1/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Internal interface definitions for SQLite.
13**
14*/
15#ifndef _SQLITEINT_H_
16#define _SQLITEINT_H_
17
18/*
19** These #defines should enable >2GB file support on POSIX if the
20** underlying operating system supports it.  If the OS lacks
21** large file support, or if the OS is windows, these should be no-ops.
22**
23** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
24** system #includes.  Hence, this block of code must be the very first
25** code in all source files.
26**
27** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
28** on the compiler command line.  This is necessary if you are compiling
29** on a recent machine (ex: Red Hat 7.2) but you want your code to work
30** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
31** without this option, LFS is enable.  But LFS does not exist in the kernel
32** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
33** portability you should omit LFS.
34**
35** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
36*/
37#ifndef SQLITE_DISABLE_LFS
38# define _LARGE_FILE       1
39# ifndef _FILE_OFFSET_BITS
40#   define _FILE_OFFSET_BITS 64
41# endif
42# define _LARGEFILE_SOURCE 1
43#endif
44
45/*
46** Include the configuration header output by 'configure' if we're using the
47** autoconf-based build
48*/
49#ifdef _HAVE_SQLITE_CONFIG_H
50#include "config.h"
51#endif
52
53#include "sqliteLimit.h"
54
55/* Disable nuisance warnings on Borland compilers */
56#if defined(__BORLANDC__)
57#pragma warn -rch /* unreachable code */
58#pragma warn -ccc /* Condition is always true or false */
59#pragma warn -aus /* Assigned value is never used */
60#pragma warn -csu /* Comparing signed and unsigned */
61#pragma warn -spa /* Suspicious pointer arithmetic */
62#endif
63
64/* Needed for various definitions... */
65#ifndef _GNU_SOURCE
66# define _GNU_SOURCE
67#endif
68
69/*
70** Include standard header files as necessary
71*/
72#ifdef HAVE_STDINT_H
73#include <stdint.h>
74#endif
75#ifdef HAVE_INTTYPES_H
76#include <inttypes.h>
77#endif
78
79/*
80** The number of samples of an index that SQLite takes in order to
81** construct a histogram of the table content when running ANALYZE
82** and with SQLITE_ENABLE_STAT2
83*/
84#define SQLITE_INDEX_SAMPLES 10
85
86/*
87** The following macros are used to cast pointers to integers and
88** integers to pointers.  The way you do this varies from one compiler
89** to the next, so we have developed the following set of #if statements
90** to generate appropriate macros for a wide range of compilers.
91**
92** The correct "ANSI" way to do this is to use the intptr_t type.
93** Unfortunately, that typedef is not available on all compilers, or
94** if it is available, it requires an #include of specific headers
95** that vary from one machine to the next.
96**
97** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
98** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
99** So we have to define the macros in different ways depending on the
100** compiler.
101*/
102#if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
103# