number of pointers to this structure */
940  unixShmNode *pShmNode;          /* Shared memory associated with this inode */
941  int nLock;                      /* Number of outstanding file locks */
942  UnixUnusedFd *pUnused;          /* Unused file descriptors to close */
943  unixInodeInfo *pNext;           /* List of all unixInodeInfo objects */
944  unixInodeInfo *pPrev;           /*    .... doubly linked */
945#if defined(SQLITE_ENABLE_LOCKING_STYLE)
946  unsigned long long sharedByte;  /* for AFP simulated shared lock */
947#endif
948#if OS_VXWORKS
949  sem_t *pSem;                    /* Named POSIX semaphore */
950  char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
951#endif
952};
953
954/*
955** A lists of all unixInodeInfo objects.
956*/
957static unixInodeInfo *inodeList = 0;
958
959/*
960**
961** This function - unixLogError_x(), is only ever called via the macro
962** unixLogError().
963**
964** It is invoked after an error occurs in an OS function and errno has been
965** set. It logs a message using sqlite3_log() containing the current value of
966** errno and, if possible, the human-readable equivalent from strerror() or
967** strerror_r().
968**
969** The first argument passed to the macro should be the error code that
970** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
971** The two subsequent arguments should be the name of the OS function that
972** failed (e.g. "unlink", "open") and the the associated file-system path,
973** if any.
974*/
975#define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
976static int unixLogErrorAtLine(
977  int errcode,                    /* SQLite error code */
978  const char *zFunc,              /* Name of OS function that failed */
979  const char *zPath,              /* File path associated with error */
980  int iLine                       /* Source line number where error occurred */
981){
982  char *zErr;                     /* Message from strerror() or equivalent */
983  int iErrno = errno;             /* Saved syscall error number */
984
985  /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
986  ** the strerror() function to obtain the human-readable error message
987  ** equivalent to errno. Otherwise, use strerror_r().
988  */
989#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
990  char aErr[80];
991  memset(aErr, 0, sizeof(aErr));
992  zErr = aErr;
993
994  /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
995  ** assume that the system provides the the GNU version of strerror_r() that
996  ** returns a pointer to a buffer containing the error message. That pointer
997  ** may point to aErr[], or it may point to some static storage somewhere.
998  ** Otherwise, assume that the system provides the POSIX version of
999  ** strerror_r(), which always writes an error message into aErr[].
1000  **
1001  ** If the code incorrectly assumes that it is the POSIX version that is
1002  ** available, the error message will often be an empty string. Not a
1003  ** huge problem. Incorrectly concluding that the GNU version is available
1004  ** could lead to a segfault though.
1005  */
1006#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1007  zErr =
1008# endif
1009  strerror_r(iErrno, aErr, sizeof(aErr)-1);
1010
1011#elif SQLITE_THREADSAFE
1012  /* This is a threadsafe build, but strerror_r() is not available. */
1013  zErr = "";
1014#else
1015  /* Non-threadsafe build, use strerror(). */
1016  zErr = strerror(iErrno);
1017#endif
1018
1019  assert( errcode!=SQLITE_OK );
1020  if( zPath==0 ) zPath = "";
1021  sqlite3_log(errcode,
1022      "os_unix.c:%d: (%d) %s(%s) - %s",
1023      iLine, iErrno, zFunc, zPath, zErr
1024  );
1025
1026  return errcode;
1027}
1028
1029/*
1030** Close a file descriptor.
1031**
1032** We assume that close() almost always works, since it is only in a
1033** very sick application or on a very sick platform that it might fail.
1034** If it does fail, simply leak the file descriptor, but do log the
1035** error.
1036**
1037** Note that it is not safe to retry close() after EINTR since the
1038** file descriptor might have already been reused by another thread.
1039** So we don't even try to recover from an EINTR.  Just log the error
1040** and move on.
1041*/
1042static void robust_close(unixFile *pFile, int h, int lineno){
1043  if( osClose(h) ){
1044    unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1045                       pFile ? pFile->zPath : 0, lineno);
1046  }
1047}
1048
1049/*
1050** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1051*/
1052static void closePendingFds(unixFile *pFile){
1053  unixInodeInfo *pInode = pFile->pInode;
1054  UnixUnusedFd *p;
1055  UnixUnusedFd *pNext;
1056  for(p=pInode->pUnused; p; p=pNext){
1057    pNext = p->pNext;
1058    robust_close(pFile, p->fd, __LINE__);
1059    sqlite3_free(p);
1060  }
1061  pInode->pUnused = 0;
1062}
1063
1064/*
1065** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1066**
1067** The mutex entered using the unixEnterMutex() function must be held
1068** when this function is called.
1069*/
1070static void releaseInodeInfo(unixFile *pFile){
1071  unixInodeInfo *pInode = pFile->pInode;
1072  assert( unixMutexHeld() );
1073  if( ALWAYS(pInode) ){
1074    pInode->nRef--;
1075    if( pInode->nRef==0 ){
1076      assert( pInode->pShmNode==0 );
1077      closePendingFds(pFile);
1078      if( pInode->pPrev ){
1079        assert( pInode->pPrev->pNext==pInode );
1080        pInode->pPrev->pNext = pInode->pNext;
1081      }else{
1082        assert( inodeList==pInode );
1083        inodeList = pInode->pNext;
1084      }
1085      if( pInode->pNext ){
1086        assert( pInode->pNext->pPrev==pInode );
1087        pInode->pNext->pPrev = pInode->pPrev;
1088      }
1089      sqlite3_free(pInode);
1090    }
1091  }
1092}
1093
1094/*
1095** Given a file descriptor, locate the unixInodeInfo object that
1096** describes that file descriptor.  Create a new one if necessary.  The
1097** return value might be uninitialized if an error occurs.
1098**
1099** The mutex entered using the unixEnterMutex() function must be held
1100** when this function is called.
1101**
1102** Return an appropriate error code.
1103*/
1104static int findInodeInfo(
1105  unixFile *pFile,               /* Unix file with file desc used in the key */
1106  unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
1107){
1108  int rc;                        /* System call return code */
1109  int fd;                        /* The file descriptor for pFile */
1110  struct unixFileId fileId;      /* Lookup key for the unixInodeInfo */
1111  struct stat statbuf;           /* Low-level file information */
1112  unixInodeInfo *pInode = 0;     /* Candidate unixInodeInfo object */
1113
1114  assert( unixMutexHeld() );
1115
1116  /* Get low-level information about the file that we can used to
1117  ** create a unique name for the file.
1118  */
1119  fd = pFile->h;
1120  rc = osFstat(fd, &statbuf);
1121  if( rc!=0 ){
1122    pFile->lastErrno = errno;
1123#ifdef EOVERFLOW
1124    if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1125#endif
1126    return SQLITE_IOERR;
1127  }
1128
1129#ifdef __APPLE__
1130  /* On OS X on an msdos filesystem, the inode number is reported
1131  ** incorrectly for zero-size files.  See ticket #3260.  To work
1132  ** around this problem (we consider it a bug in OS X, not SQLite)
1133  ** we always increase the file size to 1 by writing a single byte
1134  ** prior to accessing the inode number.  The one byte written is
1135  ** an ASCII 'S' character which also happens to be the first byte
1136  ** in the header of every SQLite database.  In this way, if there
1137  ** is a race condition such that another thread has already populated
1138  ** the first page of the database, no damage is done.
1139  */
1140  if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1141    do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1142    if( rc!=1 ){
1143      pFile->lastErrno = errno;
1144      return SQLITE_IOERR;
1145    }
1146    rc = osFstat(fd, &statbuf);
1147    if( rc!=0 ){
1148      pFile->lastErrno = errno;
1149      return SQLITE_IOERR;
1150    }
1151  }
1152#endif
1153
1154  memset(&fileId, 0, sizeof(fileId));
1155  fileId.dev = statbuf.st_dev;
1156#if OS_VXWORKS
1157  fileId.pId = pFile->pId;
1158#else
1159  fileId.ino = statbuf.st_ino;
1160#endif
1161  pInode = inodeList;
1162  while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1163    pInode = pInode->pNext;
1164  }
1165  if( pInode==0 ){
1166    pInode = sqlite3_malloc( sizeof(*pInode) );
1167    if( pInode==0 ){
1168      return SQLITE_NOMEM;
1169    }
1170    memset(pInode, 0, sizeof(*pInode));
1171    memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1172    pInode->nRef = 1;
1173    pInode->pNext = inodeList;
1174    pInode->pPrev = 0;
1175    if( inodeList ) inodeList->pPrev = pInode;
1176    inodeList = pInode;
1177  }else{
1178    pInode->nRef++;
1179  }
1180  *ppInode = pInode;
1181  return SQLITE_OK;
1182}
1183
1184
1185/*
1186** This routine checks if there is a RESERVED lock held on the specified
1187** file by this or any other process. If such a lock is held, set *pResOut
1188** to a non-zero value otherwise *pResOut is set to zero.  The return value
1189** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1190*/
1191static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1192  int rc = SQLITE_OK;
1193  int reserved = 0;
1194  unixFile *pFile = (unixFile*)id;
1195
1196  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1197
1198  assert( pFile );
1199  unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1200
1201  /* Check if a thread in this process holds such a lock */
1202  if( pFile->pInode->eFileLock>SHARED_LOCK ){
1203    reserved = 1;
1204  }
1205
1206  /* Otherwise see if some other process holds it.
1207  */
1208#ifndef __DJGPP__
1209  if( !reserved && !pFile->pInode->bProcessLock ){
1210    struct flock lock;
1211    lock.l_whence = SEEK_SET;
1212    lock.l_start = RESERVED_BYTE;
1213    lock.l_len = 1;
1214    lock.l_type = F_WRLCK;
1215    if( osFcntl(pFile->h, F_GETLK, &lock) ){
1216      rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1217      pFile->lastErrno = errno;
1218    } else if( lock.l_type!=F_UNLCK ){
1219      reserved = 1;
1220    }
1221  }
1222#endif
1223
1224  unixLeaveMutex();
1225  OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1226
1227  *pResOut = reserved;
1228  return rc;
1229}
1230
1231/*
1232** Attempt to set a system-lock on the file pFile.  The lock is
1233** described by pLock.
1234**
1235** If the pFile was opened read/write from unix-excl, then the only lock
1236** ever obtained is an exclusive lock, and it is obtained exactly once
1237** the first time any lock is attempted.  All subsequent system locking
1238** operations become no-ops.  Locking operations still happen internally,
1239** in order to coordinate access between separate database connections
1240** within this process, but all of that is handled in memory and the
1241** operating system does not participate.
1242**
1243** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1244** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1245** and is read-only.
1246**
1247** Zero is returned if the call completes successfully, or -1 if a call
1248** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1249*/
1250static int unixFileLock(unixFile *pFile, struct flock *pLock){
1251  int rc;
1252  unixInodeInfo *pInode = pFile->pInode;
1253  assert( unixMutexHeld() );
1254  assert( pInode!=0 );
1255  if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
1256   && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
1257  ){
1258    if( pInode->bProcessLock==0 ){
1259      struct flock lock;
1260      assert( pInode->nLock==0 );
1261      lock.l_whence = SEEK_SET;
1262      lock.l_start = SHARED_FIRST;
1263      lock.l_len = SHARED_SIZE;
1264      lock.l_type = F_WRLCK;
1265      rc = osFcntl(pFile->h, F_SETLK, &lock);
1266      if( rc<0 ) return rc;
1267      pInode->bProcessLock = 1;
1268      pInode->nLock++;
1269    }else{
1270      rc = 0;
1271    }
1272  }else{
1273    rc = osFcntl(pFile->h, F_SETLK, pLock);
1274  }
1275  return rc;
1276}
1277
1278/*
1279** Lock the file with the lock specified by parameter eFileLock - one
1280** of the following:
1281**
1282**     (1) SHARED_LOCK
1283**     (2) RESERVED_LOCK
1284**     (3) PENDING_LOCK
1285**     (4) EXCLUSIVE_LOCK
1286**
1287** Sometimes when requesting one lock state, additional lock states
1288** are inserted in between.  The locking might fail on one of the later
1289** transitions leaving the lock state different from what it started but
1290** still short of its goal.  The following chart shows the allowed
1291** transitions and the inserted intermediate states:
1292**
1293**    UNLOCKED -> SHARED
1294**    SHARED -> RESERVED
1295**    SHARED -> (PENDING) -> EXCLUSIVE
1296**    RESERVED -> (PENDING) -> EXCLUSIVE
1297**    PENDING -> EXCLUSIVE
1298**
1299** This routine will only increase a lock.  Use the sqlite3OsUnlock()
1300** routine to lower a locking level.
1301*/
1302static int unixLock(sqlite3_file *id, int eFileLock){
1303  /* The following describes the implementation of the various locks and
1304  ** lock transitions in terms of the POSIX advisory shared and exclusive
1305  ** lock primitives (called read-locks and write-locks below, to avoid
1306  ** confusion with SQLite lock names). The algorithms are complicated
1307  ** slightly in order to be compatible with windows systems simultaneously
1308  ** accessing the same database file, in case that is ever required.
1309  **
1310  ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1311  ** byte', each single bytes at well known offsets, and the 'shared byte
1312  ** range', a range of 510 bytes at a well known offset.
1313  **
1314  ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1315  ** byte'.  If this is successful, a random byte from the 'shared byte
1316  ** range' is read-locked and the lock on the 'pending byte' released.
1317  **
1318  ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1319  ** A RESERVED lock is implemented by grabbing a write-lock on the
1320  ** 'reserved byte'.
1321  **
1322  ** A process may only obtain a PENDING lock after it has obtained a
1323  ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1324  ** on the 'pending byte'. This ensures that no new SHARED locks can be
1325  ** obtained, but existing SHARED locks are allowed to persist. A process
1326  ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1327  ** This property is used by the algorithm for rolling back a journal file
1328  ** after a crash.
1329  **
1330  ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1331  ** implemented by obtaining a write-lock on the entire 'shared byte
1332  ** range'. Since all other locks require a read-lock on one of the bytes
1333  ** within this range, this ensures that no other locks are held on the
1334  ** database.
1335  **
1336  ** The reason a single byte cannot be used instead of the 'shared byte
1337  ** range' is that some versions of windows do not support read-locks. By
1338  ** locking a random byte from a range, concurrent SHARED locks may exist
1339  ** even if the locking primitive used is always a write-lock.
1340  */
1341  int rc = SQLITE_OK;
1342  unixFile *pFile = (unixFile*)id;
1343  unixInodeInfo *pInode = pFile->pInode;
1344  struct flock lock;
1345  int tErrno = 0;
1346
1347  assert( pFile );
1348  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1349      azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1350      azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
1351
1352  /* If there is already a lock of this type or more restrictive on the
1353  ** unixFile, do nothing. Don't use the end_lock: exit path, as
1354  ** unixEnterMutex() hasn't been called yet.
1355  */
1356  if( pFile->eFileLock>=eFileLock ){
1357    OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
1358            azFileLock(eFileLock)));
1359    return SQLITE_OK;
1360  }
1361
1362  /* Make sure the locking sequence is correct.
1363  **  (1) We never move from unlocked to anything higher than shared lock.
1364  **  (2) SQLite never explicitly requests a pendig lock.
1365  **  (3) A shared lock is always held when a reserve lock is requested.
1366  */
1367  assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1368  assert( eFileLock!=PENDING_LOCK );
1369  assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1370
1371  /* This mutex is needed because pFile->pInode is shared across threads
1372  */
1373  unixEnterMutex();
1374  pInode = pFile->pInode;
1375
1376  /* If some thread using this PID has a lock via a different unixFile*
1377  ** handle that precludes the requested lock, return BUSY.
1378  */
1379  if( (pFile->eFileLock!=pInode->eFileLock &&
1380          (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1381  ){
1382    rc = SQLITE_BUSY;
1383    goto end_lock;
1384  }
1385
1386  /* If a SHARED lock is requested, and some thread using this PID already
1387  ** has a SHARED or RESERVED lock, then increment reference counts and
1388  ** return SQLITE_OK.
1389  */
1390  if( eFileLock==SHARED_LOCK &&
1391      (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1392    assert( eFileLock==SHARED_LOCK );
1393    assert( pFile->eFileLock==0 );
1394    assert( pInode->nShared>0 );
1395    pFile->eFileLock = SHARED_LOCK;
1396    pInode->nShared++;
1397    pInode->nLock++;
1398    goto end_lock;
1399  }
1400
1401
1402  /* A PENDING lock is needed before acquiring a SHARED lock and before
1403  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
1404  ** be released.
1405  */
1406  lock.l_len = 1L;
1407  lock.l_whence = SEEK_SET;
1408  if( eFileLock==SHARED_LOCK
1409      || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1410  ){
1411    lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1412    lock.l_start = PENDING_BYTE;
1413    if( unixFileLock(pFile, &lock) ){
1414      tErrno = errno;
1415      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1416      if( rc!=SQLITE_BUSY ){
1417        pFile->lastErrno = tErrno;
1418      }
1419      goto end_lock;
1420    }
1421  }
1422
1423
1424  /* If control gets to this point, then actually go ahead and make
1425  ** operating system calls for the specified lock.
1426  */
1427  if( eFileLock==SHARED_LOCK ){
1428    assert( pInode->nShared==0 );
1429    assert( pInode->eFileLock==0 );
1430    assert( rc==SQLITE_OK );
1431
1432    /* Now get the read-lock */
1433    lock.l_start = SHARED_FIRST;
1434    lock.l_len = SHARED_SIZE;
1435    if( unixFileLock(pFile, &lock) ){
1436      tErrno = errno;
1437      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1438    }
1439
1440    /* Drop the temporary PENDING lock */
1441    lock.l_start = PENDING_BYTE;
1442    lock.l_len = 1L;
1443    lock.l_type = F_UNLCK;
1444    if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1445      /* This could happen with a network mount */
1446      tErrno = errno;
1447      rc = SQLITE_IOERR_UNLOCK;
1448    }
1449
1450    if( rc ){
1451      if( rc!=SQLITE_BUSY ){
1452        pFile->lastErrno = tErrno;
1453      }
1454      goto end_lock;
1455    }else{
1456      pFile->eFileLock = SHARED_LOCK;
1457      pInode->nLock++;
1458      pInode->nShared = 1;
1459    }
1460  }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1461    /* We are trying for an exclusive lock but another thread in this
1462    ** same process is still holding a shared lock. */
1463    rc = SQLITE_BUSY;
1464  }else{
1465    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
1466    ** assumed that there is a SHARED or greater lock on the file
1467    ** already.
1468    */
1469    assert( 0!=pFile->eFileLock );
1470    lock.l_type = F_WRLCK;
1471
1472    assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1473    if( eFileLock==RESERVED_LOCK ){
1474      lock.l_start = RESERVED_BYTE;
1475      lock.l_len = 1L;
1476    }else{
1477      lock.l_start = SHARED_FIRST;
1478      lock.l_len = SHARED_SIZE;
1479    }
1480
1481    if( unixFileLock(pFile, &lock) ){
1482      tErrno = errno;
1483      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1484      if( rc!=SQLITE_BUSY ){
1485        pFile->lastErrno = tErrno;
1486      }
1487    }
1488  }
1489
1490
1491#ifndef NDEBUG
1492  /* Set up the transaction-counter change checking flags when
1493  ** transitioning from a SHARED to a RESERVED lock.  The change
1494  ** from SHARED to RESERVED marks the beginning of a normal
1495  ** write operation (not a hot journal rollback).
1496  */
1497  if( rc==SQLITE_OK
1498   && pFile->eFileLock<=SHARED_LOCK
1499   && eFileLock==RESERVED_LOCK
1500  ){
1501    pFile->transCntrChng = 0;
1502    pFile->dbUpdate = 0;
1503    pFile->inNormalWrite = 1;
1504  }
1505#endif
1506
1507
1508  if( rc==SQLITE_OK ){
1509    pFile->eFileLock = eFileLock;
1510    pInode->eFileLock = eFileLock;
1511  }else if( eFileLock==EXCLUSIVE_LOCK ){
1512    pFile->eFileLock = PENDING_LOCK;
1513    pInode->eFileLock = PENDING_LOCK;
1514  }
1515
1516end_lock:
1517  unixLeaveMutex();
1518  OSTRACE(("LOCK    %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1519      rc==SQLITE_OK ? "ok" : "failed"));
1520  return rc;
1521}
1522
1523/*
1524** Add the file descriptor used by file handle pFile to the corresponding
1525** pUnused list.
1526*/
1527static void setPendingFd(unixFile *pFile){
1528  unixInodeInfo *pInode = pFile->pInode;
1529  UnixUnusedFd *p = pFile->pUnused;
1530  p->pNext = pInode->pUnused;
1531  pInode->pUnused = p;
1532  pFile->h = -1;
1533  pFile->pUnused = 0;
1534}
1535
1536/*
1537** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1538** must be either NO_LOCK or SHARED_LOCK.
1539**
1540** If the locking level of the file descriptor is already at or below
1541** the requested locking level, this routine is a no-op.
1542**
1543** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1544** the byte range is divided into 2 parts and the first part is unlocked then
1545** set to a read lock, then the other part is simply unlocked.  This works
1546** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1547** remove the write lock on a region when a read lock is set.
1548*/
1549static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1550  unixFile *pFile = (unixFile*)id;
1551  unixInodeInfo *pInode;
1552  struct flock lock;
1553  int rc = SQLITE_OK;
1554  int h;
1555
1556  assert( pFile );
1557  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1558      pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1559      getpid()));
1560
1561  assert( eFileLock<=SHARED_LOCK );
1562  if( pFile->eFileLock<=eFileLock ){
1563    return SQLITE_OK;
1564  }
1565  unixEnterMutex();
1566  h = pFile->h;
1567  pInode = pFile->pInode;
1568  assert( pInode->nShared!=0 );
1569  if( pFile->eFileLock>SHARED_LOCK ){
1570    assert( pInode->eFileLock==pFile->eFileLock );
1571    SimulateIOErrorBenign(1);
1572    SimulateIOError( h=(-1) )
1573    SimulateIOErrorBenign(0);
1574
1575#ifndef NDEBUG
1576    /* When reducing a lock such that other processes can start
1577    ** reading the database file again, make sure that the
1578    ** transaction counter was updated if any part of the database
1579    ** file changed.  If the transaction counter is not updated,
1580    ** other connections to the same file might not realize that
1581    ** the file has changed and hence might not know to flush their
1582    ** cache.  The use of a stale cache can lead to database corruption.
1583    */
1584#if 0
1585    assert( pFile->inNormalWrite==0
1586         || pFile->dbUpdate==0
1587         || pFile->transCntrChng==1 );
1588#endif
1589    pFile->inNormalWrite = 0;
1590#endif
1591
1592    /* downgrading to a shared lock on NFS involves clearing the write lock
1593    ** before establishing the readlock - to avoid a race condition we downgrade
1594    ** the lock in 2 blocks, so that part of the range will be covered by a
1595    ** write lock until the rest is covered by a read lock:
1596    **  1:   [WWWWW]
1597    **  2:   [....W]
1598    **  3:   [RRRRW]
1599    **  4:   [RRRR.]
1600    */
1601    if( eFileLock==SHARED_LOCK ){
1602
1603#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1604      (void)handleNFSUnlock;
1605      assert( handleNFSUnlock==0 );
1606#endif
1607#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1608      if( handleNFSUnlock ){
1609        int tErrno;               /* Error code from system call errors */
1610        off_t divSize = SHARED_SIZE - 1;
1611
1612        lock.l_type = F_UNLCK;
1613        lock.l_whence = SEEK_SET;
1614        lock.l_start = SHARED_FIRST;
1615        lock.l_len = divSize;
1616        if( unixFileLock(pFile, &lock)==(-1) ){
1617          tErrno = errno;
1618          rc = SQLITE_IOERR_UNLOCK;
1619          if( IS_LOCK_ERROR(rc) ){
1620            pFile->lastErrno = tErrno;
1621          }
1622          goto end_unlock;
1623        }
1624        lock.l_type = F_RDLCK;
1625        lock.l_whence = SEEK_SET;
1626        lock.l_start = SHARED_FIRST;
1627        lock.l_len = divSize;
1628        if( unixFileLock(pFile, &lock)==(-1) ){
1629          tErrno = errno;
1630          rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1631          if( IS_LOCK_ERROR(rc) ){
1632            pFile->lastErrno = tErrno;
1633          }
1634          goto end_unlock;
1635        }
1636        lock.l_type = F_UNLCK;
1637        lock.l_whence = SEEK_SET;
1638        lock.l_start = SHARED_FIRST+divSize;
1639        lock.l_len = SHARED_SIZE-divSize;
1640        if( unixFileLock(pFile, &lock)==(-1) ){
1641          tErrno = errno;
1642          rc = SQLITE_IOERR_UNLOCK;
1643          if( IS_LOCK_ERROR(rc) ){
1644            pFile->lastErrno = tErrno;
1645          }
1646          goto end_unlock;
1647        }
1648      }else
1649#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1650      {
1651        lock.l_type = F_RDLCK;
1652        lock.l_whence = SEEK_SET;
1653        lock.l_start = SHARED_FIRST;
1654        lock.l_len = SHARED_SIZE;
1655        if( unixFileLock(pFile, &lock) ){
1656          /* In theory, the call to unixFileLock() cannot fail because another
1657          ** process is holding an incompatible lock. If it does, this
1658          ** indicates that the other process is not following the locking
1659          ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1660          ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1661          ** an assert to fail). */
1662          rc = SQLITE_IOERR_RDLOCK;
1663          pFile->lastErrno = errno;
1664          goto end_unlock;
1665        }
1666      }
1667    }
1668    lock.l_type = F_UNLCK;
1669    lock.l_whence = SEEK_SET;
1670    lock.l_start = PENDING_BYTE;
1671    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
1672    if( unixFileLock(pFile, &lock)==0 ){
1673      pInode->eFileLock = SHARED_LOCK;
1674    }else{
1675      rc = SQLITE_IOERR_UNLOCK;
1676      pFile->lastErrno = errno;
1677      goto end_unlock;
1678    }
1679  }
1680  if( eFileLock==NO_LOCK ){
1681    /* Decrement the shared lock counter.  Release the lock using an
1682    ** OS call only when all threads in this same process have released
1683    ** the lock.
1684    */
1685    pInode->nShared--;
1686    if( pInode->nShared==0 ){
1687      lock.l_type = F_UNLCK;
1688      lock.l_whence = SEEK_SET;
1689      lock.l_start = lock.l_len = 0L;
1690      SimulateIOErrorBenign(1);
1691      SimulateIOError( h=(-1) )
1692      SimulateIOErrorBenign(0);
1693      if( unixFileLock(pFile, &lock)==0 ){
1694        pInode->eFileLock = NO_LOCK;
1695      }else{
1696        rc = SQLITE_IOERR_UNLOCK;
1697	pFile->lastErrno = errno;
1698        pInode->eFileLock = NO_LOCK;
1699        pFile->eFileLock = NO_LOCK;
1700      }
1701    }
1702
1703    /* Decrement the count of locks against this same file.  When the
1704    ** count reaches zero, close any other file descriptors whose close
1705    ** was deferred because of outstanding locks.
1706    */
1707    pInode->nLock--;
1708    assert( pInode->nLock>=0 );
1709    if( pInode->nLock==0 ){
1710      closePendingFds(pFile);
1711    }
1712  }
1713
1714end_unlock:
1715  unixLeaveMutex();
1716  if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
1717  return rc;
1718}
1719
1720/*
1721** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1722** must be either NO_LOCK or SHARED_LOCK.
1723**
1724** If the locking level of the file descriptor is already at or below
1725** the requested locking level, this routine is a no-op.
1726*/
1727static int unixUnlock(sqlite3_file *id, int eFileLock){
1728  return posixUnlock(id, eFileLock, 0);
1729}
1730
1731/*
1732** This function performs the parts of the "close file" operation
1733** common to all locking schemes. It closes the directory and file
1734** handles, if they are valid, and sets all fields of the unixFile
1735** structure to 0.
1736**
1737** It is *not* necessary to hold the mutex when this routine is called,
1738** even on VxWorks.  A mutex will be acquired on VxWorks by the
1739** vxworksReleaseFileId() routine.
1740*/
1741static int closeUnixFile(sqlite3_file *id){
1742  unixFile *pFile = (unixFile*)id;
1743  if( pFile->h>=0 ){
1744    robust_close(pFile, pFile->h, __LINE__);
1745    pFile->h = -1;
1746  }
1747#if OS_VXWORKS
1748  if( pFile->pId ){
1749    if( pFile->isDelete ){
1750      osUnlink(pFile->pId->zCanonicalName);
1751    }
1752    vxworksReleaseFileId(pFile->pId);
1753    pFile->pId = 0;
1754  }
1755#endif
1756  OSTRACE(("CLOSE   %-3d\n", pFile->h));
1757  OpenCounter(-1);
1758  sqlite3_free(pFile->pUnused);
1759  memset(pFile, 0, sizeof(unixFile));
1760  return SQLITE_OK;
1761}
1762
1763/*
1764** Close a file.
1765*/
1766static int unixClose(sqlite3_file *id){
1767  int rc = SQLITE_OK;
1768  unixFile *pFile = (unixFile *)id;
1769  unixUnlock(id, NO_LOCK);
1770  unixEnterMutex();
1771
1772  /* unixFile.pInode is always valid here. Otherwise, a different close
1773  ** routine (e.g. nolockClose()) would be called instead.
1774  */
1775  assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
1776  if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
1777    /* If there are outstanding locks, do not actually close the file just
1778    ** yet because that would clear those locks.  Instead, add the file
1779    ** descriptor to pInode->pUnused list.  It will be automatically closed
1780    ** when the last lock is cleared.
1781    */
1782    setPendingFd(pFile);
1783  }
1784  releaseInodeInfo(pFile);
1785  rc = closeUnixFile(id);
1786  unixLeaveMutex();
1787  return rc;
1788}
1789
1790/************** End of the posix advisory lock implementation *****************
1791******************************************************************************/
1792
1793/******************************************************************************
1794****************************** No-op Locking **********************************
1795**
1796** Of the various locking implementations available, this is by far the
1797** simplest:  locking is ignored.  No attempt is made to lock the database
1798** file for reading or writing.
1799**
1800** This locking mode is appropriate for use on read-only databases
1801** (ex: databases that are burned into CD-ROM, for example.)  It can
1802** also be used if the application employs some external mechanism to
1803** prevent simultaneous access of the same database by two or more
1804** database connections.  But there is a serious risk of database
1805** corruption if this locking mode is used in situations where multiple
1806** database connections are accessing the same database file at the same
1807** time and one or more of those connections are writing.
1808*/
1809
1810static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
1811  UNUSED_PARAMETER(NotUsed);
1812  *pResOut = 0;
1813  return SQLITE_OK;
1814}
1815static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
1816  UNUSED_PARAMETER2(NotUsed, NotUsed2);
1817  return SQLITE_OK;
1818}
1819static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
1820  UNUSED_PARAMETER2(NotUsed, NotUsed2);
1821  return SQLITE_OK;
1822}
1823
1824/*
1825** Close the file.
1826*/
1827static int nolockClose(sqlite3_file *id) {
1828  return closeUnixFile(id);
1829}
1830
1831/******************* End of the no-op lock implementation *********************
1832******************************************************************************/
1833
1834/******************************************************************************
1835************************* Begin dot-file Locking ******************************
1836**
1837** The dotfile locking implementation uses the existance of separate lock
1838** files in order to control access to the database.  This works on just
1839** about every filesystem imaginable.  But there are serious downsides:
1840**
1841**    (1)  There is zero concurrency.  A single reader blocks all other
1842**         connections from reading or writing the database.
1843**
1844**    (2)  An application crash or power loss can leave stale lock files
1845**         sitting around that need to be cleared manually.
1846**
1847** Nevertheless, a dotlock is an appropriate locking mode for use if no
1848** other locking strategy is available.
1849**
1850** Dotfile locking works by creating a file in the same directory as the
1851** database and with the same name but with a ".lock" extension added.
1852** The existance of a lock file implies an EXCLUSIVE lock.  All other lock
1853** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
1854*/
1855
1856/*
1857** The file suffix added to the data base filename in order to create the
1858** lock file.
1859*/
1860#define DOTLOCK_SUFFIX ".lock"
1861
1862/*
1863** This routine checks if there is a RESERVED lock held on the specified
1864** file by this or any other process. If such a lock is held, set *pResOut
1865** to a non-zero value otherwise *pResOut is set to zero.  The return value
1866** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1867**
1868** In dotfile locking, either a lock exists or it does not.  So in this
1869** variation of CheckReservedLock(), *pResOut is set to true if any lock
1870** is held on the file and false if the file is unlocked.
1871*/
1872static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1873  int rc = SQLITE_OK;
1874  int reserved = 0;
1875  unixFile *pFile = (unixFile*)id;
1876
1877  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1878
1879  assert( pFile );
1880
1881  /* Check if a thread in this process holds such a lock */
1882  if( pFile->eFileLock>SHARED_LOCK ){
1883    /* Either this connection or some other connection in the same process
1884    ** holds a lock on the file.  No need to check further. */
1885    reserved = 1;
1886  }else{
1887    /* The lock is held if and only if the lockfile exists */
1888    const char *zLockFile = (const char*)pFile->lockingContext;
1889    reserved = osAccess(zLockFile, 0)==0;
1890  }
1891  OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
1892  *pResOut = reserved;
1893  return rc;
1894}
1895
1896/*
1897** Lock the file with the lock specified by parameter eFileLock - one
1898** of the following:
1899**
1900**     (1) SHARED_LOCK
1901**     (2) RESERVED_LOCK
1902**     (3) PENDING_LOCK
1903**     (4) EXCLUSIVE_LOCK
1904**
1905** Sometimes when requesting one lock state, additional lock states
1906** are inserted in between.  The locking might fail on one of the later
1907** transitions leaving the lock state different from what it started but
1908** still short of its goal.  The following chart shows the allowed
1909** transitions and the inserted intermediate states:
1910**
1911**    UNLOCKED -> SHARED
1912**    SHARED -> RESERVED
1913**    SHARED -> (PENDING) -> EXCLUSIVE
1914**    RESERVED -> (PENDING) -> EXCLUSIVE
1915**    PENDING -> EXCLUSIVE
1916**
1917** This routine will only increase a lock.  Use the sqlite3OsUnlock()
1918** routine to lower a locking level.
1919**
1920** With dotfile locking, we really only support state (4): EXCLUSIVE.
1921** But we track the other locking levels internally.
1922*/
1923static int dotlockLock(sqlite3_file *id, int eFileLock) {
1924  unixFile *pFile = (unixFile*)id;
1925  int fd;
1926  char *zLockFile = (char *)pFile->lockingContext;
1927  int rc = SQLITE_OK;
1928
1929
1930  /* If we have any lock, then the lock file already exists.  All we have
1931  ** to do is adjust our internal record of the lock level.
1932  */
1933  if( pFile->eFileLock > NO_LOCK ){
1934    pFile->eFileLock = eFileLock;
1935#if !OS_VXWORKS
1936    /* Always update the timestamp on the old file */
1937    utimes(zLockFile, NULL);
1938#endif
1939    return SQLITE_OK;
1940  }
1941
1942  /* grab an exclusive lock */
1943  fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
1944  if( fd<0 ){
1945    /* failed to open/create the file, someone else may have stolen the lock */
1946    int tErrno = errno;
1947    if( EEXIST == tErrno ){
1948      rc = SQLITE_BUSY;
1949    } else {
1950      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1951      if( IS_LOCK_ERROR(rc) ){
1952        pFile->lastErrno = tErrno;
1953      }
1954    }
1955    return rc;
1956  }
1957  robust_close(pFile, fd, __LINE__);
1958
1959  /* got it, set the type and return ok */
1960  pFile->eFileLock = eFileLock;
1961  return rc;
1962}
1963
1964/*
1965** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1966** must be either NO_LOCK or SHARED_LOCK.
1967**
1968** If the locking level of the file descriptor is already at or below
1969** the requested locking level, this routine is a no-op.
1970**
1971** When the locking level reaches NO_LOCK, delete the lock file.
1972*/
1973static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
1974  unixFile *pFile = (unixFile*)id;
1975  char *zLockFile = (char *)pFile->lockingContext;
1976
1977  assert( pFile );
1978  OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
1979	   pFile->eFileLock, getpid()));
1980  assert( eFileLock<=SHARED_LOCK );
1981
1982  /* no-op if possible */
1983  if( pFile->eFileLock==eFileLock ){
1984    return SQLITE_OK;
1985  }
1986
1987  /* To downgrade to shared, simply update our internal notion of the
1988  ** lock state.  No need to mess with the file on disk.
1989  */
1990  if( eFileLock==SHARED_LOCK ){
1991    pFile->eFileLock = SHARED_LOCK;
1992    return SQLITE_OK;
1993  }
1994
1995  /* To fully unlock the database, delete the lock file */
1996  assert( eFileLock==NO_LOCK );
1997  if( osUnlink(zLockFile) ){
1998    int rc = 0;
1999    int tErrno = errno;
2000    if( ENOENT != tErrno ){
2001      rc = SQLITE_IOERR_UNLOCK;
2002    }
2003    if( IS_LOCK_ERROR(rc) ){
2004      pFile->lastErrno = tErrno;
2005    }
2006    return rc;
2007  }
2008  pFile->eFileLock = NO_LOCK;
2009  return SQLITE_OK;
2010}
2011
2012/*
2013** Close a file.  Make sure the lock has been released before closing.
2014*/
2015static int dotlockClose(sqlite3_file *id) {
2016  int rc;
2017  if( id ){
2018    unixFile *pFile = (unixFile*)id;
2019    dotlockUnlock(id, NO_LOCK);
2020    sqlite3_free(pFile->lockingContext);
2021  }
2022  rc = closeUnixFile(id);
2023  return rc;
2024}
2025/****************** End of the dot-file lock implementation *******************
2026******************************************************************************/
2027
2028/******************************************************************************
2029************************** Begin flock Locking ********************************
2030**
2031** Use the flock() system call to do file locking.
2032**
2033** flock() locking is like dot-file locking in that the various
2034** fine-grain locking levels supported by SQLite are collapsed into
2035** a single exclusive lock.  In other words, SHARED, RESERVED, and
2036** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
2037** still works when you do this, but concurrency is reduced since
2038** only a single process can be reading the database at a time.
2039**
2040** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
2041** compiling for VXWORKS.
2042*/
2043#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
2044
2045/*
2046** Retry flock() calls that fail with EINTR
2047*/
2048#ifdef EINTR
2049static int robust_flock(int fd, int op){
2050  int rc;
2051  do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2052  return rc;
2053}
2054#else
2055# define robust_flock(a,b) flock(a,b)
2056#endif
2057
2058
2059/*
2060** This routine checks if there is a RESERVED lock held on the specified
2061** file by this or any other process. If such a lock is held, set *pResOut
2062** to a non-zero value otherwise *pResOut is set to zero.  The return value
2063** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2064*/
2065static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2066  int rc = SQLITE_OK;
2067  int reserved = 0;
2068  unixFile *pFile = (unixFile*)id;
2069
2070  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2071
2072  assert( pFile );
2073
2074  /* Check if a thread in this process holds such a lock */
2075  if( pFile->eFileLock>SHARED_LOCK ){
2076    reserved = 1;
2077  }
2078
2079  /* Otherwise see if some other process holds it. */
2080  if( !reserved ){
2081    /* attempt to get the lock */
2082    int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2083    if( !lrc ){
2084      /* got the lock, unlock it */
2085      lrc = robust_flock(pFile->h, LOCK_UN);
2086      if ( lrc ) {
2087        int tErrno = errno;
2088        /* unlock failed with an error */
2089        lrc = SQLITE_IOERR_UNLOCK;
2090        if( IS_LOCK_ERROR(lrc) ){
2091          pFile->lastErrno = tErrno;
2092          rc = lrc;
2093        }
2094      }
2095    } else {
2096      int tErrno = errno;
2097      reserved = 1;
2098      /* someone else might have it reserved */
2099      lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2100      if( IS_LOCK_ERROR(lrc) ){
2101        pFile->lastErrno = tErrno;
2102        rc = lrc;
2103      }
2104    }
2105  }
2106  OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2107
2108#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2109  if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2110    rc = SQLITE_OK;
2111    reserved=1;
2112  }
2113#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2114  *pResOut = reserved;
2115  return rc;
2116}
2117
2118/*
2119** Lock the file with the lock specified by parameter eFileLock - one
2120** of the following:
2121**
2122**     (1) SHARED_LOCK
2123**     (2) RESERVED_LOCK
2124**     (3) PENDING_LOCK
2125**     (4) EXCLUSIVE_LOCK
2126**
2127** Sometimes when requesting one lock state, additional lock states
2128** are inserted in between.  The locking might fail on one of the later
2129** transitions leaving the lock state different from what it started but
2130** still short of its goal.  The following chart shows the allowed
2131** transitions and the inserted intermediate states:
2132**
2133**    UNLOCKED -> SHARED
2134**    SHARED -> RESERVED
2135**    SHARED -> (PENDING) -> EXCLUSIVE
2136**    RESERVED -> (PENDING) -> EXCLUSIVE
2137**    PENDING -> EXCLUSIVE
2138**
2139** flock() only really support EXCLUSIVE locks.  We track intermediate
2140** lock states in the sqlite3_file structure, but all locks SHARED or
2141** above are really EXCLUSIVE locks and exclude all other processes from
2142** access the file.
2143**
2144** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2145** routine to lower a locking level.
2146*/
2147static int flockLock(sqlite3_file *id, int eFileLock) {
2148  int rc = SQLITE_OK;
2149  unixFile *pFile = (unixFile*)id;
2150
2151  assert( pFile );
2152
2153  /* if we already have a lock, it is exclusive.
2154  ** Just adjust level and punt on outta here. */
2155  if (pFile->eFileLock > NO_LOCK) {
2156    pFile->eFileLock = eFileLock;
2157    return SQLITE_OK;
2158  }
2159
2160  /* grab an exclusive lock */
2161
2162  if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2163    int tErrno = errno;
2164    /* didn't get, must be busy */
2165    rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2166    if( IS_LOCK_ERROR(rc) ){
2167      pFile->lastErrno = tErrno;
2168    }
2169  } else {
2170    /* got it, set the type and return ok */
2171    pFile->eFileLock = eFileLock;
2172  }
2173  OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2174           rc==SQLITE_OK ? "ok" : "failed"));
2175#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2176  if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2177    rc = SQLITE_BUSY;
2178  }
2179#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2180  return rc;
2181}
2182
2183
2184/*
2185** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2186** must be either NO_LOCK or SHARED_LOCK.
2187**
2188** If the locking level of the file descriptor is already at or below
2189** the requested locking level, this routine is a no-op.
2190*/
2191static int flockUnlock(sqlite3_file *id, int eFileLock) {
2192  unixFile *pFile = (unixFile*)id;
2193
2194  assert( pFile );
2195  OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2196           pFile->eFileLock, getpid()));
2197  assert( eFileLock<=SHARED_LOCK );
2198
2199  /* no-op if possible */
2200  if( pFile->eFileLock==eFileLock ){
2201    return SQLITE_OK;
2202  }
2203
2204  /* shared can just be set because we always have an exclusive */
2205  if (eFileLock==SHARED_LOCK) {
2206    pFile->eFileLock = eFileLock;
2207    return SQLITE_OK;
2208  }
2209
2210  /* no, really, unlock. */
2211  if( robust_flock(pFile->h, LOCK_UN) ){
2212#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2213    return SQLITE_OK;
2214#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2215    return SQLITE_IOERR_UNLOCK;
2216  }else{
2217    pFile->eFileLock = NO_LOCK;
2218    return SQLITE_OK;
2219  }
2220}
2221
2222/*
2223** Close a file.
2224*/
2225static int flockClose(sqlite3_file *id) {
2226  if( id ){
2227    flockUnlock(id, NO_LOCK);
2228  }
2229  return closeUnixFile(id);
2230}
2231
2232#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2233
2234/******************* End of the flock lock implementation *********************
2235******************************************************************************/
2236
2237/******************************************************************************
2238************************ Begin Named Semaphore Locking ************************
2239**
2240** Named semaphore locking is only supported on VxWorks.
2241**
2242** Semaphore locking is like dot-lock and flock in that it really only
2243** supports EXCLUSIVE locking.  Only a single process can read or write
2244** the database file at a time.  This reduces potential concurrency, but
2245** makes the lock implementation much easier.
2246*/
2247#if OS_VXWORKS
2248
2249/*
2250** This routine checks if there is a RESERVED lock held on the specified
2251** file by this or any other process. If such a lock is held, set *pResOut
2252** to a non-zero value otherwise *pResOut is set to zero.  The return value
2253** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2254*/
2255static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
2256  int rc = SQLITE_OK;
2257  int reserved = 0;
2258  unixFile *pFile = (unixFile*)id;
2259
2260  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2261
2262  assert( pFile );
2263
2264  /* Check if a thread in this process holds such a lock */
2265  if( pFile->eFileLock>SHARED_LOCK ){
2266    reserved = 1;
2267  }
2268
2269  /* Otherwise see if some other process holds it. */
2270  if( !reserved ){
2271    sem_t *pSem = pFile->pInode->pSem;
2272    struct stat statBuf;
2273
2274    if( sem_trywait(pSem)==-1 ){
2275      int tErrno = errno;
2276      if( EAGAIN != tErrno ){
2277        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2278        pFile->lastErrno = tErrno;
2279      } else {
2280        /* someone else has the lock when we are in NO_LOCK */
2281        reserved = (pFile->eFileLock < SHARED_LOCK);
2282      }
2283    }else{
2284      /* we could have it if we want it */
2285      sem_post(pSem);
2286    }
2287  }
2288  OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2289
2290  *pResOut = reserved;
2291  return rc;
2292}
2293
2294/*
2295** Lock the file with the lock specified by parameter eFileLock - one
2296** of the following:
2297**
2298**     (1) SHARED_LOCK
2299**     (2) RESERVED_LOCK
2300**     (3) PENDING_LOCK
2301**     (4) EXCLUSIVE_LOCK
2302**
2303** Sometimes when requesting one lock state, additional lock states
2304** are inserted in between.  The locking might fail on one of the later
2305** transitions leaving the lock state different from what it started but
2306** still short of its goal.  The following chart shows the allowed
2307** transitions and the inserted intermediate states:
2308**
2309**    UNLOCKED -> SHARED
2310**    SHARED -> RESERVED
2311**    SHARED -> (PENDING) -> EXCLUSIVE
2312**    RESERVED -> (PENDING) -> EXCLUSIVE
2313**    PENDING -> EXCLUSIVE
2314**
2315** Semaphore locks only really support EXCLUSIVE locks.  We track intermediate
2316** lock states in the sqlite3_file structure, but all locks SHARED or
2317** above are really EXCLUSIVE locks and exclude all other processes from
2318** access the file.
2319**
2320** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2321** routine to lower a locking level.
2322*/
2323static int semLock(sqlite3_file *id, int eFileLock) {
2324  unixFile *pFile = (unixFile*)id;
2325  int fd;
2326  sem_t *pSem = pFile->pInode->pSem;
2327  int rc = SQLITE_OK;
2328
2329  /* if we already have a lock, it is exclusive.
2330  ** Just adjust level and punt on outta here. */
2331  if (pFile->eFileLock > NO_LOCK) {
2332    pFile->eFileLock = eFileLock;
2333    rc = SQLITE_OK;
2334    goto sem_end_lock;
2335  }
2336
2337  /* lock semaphore now but bail out when already locked. */
2338  if( sem_trywait(pSem)==-1 ){
2339    rc = SQLITE_BUSY;
2340    goto sem_end_lock;
2341  }
2342
2343  /* got it, set the type and return ok */
2344  pFile->eFileLock = eFileLock;
2345
2346 sem_end_lock:
2347  return rc;
2348}
2349
2350/*
2351** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2352** must be either NO_LOCK or SHARED_LOCK.
2353**
2354** If the locking level of the file descriptor is already at or below
2355** the requested locking level, this routine is a no-op.
2356*/
2357static int semUnlock(sqlite3_file *id, int eFileLock) {
2358  unixFile *pFile = (unixFile*)id;
2359  sem_t *pSem = pFile->pInode->pSem;
2360
2361  assert( pFile );
2362  assert( pSem );
2363  OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2364	   pFile->eFileLock, getpid()));
2365  assert( eFileLock<=SHARED_LOCK );
2366
2367  /* no-op if possible */
2368  if( pFile->eFileLock==eFileLock ){
2369    return SQLITE_OK;
2370  }
2371
2372  /* shared can just be set because we always have an exclusive */
2373  if (eFileLock==SHARED_LOCK) {
2374    pFile->eFileLock = eFileLock;
2375    return SQLITE_OK;
2376  }
2377
2378  /* no, really unlock. */
2379  if ( sem_post(pSem)==-1 ) {
2380    int rc, tErrno = errno;
2381    rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2382    if( IS_LOCK_ERROR(rc) ){
2383      pFile->lastErrno = tErrno;
2384    }
2385    return rc;
2386  }
2387  pFile->eFileLock = NO_LOCK;
2388  return SQLITE_OK;
2389}
2390
2391/*
2392 ** Close a file.
2393 */
2394static int semClose(sqlite3_file *id) {
2395  if( id ){
2396    unixFile *pFile = (unixFile*)id;
2397    semUnlock(id, NO_LOCK);
2398    assert( pFile );
2399    unixEnterMutex();
2400    releaseInodeInfo(pFile);
2401    unixLeaveMutex();
2402    closeUnixFile(id);
2403  }
2404  return SQLITE_OK;
2405}
2406
2407#endif /* OS_VXWORKS */
2408/*
2409** Named semaphore locking is only available on VxWorks.
2410**
2411*************** End of the named semaphore lock implementation ****************
2412******************************************************************************/
2413
2414
2415/******************************************************************************
2416*************************** Begin AFP Locking *********************************
2417**
2418** AFP is the Apple Filing Protocol.  AFP is a network filesystem found
2419** on Apple Macintosh computers - both OS9 and OSX.
2420**
2421** Third-party implementations of AFP are available.  But this code here
2422** only works on OSX.
2423*/
2424
2425#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2426/*
2427** The afpLockingContext structure contains all afp lock specific state
2428*/
2429typedef struct afpLockingContext afpLockingContext;
2430struct afpLockingContext {
2431  int reserved;
2432  const char *dbPath;             /* Name of the open file */
2433};
2434
2435struct ByteRangeLockPB2
2436{
2437  unsigned long long offset;        /* offset to first byte to lock */
2438  unsigned long long length;        /* nbr of bytes to lock */
2439  unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2440  unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
2441  unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
2442  int fd;                           /* file desc to assoc this lock with */
2443};
2444
2445#define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
2446
2447/*
2448** This is a utility for setting or clearing a bit-range lock on an
2449** AFP filesystem.
2450**
2451** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2452*/
2453static int afpSetLock(
2454  const char *path,              /* Name of the file to be locked or unlocked */
2455  unixFile *pFile,               /* Open file descriptor on path */
2456  unsigned long long offset,     /* First byte to be locked */
2457  unsigned long long length,     /* Number of bytes to lock */
2458  int setLockFlag                /* True to set lock.  False to clear lock */
2459){
2460  struct ByteRangeLockPB2 pb;
2461  int err;
2462
2463  pb.unLockFlag = setLockFlag ? 0 : 1;
2464  pb.startEndFlag = 0;
2465  pb.offset = offset;
2466  pb.length = length;
2467  pb.fd = pFile->h;
2468
2469  OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2470    (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2471    offset, length));
2472  err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2473  if ( err==-1 ) {
2474    int rc;
2475    int tErrno = errno;
2476    OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2477             path, tErrno, strerror(tErrno)));
2478#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2479    rc = SQLITE_BUSY;
2480#else
2481    rc = sqliteErrorFromPosixError(tErrno,
2482                    setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2483#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2484    if( IS_LOCK_ERROR(rc) ){
2485      pFile->lastErrno = tErrno;
2486    }
2487    return rc;
2488  } else {
2489    return SQLITE_OK;
2490  }
2491}
2492
2493/*
2494** This routine checks if there is a RESERVED lock held on the specified
2495** file by this or any other process. If such a lock is held, set *pResOut
2496** to a non-zero value otherwise *pResOut is set to zero.  The return value
2497** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2498*/
2499static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2500  int rc = SQLITE_OK;
2501  int reserved = 0;
2502  unixFile *pFile = (unixFile*)id;
2503
2504  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2505
2506  assert( pFile );
2507  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2508  if( context->reserved ){
2509    *pResOut = 1;
2510    return SQLITE_OK;
2511  }
2512  unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2513
2514  /* Check if a thread in this process holds such a lock */
2515  if( pFile->pInode->eFileLock>SHARED_LOCK ){
2516    reserved = 1;
2517  }
2518
2519  /* Otherwise see if some other process holds it.
2520   */
2521  if( !reserved ){
2522    /* lock the RESERVED byte */
2523    int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2524    if( SQLITE_OK==lrc ){
2525      /* if we succeeded in taking the reserved lock, unlock it to restore
2526      ** the original state */
2527      lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2528    } else {
2529      /* if we failed to get the lock then someone else must have it */
2530      reserved = 1;
2531    }
2532    if( IS_LOCK_ERROR(lrc) ){
2533      rc=lrc;
2534    }
2535  }
2536
2537  unixLeaveMutex();
2538  OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2539
2540  *pResOut = reserved;
2541  return rc;
2542}
2543
2544/*
2545** Lock the file with the lock specified by parameter eFileLock - one
2546** of the following:
2547**
2548**     (1) SHARED_LOCK
2549**     (2) RESERVED_LOCK
2550**     (3) PENDING_LOCK
2551**     (4) EXCLUSIVE_LOCK
2552**
2553** Sometimes when requesting one lock state, additional lock states
2554** are inserted in between.  The locking might fail on one of the later
2555** transitions leaving the lock state different from what it started but
2556** still short of its goal.  The following chart shows the allowed
2557** transitions and the inserted intermediate states:
2558**
2559**    UNLOCKED -> SHARED
2560**    SHARED -> RESERVED
2561**    SHARED -> (PENDING) -> EXCLUSIVE
2562**    RESERVED -> (PENDING) -> EXCLUSIVE
2563**    PENDING -> EXCLUSIVE
2564**
2565** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2566** routine to lower a locking level.
2567*/
2568static int afpLock(sqlite3_file *id, int eFileLock){
2569  int rc = SQLITE_OK;
2570  unixFile *pFile = (unixFile*)id;
2571  unixInodeInfo *pInode = pFile->pInode;
2572  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2573
2574  assert( pFile );
2575  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2576           azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2577           azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
2578
2579  /* If there is already a lock of this type or more restrictive on the
2580  ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2581  ** unixEnterMutex() hasn't been called yet.
2582  */
2583  if( pFile->eFileLock>=eFileLock ){
2584    OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
2585           azFileLock(eFileLock)));
2586    return SQLITE_OK;
2587  }
2588
2589  /* Make sure the locking sequence is correct
2590  **  (1) We never move from unlocked to anything higher than shared lock.
2591  **  (2) SQLite never explicitly requests a pendig lock.
2592  **  (3) A shared lock is always held when a reserve lock is requested.
2593  */
2594  assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2595  assert( eFileLock!=PENDING_LOCK );
2596  assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2597
2598  /* This mutex is needed because pFile->pInode is shared across threads
2599  */
2600  unixEnterMutex();
2601  pInode = pFile->pInode;
2602
2603  /* If some thread using this PID has a lock via a different unixFile*
2604  ** handle that precludes the requested lock, return BUSY.
2605  */
2606  if( (pFile->eFileLock!=pInode->eFileLock &&
2607       (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2608     ){
2609    rc = SQLITE_BUSY;
2610    goto afp_end_lock;
2611  }
2612
2613  /* If a SHARED lock is requested, and some thread using this PID already
2614  ** has a SHARED or RESERVED lock, then increment reference counts and
2615  ** return SQLITE_OK.
2616  */
2617  if( eFileLock==SHARED_LOCK &&
2618     (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2619    assert( eFileLock==SHARED_LOCK );
2620    assert( pFile->eFileLock==0 );
2621    assert( pInode->nShared>0 );
2622    pFile->eFileLock = SHARED_LOCK;
2623    pInode->nShared++;
2624    pInode->nLock++;
2625    goto afp_end_lock;
2626  }
2627
2628  /* A PENDING lock is needed before acquiring a SHARED lock and before
2629  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
2630  ** be released.
2631  */
2632  if( eFileLock==SHARED_LOCK
2633      || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2634  ){
2635    int failed;
2636    failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2637    if (failed) {
2638      rc = failed;
2639      goto afp_end_lock;
2640    }
2641  }
2642
2643  /* If control gets to this point, then actually go ahead and make
2644  ** operating system calls for the specified lock.
2645  */
2646  if( eFileLock==SHARED_LOCK ){
2647    int lrc1, lrc2, lrc1Errno;
2648    long lk, mask;
2649
2650    assert( pInode->nShared==0 );
2651    assert( pInode->eFileLock==0 );
2652
2653    mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
2654    /* Now get the read-lock SHARED_LOCK */
2655    /* note that the quality of the randomness doesn't matter that much */
2656    lk = random();
2657    pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
2658    lrc1 = afpSetLock(context->dbPath, pFile,
2659          SHARED_FIRST+pInode->sharedByte, 1, 1);
2660    if( IS_LOCK_ERROR(lrc1) ){
2661      lrc1Errno = pFile->lastErrno;
2662    }
2663    /* Drop the temporary PENDING lock */
2664    lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2665
2666    if( IS_LOCK_ERROR(lrc1) ) {
2667      pFile->lastErrno = lrc1Errno;
2668      rc = lrc1;
2669      goto afp_end_lock;
2670    } else if( IS_LOCK_ERROR(lrc2) ){
2671      rc = lrc2;
2672      goto afp_end_lock;
2673    } else if( lrc1 != SQLITE_OK ) {
2674      rc = lrc1;
2675    } else {
2676      pFile->eFileLock = SHARED_LOCK;
2677      pInode->nLock++;
2678      pInode->nShared = 1;
2679    }
2680  }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
2681    /* We are trying for an exclusive lock but another thread in this
2682     ** same process is still holding a shared lock. */
2683    rc = SQLITE_BUSY;
2684  }else{
2685    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
2686    ** assumed that there is a SHARED or greater lock on the file
2687    ** already.
2688    */
2689    int failed = 0;
2690    assert( 0!=pFile->eFileLock );
2691    if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
2692        /* Acquire a RESERVED lock */
2693        failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2694      if( !failed ){
2695        context->reserved = 1;
2696      }
2697    }
2698    if (!failed && eFileLock == EXCLUSIVE_LOCK) {
2699      /* Acquire an EXCLUSIVE lock */
2700
2701      /* Remove the shared lock before trying the range.  we'll need to
2702      ** reestablish the shared lock if we can't get the  afpUnlock
2703      */
2704      if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2705                         pInode->sharedByte, 1, 0)) ){
2706        int failed2 = SQLITE_OK;
2707        /* now attemmpt to get the exclusive lock range */
2708        failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2709                               SHARED_SIZE, 1);
2710        if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2711                       SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
2712          /* Can't reestablish the shared lock.  Sqlite can't deal, this is
2713          ** a critical I/O error
2714          */
2715          rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2716               SQLITE_IOERR_LOCK;
2717          goto afp_end_lock;
2718        }
2719      }else{
2720        rc = failed;
2721      }
2722    }
2723    if( failed ){
2724      rc = failed;
2725    }
2726  }
2727
2728  if( rc==SQLITE_OK ){
2729    pFile->eFileLock = eFileLock;
2730    pInode->eFileLock = eFileLock;
2731  }else if( eFileLock==EXCLUSIVE_LOCK ){
2732    pFile->eFileLock = PENDING_LOCK;
2733    pInode->eFileLock = PENDING_LOCK;
2734  }
2735
2736afp_end_lock:
2737  unixLeaveMutex();
2738  OSTRACE(("LOCK    %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
2739         rc==SQLITE_OK ? "ok" : "failed"));
2740  return rc;
2741}
2742
2743/*
2744** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2745** must be either NO_LOCK or SHARED_LOCK.
2746**
2747** If the locking level of the file descriptor is already at or below
2748** the requested locking level, this routine is a no-op.
2749*/
2750static int afpUnlock(sqlite3_file *id, int eFileLock) {
2751  int rc = SQLITE_OK;
2752  unixFile *pFile = (unixFile*)id;
2753  unixInodeInfo *pInode;
2754  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2755  int skipShared = 0;
2756#ifdef SQLITE_TEST
2757  int h = pFile->h;
2758#endif
2759
2760  assert( pFile );
2761  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
2762           pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
2763           getpid()));
2764
2765  assert( eFileLock<=SHARED_LOCK );
2766  if( pFile->eFileLock<=eFileLock ){
2767    return SQLITE_OK;
2768  }
2769  unixEnterMutex();
2770  pInode = pFile->pInode;
2771  assert( pInode->nShared!=0 );
2772  if( pFile->eFileLock>SHARED_LOCK ){
2773    assert( pInode->eFileLock==pFile->eFileLock );
2774    SimulateIOErrorBenign(1);
2775    SimulateIOError( h=(-1) )
2776    SimulateIOErrorBenign(0);
2777
2778#ifndef NDEBUG
2779    /* When reducing a lock such that other processes can start
2780    ** reading the database file again, make sure that the
2781    ** transaction counter was updated if any part of the database
2782    ** file changed.  If the transaction counter is not updated,
2783    ** other connections to the same file might not realize that
2784    ** the file has changed and hence might not know to flush their
2785    ** cache.  The use of a stale cache can lead to database corruption.
2786    */
2787    assert( pFile->inNormalWrite==0
2788           || pFile->dbUpdate==0
2789           || pFile->transCntrChng==1 );
2790    pFile->inNormalWrite = 0;
2791#endif
2792
2793    if( pFile->eFileLock==EXCLUSIVE_LOCK ){
2794      rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
2795      if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
2796        /* only re-establish the shared lock if necessary */
2797        int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2798        rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
2799      } else {
2800        skipShared = 1;
2801      }
2802    }
2803    if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
2804      rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2805    }
2806    if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
2807      rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2808      if( !rc ){
2809        context->reserved = 0;
2810      }
2811    }
2812    if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
2813      pInode->eFileLock = SHARED_LOCK;
2814    }
2815  }
2816  if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
2817
2818    /* Decrement the shared lock counter.  Release the lock using an
2819    ** OS call only when all threads in this same process have released
2820    ** the lock.
2821    */
2822    unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2823    pInode->nShared--;
2824    if( pInode->nShared==0 ){
2825      SimulateIOErrorBenign(1);
2826      SimulateIOError( h=(-1) )
2827      SimulateIOErrorBenign(0);
2828      if( !skipShared ){
2829        rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
2830      }
2831      if( !rc ){
2832        pInode->eFileLock = NO_LOCK;
2833        pFile->eFileLock = NO_LOCK;
2834      }
2835    }
2836    if( rc==SQLITE_OK ){
2837      pInode->nLock--;
2838      assert( pInode->nLock>=0 );
2839      if( pInode->nLock==0 ){
2840        closePendingFds(pFile);
2841      }
2842    }
2843  }
2844
2845  unixLeaveMutex();
2846  if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
2847  return rc;
2848}
2849
2850/*
2851** Close a file & cleanup AFP specific locking context
2852*/
2853static int afpClose(sqlite3_file *id) {
2854  int rc = SQLITE_OK;
2855  if( id ){
2856    unixFile *pFile = (unixFile*)id;
2857    afpUnlock(id, NO_LOCK);
2858    unixEnterMutex();
2859    if( pFile->pInode && pFile->pInode->nLock ){
2860      /* If there are outstanding locks, do not actually close the file just
2861      ** yet because that would clear those locks.  Instead, add the file
2862      ** descriptor to pInode->aPending.  It will be automatically closed when
2863      ** the last lock is cleared.
2864      */
2865      setPendingFd(pFile);
2866    }
2867    releaseInodeInfo(pFile);
2868    sqlite3_free(pFile->lockingContext);
2869    rc = closeUnixFile(id);
2870    unixLeaveMutex();
2871  }
2872  return rc;
2873}
2874
2875#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2876/*
2877** The code above is the AFP lock implementation.  The code is specific
2878** to MacOSX and does not work on other unix platforms.  No alternative
2879** is available.  If you don't compile for a mac, then the "unix-afp"
2880** VFS is not available.
2881**
2882********************* End of the AFP lock implementation **********************
2883******************************************************************************/
2884
2885/******************************************************************************
2886*************************** Begin NFS Locking ********************************/
2887
2888#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2889/*
2890 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2891 ** must be either NO_LOCK or SHARED_LOCK.
2892 **
2893 ** If the locking level of the file descriptor is already at or below
2894 ** the requested locking level, this routine is a no-op.
2895 */
2896static int nfsUnlock(sqlite3_file *id, int eFileLock){
2897  return posixUnlock(id, eFileLock, 1);
2898}
2899
2900#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2901/*
2902** The code above is the NFS lock implementation.  The code is specific
2903** to MacOSX and does not work on other unix platforms.  No alternative
2904** is available.
2905**
2906********************* End of the NFS lock implementation **********************
2907******************************************************************************/
2908
2909/******************************************************************************
2910**************** Non-locking sqlite3_file methods *****************************
2911**
2912** The next division contains implementations for all methods of the
2913** sqlite3_file object other than the locking methods.  The locking
2914** methods were defined in divisions above (one locking method per
2915** division).  Those methods that are common to all locking modes
2916** are gather together into this division.
2917*/
2918
2919/*
2920** Seek to the offset passed as the second argument, then read cnt
2921** bytes into pBuf. Return the number of bytes actually read.
2922**
2923** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
2924** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
2925** one system to another.  Since SQLite does not define USE_PREAD
2926** any any form by default, we will not attempt to define _XOPEN_SOURCE.
2927** See tickets #2741 and #2681.
2928**
2929** To avoid stomping the errno value on a failed read the lastErrno value
2930** is set before returning.
2931*/
2932static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
2933  int got;
2934#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
2935  i64 newOffset;
2936#endif
2937  TIMER_START;
2938#if defined(USE_PREAD)
2939  do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
2940  SimulateIOError( got = -1 );
2941#elif defined(USE_PREAD64)
2942  do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR);
2943  SimulateIOError( got = -1 );
2944#else
2945  newOffset = lseek(id->h, offset, SEEK_SET);
2946  SimulateIOError( newOffset-- );
2947  if( newOffset!=offset ){
2948    if( newOffset == -1 ){
2949      ((unixFile*)id)->lastErrno = errno;
2950    }else{
2951      ((unixFile*)id)->lastErrno = 0;
2952    }
2953    return -1;
2954  }
2955  do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
2956#endif
2957  TIMER_END;
2958  if( got<0 ){
2959    ((unixFile*)id)->lastErrno = errno;
2960  }
2961  OSTRACE(("READ    %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
2962  return got;
2963}
2964
2965/*
2966** Read data from a file into a buffer.  Return SQLITE_OK if all
2967** bytes were read successfully and SQLITE_IOERR if anything goes
2968** wrong.
2969*/
2970static int unixRead(
2971  sqlite3_file *id,
2972  void *pBuf,
2973  int amt,
2974  sqlite3_int64 offset
2975){
2976  unixFile *pFile = (unixFile *)id;
2977  int got;
2978  assert( id );
2979
2980  /* If this is a database file (not a journal, master-journal or temp
2981  ** file), the bytes in the locking range should never be read or written. */
2982#if 0
2983  assert( pFile->pUnused==0
2984       || offset>=PENDING_BYTE+512
2985       || offset+amt<=PENDING_BYTE
2986  );
2987#endif
2988
2989  got = seekAndRead(pFile, offset, pBuf, amt);
2990  if( got==amt ){
2991    return SQLITE_OK;
2992  }else if( got<0 ){
2993    /* lastErrno set by seekAndRead */
2994    return SQLITE_IOERR_READ;
2995  }else{
2996    pFile->lastErrno = 0; /* not a system error */
2997    /* Unread parts of the buffer must be zero-filled */
2998    memset(&((char*)pBuf)[got], 0, amt-got);
2999    return SQLITE_IOERR_SHORT_READ;
3000  }
3001}
3002
3003/*
3004** Seek to the offset in id->offset then read cnt bytes into pBuf.
3005** Return the number of bytes actually read.  Update the offset.
3006**
3007** To avoid stomping the errno value on a failed write the lastErrno value
3008** is set before returning.
3009*/
3010static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3011  int got;
3012#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3013  i64 newOffset;
3014#endif
3015  TIMER_START;
3016#if defined(USE_PREAD)
3017  do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
3018#elif defined(USE_PREAD64)
3019  do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
3020#else
3021  newOffset = lseek(id->h, offset, SEEK_SET);
3022  SimulateIOError( newOffset-- );
3023  if( newOffset!=offset ){
3024    if( newOffset == -1 ){
3025      ((unixFile*)id)->lastErrno = errno;
3026    }else{
3027      ((unixFile*)id)->lastErrno = 0;
3028    }
3029    return -1;
3030  }
3031  do{ got = osWrite(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
3032#endif
3033  TIMER_END;
3034  if( got<0 ){
3035    ((unixFile*)id)->lastErrno = errno;
3036  }
3037
3038  OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
3039  return got;
3040}
3041
3042
3043/*
3044** Write data from a buffer into a file.  Return SQLITE_OK on success
3045** or some other error code on failure.
3046*/
3047static int unixWrite(
3048  sqlite3_file *id,
3049  const void *pBuf,
3050  int amt,
3051  sqlite3_int64 offset
3052){
3053  unixFile *pFile = (unixFile*)id;
3054  int wrote = 0;
3055  assert( id );
3056  assert( amt>0 );
3057
3058  /* If this is a database file (not a journal, master-journal or temp
3059  ** file), the bytes in the locking range should never be read or written. */
3060#if 0
3061  assert( pFile->pUnused==0
3062       || offset>=PENDING_BYTE+512
3063       || offset+amt<=PENDING_BYTE
3064  );
3065#endif
3066
3067#ifndef NDEBUG
3068  /* If we are doing a normal write to a database file (as opposed to
3069  ** doing a hot-journal rollback or a write to some file other than a
3070  ** normal database file) then record the fact that the database
3071  ** has changed.  If the transaction counter is modified, record that
3072  ** fact too.
3073  */
3074  if( pFile->inNormalWrite ){
3075    pFile->dbUpdate = 1;  /* The database has been modified */
3076    if( offset<=24 && offset+amt>=27 ){
3077      int rc;
3078      char oldCntr[4];
3079      SimulateIOErrorBenign(1);
3080      rc = seekAndRead(pFile, 24, oldCntr, 4);
3081      SimulateIOErrorBenign(0);
3082      if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3083        pFile->transCntrChng = 1;  /* The transaction counter has changed */
3084      }
3085    }
3086  }
3087#endif
3088
3089  while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
3090    amt -= wrote;
3091    offset += wrote;
3092    pBuf = &((char*)pBuf)[wrote];
3093  }
3094  SimulateIOError(( wrote=(-1), amt=1 ));
3095  SimulateDiskfullError(( wrote=0, amt=1 ));
3096
3097  if( amt>0 ){
3098    if( wrote<0 ){
3099      /* lastErrno set by seekAndWrite */
3100      return SQLITE_IOERR_WRITE;
3101    }else{
3102      pFile->lastErrno = 0; /* not a system error */
3103      return SQLITE_FULL;
3104    }
3105  }
3106
3107  return SQLITE_OK;
3108}
3109
3110#ifdef SQLITE_TEST
3111/*
3112** Count the number of fullsyncs and normal syncs.  This is used to test
3113** that syncs and fullsyncs are occurring at the right times.
3114*/
3115int sqlite3_sync_count = 0;
3116int sqlite3_fullsync_count = 0;
3117#endif
3118
3119/*
3120** We do not trust systems to provide a working fdatasync().  Some do.
3121** Others do no.  To be safe, we will stick with the (slower) fsync().
3122** If you know that your system does support fdatasync() correctly,
3123** then simply compile with -Dfdatasync=fdatasync
3124*/
3125#if !defined(fdatasync) && !defined(__linux__)
3126# define fdatasync fsync
3127#endif
3128
3129/*
3130** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3131** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
3132** only available on Mac OS X.  But that could change.
3133*/
3134#ifdef F_FULLFSYNC
3135# define HAVE_FULLFSYNC 1
3136#else
3137# define HAVE_FULLFSYNC 0
3138#endif
3139
3140
3141/*
3142** The fsync() system call does not work as advertised on many
3143** unix systems.  The following procedure is an attempt to make
3144** it work better.
3145**
3146** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
3147** for testing when we want to run through the test suite quickly.
3148** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3149** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3150** or power failure will likely corrupt the database file.
3151**
3152** SQLite sets the dataOnly flag if the size of the file is unchanged.
3153** The idea behind dataOnly is that it should only write the file content
3154** to disk, not the inode.  We only set dataOnly if the file size is
3155** unchanged since the file size is part of the inode.  However,
3156** Ted Ts'o tells us that fdatasync() will also write the inode if the
3157** file size has changed.  The only real difference between fdatasync()
3158** and fsync(), Ted tells us, is that fdatasync() will not flush the
3159** inode if the mtime or owner or other inode attributes have changed.
3160** We only care about the file size, not the other file attributes, so
3161** as far as SQLite is concerned, an fdatasync() is always adequate.
3162** So, we always use fdatasync() if it is available, regardless of
3163** the value of the dataOnly flag.
3164*/
3165static int full_fsync(int fd, int fullSync, int dataOnly){
3166  int rc;
3167
3168  /* The following "ifdef/elif/else/" block has the same structure as
3169  ** the one below. It is replicated here solely to avoid cluttering
3170  ** up the real code with the UNUSED_PARAMETER() macros.
3171  */
3172#ifdef SQLITE_NO_SYNC
3173  UNUSED_PARAMETER(fd);
3174  UNUSED_PARAMETER(fullSync);
3175  UNUSED_PARAMETER(dataOnly);
3176#elif HAVE_FULLFSYNC
3177  UNUSED_PARAMETER(dataOnly);
3178#else
3179  UNUSED_PARAMETER(fullSync);
3180  UNUSED_PARAMETER(dataOnly);
3181#endif
3182
3183  /* Record the number of times that we do a normal fsync() and
3184  ** FULLSYNC.  This is used during testing to verify that this procedure
3185  ** gets called with the correct arguments.
3186  */
3187#ifdef SQLITE_TEST
3188  if( fullSync ) sqlite3_fullsync_count++;
3189  sqlite3_sync_count++;
3190#endif
3191
3192  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3193  ** no-op
3194  */
3195#ifdef SQLITE_NO_SYNC
3196  rc = SQLITE_OK;
3197#elif HAVE_FULLFSYNC
3198  if( fullSync ){
3199    rc = osFcntl(fd, F_FULLFSYNC, 0);
3200  }else{
3201    rc = 1;
3202  }
3203  /* If the FULLFSYNC failed, fall back to attempting an fsync().
3204  ** It shouldn't be possible for fullfsync to fail on the local
3205  ** file system (on OSX), so failure indicates that FULLFSYNC
3206  ** isn't supported for this file system. So, attempt an fsync
3207  ** and (for now) ignore the overhead of a superfluous fcntl call.
3208  ** It'd be better to detect fullfsync support once and avoid
3209  ** the fcntl call every time sync is called.
3210  */
3211  if( rc ) rc = fsync(fd);
3212
3213#elif defined(__APPLE__)
3214  /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3215  ** so currently we default to the macro that redefines fdatasync to fsync
3216  */
3217  rc = fsync(fd);
3218#else
3219  rc = fdatasync(fd);
3220#if OS_VXWORKS
3221  if( rc==-1 && errno==ENOTSUP ){
3222    rc = fsync(fd);
3223  }
3224#endif /* OS_VXWORKS */
3225#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3226
3227  if( OS_VXWORKS && rc!= -1 ){
3228    rc = 0;
3229  }
3230  return rc;
3231}
3232
3233/*
3234** Open a file descriptor to the directory containing file zFilename.
3235** If successful, *pFd is set to the opened file descriptor and
3236** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3237** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3238** value.
3239**
3240** The directory file descriptor is used for only one thing - to
3241** fsync() a directory to make sure file creation and deletion events
3242** are flushed to disk.  Such fsyncs are not needed on newer
3243** journaling filesystems, but are required on older filesystems.
3244**
3245** This routine can be overridden using the xSetSysCall interface.
3246** The ability to override this routine was added in support of the
3247** chromium sandbox.  Opening a directory is a security risk (we are
3248** told) so making it overrideable allows the chromium sandbox to
3249** replace this routine with a harmless no-op.  To make this routine
3250** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3251** *pFd set to a negative number.
3252**
3253** If SQLITE_OK is returned, the caller is responsible for closing
3254** the file descriptor *pFd using close().
3255*/
3256static int openDirectory(const char *zFilename, int *pFd){
3257  int ii;
3258  int fd = -1;
3259  char zDirname[MAX_PATHNAME+1];
3260
3261  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3262  for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
3263  if( ii>0 ){
3264    zDirname[ii] = '\0';
3265    fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3266    if( fd>=0 ){
3267#ifdef FD_CLOEXEC
3268      osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
3269#endif
3270      OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3271    }
3272  }
3273  *pFd = fd;
3274  return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
3275}
3276
3277/*
3278** Make sure all writes to a particular file are committed to disk.
3279**
3280** If dataOnly==0 then both the file itself and its metadata (file
3281** size, access time, etc) are synced.  If dataOnly!=0 then only the
3282** file data is synced.
3283**
3284** Under Unix, also make sure that the directory entry for the file
3285** has been created by fsync-ing the directory that contains the file.
3286** If we do not do this and we encounter a power failure, the directory
3287** entry for the journal might not exist after we reboot.  The next
3288** SQLite to access the file will not know that the journal exists (because
3289** the directory entry for the journal was never created) and the transaction
3290** will not roll back - possibly leading to database corruption.
3291*/
3292static int unixSync(sqlite3_file *id, int flags){
3293  int rc;
3294  unixFile *pFile = (unixFile*)id;
3295
3296  int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3297  int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3298
3299  /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3300  assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3301      || (flags&0x0F)==SQLITE_SYNC_FULL
3302  );
3303
3304  /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3305  ** line is to test that doing so does not cause any problems.
3306  */
3307  SimulateDiskfullError( return SQLITE_FULL );
3308
3309  assert( pFile );
3310  OSTRACE(("SYNC    %-3d\n", pFile->h));
3311  rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3312  SimulateIOError( rc=1 );
3313  if( rc ){
3314    pFile->lastErrno = errno;
3315    return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3316  }
3317
3318  /* Also fsync the directory containing the file if the DIRSYNC flag
3319  ** is set.  This is a one-time occurrance.  Many systems (examples: AIX)
3320  ** are unable to fsync a directory, so ignore errors on the fsync.
3321  */
3322  if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3323    int dirfd;
3324    OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3325            HAVE_FULLFSYNC, isFullsync));
3326    rc = osOpenDirectory(pFile->zPath, &dirfd);
3327    if( rc==SQLITE_OK && dirfd>=0 ){
3328      full_fsync(dirfd, 0, 0);
3329      robust_close(pFile, dirfd, __LINE__);
3330    }else if( rc==SQLITE_CANTOPEN ){
3331      rc = SQLITE_OK;
3332    }
3333    pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3334  }
3335  return rc;
3336}
3337
3338/*
3339** Truncate an open file to a specified size
3340*/
3341static int unixTruncate(sqlite3_file *id, i64 nByte){
3342  unixFile *pFile = (unixFile *)id;
3343  int rc;
3344  assert( pFile );
3345  SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3346
3347  /* If the user has configured a chunk-size for this file, truncate the
3348  ** file so that it consists of an integer number of chunks (i.e. the
3349  ** actual file size after the operation may be larger than the requested
3350  ** size).
3351  */
3352  if( pFile->szChunk ){
3353    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3354  }
3355
3356  rc = robust_ftruncate(pFile->h, (off_t)nByte);
3357  if( rc ){
3358    pFile->lastErrno = errno;
3359    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3360  }else{
3361#ifndef NDEBUG
3362    /* If we are doing a normal write to a database file (as opposed to
3363    ** doing a hot-journal rollback or a write to some file other than a
3364    ** normal database file) and we truncate the file to zero length,
3365    ** that effectively updates the change counter.  This might happen
3366    ** when restoring a database using the backup API from a zero-length
3367    ** source.
3368    */
3369    if( pFile->inNormalWrite && nByte==0 ){
3370      pFile->transCntrChng = 1;
3371    }
3372#endif
3373
3374    return SQLITE_OK;
3375  }
3376}
3377
3378/*
3379** Determine the current size of a file in bytes
3380*/
3381static int unixFileSize(sqlite3_file *id, i64 *pSize){
3382  int rc;
3383  struct stat buf;
3384  assert( id );
3385  rc = osFstat(((unixFile*)id)->h, &buf);
3386  SimulateIOError( rc=1 );
3387  if( rc!=0 ){
3388    ((unixFile*)id)->lastErrno = errno;
3389    return SQLITE_IOERR_FSTAT;
3390  }
3391  *pSize = buf.st_size;
3392
3393  /* When opening a zero-size database, the findInodeInfo() procedure
3394  ** writes a single byte into that file in order to work around a bug
3395  ** in the OS-X msdos filesystem.  In order to avoid problems with upper
3396  ** layers, we need to report this file size as zero even though it is
3397  ** really 1.   Ticket #3260.
3398  */
3399  if( *pSize==1 ) *pSize = 0;
3400
3401
3402  return SQLITE_OK;
3403}
3404
3405#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3406/*
3407** Handler for proxy-locking file-control verbs.  Defined below in the
3408** proxying locking division.
3409*/
3410static int proxyFileControl(sqlite3_file*,int,void*);
3411#endif
3412
3413/*
3414** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3415** file-control operation.
3416**
3417** If the user has configured a chunk-size for this file, it could be
3418** that the file needs to be extended at this point. Otherwise, the
3419** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix.
3420*/
3421static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3422  if( pFile->szChunk ){
3423    i64 nSize;                    /* Required file size */
3424    struct stat buf;              /* Used to hold return values of fstat() */
3425
3426    if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
3427
3428    nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3429    if( nSize>(i64)buf.st_size ){
3430
3431#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3432      /* The code below is handling the return value of osFallocate()
3433      ** correctly. posix_fallocate() is defined to "returns zero on success,
3434      ** or an error number on  failure". See the manpage for details. */
3435      int err;
3436      do{
3437        err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3438      }while( err==EINTR );
3439      if( err ) return SQLITE_IOERR_WRITE;
3440#else
3441      /* If the OS does not have posix_fallocate(), fake it. First use
3442      ** ftruncate() to set the file size, then write a single byte to
3443      ** the last byte in each block within the extended region. This
3444      ** is the same technique used by glibc to implement posix_fallocate()
3445      ** on systems that do not have a real fallocate() system call.
3446      */
3447      int nBlk = buf.st_blksize;  /* File-system block size */
3448      i64 iWrite;                 /* Next offset to write to */
3449
3450      if( robust_ftruncate(pFile->h, nSize) ){
3451        pFile->lastErrno = errno;
3452        return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3453      }
3454      iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
3455      while( iWrite<nSize ){
3456        int nWrite = seekAndWrite(pFile, iWrite, "", 1);
3457        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3458        iWrite += nBlk;
3459      }
3460#endif
3461    }
3462  }
3463
3464  return SQLITE_OK;
3465}
3466
3467/*
3468** Information and control of an open file handle.
3469*/
3470static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3471  switch( op ){
3472    case SQLITE_FCNTL_LOCKSTATE: {
3473      *(int*)pArg = ((unixFile*)id)->eFileLock;
3474      return SQLITE_OK;
3475    }
3476    case SQLITE_LAST_ERRNO: {
3477      *(int*)pArg = ((unixFile*)id)->lastErrno;
3478      return SQLITE_OK;
3479    }
3480    case SQLITE_FCNTL_CHUNK_SIZE: {
3481      ((unixFile*)id)->szChunk = *(int *)pArg;
3482      return SQLITE_OK;
3483    }
3484    case SQLITE_FCNTL_SIZE_HINT: {
3485      return fcntlSizeHint((unixFile *)id, *(i64 *)pArg);
3486    }
3487#ifndef NDEBUG
3488    /* The pager calls this method to signal that it has done
3489    ** a rollback and that the database is therefore unchanged and
3490    ** it hence it is OK for the transaction change counter to be
3491    ** unchanged.
3492    */
3493    case SQLITE_FCNTL_DB_UNCHANGED: {
3494      ((unixFile*)id)->dbUpdate = 0;
3495      return SQLITE_OK;
3496    }
3497#endif
3498#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3499    case SQLITE_SET_LOCKPROXYFILE:
3500    case SQLITE_GET_LOCKPROXYFILE: {
3501      return proxyFileControl(id,op,pArg);
3502    }
3503#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3504    case SQLITE_FCNTL_SYNC_OMITTED: {
3505      return SQLITE_OK;  /* A no-op */
3506    }
3507  }
3508  return SQLITE_NOTFOUND;
3509}
3510
3511/*
3512** Return the sector size in bytes of the underlying block device for
3513** the specified file. This is almost always 512 bytes, but may be
3514** larger for some devices.
3515**
3516** SQLite code assumes this function cannot fail. It also assumes that
3517** if two files are created in the same file-system directory (i.e.
3518** a database and its journal file) that the sector size will be the
3519** same for both.
3520*/
3521static int unixSectorSize(sqlite3_file *NotUsed){
3522  UNUSED_PARAMETER(NotUsed);
3523  return SQLITE_DEFAULT_SECTOR_SIZE;
3524}
3525
3526/*
3527** Return the device characteristics for the file. This is always 0 for unix.
3528*/
3529static int unixDeviceCharacteristics(sqlite3_file *NotUsed){
3530  UNUSED_PARAMETER(NotUsed);
3531  return 0;
3532}
3533
3534#ifndef SQLITE_OMIT_WAL
3535
3536
3537/*
3538** Object used to represent an shared memory buffer.
3539**
3540** When multiple threads all reference the same wal-index, each thread
3541** has its own unixShm object, but they all point to a single instance
3542** of this unixShmNode object.  In other words, each wal-index is opened
3543** only once per process.
3544**
3545** Each unixShmNode object is connected to a single unixInodeInfo object.
3546** We could coalesce this object into unixInodeInfo, but that would mean
3547** every open file that does not use shared memory (in other words, most
3548** open files) would have to carry around this extra information.  So
3549** the unixInodeInfo object contains a pointer to this unixShmNode object
3550** and the unixShmNode object is created only when needed.
3551**
3552** unixMutexHeld() must be true when creating or destroying
3553** this object or while reading or writing the following fields:
3554**
3555**      nRef
3556**
3557** The following fields are read-only after the object is created:
3558**
3559**      fid
3560**      zFilename
3561**
3562** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
3563** unixMutexHeld() is true when reading or writing any other field
3564** in this structure.
3565*/
3566struct unixShmNode {
3567  unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
3568  sqlite3_mutex *mutex;      /* Mutex to access this object */
3569  char *zFilename;           /* Name of the mmapped file */
3570  int h;                     /* Open file descriptor */
3571  int szRegion;              /* Size of shared-memory regions */
3572  int nRegion;               /* Size of array apRegion */
3573  char **apRegion;           /* Array of mapped shared-memory regions */
3574  int nRef;                  /* Number of unixShm objects pointing to this */
3575  unixShm *pFirst;           /* All unixShm objects pointing to this */
3576#ifdef SQLITE_DEBUG
3577  u8 exclMask;               /* Mask of exclusive locks held */
3578  u8 sharedMask;             /* Mask of shared locks held */
3579  u8 nextShmId;              /* Next available unixShm.id value */
3580#endif
3581};
3582
3583/*
3584** Structure used internally by this VFS to record the state of an
3585** open shared memory connection.
3586**
3587** The following fields are initialized when this object is created and
3588** are read-only thereafter:
3589**
3590**    unixShm.pFile
3591**    unixShm.id
3592**
3593** All other fields are read/write.  The unixShm.pFile->mutex must be held
3594** while accessing any read/write fields.
3595*/
3596struct unixShm {
3597  unixShmNode *pShmNode;     /* The underlying unixShmNode object */
3598  unixShm *pNext;            /* Next unixShm with the same unixShmNode */
3599  u8 hasMutex;               /* True if holding the unixShmNode mutex */
3600  u16 sharedMask;            /* Mask of shared locks held */
3601  u16 exclMask;              /* Mask of exclusive locks held */
3602#ifdef SQLITE_DEBUG
3603  u8 id;                     /* Id of this connection within its unixShmNode */
3604#endif
3605};
3606
3607/*
3608** Constants used for locking
3609*/
3610#define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
3611#define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
3612
3613/*
3614** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
3615**
3616** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
3617** otherwise.
3618*/
3619static int unixShmSystemLock(
3620  unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
3621  int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
3622  int ofst,              /* First byte of the locking range */
3623  int n                  /* Number of bytes to lock */
3624){
3625  struct flock f;       /* The posix advisory locking structure */
3626  int rc = SQLITE_OK;   /* Result code form fcntl() */
3627
3628  /* Access to the unixShmNode object is serialized by the caller */
3629  assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
3630
3631  /* Shared locks never span more than one byte */
3632  assert( n==1 || lockType!=F_RDLCK );
3633
3634  /* Locks are within range */
3635  assert( n>=1 && n<SQLITE_SHM_NLOCK );
3636
3637  if( pShmNode->h>=0 ){
3638    /* Initialize the locking parameters */
3639    memset(&f, 0, sizeof(f));
3640    f.l_type = lockType;
3641    f.l_whence = SEEK_SET;
3642    f.l_start = ofst;
3643    f.l_len = n;
3644
3645    rc = osFcntl(pShmNode->h, F_SETLK, &f);
3646    rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
3647  }
3648
3649  /* Update the global lock state and do debug tracing */
3650#ifdef SQLITE_DEBUG
3651  { u16 mask;
3652  OSTRACE(("SHM-LOCK "));
3653  mask = (1<<(ofst+n)) - (1<<ofst);
3654  if( rc==SQLITE_OK ){
3655    if( lockType==F_UNLCK ){
3656      OSTRACE(("unlock %d ok", ofst));
3657      pShmNode->exclMask &= ~mask;
3658      pShmNode->sharedMask &= ~mask;
3659    }else if( lockType==F_RDLCK ){
3660      OSTRACE(("read-lock %d ok", ofst));
3661      pShmNode->exclMask &= ~mask;
3662      pShmNode->sharedMask |= mask;
3663    }else{
3664      assert( lockType==F_WRLCK );
3665      OSTRACE(("write-lock %d ok", ofst));
3666      pShmNode->exclMask |= mask;
3667      pShmNode->sharedMask &= ~mask;
3668    }
3669  }else{
3670    if( lockType==F_UNLCK ){
3671      OSTRACE(("unlock %d failed", ofst));
3672    }else if( lockType==F_RDLCK ){
3673      OSTRACE(("read-lock failed"));
3674    }else{
3675      assert( lockType==F_WRLCK );
3676      OSTRACE(("write-lock %d failed", ofst));
3677    }
3678  }
3679  OSTRACE((" - afterwards %03x,%03x\n",
3680           pShmNode->sharedMask, pShmNode->exclMask));
3681  }
3682#endif
3683
3684  return rc;
3685}
3686
3687
3688/*
3689** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
3690**
3691** This is not a VFS shared-memory method; it is a utility function called
3692** by VFS shared-memory methods.
3693*/
3694static void unixShmPurge(unixFile *pFd){
3695  unixShmNode *p = pFd->pInode->pShmNode;
3696  assert( unixMutexHeld() );
3697  if( p && p->nRef==0 ){
3698    int i;
3699    assert( p->pInode==pFd->pInode );
3700    if( p->mutex ) sqlite3_mutex_free(p->mutex);
3701    for(i=0; i<p->nRegion; i++){
3702      if( p->h>=0 ){
3703        munmap(p->apRegion[i], p->szRegion);
3704      }else{
3705        sqlite3_free(p->apRegion[i]);
3706      }
3707    }
3708    sqlite3_free(p->apRegion);
3709    if( p->h>=0 ){
3710      robust_close(pFd, p->h, __LINE__);
3711      p->h = -1;
3712    }
3713    p->pInode->pShmNode = 0;
3714    sqlite3_free(p);
3715  }
3716}
3717
3718/*
3719** Open a shared-memory area associated with open database file pDbFd.
3720** This particular implementation uses mmapped files.
3721**
3722** The file used to implement shared-memory is in the same directory
3723** as the open database file and has the same name as the open database
3724** file with the "-shm" suffix added.  For example, if the database file
3725** is "/home/user1/config.db" then the file that is created and mmapped
3726** for shared memory will be called "/home/user1/config.db-shm".
3727**
3728** Another approach to is to use files in /dev/shm or /dev/tmp or an
3729** some other tmpfs mount. But if a file in a different directory
3730** from the database file is used, then differing access permissions
3731** or a chroot() might cause two different processes on the same
3732** database to end up using different files for shared memory -
3733** meaning that their memory would not really be shared - resulting
3734** in database corruption.  Nevertheless, this tmpfs file usage
3735** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
3736** or the equivalent.  The use of the SQLITE_SHM_DIRECTORY compile-time
3737** option results in an incompatible build of SQLite;  builds of SQLite
3738** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
3739** same database file at the same time, database corruption will likely
3740** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
3741** "unsupported" and may go away in a future SQLite release.
3742**
3743** When opening a new shared-memory file, if no other instances of that
3744** file are currently open, in this process or in other processes, then
3745** the file must be truncated to zero length or have its header cleared.
3746**
3747** If the original database file (pDbFd) is using the "unix-excl" VFS
3748** that means that an exclusive lock is held on the database file and
3749** that no other processes are able to read or write the database.  In
3750** that case, we do not really need shared memory.  No shared memory
3751** file is created.  The shared memory will be simulated with heap memory.
3752*/
3753static int unixOpenSharedMemory(unixFile *pDbFd){
3754  struct unixShm *p = 0;          /* The connection to be opened */
3755  struct unixShmNode *pShmNode;   /* The underlying mmapped file */
3756  int rc;                         /* Result code */
3757  unixInodeInfo *pInode;          /* The inode of fd */
3758  char *zShmFilename;             /* Name of the file used for SHM */
3759  int nShmFilename;               /* Size of the SHM filename in bytes */
3760
3761  /* Allocate space for the new unixShm object. */
3762  p = sqlite3_malloc( sizeof(*p) );
3763  if( p==0 ) return SQLITE_NOMEM;
3764  memset(p, 0, sizeof(*p));
3765  assert( pDbFd->pShm==0 );
3766
3767  /* Check to see if a unixShmNode object already exists. Reuse an existing
3768  ** one if present. Create a new one if necessary.
3769  */
3770  unixEnterMutex();
3771  pInode = pDbFd->pInode;
3772  pShmNode = pInode->pShmNode;
3773  if( pShmNode==0 ){
3774    struct stat sStat;                 /* fstat() info for database file */
3775
3776    /* Call fstat() to figure out the permissions on the database file. If
3777    ** a new *-shm file is created, an attempt will be made to create it
3778    ** with the same permissions. The actual permissions the file is created
3779    ** with are subject to the current umask setting.
3780    */
3781    if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
3782      rc = SQLITE_IOERR_FSTAT;
3783      goto shm_open_err;
3784    }
3785
3786#ifdef SQLITE_SHM_DIRECTORY
3787    nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30;
3788#else
3789    nShmFilename = 5 + (int)strlen(pDbFd->zPath);
3790#endif
3791    pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
3792    if( pShmNode==0 ){
3793      rc = SQLITE_NOMEM;
3794      goto shm_open_err;
3795    }
3796    memset(pShmNode, 0, sizeof(*pShmNode));
3797    zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
3798#ifdef SQLITE_SHM_DIRECTORY
3799    sqlite3_snprintf(nShmFilename, zShmFilename,
3800                     SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
3801                     (u32)sStat.st_ino, (u32)sStat.st_dev);
3802#else
3803    sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
3804#endif
3805    pShmNode->h = -1;
3806    pDbFd->pInode->pShmNode = pShmNode;
3807    pShmNode->pInode = pDbFd->pInode;
3808    pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
3809    if( pShmNode->mutex==0 ){
3810      rc = SQLITE_NOMEM;
3811      goto shm_open_err;
3812    }
3813
3814    if( pInode->bProcessLock==0 ){
3815      pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
3816                               (sStat.st_mode & 0777));
3817      if( pShmNode->h<0 ){
3818        rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
3819        goto shm_open_err;
3820      }
3821
3822      /* Check to see if another process is holding the dead-man switch.
3823      ** If not, truncate the file to zero length.
3824      */
3825      rc = SQLITE_OK;
3826      if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
3827        if( robust_ftruncate(pShmNode->h, 0) ){
3828          rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
3829        }
3830      }
3831      if( rc==SQLITE_OK ){
3832        rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
3833      }
3834      if( rc ) goto shm_open_err;
3835    }
3836  }
3837
3838  /* Make the new connection a child of the unixShmNode */
3839  p->pShmNode = pShmNode;
3840#ifdef SQLITE_DEBUG
3841  p->id = pShmNode->nextShmId++;
3842#endif
3843  pShmNode->nRef++;
3844  pDbFd->pShm = p;
3845  unixLeaveMutex();
3846
3847  /* The reference count on pShmNode has already been incremented under
3848  ** the cover of the unixEnterMutex() mutex and the pointer from the
3849  ** new (struct unixShm) object to the pShmNode has been set. All that is
3850  ** left to do is to link the new object into the linked list starting
3851  ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
3852  ** mutex.
3853  */
3854  sqlite3_mutex_enter(pShmNode->mutex);
3855  p->pNext = pShmNode->pFirst;
3856  pShmNode->pFirst = p;
3857  sqlite3_mutex_leave(pShmNode->mutex);
3858  return SQLITE_OK;
3859
3860  /* Jump here on any error */
3861shm_open_err:
3862  unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
3863  sqlite3_free(p);
3864  unixLeaveMutex();
3865  return rc;
3866}
3867
3868/*
3869** This function is called to obtain a pointer to region iRegion of the
3870** shared-memory associated with the database file fd. Shared-memory regions
3871** are numbered starting from zero. Each shared-memory region is szRegion
3872** bytes in size.
3873**
3874** If an error occurs, an error code is returned and *pp is set to NULL.
3875**
3876** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
3877** region has not been allocated (by any client, including one running in a
3878** separate process), then *pp is set to NULL and SQLITE_OK returned. If
3879** bExtend is non-zero and the requested shared-memory region has not yet
3880** been allocated, it is allocated by this function.
3881**
3882** If the shared-memory region has already been allocated or is allocated by
3883** this call as described above, then it is mapped into this processes
3884** address space (if it is not already), *pp is set to point to the mapped
3885** memory and SQLITE_OK returned.
3886*/
3887static int unixShmMap(
3888  sqlite3_file *fd,               /* Handle open on database file */
3889  int iRegion,                    /* Region to retrieve */
3890  int szRegion,                   /* Size of regions */
3891  int bExtend,                    /* True to extend file if necessary */
3892  void volatile **pp              /* OUT: Mapped memory */
3893){
3894  unixFile *pDbFd = (unixFile*)fd;
3895  unixShm *p;
3896  unixShmNode *pShmNode;
3897  int rc = SQLITE_OK;
3898
3899  /* If the shared-memory file has not yet been opened, open it now. */
3900  if( pDbFd->pShm==0 ){
3901    rc = unixOpenSharedMemory(pDbFd);
3902    if( rc!=SQLITE_OK ) return rc;
3903  }
3904
3905  p = pDbFd->pShm;
3906  pShmNode = p->pShmNode;
3907  sqlite3_mutex_enter(pShmNode->mutex);
3908  assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
3909  assert( pShmNode->pInode==pDbFd->pInode );
3910  assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
3911  assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
3912
3913  if( pShmNode->nRegion<=iRegion ){
3914    char **apNew;                      /* New apRegion[] array */
3915    int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */
3916    struct stat sStat;                 /* Used by fstat() */
3917
3918    pShmNode->szRegion = szRegion;
3919
3920    if( pShmNode->h>=0 ){
3921      /* The requested region is not mapped into this processes address space.
3922      ** Check to see if it has been allocated (i.e. if the wal-index file is
3923      ** large enough to contain the requested region).
3924      */
3925      if( osFstat(pShmNode->h, &sStat) ){
3926        rc = SQLITE_IOERR_SHMSIZE;
3927        goto shmpage_out;
3928      }
3929
3930      if( sStat.st_size<nByte ){
3931        /* The requested memory region does not exist. If bExtend is set to
3932        ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
3933        **
3934        ** Alternatively, if bExtend is true, use ftruncate() to allocate
3935        ** the requested memory region.
3936        */
3937        if( !bExtend ) goto shmpage_out;
3938        if( robust_ftruncate(pShmNode->h, nByte) ){
3939          rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
3940                            pShmNode->zFilename);
3941          goto shmpage_out;
3942        }
3943      }
3944    }
3945
3946    /* Map the requested memory region into this processes address space. */
3947    apNew = (char **)sqlite3_realloc(
3948        pShmNode->apRegion, (iRegion+1)*sizeof(char *)
3949    );
3950    if( !apNew ){
3951      rc = SQLITE_IOERR_NOMEM;
3952      goto shmpage_out;
3953    }
3954    pShmNode->apRegion = apNew;
3955    while(pShmNode->nRegion<=iRegion){
3956      void *pMem;
3957      if( pShmNode->h>=0 ){
3958        pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE,
3959            MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
3960        );
3961        if( pMem==MAP_FAILED ){
3962          rc = SQLITE_IOERR;
3963          goto shmpage_out;
3964        }
3965      }else{
3966        pMem = sqlite3_malloc(szRegion);
3967        if( pMem==0 ){
3968          rc = SQLITE_NOMEM;
3969          goto shmpage_out;
3970        }
3971        memset(pMem, 0, szRegion);
3972      }
3973      pShmNode->apRegion[pShmNode->nRegion] = pMem;
3974      pShmNode->nRegion++;
3975    }
3976  }
3977
3978shmpage_out:
3979  if( pShmNode->nRegion>iRegion ){
3980    *pp = pShmNode->apRegion[iRegion];
3981  }else{
3982    *pp = 0;
3983  }
3984  sqlite3_mutex_leave(pShmNode->mutex);
3985  return rc;
3986}
3987
3988/*
3989** Change the lock state for a shared-memory segment.
3990**
3991** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
3992** different here than in posix.  In xShmLock(), one can go from unlocked
3993** to shared and back or from unlocked to exclusive and back.  But one may
3994** not go from shared to exclusive or from exclusive to shared.
3995*/
3996static int unixShmLock(
3997  sqlite3_file *fd,          /* Database file holding the shared memory */
3998  int ofst,                  /* First lock to acquire or release */
3999  int n,                     /* Number of locks to acquire or release */
4000  int flags                  /* What to do with the lock */
4001){
4002  unixFile *pDbFd = (unixFile*)fd;      /* Connection holding shared memory */
4003  unixShm *p = pDbFd->pShm;             /* The shared memory being locked */
4004  unixShm *pX;                          /* For looping over all siblings */
4005  unixShmNode *pShmNode = p->pShmNode;  /* The underlying file iNode */
4006  int rc = SQLITE_OK;                   /* Result code */
4007  u16 mask;                             /* Mask of locks to take or release */
4008
4009  assert( pShmNode==pDbFd->pInode->pShmNode );
4010  assert( pShmNode->pInode==pDbFd->pInode );
4011  assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4012  assert( n>=1 );
4013  assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4014       || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4015       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4016       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4017  assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4018  assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4019  assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4020
4021  mask = (1<<(ofst+n)) - (1<<ofst);
4022  assert( n>1 || mask==(1<<ofst) );
4023  sqlite3_mutex_enter(pShmNode->mutex);
4024  if( flags & SQLITE_SHM_UNLOCK ){
4025    u16 allMask = 0; /* Mask of locks held by siblings */
4026
4027    /* See if any siblings hold this same lock */
4028    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4029      if( pX==p ) continue;
4030      assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4031      allMask |= pX->sharedMask;
4032    }
4033
4034    /* Unlock the system-level locks */
4035    if( (mask & allMask)==0 ){
4036      rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4037    }else{
4038      rc = SQLITE_OK;
4039    }
4040
4041    /* Undo the local locks */
4042    if( rc==SQLITE_OK ){
4043      p->exclMask &= ~mask;
4044      p->sharedMask &= ~mask;
4045    }
4046  }else if( flags & SQLITE_SHM_SHARED ){
4047    u16 allShared = 0;  /* Union of locks held by connections other than "p" */
4048
4049    /* Find out which shared locks are already held by sibling connections.
4050    ** If any sibling already holds an exclusive lock, go ahead and return
4051    ** SQLITE_BUSY.
4052    */
4053    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4054      if( (pX->exclMask & mask)!=0 ){
4055        rc = SQLITE_BUSY;
4056        break;
4057      }
4058      allShared |= pX->sharedMask;
4059    }
4060
4061    /* Get shared locks at the system level, if necessary */
4062    if( rc==SQLITE_OK ){
4063      if( (allShared & mask)==0 ){
4064        rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4065      }else{
4066        rc = SQLITE_OK;
4067      }
4068    }
4069
4070    /* Get the local shared locks */
4071    if( rc==SQLITE_OK ){
4072      p->sharedMask |= mask;
4073    }
4074  }else{
4075    /* Make sure no sibling connections hold locks that will block this
4076    ** lock.  If any do, return SQLITE_BUSY right away.
4077    */
4078    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4079      if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4080        rc = SQLITE_BUSY;
4081        break;
4082      }
4083    }
4084
4085    /* Get the exclusive locks at the system level.  Then if successful
4086    ** also mark the local connection as being locked.
4087    */
4088    if( rc==SQLITE_OK ){
4089      rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
4090      if( rc==SQLITE_OK ){
4091        assert( (p->sharedMask & mask)==0 );
4092        p->exclMask |= mask;
4093      }
4094    }
4095  }
4096  sqlite3_mutex_leave(pShmNode->mutex);
4097  OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4098           p->id, getpid(), p->sharedMask, p->exclMask));
4099  return rc;
4100}
4101
4102/*
4103** Implement a memory barrier or memory fence on shared memory.
4104**
4105** All loads and stores begun before the barrier must complete before
4106** any load or store begun after the barrier.
4107*/
4108static void unixShmBarrier(
4109  sqlite3_file *fd                /* Database file holding the shared memory */
4110){
4111  UNUSED_PARAMETER(fd);
4112  unixEnterMutex();
4113  unixLeaveMutex();
4114}
4115
4116/*
4117** Close a connection to shared-memory.  Delete the underlying
4118** storage if deleteFlag is true.
4119**
4120** If there is no shared memory associated with the connection then this
4121** routine is a harmless no-op.
4122*/
4123static int unixShmUnmap(
4124  sqlite3_file *fd,               /* The underlying database file */
4125  int deleteFlag                  /* Delete shared-memory if true */
4126){
4127  unixShm *p;                     /* The connection to be closed */
4128  unixShmNode *pShmNode;          /* The underlying shared-memory file */
4129  unixShm **pp;                   /* For looping over sibling connections */
4130  unixFile *pDbFd;                /* The underlying database file */
4131
4132  pDbFd = (unixFile*)fd;
4133  p = pDbFd->pShm;
4134  if( p==0 ) return SQLITE_OK;
4135  pShmNode = p->pShmNode;
4136
4137  assert( pShmNode==pDbFd->pInode->pShmNode );
4138  assert( pShmNode->pInode==pDbFd->pInode );
4139
4140  /* Remove connection p from the set of connections associated
4141  ** with pShmNode */
4142  sqlite3_mutex_enter(pShmNode->mutex);
4143  for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4144  *pp = p->pNext;
4145
4146  /* Free the connection p */
4147  sqlite3_free(p);
4148  pDbFd->pShm = 0;
4149  sqlite3_mutex_leave(pShmNode->mutex);
4150
4151  /* If pShmNode->nRef has reached 0, then close the underlying
4152  ** shared-memory file, too */
4153  unixEnterMutex();
4154  assert( pShmNode->nRef>0 );
4155  pShmNode->nRef--;
4156  if( pShmNode->nRef==0 ){
4157    if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
4158    unixShmPurge(pDbFd);
4159  }
4160  unixLeaveMutex();
4161
4162  return SQLITE_OK;
4163}
4164
4165
4166#else
4167# define unixShmMap     0
4168# define unixShmLock    0
4169# define unixShmBarrier 0
4170# define unixShmUnmap   0
4171#endif /* #ifndef SQLITE_OMIT_WAL */
4172
4173/*
4174** Here ends the implementation of all sqlite3_file methods.
4175**
4176********************** End sqlite3_file Methods *******************************
4177******************************************************************************/
4178
4179/*
4180** This division contains definitions of sqlite3_io_methods objects that
4181** implement various file locking strategies.  It also contains definitions
4182** of "finder" functions.  A finder-function is used to locate the appropriate
4183** sqlite3_io_methods object for a particular database file.  The pAppData
4184** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4185** the correct finder-function for that VFS.
4186**
4187** Most finder functions return a pointer to a fixed sqlite3_io_methods
4188** object.  The only interesting finder-function is autolockIoFinder, which
4189** looks at the filesystem type and tries to guess the best locking
4190** strategy from that.
4191**
4192** For finder-funtion F, two objects are created:
4193**
4194**    (1) The real finder-function named "FImpt()".
4195**
4196**    (2) A constant pointer to this function named just "F".
4197**
4198**
4199** A pointer to the F pointer is used as the pAppData value for VFS
4200** objects.  We have to do this instead of letting pAppData point
4201** directly at the finder-function since C90 rules prevent a void*
4202** from be cast into a function pointer.
4203**
4204**
4205** Each instance of this macro generates two objects:
4206**
4207**   *  A constant sqlite3_io_methods object call METHOD that has locking
4208**      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4209**
4210**   *  An I/O method finder function called FINDER that returns a pointer
4211**      to the METHOD object in the previous bullet.
4212*/
4213#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK)      \
4214static const sqlite3_io_methods METHOD = {                                   \
4215   VERSION,                    /* iVersion */                                \
4216   CLOSE,                      /* xClose */                                  \
4217   unixRead,                   /* xRead */                                   \
4218   unixWrite,                  /* xWrite */                                  \
4219   unixTruncate,               /* xTruncate */                               \
4220   unixSync,                   /* xSync */                                   \
4221   unixFileSize,               /* xFileSize */                               \
4222   LOCK,                       /* xLock */                                   \
4223   UNLOCK,                     /* xUnlock */                                 \
4224   CKLOCK,                     /* xCheckReservedLock */                      \
4225   unixFileControl,            /* xFileControl */                            \
4226   unixSectorSize,             /* xSectorSize */                             \
4227   unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
4228   unixShmMap,                 /* xShmMap */                                 \
4229   unixShmLock,                /* xShmLock */                                \
4230   unixShmBarrier,             /* xShmBarrier */                             \
4231   unixShmUnmap                /* xShmUnmap */                               \
4232};                                                                           \
4233static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
4234  UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
4235  return &METHOD;                                                            \
4236}                                                                            \
4237static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
4238    = FINDER##Impl;
4239
4240/*
4241** Here are all of the sqlite3_io_methods objects for each of the
4242** locking strategies.  Functions that return pointers to these methods
4243** are also created.
4244*/
4245IOMETHODS(
4246  posixIoFinder,            /* Finder function name */
4247  posixIoMethods,           /* sqlite3_io_methods object name */
4248  2,                        /* shared memory is enabled */
4249  unixClose,                /* xClose method */
4250  unixLock,                 /* xLock method */
4251  unixUnlock,               /* xUnlock method */
4252  unixCheckReservedLock     /* xCheckReservedLock method */
4253)
4254IOMETHODS(
4255  nolockIoFinder,           /* Finder function name */
4256  nolockIoMethods,          /* sqlite3_io_methods object name */
4257  1,                        /* shared memory is disabled */
4258  nolockClose,              /* xClose method */
4259  nolockLock,               /* xLock method */
4260  nolockUnlock,             /* xUnlock method */
4261  nolockCheckReservedLock   /* xCheckReservedLock method */
4262)
4263IOMETHODS(
4264  dotlockIoFinder,          /* Finder function name */
4265  dotlockIoMethods,         /* sqlite3_io_methods object name */
4266  1,                        /* shared memory is disabled */
4267  dotlockClose,             /* xClose method */
4268  dotlockLock,              /* xLock method */
4269  dotlockUnlock,            /* xUnlock method */
4270  dotlockCheckReservedLock  /* xCheckReservedLock method */
4271)
4272
4273#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
4274IOMETHODS(
4275  flockIoFinder,            /* Finder function name */
4276  flockIoMethods,           /* sqlite3_io_methods object name */
4277  1,                        /* shared memory is disabled */
4278  flockClose,               /* xClose method */
4279  flockLock,                /* xLock method */
4280  flockUnlock,              /* xUnlock method */
4281  flockCheckReservedLock    /* xCheckReservedLock method */
4282)
4283#endif
4284
4285#if OS_VXWORKS
4286IOMETHODS(
4287  semIoFinder,              /* Finder function name */
4288  semIoMethods,             /* sqlite3_io_methods object name */
4289  1,                        /* shared memory is disabled */
4290  semClose,                 /* xClose method */
4291  semLock,                  /* xLock method */
4292  semUnlock,                /* xUnlock method */
4293  semCheckReservedLock      /* xCheckReservedLock method */
4294)
4295#endif
4296
4297#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4298IOMETHODS(
4299  afpIoFinder,              /* Finder function name */
4300  afpIoMethods,             /* sqlite3_io_methods object name */
4301  1,                        /* shared memory is disabled */
4302  afpClose,                 /* xClose method */
4303  afpLock,                  /* xLock method */
4304  afpUnlock,                /* xUnlock method */
4305  afpCheckReservedLock      /* xCheckReservedLock method */
4306)
4307#endif
4308
4309/*
4310** The proxy locking method is a "super-method" in the sense that it
4311** opens secondary file descriptors for the conch and lock files and
4312** it uses proxy, dot-file, AFP, and flock() locking methods on those
4313** secondary files.  For this reason, the division that implements
4314** proxy locking is located much further down in the file.  But we need
4315** to go ahead and define the sqlite3_io_methods and finder function
4316** for proxy locking here.  So we forward declare the I/O methods.
4317*/
4318#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4319static int proxyClose(sqlite3_file*);
4320static int proxyLock(sqlite3_file*, int);
4321static int proxyUnlock(sqlite3_file*, int);
4322static int proxyCheckReservedLock(sqlite3_file*, int*);
4323IOMETHODS(
4324  proxyIoFinder,            /* Finder function name */
4325  proxyIoMethods,           /* sqlite3_io_methods object name */
4326  1,                        /* shared memory is disabled */
4327  proxyClose,               /* xClose method */
4328  proxyLock,                /* xLock method */
4329  proxyUnlock,              /* xUnlock method */
4330  proxyCheckReservedLock    /* xCheckReservedLock method */
4331)
4332#endif
4333
4334/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
4335#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4336IOMETHODS(
4337  nfsIoFinder,               /* Finder function name */
4338  nfsIoMethods,              /* sqlite3_io_methods object name */
4339  1,                         /* shared memory is disabled */
4340  unixClose,                 /* xClose method */
4341  unixLock,                  /* xLock method */
4342  nfsUnlock,                 /* xUnlock method */
4343  unixCheckReservedLock      /* xCheckReservedLock method */
4344)
4345#endif
4346
4347#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4348/*
4349** This "finder" function attempts to determine the best locking strategy
4350** for the database file "filePath".  It then returns the sqlite3_io_methods
4351** object that implements that strategy.
4352**
4353** This is for MacOSX only.
4354*/
4355static const sqlite3_io_methods *autolockIoFinderImpl(
4356  const char *filePath,    /* name of the database file */
4357  unixFile *pNew           /* open file object for the database file */
4358){
4359  static const struct Mapping {
4360    const char *zFilesystem;              /* Filesystem type name */
4361    const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
4362  } aMap[] = {
4363    { "hfs",    &posixIoMethods },
4364    { "ufs",    &posixIoMethods },
4365    { "afpfs",  &afpIoMethods },
4366    { "smbfs",  &afpIoMethods },
4367    { "webdav", &nolockIoMethods },
4368    { 0, 0 }
4369  };
4370  int i;
4371  struct statfs fsInfo;
4372  struct flock lockInfo;
4373
4374  if( !filePath ){
4375    /* If filePath==NULL that means we are dealing with a transient file
4376    ** that does not need to be locked. */
4377    return &nolockIoMethods;
4378  }
4379  if( statfs(filePath, &fsInfo) != -1 ){
4380    if( fsInfo.f_flags & MNT_RDONLY ){
4381      return &nolockIoMethods;
4382    }
4383    for(i=0; aMap[i].zFilesystem; i++){
4384      if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
4385        return aMap[i].pMethods;
4386      }
4387    }
4388  }
4389
4390  /* Default case. Handles, amongst others, "nfs".
4391  ** Test byte-range lock using fcntl(). If the call succeeds,
4392  ** assume that the file-system supports POSIX style locks.
4393  */
4394  lockInfo.l_len = 1;
4395  lockInfo.l_start = 0;
4396  lockInfo.l_whence = SEEK_SET;
4397  lockInfo.l_type = F_RDLCK;
4398  if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4399    if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
4400      return &nfsIoMethods;
4401    } else {
4402      return &posixIoMethods;
4403    }
4404  }else{
4405    return &dotlockIoMethods;
4406  }
4407}
4408static const sqlite3_io_methods
4409  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4410
4411#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
4412
4413#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
4414/*
4415** This "finder" function attempts to determine the best locking strategy
4416** for the database file "filePath".  It then returns the sqlite3_io_methods
4417** object that implements that strategy.
4418**
4419** This is for VXWorks only.
4420*/
4421static const sqlite3_io_methods *autolockIoFinderImpl(
4422  const char *filePath,    /* name of the database file */
4423  unixFile *pNew           /* the open file object */
4424){
4425  struct flock lockInfo;
4426
4427  if( !filePath ){
4428    /* If filePath==NULL that means we are dealing with a transient file
4429    ** that does not need to be locked. */
4430    return &nolockIoMethods;
4431  }
4432
4433  /* Test if fcntl() is supported and use POSIX style locks.
4434  ** Otherwise fall back to the named semaphore method.
4435  */
4436  lockInfo.l_len = 1;
4437  lockInfo.l_start = 0;
4438  lockInfo.l_whence = SEEK_SET;
4439  lockInfo.l_type = F_RDLCK;
4440  if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4441    return &posixIoMethods;
4442  }else{
4443    return &semIoMethods;
4444  }
4445}
4446static const sqlite3_io_methods
4447  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4448
4449#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
4450
4451/*
4452** An abstract type for a pointer to a IO method finder function:
4453*/
4454typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
4455
4456
4457/****************************************************************************
4458**************************** sqlite3_vfs methods ****************************
4459**
4460** This division contains the implementation of methods on the
4461** sqlite3_vfs object.
4462*/
4463
4464/*
4465** Initializes a unixFile structure with zeros.
4466*/
4467void initUnixFile(sqlite3_file* file) {
4468  memset(file, 0, sizeof(unixFile));
4469}
4470
4471/*
4472** Initialize the contents of the unixFile structure pointed to by pId.
4473*/
4474int fillInUnixFile(
4475  sqlite3_vfs *pVfs,      /* Pointer to vfs object */
4476  int h,                  /* Open file descriptor of file being opened */
4477  int syncDir,            /* True to sync directory on first sync */
4478  sqlite3_file *pId,      /* Write to the unixFile structure here */
4479  const char *zFilename,  /* Name of the file being opened */
4480  int noLock,             /* Omit locking if true */
4481  int isDelete,           /* Delete on close if true */
4482  int isReadOnly          /* True if the file is opened read-only */
4483){
4484  const sqlite3_io_methods *pLockingStyle;
4485  unixFile *pNew = (unixFile *)pId;
4486  int rc = SQLITE_OK;
4487
4488  assert( pNew->pInode==NULL );
4489
4490  /* Parameter isDelete is only used on vxworks. Express this explicitly
4491  ** here to prevent compiler warnings about unused parameters.
4492  */
4493  UNUSED_PARAMETER(isDelete);
4494
4495  /* Usually the path zFilename should not be a relative pathname. The
4496  ** exception is when opening the proxy "conch" file in builds that
4497  ** include the special Apple locking styles.
4498  */
4499#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4500  assert( zFilename==0 || zFilename[0]=='/'
4501    || pVfs->pAppData==(void*)&autolockIoFinder );
4502#else
4503  assert( zFilename==0 || zFilename[0]=='/' );
4504#endif
4505
4506  OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
4507  pNew->h = h;
4508  pNew->zPath = zFilename;
4509  if( strcmp(pVfs->zName,"unix-excl")==0 ){
4510    pNew->ctrlFlags = UNIXFILE_EXCL;
4511  }else{
4512    pNew->ctrlFlags = 0;
4513  }
4514  if( isReadOnly ){
4515    pNew->ctrlFlags |= UNIXFILE_RDONLY;
4516  }
4517  if( syncDir ){
4518    pNew->ctrlFlags |= UNIXFILE_DIRSYNC;
4519  }
4520
4521#if OS_VXWORKS
4522  pNew->pId = vxworksFindFileId(zFilename);
4523  if( pNew->pId==0 ){
4524    noLock = 1;
4525    rc = SQLITE_NOMEM;
4526  }
4527#endif
4528
4529  if( noLock ){
4530    pLockingStyle = &nolockIoMethods;
4531  }else{
4532    pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
4533#if SQLITE_ENABLE_LOCKING_STYLE
4534    /* Cache zFilename in the locking context (AFP and dotlock override) for
4535    ** proxyLock activation is possible (remote proxy is based on db name)
4536    ** zFilename remains valid until file is closed, to support */
4537    pNew->lockingContext = (void*)zFilename;
4538#endif
4539  }
4540
4541  if( pLockingStyle == &posixIoMethods
4542#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4543    || pLockingStyle == &nfsIoMethods
4544#endif
4545  ){
4546    unixEnterMutex();
4547    rc = findInodeInfo(pNew, &pNew->pInode);
4548    if( rc!=SQLITE_OK ){
4549      /* If an error occured in findInodeInfo(), close the file descriptor
4550      ** immediately, before releasing the mutex. findInodeInfo() may fail
4551      ** in two scenarios:
4552      **
4553      **   (a) A call to fstat() failed.
4554      **   (b) A malloc failed.
4555      **
4556      ** Scenario (b) may only occur if the process is holding no other
4557      ** file descriptors open on the same file. If there were other file
4558      ** descriptors on this file, then no malloc would be required by
4559      ** findInodeInfo(). If this is the case, it is quite safe to close
4560      ** handle h - as it is guaranteed that no posix locks will be released
4561      ** by doing so.
4562      **
4563      ** If scenario (a) caused the error then things are not so safe. The
4564      ** implicit assumption here is that if fstat() fails, things are in
4565      ** such bad shape that dropping a lock or two doesn't matter much.
4566      */
4567      robust_close(pNew, h, __LINE__);
4568      h = -1;
4569    }
4570    unixLeaveMutex();
4571  }
4572
4573#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4574  else if( pLockingStyle == &afpIoMethods ){
4575    /* AFP locking uses the file path so it needs to be included in
4576    ** the afpLockingContext.
4577    */
4578    afpLockingContext *pCtx;
4579    pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
4580    if( pCtx==0 ){
4581      rc = SQLITE_NOMEM;
4582    }else{
4583      /* NB: zFilename exists and remains valid until the file is closed
4584      ** according to requirement F11141.  So we do not need to make a
4585      ** copy of the filename. */
4586      pCtx->dbPath = zFilename;
4587      pCtx->reserved = 0;
4588      srandomdev();
4589      unixEnterMutex();
4590      rc = findInodeInfo(pNew, &pNew->pInode);
4591      if( rc!=SQLITE_OK ){
4592        sqlite3_free(pNew->lockingContext);
4593        robust_close(pNew, h, __LINE__);
4594        h = -1;
4595      }
4596      unixLeaveMutex();
4597    }
4598  }
4599#endif
4600
4601  else if( pLockingStyle == &dotlockIoMethods ){
4602    /* Dotfile locking uses the file path so it needs to be included in
4603    ** the dotlockLockingContext
4604    */
4605    char *zLockFile;
4606    int nFilename;
4607    nFilename = (int)strlen(zFilename) + 6;
4608    zLockFile = (char *)sqlite3_malloc(nFilename);
4609    if( zLockFile==0 ){
4610      rc = SQLITE_NOMEM;
4611    }else{
4612      sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
4613    }
4614    pNew->lockingContext = zLockFile;
4615  }
4616
4617#if OS_VXWORKS
4618  else if( pLockingStyle == &semIoMethods ){
4619    /* Named semaphore locking uses the file path so it needs to be
4620    ** included in the semLockingContext
4621    */
4622    unixEnterMutex();
4623    rc = findInodeInfo(pNew, &pNew->pInode);
4624    if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
4625      char *zSemName = pNew->pInode->aSemName;
4626      int n;
4627      sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
4628                       pNew->pId->zCanonicalName);
4629      for( n=1; zSemName[n]; n++ )
4630        if( zSemName[n]=='/' ) zSemName[n] = '_';
4631      pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
4632      if( pNew->pInode->pSem == SEM_FAILED ){
4633        rc = SQLITE_NOMEM;
4634        pNew->pInode->aSemName[0] = '\0';
4635      }
4636    }
4637    unixLeaveMutex();
4638  }
4639#endif
4640
4641  pNew->lastErrno = 0;
4642#if OS_VXWORKS
4643  if( rc!=SQLITE_OK ){
4644    if( h>=0 ) robust_close(pNew, h, __LINE__);
4645    h = -1;
4646    osUnlink(zFilename);
4647    isDelete = 0;
4648  }
4649  pNew->isDelete = isDelete;
4650#endif
4651  if( rc!=SQLITE_OK ){
4652    if( h>=0 ) robust_close(pNew, h, __LINE__);
4653  }else{
4654    pNew->pMethod = pLockingStyle;
4655    OpenCounter(+1);
4656  }
4657  return rc;
4658}
4659
4660/*
4661** Return the name of a directory in which to put temporary files.
4662** If no suitable temporary file directory can be found, return NULL.
4663*/
4664static const char *unixTempFileDir(void){
4665  static const char *azDirs[] = {
4666     0,
4667     0,
4668     "/var/tmp",
4669     "/usr/tmp",
4670     "/tmp",
4671     0        /* List terminator */
4672  };
4673  unsigned int i;
4674  struct stat buf;
4675  const char *zDir = 0;
4676
4677  azDirs[0] = sqlite3_temp_directory;
4678  if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
4679  for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
4680    if( zDir==0 ) continue;
4681    if( osStat(zDir, &buf) ) continue;
4682    if( !S_ISDIR(buf.st_mode) ) continue;
4683    if( osAccess(zDir, 07) ) continue;
4684    break;
4685  }
4686  return zDir;
4687}
4688
4689/*
4690** Create a temporary file name in zBuf.  zBuf must be allocated
4691** by the calling process and must be big enough to hold at least
4692** pVfs->mxPathname bytes.
4693*/
4694static int unixGetTempname(int nBuf, char *zBuf){
4695  static const unsigned char zChars[] =
4696    "abcdefghijklmnopqrstuvwxyz"
4697    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
4698    "0123456789";
4699  unsigned int i, j;
4700  const char *zDir;
4701
4702  /* It's odd to simulate an io-error here, but really this is just
4703  ** using the io-error infrastructure to test that SQLite handles this
4704  ** function failing.
4705  */
4706  SimulateIOError( return SQLITE_IOERR );
4707
4708  zDir = unixTempFileDir();
4709  if( zDir==0 ) zDir = ".";
4710
4711  /* Check that the output buffer is large enough for the temporary file
4712  ** name. If it is not, return SQLITE_ERROR.
4713  */
4714  if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){
4715    return SQLITE_ERROR;
4716  }
4717
4718  do{
4719    sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
4720    j = (int)strlen(zBuf);
4721    sqlite3_randomness(15, &zBuf[j]);
4722    for(i=0; i<15; i++, j++){
4723      zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
4724    }
4725    zBuf[j] = 0;
4726  }while( osAccess(zBuf,0)==0 );
4727  return SQLITE_OK;
4728}
4729
4730#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4731/*
4732** Routine to transform a unixFile into a proxy-locking unixFile.
4733** Implementation in the proxy-lock division, but used by unixOpen()
4734** if SQLITE_PREFER_PROXY_LOCKING is defined.
4735*/
4736static int proxyTransformUnixFile(unixFile*, const char*);
4737#endif
4738
4739/*
4740** Search for an unused file descriptor that was opened on the database
4741** file (not a journal or master-journal file) identified by pathname
4742** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
4743** argument to this function.
4744**
4745** Such a file descriptor may exist if a database connection was closed
4746** but the associated file descriptor could not be closed because some
4747** other file descriptor open on the same file is holding a file-lock.
4748** Refer to comments in the unixClose() function and the lengthy comment
4749** describing "Posix Advisory Locking" at the start of this file for
4750** further details. Also, ticket #4018.
4751**
4752** If a suitable file descriptor is found, then it is returned. If no
4753** such file descriptor is located, -1 is returned.
4754*/
4755static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
4756  UnixUnusedFd *pUnused = 0;
4757
4758  /* Do not search for an unused file descriptor on vxworks. Not because
4759  ** vxworks would not benefit from the change (it might, we're not sure),
4760  ** but because no way to test it is currently available. It is better
4761  ** not to risk breaking vxworks support for the sake of such an obscure
4762  ** feature.  */
4763#if !OS_VXWORKS
4764  struct stat sStat;                   /* Results of stat() call */
4765
4766  /* A stat() call may fail for various reasons. If this happens, it is
4767  ** almost certain that an open() call on the same path will also fail.
4768  ** For this reason, if an error occurs in the stat() call here, it is
4769  ** ignored and -1 is returned. The caller will try to open a new file
4770  ** descriptor on the same path, fail, and return an error to SQLite.
4771  **
4772  ** Even if a subsequent open() call does succeed, the consequences of
4773  ** not searching for a resusable file descriptor are not dire.  */
4774  if( 0==osStat(zPath, &sStat) ){
4775    unixInodeInfo *pInode;
4776
4777    unixEnterMutex();
4778    pInode = inodeList;
4779    while( pInode && (pInode->fileId.dev!=sStat.st_dev
4780                     || pInode->fileId.ino!=sStat.st_ino) ){
4781       pInode = pInode->pNext;
4782    }
4783    if( pInode ){
4784      UnixUnusedFd **pp;
4785      for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
4786      pUnused = *pp;
4787      if( pUnused ){
4788        *pp = pUnused->pNext;
4789      }
4790    }
4791    unixLeaveMutex();
4792  }
4793#endif    /* if !OS_VXWORKS */
4794  return pUnused;
4795}
4796
4797/*
4798** This function is called by unixOpen() to determine the unix permissions
4799** to create new files with. If no error occurs, then SQLITE_OK is returned
4800** and a value suitable for passing as the third argument to open(2) is
4801** written to *pMode. If an IO error occurs, an SQLite error code is
4802** returned and the value of *pMode is not modified.
4803**
4804** If the file being opened is a temporary file, it is always created with
4805** the octal permissions 0600 (read/writable by owner only). If the file
4806** is a database or master journal file, it is created with the permissions
4807** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
4808**
4809** Finally, if the file being opened is a WAL or regular journal file, then
4810** this function queries the file-system for the permissions on the
4811** corresponding database file and sets *pMode to this value. Whenever
4812** possible, WAL and journal files are created using the same permissions
4813** as the associated database file.
4814*/
4815static int findCreateFileMode(
4816  const char *zPath,              /* Path of file (possibly) being created */
4817  int flags,                      /* Flags passed as 4th argument to xOpen() */
4818  mode_t *pMode                   /* OUT: Permissions to open file with */
4819){
4820  int rc = SQLITE_OK;             /* Return Code */
4821  if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
4822    char zDb[MAX_PATHNAME+1];     /* Database file path */
4823    int nDb;                      /* Number of valid bytes in zDb */
4824    struct stat sStat;            /* Output of stat() on database file */
4825
4826    /* zPath is a path to a WAL or journal file. The following block derives
4827    ** the path to the associated database file from zPath. This block handles
4828    ** the following naming conventions:
4829    **
4830    **   "<path to db>-journal"
4831    **   "<path to db>-wal"
4832    **   "<path to db>-journal-NNNN"
4833    **   "<path to db>-wal-NNNN"
4834    **
4835    ** where NNNN is a 4 digit decimal number. The NNNN naming schemes are
4836    ** used by the test_multiplex.c module.
4837    */
4838    nDb = sqlite3Strlen30(zPath) - 1;
4839    while( nDb>0 && zPath[nDb]!='l' ) nDb--;
4840    nDb -= ((flags & SQLITE_OPEN_WAL) ? 3 : 7);
4841    memcpy(zDb, zPath, nDb);
4842    zDb[nDb] = '\0';
4843
4844    if( 0==osStat(zDb, &sStat) ){
4845      *pMode = sStat.st_mode & 0777;
4846    }else{
4847      rc = SQLITE_IOERR_FSTAT;
4848    }
4849  }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
4850    *pMode = 0600;
4851  }else{
4852    *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
4853  }
4854  return rc;
4855}
4856
4857/*
4858** Initializes a unixFile structure with zeros.
4859*/
4860void chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file* file) {
4861  memset(file, 0, sizeof(unixFile));
4862}
4863
4864int chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs* vfs,
4865                                               int fd,
4866                                               int dirfd,
4867                                               sqlite3_file* file,
4868                                               const char* fileName,
4869                                               int noLock,
4870                                               int isDelete) {
4871  return fillInUnixFile(vfs, fd, dirfd, file, fileName, noLock, isDelete, 0);
4872}
4873
4874/*
4875** Search for an unused file descriptor that was opened on the database file.
4876** If a suitable file descriptor if found, then it is stored in *fd; otherwise,
4877** *fd is not modified.
4878**
4879** If a reusable file descriptor is not found, and a new UnixUnusedFd cannot
4880** be allocated, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK is returned.
4881*/
4882int chromium_sqlite3_get_reusable_file_handle(sqlite3_file* file,
4883                                              const char* fileName,
4884                                              int flags,
4885                                              int* fd) {
4886  unixFile* unixSQLite3File = (unixFile*)file;
4887  int fileType = flags & 0xFFFFFF00;
4888  if (fileType == SQLITE_OPEN_MAIN_DB) {
4889    UnixUnusedFd *unusedFd = findReusableFd(fileName, flags);
4890    if (unusedFd) {
4891      *fd = unusedFd->fd;
4892    } else {
4893      unusedFd = sqlite3_malloc(sizeof(*unusedFd));
4894      if (!unusedFd) {
4895        return SQLITE_NOMEM;
4896      }
4897    }
4898    unixSQLite3File->pUnused = unusedFd;
4899  }
4900  return SQLITE_OK;
4901}
4902
4903/*
4904** Marks 'fd' as the unused file descriptor for 'pFile'.
4905*/
4906void chromium_sqlite3_update_reusable_file_handle(sqlite3_file* file,
4907                                                  int fd,
4908                                                  int flags) {
4909  unixFile* unixSQLite3File = (unixFile*)file;
4910  if (unixSQLite3File->pUnused) {
4911    unixSQLite3File->pUnused->fd = fd;
4912    unixSQLite3File->pUnused->flags = flags;
4913  }
4914}
4915
4916/*
4917** Destroys pFile's field that keeps track of the unused file descriptor.
4918*/
4919void chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file* file) {
4920  unixFile* unixSQLite3File = (unixFile*)file;
4921  sqlite3_free(unixSQLite3File->pUnused);
4922}
4923
4924/*
4925** Open the file zPath.
4926**
4927** Previously, the SQLite OS layer used three functions in place of this
4928** one:
4929**
4930**     sqlite3OsOpenReadWrite();
4931**     sqlite3OsOpenReadOnly();
4932**     sqlite3OsOpenExclusive();
4933**
4934** These calls correspond to the following combinations of flags:
4935**
4936**     ReadWrite() ->     (READWRITE | CREATE)
4937**     ReadOnly()  ->     (READONLY)
4938**     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
4939**
4940** The old OpenExclusive() accepted a boolean argument - "delFlag". If
4941** true, the file was configured to be automatically deleted when the
4942** file handle closed. To achieve the same effect using this new
4943** interface, add the DELETEONCLOSE flag to those specified above for
4944** OpenExclusive().
4945*/
4946static int unixOpen(
4947  sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
4948  const char *zPath,           /* Pathname of file to be opened */
4949  sqlite3_file *pFile,         /* The file descriptor to be filled in */
4950  int flags,                   /* Input flags to control the opening */
4951  int *pOutFlags               /* Output flags returned to SQLite core */
4952){
4953  unixFile *p = (unixFile *)pFile;
4954  int fd = -1;                   /* File descriptor returned by open() */
4955  int openFlags = 0;             /* Flags to pass to open() */
4956  int eType = flags&0xFFFFFF00;  /* Type of file to open */
4957  int noLock;                    /* True to omit locking primitives */
4958  int rc = SQLITE_OK;            /* Function Return Code */
4959
4960  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
4961  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
4962  int isCreate     = (flags & SQLITE_OPEN_CREATE);
4963  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
4964  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
4965#if SQLITE_ENABLE_LOCKING_STYLE
4966  int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
4967#endif
4968
4969  /* If creating a master or main-file journal, this function will open
4970  ** a file-descriptor on the directory too. The first time unixSync()
4971  ** is called the directory file descriptor will be fsync()ed and close()d.
4972  */
4973  int syncDir = (isCreate && (
4974        eType==SQLITE_OPEN_MASTER_JOURNAL
4975     || eType==SQLITE_OPEN_MAIN_JOURNAL
4976     || eType==SQLITE_OPEN_WAL
4977  ));
4978
4979  /* If argument zPath is a NULL pointer, this function is required to open
4980  ** a temporary file. Use this buffer to store the file name in.
4981  */
4982  char zTmpname[MAX_PATHNAME+1];
4983  const char *zName = zPath;
4984
4985  /* Check the following statements are true:
4986  **
4987  **   (a) Exactly one of the READWRITE and READONLY flags must be set, and
4988  **   (b) if CREATE is set, then READWRITE must also be set, and
4989  **   (c) if EXCLUSIVE is set, then CREATE must also be set.
4990  **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
4991  */
4992  assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
4993  assert(isCreate==0 || isReadWrite);
4994  assert(isExclusive==0 || isCreate);
4995  assert(isDelete==0 || isCreate);
4996
4997  /* The main DB, main journal, WAL file and master journal are never
4998  ** automatically deleted. Nor are they ever temporary files.  */
4999  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5000  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5001  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
5002  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
5003
5004  /* Assert that the upper layer has set one of the "file-type" flags. */
5005  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB
5006       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5007       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL
5008       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
5009  );
5010
5011  chromium_sqlite3_initialize_unix_sqlite3_file(pFile);
5012
5013  if( eType==SQLITE_OPEN_MAIN_DB ){
5014    rc = chromium_sqlite3_get_reusable_file_handle(pFile, zName, flags, &fd);
5015    if( rc!=SQLITE_OK ){
5016      return rc;
5017    }
5018  }else if( !zName ){
5019    /* If zName is NULL, the upper layer is requesting a temp file. */
5020    assert(isDelete && !syncDir);
5021    rc = unixGetTempname(MAX_PATHNAME+1, zTmpname);
5022    if( rc!=SQLITE_OK ){
5023      return rc;
5024    }
5025    zName = zTmpname;
5026  }
5027
5028  /* Determine the value of the flags parameter passed to POSIX function
5029  ** open(). These must be calculated even if open() is not called, as
5030  ** they may be stored as part of the file handle and used by the
5031  ** 'conch file' locking functions later on.  */
5032  if( isReadonly )  openFlags |= O_RDONLY;
5033  if( isReadWrite ) openFlags |= O_RDWR;
5034  if( isCreate )    openFlags |= O_CREAT;
5035  if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5036  openFlags |= (O_LARGEFILE|O_BINARY);
5037
5038  if( fd<0 ){
5039    mode_t openMode;              /* Permissions to create file with */
5040    rc = findCreateFileMode(zName, flags, &openMode);
5041    if( rc!=SQLITE_OK ){
5042      assert( !p->pUnused );
5043      assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
5044      return rc;
5045    }
5046    fd = robust_open(zName, openFlags, openMode);
5047    OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
5048    if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
5049      /* Failed to open the file for read/write access. Try read-only. */
5050      flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
5051      openFlags &= ~(O_RDWR|O_CREAT);
5052      flags |= SQLITE_OPEN_READONLY;
5053      openFlags |= O_RDONLY;
5054      isReadonly = 1;
5055      fd = robust_open(zName, openFlags, openMode);
5056    }
5057    if( fd<0 ){
5058      rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
5059      goto open_finished;
5060    }
5061  }
5062  assert( fd>=0 );
5063  if( pOutFlags ){
5064    *pOutFlags = flags;
5065  }
5066
5067  chromium_sqlite3_update_reusable_file_handle(pFile, fd, flags);
5068
5069  if( isDelete ){
5070#if OS_VXWORKS
5071    zPath = zName;
5072#else
5073    osUnlink(zName);
5074#endif
5075  }
5076#if SQLITE_ENABLE_LOCKING_STYLE
5077  else{
5078    p->openFlags = openFlags;
5079  }
5080#endif
5081
5082#ifdef FD_CLOEXEC
5083  osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
5084#endif
5085
5086  noLock = eType!=SQLITE_OPEN_MAIN_DB;
5087
5088
5089#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5090  struct statfs fsInfo;
5091  if( fstatfs(fd, &fsInfo) == -1 ){
5092    ((unixFile*)pFile)->lastErrno = errno;
5093    robust_close(p, fd, __LINE__);
5094    return SQLITE_IOERR_ACCESS;
5095  }
5096  if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
5097    ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5098  }
5099#endif
5100
5101#if SQLITE_ENABLE_LOCKING_STYLE
5102#if SQLITE_PREFER_PROXY_LOCKING
5103  isAutoProxy = 1;
5104#endif
5105  if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
5106    char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
5107    int useProxy = 0;
5108
5109    /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5110    ** never use proxy, NULL means use proxy for non-local files only.  */
5111    if( envforce!=NULL ){
5112      useProxy = atoi(envforce)>0;
5113    }else{
5114      struct statfs fsInfo;
5115      if( statfs(zPath, &fsInfo) == -1 ){
5116        /* In theory, the close(fd) call is sub-optimal. If the file opened
5117        ** with fd is a database file, and there are other connections open
5118        ** on that file that are currently holding advisory locks on it,
5119        ** then the call to close() will cancel those locks. In practice,
5120        ** we're assuming that statfs() doesn't fail very often. At least
5121        ** not while other file descriptors opened by the same process on
5122        ** the same file are working.  */
5123        p->lastErrno = errno;
5124        robust_close(p, fd, __LINE__);
5125        rc = SQLITE_IOERR_ACCESS;
5126        goto open_finished;
5127      }
5128      useProxy = !(fsInfo.f_flags&MNT_LOCAL);
5129    }
5130    if( useProxy ){
5131      rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5132                          isDelete, isReadonly);
5133      if( rc==SQLITE_OK ){
5134        rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
5135        if( rc!=SQLITE_OK ){
5136          /* Use unixClose to clean up the resources added in fillInUnixFile
5137          ** and clear all the structure's references.  Specifically,
5138          ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5139          */
5140          unixClose(pFile);
5141          return rc;
5142        }
5143      }
5144      goto open_finished;
5145    }
5146  }
5147#endif
5148
5149  rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5150                      isDelete, isReadonly);
5151open_finished:
5152  if( rc!=SQLITE_OK ){
5153    chromium_sqlite3_destroy_reusable_file_handle(pFile);
5154  }
5155  return rc;
5156}
5157
5158
5159/*
5160** Delete the file at zPath. If the dirSync argument is true, fsync()
5161** the directory after deleting the file.
5162*/
5163static int unixDelete(
5164  sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
5165  const char *zPath,        /* Name of file to be deleted */
5166  int dirSync               /* If true, fsync() directory after deleting file */
5167){
5168  int rc = SQLITE_OK;
5169  UNUSED_PARAMETER(NotUsed);
5170  SimulateIOError(return SQLITE_IOERR_DELETE);
5171  if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
5172    return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
5173  }
5174#ifndef SQLITE_DISABLE_DIRSYNC
5175  if( dirSync ){
5176    int fd;
5177    rc = osOpenDirectory(zPath, &fd);
5178    if( rc==SQLITE_OK ){
5179#if OS_VXWORKS
5180      if( fsync(fd)==-1 )
5181#else
5182      if( fsync(fd) )
5183#endif
5184      {
5185        rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
5186      }
5187      robust_close(0, fd, __LINE__);
5188    }else if( rc==SQLITE_CANTOPEN ){
5189      rc = SQLITE_OK;
5190    }
5191  }
5192#endif
5193  return rc;
5194}
5195
5196/*
5197** Test the existance of or access permissions of file zPath. The
5198** test performed depends on the value of flags:
5199**
5200**     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5201**     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5202**     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5203**
5204** Otherwise return 0.
5205*/
5206static int unixAccess(
5207  sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
5208  const char *zPath,      /* Path of the file to examine */
5209  int flags,              /* What do we want to learn about the zPath file? */
5210  int *pResOut            /* Write result boolean here */
5211){
5212  int amode = 0;
5213  UNUSED_PARAMETER(NotUsed);
5214  SimulateIOError( return SQLITE_IOERR_ACCESS; );
5215  switch( flags ){
5216    case SQLITE_ACCESS_EXISTS:
5217      amode = F_OK;
5218      break;
5219    case SQLITE_ACCESS_READWRITE:
5220      amode = W_OK|R_OK;
5221      break;
5222    case SQLITE_ACCESS_READ:
5223      amode = R_OK;
5224      break;
5225
5226    default:
5227      assert(!"Invalid flags argument");
5228  }
5229  *pResOut = (osAccess(zPath, amode)==0);
5230  if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
5231    struct stat buf;
5232    if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
5233      *pResOut = 0;
5234    }
5235  }
5236  return SQLITE_OK;
5237}
5238
5239
5240/*
5241** Turn a relative pathname into a full pathname. The relative path
5242** is stored as a nul-terminated string in the buffer pointed to by
5243** zPath.
5244**
5245** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
5246** (in this case, MAX_PATHNAME bytes). The full-path is written to
5247** this buffer before returning.
5248*/
5249static int unixFullPathname(
5250  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
5251  const char *zPath,            /* Possibly relative input path */
5252  int nOut,                     /* Size of output buffer in bytes */
5253  char *zOut                    /* Output buffer */
5254){
5255
5256  /* It's odd to simulate an io-error here, but really this is just
5257  ** using the io-error infrastructure to test that SQLite handles this
5258  ** function failing. This function could fail if, for example, the
5259  ** current working directory has been unlinked.
5260  */
5261  SimulateIOError( return SQLITE_ERROR );
5262
5263  assert( pVfs->mxPathname==MAX_PATHNAME );
5264  UNUSED_PARAMETER(pVfs);
5265
5266  zOut[nOut-1] = '\0';
5267  if( zPath[0]=='/' ){
5268    sqlite3_snprintf(nOut, zOut, "%s", zPath);
5269  }else{
5270    int nCwd;
5271    if( osGetcwd(zOut, nOut-1)==0 ){
5272      return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
5273    }
5274    nCwd = (int)strlen(zOut);
5275    sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
5276  }
5277  return SQLITE_OK;
5278}
5279
5280
5281#ifndef SQLITE_OMIT_LOAD_EXTENSION
5282/*
5283** Interfaces for opening a shared library, finding entry points
5284** within the shared library, and closing the shared library.
5285*/
5286#include <dlfcn.h>
5287static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
5288  UNUSED_PARAMETER(NotUsed);
5289  return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
5290}
5291
5292/*
5293** SQLite calls this function immediately after a call to unixDlSym() or
5294** unixDlOpen() fails (returns a null pointer). If a more detailed error
5295** message is available, it is written to zBufOut. If no error message
5296** is available, zBufOut is left unmodified and SQLite uses a default
5297** error message.
5298*/
5299static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
5300  const char *zErr;
5301  UNUSED_PARAMETER(NotUsed);
5302  unixEnterMutex();
5303  zErr = dlerror();
5304  if( zErr ){
5305    sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
5306  }
5307  unixLeaveMutex();
5308}
5309static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
5310  /*
5311  ** GCC with -pedantic-errors says that C90 does not allow a void* to be
5312  ** cast into a pointer to a function.  And yet the library dlsym() routine
5313  ** returns a void* which is really a pointer to a function.  So how do we
5314  ** use dlsym() with -pedantic-errors?
5315  **
5316  ** Variable x below is defined to be a pointer to a function taking
5317  ** parameters void* and const char* and returning a pointer to a function.
5318  ** We initialize x by assigning it a pointer to the dlsym() function.
5319  ** (That assignment requires a cast.)  Then we call the function that
5320  ** x points to.
5321  **
5322  ** This work-around is unlikely to work correctly on any system where
5323  ** you really cannot cast a function pointer into void*.  But then, on the
5324  ** other hand, dlsym() will not work on such a system either, so we have
5325  ** not really lost anything.
5326  */
5327  void (*(*x)(void*,const char*))(void);
5328  UNUSED_PARAMETER(NotUsed);
5329  x = (void(*(*)(void*,const char*))(void))dlsym;
5330  return (*x)(p, zSym);
5331}
5332static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
5333  UNUSED_PARAMETER(NotUsed);
5334  dlclose(pHandle);
5335}
5336#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5337  #define unixDlOpen  0
5338  #define unixDlError 0
5339  #define unixDlSym   0
5340  #define unixDlClose 0
5341#endif
5342
5343/*
5344** Write nBuf bytes of random data to the supplied buffer zBuf.
5345*/
5346static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
5347  UNUSED_PARAMETER(NotUsed);
5348  assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
5349
5350  /* We have to initialize zBuf to prevent valgrind from reporting
5351  ** errors.  The reports issued by valgrind are incorrect - we would
5352  ** prefer that the randomness be increased by making use of the
5353  ** uninitialized space in zBuf - but valgrind errors tend to worry
5354  ** some users.  Rather than argue, it seems easier just to initialize
5355  ** the whole array and silence valgrind, even if that means less randomness
5356  ** in the random seed.
5357  **
5358  ** When testing, initializing zBuf[] to zero is all we do.  That means
5359  ** that we always use the same random number sequence.  This makes the
5360  ** tests repeatable.
5361  */
5362  memset(zBuf, 0, nBuf);
5363#if !defined(SQLITE_TEST)
5364  {
5365    int pid, fd;
5366    fd = robust_open("/dev/urandom", O_RDONLY, 0);
5367    if( fd<0 ){
5368      time_t t;
5369      time(&t);
5370      memcpy(zBuf, &t, sizeof(t));
5371      pid = getpid();
5372      memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
5373      assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
5374      nBuf = sizeof(t) + sizeof(pid);
5375    }else{
5376      do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
5377      robust_close(0, fd, __LINE__);
5378    }
5379  }
5380#endif
5381  return nBuf;
5382}
5383
5384
5385/*
5386** Sleep for a little while.  Return the amount of time slept.
5387** The argument is the number of microseconds we want to sleep.
5388** The return value is the number of microseconds of sleep actually
5389** requested from the underlying operating system, a number which
5390** might be greater than or equal to the argument, but not less
5391** than the argument.
5392*/
5393static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
5394#if OS_VXWORKS
5395  struct timespec sp;
5396
5397  sp.tv_sec = microseconds / 1000000;
5398  sp.tv_nsec = (microseconds % 1000000) * 1000;
5399  nanosleep(&sp, NULL);
5400  UNUSED_PARAMETER(NotUsed);
5401  return microseconds;
5402#elif defined(HAVE_USLEEP) && HAVE_USLEEP
5403  usleep(microseconds);
5404  UNUSED_PARAMETER(NotUsed);
5405  return microseconds;
5406#else
5407  int seconds = (microseconds+999999)/1000000;
5408  sleep(seconds);
5409  UNUSED_PARAMETER(NotUsed);
5410  return seconds*1000000;
5411#endif
5412}
5413
5414/*
5415** The following variable, if set to a non-zero value, is interpreted as
5416** the number of seconds since 1970 and is used to set the result of
5417** sqlite3OsCurrentTime() during testing.
5418*/
5419#ifdef SQLITE_TEST
5420int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
5421#endif
5422
5423/*
5424** Find the current time (in Universal Coordinated Time).  Write into *piNow
5425** the current time and date as a Julian Day number times 86_400_000.  In
5426** other words, write into *piNow the number of milliseconds since the Julian
5427** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5428** proleptic Gregorian calendar.
5429**
5430** On success, return 0.  Return 1 if the time and date cannot be found.
5431*/
5432static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
5433  static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
5434#if defined(NO_GETTOD)
5435  time_t t;
5436  time(&t);
5437  *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
5438#elif OS_VXWORKS
5439  struct timespec sNow;
5440  clock_gettime(CLOCK_REALTIME, &sNow);
5441  *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
5442#else
5443  struct timeval sNow;
5444  gettimeofday(&sNow, 0);
5445  *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
5446#endif
5447
5448#ifdef SQLITE_TEST
5449  if( sqlite3_current_time ){
5450    *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
5451  }
5452#endif
5453  UNUSED_PARAMETER(NotUsed);
5454  return 0;
5455}
5456
5457/*
5458** Find the current time (in Universal Coordinated Time).  Write the
5459** current time and date as a Julian Day number into *prNow and
5460** return 0.  Return 1 if the time and date cannot be found.
5461*/
5462static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
5463  sqlite3_int64 i;
5464  UNUSED_PARAMETER(NotUsed);
5465  unixCurrentTimeInt64(0, &i);
5466  *prNow = i/86400000.0;
5467  return 0;
5468}
5469
5470/*
5471** We added the xGetLastError() method with the intention of providing
5472** better low-level error messages when operating-system problems come up
5473** during SQLite operation.  But so far, none of that has been implemented
5474** in the core.  So this routine is never called.  For now, it is merely
5475** a place-holder.
5476*/
5477static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
5478  UNUSED_PARAMETER(NotUsed);
5479  UNUSED_PARAMETER(NotUsed2);
5480  UNUSED_PARAMETER(NotUsed3);
5481  return 0;
5482}
5483
5484
5485/*
5486************************ End of sqlite3_vfs methods ***************************
5487******************************************************************************/
5488
5489/******************************************************************************
5490************************** Begin Proxy Locking ********************************
5491**
5492** Proxy locking is a "uber-locking-method" in this sense:  It uses the
5493** other locking methods on secondary lock files.  Proxy locking is a
5494** meta-layer over top of the primitive locking implemented above.  For
5495** this reason, the division that implements of proxy locking is deferred
5496** until late in the file (here) after all of the other I/O methods have
5497** been defined - so that the primitive locking methods are available
5498** as services to help with the implementation of proxy locking.
5499**
5500****
5501**
5502** The default locking schemes in SQLite use byte-range locks on the
5503** database file to coordinate safe, concurrent access by multiple readers
5504** and writers [http://sqlite.org/lockingv3.html].  The five file locking
5505** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
5506** as POSIX read & write locks over fixed set of locations (via fsctl),
5507** on AFP and SMB only exclusive byte-range locks are available via fsctl
5508** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
5509** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
5510** address in the shared range is taken for a SHARED lock, the entire
5511** shared range is taken for an EXCLUSIVE lock):
5512**
5513**      PENDING_BYTE        0x40000000
5514**      RESERVED_BYTE       0x40000001
5515**      SHARED_RANGE        0x40000002 -> 0x40000200
5516**
5517** This works well on the local file system, but shows a nearly 100x
5518** slowdown in read performance on AFP because the AFP client disables
5519** the read cache when byte-range locks are present.  Enabling the read
5520** cache exposes a cache coherency problem that is present on all OS X
5521** supported network file systems.  NFS and AFP both observe the
5522** close-to-open semantics for ensuring cache coherency
5523** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
5524** address the requirements for concurrent database access by multiple
5525** readers and writers
5526** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
5527**
5528** To address the performance and cache coherency issues, proxy file locking
5529** changes the way database access is controlled by limiting access to a
5530** single host at a time and moving file locks off of the database file
5531** and onto a proxy file on the local file system.
5532**
5533**
5534** Using proxy locks
5535** -----------------
5536**
5537** C APIs
5538**
5539**  sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
5540**                       <proxy_path> | ":auto:");
5541**  sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
5542**
5543**
5544** SQL pragmas
5545**
5546**  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
5547**  PRAGMA [database.]lock_proxy_file
5548**
5549** Specifying ":auto:" means that if there is a conch file with a matching
5550** host ID in it, the proxy path in the conch file will be used, otherwise
5551** a proxy path based on the user's temp dir
5552** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
5553** actual proxy file name is generated from the name and path of the
5554** database file.  For example:
5555**
5556**       For database path "/Users/me/foo.db"
5557**       The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
5558**
5559** Once a lock proxy is configured for a database connection, it can not
5560** be removed, however it may be switched to a different proxy path via
5561** the above APIs (assuming the conch file is not being held by another
5562** connection or process).
5563**
5564**
5565** How proxy locking works
5566** -----------------------
5567**
5568** Proxy file locking relies primarily on two new supporting files:
5569**
5570**   *  conch file to limit access to the database file to a single host
5571**      at a time
5572**
5573**   *  proxy file to act as a proxy for the advisory locks normally
5574**      taken on the database
5575**
5576** The conch file - to use a proxy file, sqlite must first "hold the conch"
5577** by taking an sqlite-style shared lock on the conch file, reading the
5578** contents and comparing the host's unique host ID (see below) and lock
5579** proxy path against the values stored in the conch.  The conch file is
5580** stored in the same directory as the database file and the file name
5581** is patterned after the database file name as ".<databasename>-conch".
5582** If the conch file does not exist, or it's contents do not match the
5583** host ID and/or proxy path, then the lock is escalated to an exclusive
5584** lock and the conch file contents is updated with the host ID and proxy
5585** path and the lock is downgraded to a shared lock again.  If the conch
5586** is held by another process (with a shared lock), the exclusive lock
5587** will fail and SQLITE_BUSY is returned.
5588**
5589** The proxy file - a single-byte file used for all advisory file locks
5590** normally taken on the database file.   This allows for safe sharing
5591** of the database file for multiple readers and writers on the same
5592** host (the conch ensures that they all use the same local lock file).
5593**
5594** Requesting the lock proxy does not immediately take the conch, it is
5595** only taken when the first request to lock database file is made.
5596** This matches the semantics of the traditional locking behavior, where
5597** opening a connection to a database file does not take a lock on it.
5598** The shared lock and an open file descriptor are maintained until
5599** the connection to the database is closed.
5600**
5601** The proxy file and the lock file are never deleted so they only need
5602** to be created the first time they are used.
5603**
5604** Configuration options
5605** ---------------------
5606**
5607**  SQLITE_PREFER_PROXY_LOCKING
5608**
5609**       Database files accessed on non-local file systems are
5610**       automatically configured for proxy locking, lock files are
5611**       named automatically using the same logic as
5612**       PRAGMA lock_proxy_file=":auto:"
5613**
5614**  SQLITE_PROXY_DEBUG
5615**
5616**       Enables the logging of error messages during host id file
5617**       retrieval and creation
5618**
5619**  LOCKPROXYDIR
5620**
5621**       Overrides the default directory used for lock proxy files that
5622**       are named automatically via the ":auto:" setting
5623**
5624**  SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
5625**
5626**       Permissions to use when creating a directory for storing the
5627**       lock proxy files, only used when LOCKPROXYDIR is not set.
5628**
5629**
5630** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
5631** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
5632** force proxy locking to be used for every database file opened, and 0
5633** will force automatic proxy locking to be disabled for all database
5634** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
5635** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
5636*/
5637
5638/*
5639** Proxy locking is only available on MacOSX
5640*/
5641#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5642
5643/*
5644** The proxyLockingContext has the path and file structures for the remote
5645** and local proxy files in it
5646*/
5647typedef struct proxyLockingContext proxyLockingContext;
5648struct proxyLockingContext {
5649  unixFile *conchFile;         /* Open conch file */
5650  char *conchFilePath;         /* Name of the conch file */
5651  unixFile *lockProxy;         /* Open proxy lock file */
5652  char *lockProxyPath;         /* Name of the proxy lock file */
5653  char *dbPath;                /* Name of the open file */
5654  int conchHeld;               /* 1 if the conch is held, -1 if lockless */
5655  void *oldLockingContext;     /* Original lockingcontext to restore on close */
5656  sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
5657};
5658
5659/*
5660** The proxy lock file path for the database at dbPath is written into lPath,
5661** which must point to valid, writable memory large enough for a maxLen length
5662** file path.
5663*/
5664static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
5665  int len;
5666  int dbLen;
5667  int i;
5668
5669#ifdef LOCKPROXYDIR
5670  len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
5671#else
5672# ifdef _CS_DARWIN_USER_TEMP_DIR
5673  {
5674    if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
5675      OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
5676               lPath, errno, getpid()));
5677      return SQLITE_IOERR_LOCK;
5678    }
5679    len = strlcat(lPath, "sqliteplocks", maxLen);
5680  }
5681# else
5682  len = strlcpy(lPath, "/tmp/", maxLen);
5683# endif
5684#endif
5685
5686  if( lPath[len-1]!='/' ){
5687    len = strlcat(lPath, "/", maxLen);
5688  }
5689
5690  /* transform the db path to a unique cache name */
5691  dbLen = (int)strlen(dbPath);
5692  for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
5693    char c = dbPath[i];
5694    lPath[i+len] = (c=='/')?'_':c;
5695  }
5696  lPath[i+len]='\0';
5697  strlcat(lPath, ":auto:", maxLen);
5698  OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, getpid()));
5699  return SQLITE_OK;
5700}
5701
5702/*
5703 ** Creates the lock file and any missing directories in lockPath
5704 */
5705static int proxyCreateLockPath(const char *lockPath){
5706  int i, len;
5707  char buf[MAXPATHLEN];
5708  int start = 0;
5709
5710  assert(lockPath!=NULL);
5711  /* try to create all the intermediate directories */
5712  len = (int)strlen(lockPath);
5713  buf[0] = lockPath[0];
5714  for( i=1; i<len; i++ ){
5715    if( lockPath[i] == '/' && (i - start > 0) ){
5716      /* only mkdir if leaf dir != "." or "/" or ".." */
5717      if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
5718         || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
5719        buf[i]='\0';
5720        if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
5721          int err=errno;
5722          if( err!=EEXIST ) {
5723            OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
5724                     "'%s' proxy lock path=%s pid=%d\n",
5725                     buf, strerror(err), lockPath, getpid()));
5726            return err;
5727          }
5728        }
5729      }
5730      start=i+1;
5731    }
5732    buf[i] = lockPath[i];
5733  }
5734  OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, getpid()));
5735  return 0;
5736}
5737
5738/*
5739** Create a new VFS file descriptor (stored in memory obtained from
5740** sqlite3_malloc) and open the file named "path" in the file descriptor.
5741**
5742** The caller is responsible not only for closing the file descriptor
5743** but also for freeing the memory associated with the file descriptor.
5744*/
5745static int proxyCreateUnixFile(
5746    const char *path,        /* path for the new unixFile */
5747    unixFile **ppFile,       /* unixFile created and returned by ref */
5748    int islockfile           /* if non zero missing dirs will be created */
5749) {
5750  int fd = -1;
5751  unixFile *pNew;
5752  int rc = SQLITE_OK;
5753  int openFlags = O_RDWR | O_CREAT;
5754  sqlite3_vfs dummyVfs;
5755  int terrno = 0;
5756  UnixUnusedFd *pUnused = NULL;
5757
5758  /* 1. first try to open/create the file
5759  ** 2. if that fails, and this is a lock file (not-conch), try creating
5760  ** the parent directories and then try again.
5761  ** 3. if that fails, try to open the file read-only
5762  ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
5763  */
5764  pUnused = findReusableFd(path, openFlags);
5765  if( pUnused ){
5766    fd = pUnused->fd;
5767  }else{
5768    pUnused = sqlite3_malloc(sizeof(*pUnused));
5769    if( !pUnused ){
5770      return SQLITE_NOMEM;
5771    }
5772  }
5773  if( fd<0 ){
5774    fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5775    terrno = errno;
5776    if( fd<0 && errno==ENOENT && islockfile ){
5777      if( proxyCreateLockPath(path) == SQLITE_OK ){
5778        fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5779      }
5780    }
5781  }
5782  if( fd<0 ){
5783    openFlags = O_RDONLY;
5784    fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5785    terrno = errno;
5786  }
5787  if( fd<0 ){
5788    if( islockfile ){
5789      return SQLITE_BUSY;
5790    }
5791    switch (terrno) {
5792      case EACCES:
5793        return SQLITE_PERM;
5794      case EIO:
5795        return SQLITE_IOERR_LOCK; /* even though it is the conch */
5796      default:
5797        return SQLITE_CANTOPEN_BKPT;
5798    }
5799  }
5800
5801  pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
5802  if( pNew==NULL ){
5803    rc = SQLITE_NOMEM;
5804    goto end_create_proxy;
5805  }
5806  memset(pNew, 0, sizeof(unixFile));
5807  pNew->openFlags = openFlags;
5808  memset(&dummyVfs, 0, sizeof(dummyVfs));
5809  dummyVfs.pAppData = (void*)&autolockIoFinder;
5810  dummyVfs.zName = "dummy";
5811  pUnused->fd = fd;
5812  pUnused->flags = openFlags;
5813  pNew->pUnused = pUnused;
5814
5815  rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0);
5816  if( rc==SQLITE_OK ){
5817    *ppFile = pNew;
5818    return SQLITE_OK;
5819  }
5820end_create_proxy:
5821  robust_close(pNew, fd, __LINE__);
5822  sqlite3_free(pNew);
5823  sqlite3_free(pUnused);
5824  return rc;
5825}
5826
5827#ifdef SQLITE_TEST
5828/* simulate multiple hosts by creating unique hostid file paths */
5829int sqlite3_hostid_num = 0;
5830#endif
5831
5832#define PROXY_HOSTIDLEN    16  /* conch file host id length */
5833
5834/* Not always defined in the headers as it ought to be */
5835extern int gethostuuid(uuid_t id, const struct timespec *wait);
5836
5837/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
5838** bytes of writable memory.
5839*/
5840static int proxyGetHostID(unsigned char *pHostID, int *pError){
5841  assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
5842  memset(pHostID, 0, PROXY_HOSTIDLEN);
5843#if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
5844               && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
5845  {
5846    static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
5847    if( gethostuuid(pHostID, &timeout) ){
5848      int err = errno;
5849      if( pError ){
5850        *pError = err;
5851      }
5852      return SQLITE_IOERR;
5853    }
5854  }
5855#endif
5856#ifdef SQLITE_TEST
5857  /* simulate multiple hosts by creating unique hostid file paths */
5858  if( sqlite3_hostid_num != 0){
5859    pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
5860  }
5861#endif
5862
5863  return SQLITE_OK;
5864}
5865
5866/* The conch file contains the header, host id and lock file path
5867 */
5868#define PROXY_CONCHVERSION 2   /* 1-byte header, 16-byte host id, path */
5869#define PROXY_HEADERLEN    1   /* conch file header length */
5870#define PROXY_PATHINDEX    (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
5871#define PROXY_MAXCONCHLEN  (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
5872
5873/*
5874** Takes an open conch file, copies the contents to a new path and then moves
5875** it back.  The newly created file's file descriptor is assigned to the
5876** conch file structure and finally the original conch file descriptor is
5877** closed.  Returns zero if successful.
5878*/
5879static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
5880  proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5881  unixFile *conchFile = pCtx->conchFile;
5882  char tPath[MAXPATHLEN];
5883  char buf[PROXY_MAXCONCHLEN];
5884  char *cPath = pCtx->conchFilePath;
5885  size_t readLen = 0;
5886  size_t pathLen = 0;
5887  char errmsg[64] = "";
5888  int fd = -1;
5889  int rc = -1;
5890  UNUSED_PARAMETER(myHostID);
5891
5892  /* create a new path by replace the trailing '-conch' with '-break' */
5893  pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
5894  if( pathLen>MAXPATHLEN || pathLen<6 ||
5895     (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
5896    sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
5897    goto end_breaklock;
5898  }
5899  /* read the conch content */
5900  readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
5901  if( readLen<PROXY_PATHINDEX ){
5902    sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
5903    goto end_breaklock;
5904  }
5905  /* write it out to the temporary break file */
5906  fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
5907                   SQLITE_DEFAULT_FILE_PERMISSIONS);
5908  if( fd<0 ){
5909    sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
5910    goto end_breaklock;
5911  }
5912  if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
5913    sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
5914    goto end_breaklock;
5915  }
5916  if( rename(tPath, cPath) ){
5917    sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
5918    goto end_breaklock;
5919  }
5920  rc = 0;
5921  fprintf(stderr, "broke stale lock on %s\n", cPath);
5922  robust_close(pFile, conchFile->h, __LINE__);
5923  conchFile->h = fd;
5924  conchFile->openFlags = O_RDWR | O_CREAT;
5925
5926end_breaklock:
5927  if( rc ){
5928    if( fd>=0 ){
5929      osUnlink(tPath);
5930      robust_close(pFile, fd, __LINE__);
5931    }
5932    fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
5933  }
5934  return rc;
5935}
5936
5937/* Take the requested lock on the conch file and break a stale lock if the
5938** host id matches.
5939*/
5940static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
5941  proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5942  unixFile *conchFile = pCtx->conchFile;
5943  int rc = SQLITE_OK;
5944  int nTries = 0;
5945  struct timespec conchModTime;
5946
5947  do {
5948    rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
5949    nTries ++;
5950    if( rc==SQLITE_BUSY ){
5951      /* If the lock failed (busy):
5952       * 1st try: get the mod time of the conch, wait 0.5s and try again.
5953       * 2nd try: fail if the mod time changed or host id is different, wait
5954       *           10 sec and try again
5955       * 3rd try: break the lock unless the mod time has changed.
5956       */
5957      struct stat buf;
5958      if( osFstat(conchFile->h, &buf) ){
5959        pFile->lastErrno = errno;
5960        return SQLITE_IOERR_LOCK;
5961      }
5962
5963      if( nTries==1 ){
5964        conchModTime = buf.st_mtimespec;
5965        usleep(500000); /* wait 0.5 sec and try the lock again*/
5966        continue;
5967      }
5968
5969      assert( nTries>1 );
5970      if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
5971         conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
5972        return SQLITE_BUSY;
5973      }
5974
5975      if( nTries==2 ){
5976        char tBuf[PROXY_MAXCONCHLEN];
5977        int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
5978        if( len<0 ){
5979          pFile->lastErrno = errno;
5980          return SQLITE_IOERR_LOCK;
5981        }
5982        if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
5983          /* don't break the lock if the host id doesn't match */
5984          if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
5985            return SQLITE_BUSY;
5986          }
5987        }else{
5988          /* don't break the lock on short read or a version mismatch */
5989          return SQLITE_BUSY;
5990        }
5991        usleep(10000000); /* wait 10 sec and try the lock again */
5992        continue;
5993      }
5994
5995      assert( nTries==3 );
5996      if( 0==proxyBreakConchLock(pFile, myHostID) ){
5997        rc = SQLITE_OK;
5998        if( lockType==EXCLUSIVE_LOCK ){
5999          rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
6000        }
6001        if( !rc ){
6002          rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6003        }
6004      }
6005    }
6006  } while( rc==SQLITE_BUSY && nTries<3 );
6007
6008  return rc;
6009}
6010
6011/* Takes the conch by taking a shared lock and read the contents conch, if
6012** lockPath is non-NULL, the host ID and lock file path must match.  A NULL
6013** lockPath means that the lockPath in the conch file will be used if the
6014** host IDs match, or a new lock path will be generated automatically
6015** and written to the conch file.
6016*/
6017static int proxyTakeConch(unixFile *pFile){
6018  proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6019
6020  if( pCtx->conchHeld!=0 ){
6021    return SQLITE_OK;
6022  }else{
6023    unixFile *conchFile = pCtx->conchFile;
6024    uuid_t myHostID;
6025    int pError = 0;
6026    char readBuf[PROXY_MAXCONCHLEN];
6027    char lockPath[MAXPATHLEN];
6028    char *tempLockPath = NULL;
6029    int rc = SQLITE_OK;
6030    int createConch = 0;
6031    int hostIdMatch = 0;
6032    int readLen = 0;
6033    int tryOldLockPath = 0;
6034    int forceNewLockPath = 0;
6035
6036    OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
6037             (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
6038
6039    rc = proxyGetHostID(myHostID, &pError);
6040    if( (rc&0xff)==SQLITE_IOERR ){
6041      pFile->lastErrno = pError;
6042      goto end_takeconch;
6043    }
6044    rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
6045    if( rc!=SQLITE_OK ){
6046      goto end_takeconch;
6047    }
6048    /* read the existing conch file */
6049    readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
6050    if( readLen<0 ){
6051      /* I/O error: lastErrno set by seekAndRead */
6052      pFile->lastErrno = conchFile->lastErrno;
6053      rc = SQLITE_IOERR_READ;
6054      goto end_takeconch;
6055    }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
6056             readBuf[0]!=(char)PROXY_CONCHVERSION ){
6057      /* a short read or version format mismatch means we need to create a new
6058      ** conch file.
6059      */
6060      createConch = 1;
6061    }
6062    /* if the host id matches and the lock path already exists in the conch
6063    ** we'll try to use the path there, if we can't open that path, we'll
6064    ** retry with a new auto-generated path
6065    */
6066    do { /* in case we need to try again for an :auto: named lock file */
6067
6068      if( !createConch && !forceNewLockPath ){
6069        hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
6070                                  PROXY_HOSTIDLEN);
6071        /* if the conch has data compare the contents */
6072        if( !pCtx->lockProxyPath ){
6073          /* for auto-named local lock file, just check the host ID and we'll
6074           ** use the local lock file path that's already in there
6075           */
6076          if( hostIdMatch ){
6077            size_t pathLen = (readLen - PROXY_PATHINDEX);
6078
6079            if( pathLen>=MAXPATHLEN ){
6080              pathLen=MAXPATHLEN-1;
6081            }
6082            memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
6083            lockPath[pathLen] = 0;
6084            tempLockPath = lockPath;
6085            tryOldLockPath = 1;
6086            /* create a copy of the lock path if the conch is taken */
6087            goto end_takeconch;
6088          }
6089        }else if( hostIdMatch
6090               && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
6091                           readLen-PROXY_PATHINDEX)
6092        ){
6093          /* conch host and lock path match */
6094          goto end_takeconch;
6095        }
6096      }
6097
6098      /* if the conch isn't writable and doesn't match, we can't take it */
6099      if( (conchFile->openFlags&O_RDWR) == 0 ){
6100        rc = SQLITE_BUSY;
6101        goto end_takeconch;
6102      }
6103
6104      /* either the conch didn't match or we need to create a new one */
6105      if( !pCtx->lockProxyPath ){
6106        proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
6107        tempLockPath = lockPath;
6108        /* create a copy of the lock path _only_ if the conch is taken */
6109      }
6110
6111      /* update conch with host and path (this will fail if other process
6112      ** has a shared lock already), if the host id matches, use the big
6113      ** stick.
6114      */
6115      futimes(conchFile->h, NULL);
6116      if( hostIdMatch && !createConch ){
6117        if( conchFile->pInode && conchFile->pInode->nShared>1 ){
6118          /* We are trying for an exclusive lock but another thread in this
6119           ** same process is still holding a shared lock. */
6120          rc = SQLITE_BUSY;
6121        } else {
6122          rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
6123        }
6124      }else{
6125        rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
6126      }
6127      if( rc==SQLITE_OK ){
6128        char writeBuffer[PROXY_MAXCONCHLEN];
6129        int writeSize = 0;
6130
6131        writeBuffer[0] = (char)PROXY_CONCHVERSION;
6132        memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
6133        if( pCtx->lockProxyPath!=NULL ){
6134          strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
6135        }else{
6136          strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
6137        }
6138        writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
6139        robust_ftruncate(conchFile->h, writeSize);
6140        rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
6141        fsync(conchFile->h);
6142        /* If we created a new conch file (not just updated the contents of a
6143         ** valid conch file), try to match the permissions of the database
6144         */
6145        if( rc==SQLITE_OK && createConch ){
6146          struct stat buf;
6147          int err = osFstat(pFile->h, &buf);
6148          if( err==0 ){
6149            mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
6150                                        S_IROTH|S_IWOTH);
6151            /* try to match the database file R/W permissions, ignore failure */
6152#ifndef SQLITE_PROXY_DEBUG
6153            osFchmod(conchFile->h, cmode);
6154#else
6155            do{
6156              rc = osFchmod(conchFile->h, cmode);
6157            }while( rc==(-1) && errno==EINTR );
6158            if( rc!=0 ){
6159              int code = errno;
6160              fprintf(stderr, "fchmod %o FAILED with %d %s\n",
6161                      cmode, code, strerror(code));
6162            } else {
6163              fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
6164            }
6165          }else{
6166            int code = errno;
6167            fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
6168                    err, code, strerror(code));
6169#endif
6170          }
6171        }
6172      }
6173      conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
6174
6175    end_takeconch:
6176      OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
6177      if( rc==SQLITE_OK && pFile->openFlags ){
6178        if( pFile->h>=0 ){
6179          robust_close(pFile, pFile->h, __LINE__);
6180        }
6181        pFile->h = -1;
6182        int fd = robust_open(pCtx->dbPath, pFile->openFlags,
6183                      SQLITE_DEFAULT_FILE_PERMISSIONS);
6184        OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
6185        if( fd>=0 ){
6186          pFile->h = fd;
6187        }else{
6188          rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
6189           during locking */
6190        }
6191      }
6192      if( rc==SQLITE_OK && !pCtx->lockProxy ){
6193        char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
6194        rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
6195        if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
6196          /* we couldn't create the proxy lock file with the old lock file path
6197           ** so try again via auto-naming
6198           */
6199          forceNewLockPath = 1;
6200          tryOldLockPath = 0;
6201          continue; /* go back to the do {} while start point, try again */
6202        }
6203      }
6204      if( rc==SQLITE_OK ){
6205        /* Need to make a copy of path if we extracted the value
6206         ** from the conch file or the path was allocated on the stack
6207         */
6208        if( tempLockPath ){
6209          pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
6210          if( !pCtx->lockProxyPath ){
6211            rc = SQLITE_NOMEM;
6212          }
6213        }
6214      }
6215      if( rc==SQLITE_OK ){
6216        pCtx->conchHeld = 1;
6217
6218        if( pCtx->lockProxy->pMethod == &afpIoMethods ){
6219          afpLockingContext *afpCtx;
6220          afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
6221          afpCtx->dbPath = pCtx->lockProxyPath;
6222        }
6223      } else {
6224        conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6225      }
6226      OSTRACE(("TAKECONCH  %d %s\n", conchFile->h,
6227               rc==SQLITE_OK?"ok":"failed"));
6228      return rc;
6229    } while (1); /* in case we need to retry the :auto: lock file -
6230                 ** we should never get here except via the 'continue' call. */
6231  }
6232}
6233
6234/*
6235** If pFile holds a lock on a conch file, then release that lock.
6236*/
6237static int proxyReleaseConch(unixFile *pFile){
6238  int rc = SQLITE_OK;         /* Subroutine return code */
6239  proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
6240  unixFile *conchFile;        /* Name of the conch file */
6241
6242  pCtx = (proxyLockingContext *)pFile->lockingContext;
6243  conchFile = pCtx->conchFile;
6244  OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
6245           (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
6246           getpid()));
6247  if( pCtx->conchHeld>0 ){
6248    rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6249  }
6250  pCtx->conchHeld = 0;
6251  OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
6252           (rc==SQLITE_OK ? "ok" : "failed")));
6253  return rc;
6254}
6255
6256/*
6257** Given the name of a database file, compute the name of its conch file.
6258** Store the conch filename in memory obtained from sqlite3_malloc().
6259** Make *pConchPath point to the new name.  Return SQLITE_OK on success
6260** or SQLITE_NOMEM if unable to obtain memory.
6261**
6262** The caller is responsible for ensuring that the allocated memory
6263** space is eventually freed.
6264**
6265** *pConchPath is set to NULL if a memory allocation error occurs.
6266*/
6267static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
6268  int i;                        /* Loop counter */
6269  int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
6270  char *conchPath;              /* buffer in which to construct conch name */
6271
6272  /* Allocate space for the conch filename and initialize the name to
6273  ** the name of the original database file. */
6274  *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
6275  if( conchPath==0 ){
6276    return SQLITE_NOMEM;
6277  }
6278  memcpy(conchPath, dbPath, len+1);
6279
6280  /* now insert a "." before the last / character */
6281  for( i=(len-1); i>=0; i-- ){
6282    if( conchPath[i]=='/' ){
6283      i++;
6284      break;
6285    }
6286  }
6287  conchPath[i]='.';
6288  while ( i<len ){
6289    conchPath[i+1]=dbPath[i];
6290    i++;
6291  }
6292
6293  /* append the "-conch" suffix to the file */
6294  memcpy(&conchPath[i+1], "-conch", 7);
6295  assert( (int)strlen(conchPath) == len+7 );
6296
6297  return SQLITE_OK;
6298}
6299
6300
6301/* Takes a fully configured proxy locking-style unix file and switches
6302** the local lock file path
6303*/
6304static int switchLockProxyPath(unixFile *pFile, const char *path) {
6305  proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6306  char *oldPath = pCtx->lockProxyPath;
6307  int rc = SQLITE_OK;
6308
6309  if( pFile->eFileLock!=NO_LOCK ){
6310    return SQLITE_BUSY;
6311  }
6312
6313  /* nothing to do if the path is NULL, :auto: or matches the existing path */
6314  if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
6315    (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
6316    return SQLITE_OK;
6317  }else{
6318    unixFile *lockProxy = pCtx->lockProxy;
6319    pCtx->lockProxy=NULL;
6320    pCtx->conchHeld = 0;
6321    if( lockProxy!=NULL ){
6322      rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
6323      if( rc ) return rc;
6324      sqlite3_free(lockProxy);
6325    }
6326    sqlite3_free(oldPath);
6327    pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
6328  }
6329
6330  return rc;
6331}
6332
6333/*
6334** pFile is a file that has been opened by a prior xOpen call.  dbPath
6335** is a string buffer at least MAXPATHLEN+1 characters in size.
6336**
6337** This routine find the filename associated with pFile and writes it
6338** int dbPath.
6339*/
6340static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
6341#if defined(__APPLE__)
6342  if( pFile->pMethod == &afpIoMethods ){
6343    /* afp style keeps a reference to the db path in the filePath field
6344    ** of the struct */
6345    assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6346    strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
6347  } else
6348#endif
6349  if( pFile->pMethod == &dotlockIoMethods ){
6350    /* dot lock style uses the locking context to store the dot lock
6351    ** file path */
6352    int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
6353    memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
6354  }else{
6355    /* all other styles use the locking context to store the db file path */
6356    assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6357    strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
6358  }
6359  return SQLITE_OK;
6360}
6361
6362/*
6363** Takes an already filled in unix file and alters it so all file locking
6364** will be performed on the local proxy lock file.  The following fields
6365** are preserved in the locking context so that they can be restored and
6366** the unix structure properly cleaned up at close time:
6367**  ->lockingContext
6368**  ->pMethod
6369*/
6370static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
6371  proxyLockingContext *pCtx;
6372  char dbPath[MAXPATHLEN+1];       /* Name of the database file */
6373  char *lockPath=NULL;
6374  int rc = SQLITE_OK;
6375
6376  if( pFile->eFileLock!=NO_LOCK ){
6377    return SQLITE_BUSY;
6378  }
6379  proxyGetDbPathForUnixFile(pFile, dbPath);
6380  if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
6381    lockPath=NULL;
6382  }else{
6383    lockPath=(char *)path;
6384  }
6385
6386  OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
6387           (lockPath ? lockPath : ":auto:"), getpid()));
6388
6389  pCtx = sqlite3_malloc( sizeof(*pCtx) );
6390  if( pCtx==0 ){
6391    return SQLITE_NOMEM;
6392  }
6393  memset(pCtx, 0, sizeof(*pCtx));
6394
6395  rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
6396  if( rc==SQLITE_OK ){
6397    rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
6398    if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
6399      /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
6400      ** (c) the file system is read-only, then enable no-locking access.
6401      ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
6402      ** that openFlags will have only one of O_RDONLY or O_RDWR.
6403      */
6404      struct statfs fsInfo;
6405      struct stat conchInfo;
6406      int goLockless = 0;
6407
6408      if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
6409        int err = errno;
6410        if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
6411          goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
6412        }
6413      }
6414      if( goLockless ){
6415        pCtx->conchHeld = -1; /* read only FS/ lockless */
6416        rc = SQLITE_OK;
6417      }
6418    }
6419  }
6420  if( rc==SQLITE_OK && lockPath ){
6421    pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
6422  }
6423
6424  if( rc==SQLITE_OK ){
6425    pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
6426    if( pCtx->dbPath==NULL ){
6427      rc = SQLITE_NOMEM;
6428    }
6429  }
6430  if( rc==SQLITE_OK ){
6431    /* all memory is allocated, proxys are created and assigned,
6432    ** switch the locking context and pMethod then return.
6433    */
6434    pCtx->oldLockingContext = pFile->lockingContext;
6435    pFile->lockingContext = pCtx;
6436    pCtx->pOldMethod = pFile->pMethod;
6437    pFile->pMethod = &proxyIoMethods;
6438  }else{
6439    if( pCtx->conchFile ){
6440      pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
6441      sqlite3_free(pCtx->conchFile);
6442    }
6443    sqlite3DbFree(0, pCtx->lockProxyPath);
6444    sqlite3_free(pCtx->conchFilePath);
6445    sqlite3_free(pCtx);
6446  }
6447  OSTRACE(("TRANSPROXY  %d %s\n", pFile->h,
6448           (rc==SQLITE_OK ? "ok" : "failed")));
6449  return rc;
6450}
6451
6452
6453/*
6454** This routine handles sqlite3_file_control() calls that are specific
6455** to proxy locking.
6456*/
6457static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
6458  switch( op ){
6459    case SQLITE_GET_LOCKPROXYFILE: {
6460      unixFile *pFile = (unixFile*)id;
6461      if( pFile->pMethod == &proxyIoMethods ){
6462        proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6463        proxyTakeConch(pFile);
6464        if( pCtx->lockProxyPath ){
6465          *(const char **)pArg = pCtx->lockProxyPath;
6466        }else{
6467          *(const char **)pArg = ":auto: (not held)";
6468        }
6469      } else {
6470        *(const char **)pArg = NULL;
6471      }
6472      return SQLITE_OK;
6473    }
6474    case SQLITE_SET_LOCKPROXYFILE: {
6475      unixFile *pFile = (unixFile*)id;
6476      int rc = SQLITE_OK;
6477      int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
6478      if( pArg==NULL || (const char *)pArg==0 ){
6479        if( isProxyStyle ){
6480          /* turn off proxy locking - not supported */
6481          rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
6482        }else{
6483          /* turn off proxy locking - already off - NOOP */
6484          rc = SQLITE_OK;
6485        }
6486      }else{
6487        const char *proxyPath = (const char *)pArg;
6488        if( isProxyStyle ){
6489          proxyLockingContext *pCtx =
6490            (proxyLockingContext*)pFile->lockingContext;
6491          if( !strcmp(pArg, ":auto:")
6492           || (pCtx->lockProxyPath &&
6493               !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
6494          ){
6495            rc = SQLITE_OK;
6496          }else{
6497            rc = switchLockProxyPath(pFile, proxyPath);
6498          }
6499        }else{
6500          /* turn on proxy file locking */
6501          rc = proxyTransformUnixFile(pFile, proxyPath);
6502        }
6503      }
6504      return rc;
6505    }
6506    default: {
6507      assert( 0 );  /* The call assures that only valid opcodes are sent */
6508    }
6509  }
6510  /*NOTREACHED*/
6511  return SQLITE_ERROR;
6512}
6513
6514/*
6515** Within this division (the proxying locking implementation) the procedures
6516** above this point are all utilities.  The lock-related methods of the
6517** proxy-locking sqlite3_io_method object follow.
6518*/
6519
6520
6521/*
6522** This routine checks if there is a RESERVED lock held on the specified
6523** file by this or any other process. If such a lock is held, set *pResOut
6524** to a non-zero value otherwise *pResOut is set to zero.  The return value
6525** is set to SQLITE_OK unless an I/O error occurs during lock checking.
6526*/
6527static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
6528  unixFile *pFile = (unixFile*)id;
6529  int rc = proxyTakeConch(pFile);
6530  if( rc==SQLITE_OK ){
6531    proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6532    if( pCtx->conchHeld>0 ){
6533      unixFile *proxy = pCtx->lockProxy;
6534      return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
6535    }else{ /* conchHeld < 0 is lockless */
6536      pResOut=0;
6537    }
6538  }
6539  return rc;
6540}
6541
6542/*
6543** Lock the file with the lock specified by parameter eFileLock - one
6544** of the following:
6545**
6546**     (1) SHARED_LOCK
6547**     (2) RESERVED_LOCK
6548**     (3) PENDING_LOCK
6549**     (4) EXCLUSIVE_LOCK
6550**
6551** Sometimes when requesting one lock state, additional lock states
6552** are inserted in between.  The locking might fail on one of the later
6553** transitions leaving the lock state different from what it started but
6554** still short of its goal.  The following chart shows the allowed
6555** transitions and the inserted intermediate states:
6556**
6557**    UNLOCKED -> SHARED
6558**    SHARED -> RESERVED
6559**    SHARED -> (PENDING) -> EXCLUSIVE
6560**    RESERVED -> (PENDING) -> EXCLUSIVE
6561**    PENDING -> EXCLUSIVE
6562**
6563** This routine will only increase a lock.  Use the sqlite3OsUnlock()
6564** routine to lower a locking level.
6565*/
6566static int proxyLock(sqlite3_file *id, int eFileLock) {
6567  unixFile *pFile = (unixFile*)id;
6568  int rc = proxyTakeConch(pFile);
6569  if( rc==SQLITE_OK ){
6570    proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6571    if( pCtx->conchHeld>0 ){
6572      unixFile *proxy = pCtx->lockProxy;
6573      rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
6574      pFile->eFileLock = proxy->eFileLock;
6575    }else{
6576      /* conchHeld < 0 is lockless */
6577    }
6578  }
6579  return rc;
6580}
6581
6582
6583/*
6584** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
6585** must be either NO_LOCK or SHARED_LOCK.
6586**
6587** If the locking level of the file descriptor is already at or below
6588** the requested locking level, this routine is a no-op.
6589*/
6590static int proxyUnlock(sqlite3_file *id, int eFileLock) {
6591  unixFile *pFile = (unixFile*)id;
6592  int rc = proxyTakeConch(pFile);
6593  if( rc==SQLITE_OK ){
6594    proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6595    if( pCtx->conchHeld>0 ){
6596      unixFile *proxy = pCtx->lockProxy;
6597      rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
6598      pFile->eFileLock = proxy->eFileLock;
6599    }else{
6600      /* conchHeld < 0 is lockless */
6601    }
6602  }
6603  return rc;
6604}
6605
6606/*
6607** Close a file that uses proxy locks.
6608*/
6609static int proxyClose(sqlite3_file *id) {
6610  if( id ){
6611    unixFile *pFile = (unixFile*)id;
6612    proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6613    unixFile *lockProxy = pCtx->lockProxy;
6614    unixFile *conchFile = pCtx->conchFile;
6615    int rc = SQLITE_OK;
6616
6617    if( lockProxy ){
6618      rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
6619      if( rc ) return rc;
6620      rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
6621      if( rc ) return rc;
6622      sqlite3_free(lockProxy);
6623      pCtx->lockProxy = 0;
6624    }
6625    if( conchFile ){
6626      if( pCtx->conchHeld ){
6627        rc = proxyReleaseConch(pFile);
6628        if( rc ) return rc;
6629      }
6630      rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
6631      if( rc ) return rc;
6632      sqlite3_free(conchFile);
6633    }
6634    sqlite3DbFree(0, pCtx->lockProxyPath);
6635    sqlite3_free(pCtx->conchFilePath);
6636    sqlite3DbFree(0, pCtx->dbPath);
6637    /* restore the original locking context and pMethod then close it */
6638    pFile->lockingContext = pCtx->oldLockingContext;
6639    pFile->pMethod = pCtx->pOldMethod;
6640    sqlite3_free(pCtx);
6641    return pFile->pMethod->xClose(id);
6642  }
6643  return SQLITE_OK;
6644}
6645
6646
6647
6648#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
6649/*
6650** The proxy locking style is intended for use with AFP filesystems.
6651** And since AFP is only supported on MacOSX, the proxy locking is also
6652** restricted to MacOSX.
6653**
6654**
6655******************* End of the proxy lock implementation **********************
6656******************************************************************************/
6657
6658/*
6659** Initialize the operating system interface.
6660**
6661** This routine registers all VFS implementations for unix-like operating
6662** systems.  This routine, and the sqlite3_os_end() routine that follows,
6663** should be the only routines in this file that are visible from other
6664** files.
6665**
6666** This routine is called once during SQLite initialization and by a
6667** single thread.  The memory allocation and mutex subsystems have not
6668** necessarily been initialized when this routine is called, and so they
6669** should not be used.
6670*/
6671int sqlite3_os_init(void){
6672  /*
6673  ** The following macro defines an initializer for an sqlite3_vfs object.
6674  ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
6675  ** to the "finder" function.  (pAppData is a pointer to a pointer because
6676  ** silly C90 rules prohibit a void* from being cast to a function pointer
6677  ** and so we have to go through the intermediate pointer to avoid problems
6678  ** when compiling with -pedantic-errors on GCC.)
6679  **
6680  ** The FINDER parameter to this macro is the name of the pointer to the
6681  ** finder-function.  The finder-function returns a pointer to the
6682  ** sqlite_io_methods object that implements the desired locking
6683  ** behaviors.  See the division above that contains the IOMETHODS
6684  ** macro for addition information on finder-functions.
6685  **
6686  ** Most finders simply return a pointer to a fixed sqlite3_io_methods
6687  ** object.  But the "autolockIoFinder" available on MacOSX does a little
6688  ** more than that; it looks at the filesystem type that hosts the
6689  ** database file and tries to choose an locking method appropriate for
6690  ** that filesystem time.
6691  */
6692  #define UNIXVFS(VFSNAME, FINDER) {                        \
6693    3,                    /* iVersion */                    \
6694    sizeof(unixFile),     /* szOsFile */                    \
6695    MAX_PATHNAME,         /* mxPathname */                  \
6696    0,                    /* pNext */                       \
6697    VFSNAME,              /* zName */                       \
6698    (void*)&FINDER,       /* pAppData */                    \
6699    unixOpen,             /* xOpen */                       \
6700    unixDelete,           /* xDelete */                     \
6701    unixAccess,           /* xAccess */                     \
6702    unixFullPathname,     /* xFullPathname */               \
6703    unixDlOpen,           /* xDlOpen */                     \
6704    unixDlError,          /* xDlError */                    \
6705    unixDlSym,            /* xDlSym */                      \
6706    unixDlClose,          /* xDlClose */                    \
6707    unixRandomness,       /* xRandomness */                 \
6708    unixSleep,            /* xSleep */                      \
6709    unixCurrentTime,      /* xCurrentTime */                \
6710    unixGetLastError,     /* xGetLastError */               \
6711    unixCurrentTimeInt64, /* xCurrentTimeInt64 */           \
6712    unixSetSystemCall,    /* xSetSystemCall */              \
6713    unixGetSystemCall,    /* xGetSystemCall */              \
6714    unixNextSystemCall,   /* xNextSystemCall */             \
6715  }
6716
6717  /*
6718  ** All default VFSes for unix are contained in the following array.
6719  **
6720  ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
6721  ** by the SQLite core when the VFS is registered.  So the following
6722  ** array cannot be const.
6723  */
6724  static sqlite3_vfs aVfs[] = {
6725#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
6726    UNIXVFS("unix",          autolockIoFinder ),
6727#else
6728    UNIXVFS("unix",          posixIoFinder ),
6729#endif
6730    UNIXVFS("unix-none",     nolockIoFinder ),
6731    UNIXVFS("unix-dotfile",  dotlockIoFinder ),
6732    UNIXVFS("unix-excl",     posixIoFinder ),
6733#if OS_VXWORKS
6734    UNIXVFS("unix-namedsem", semIoFinder ),
6735#endif
6736#if SQLITE_ENABLE_LOCKING_STYLE
6737    UNIXVFS("unix-posix",    posixIoFinder ),
6738#if !OS_VXWORKS
6739    UNIXVFS("unix-flock",    flockIoFinder ),
6740#endif
6741#endif
6742#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
6743    UNIXVFS("unix-afp",      afpIoFinder ),
6744    UNIXVFS("unix-nfs",      nfsIoFinder ),
6745    UNIXVFS("unix-proxy",    proxyIoFinder ),
6746#endif
6747  };
6748  unsigned int i;          /* Loop counter */
6749
6750  /* Double-check that the aSyscall[] array has been constructed
6751  ** correctly.  See ticket [bb3a86e890c8e96ab] */
6752  assert( ArraySize(aSyscall)==18 );
6753
6754  /* Register all VFSes defined in the aVfs[] array */
6755  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
6756    sqlite3_vfs_register(&aVfs[i], i==0);
6757  }
6758  return SQLITE_OK;
6759}
6760
6761/*
6762** Shutdown the operating system interface.
6763**
6764** Some operating systems might need to do some cleanup in this routine,
6765** to release dynamically allocated objects.  But not on unix.
6766** This routine is a no-op for unix.
6767*/
6768int sqlite3_os_end(void){
6769  return SQLITE_OK;
6770}
6771
6772#endif /* SQLITE_OS_UNIX */
6773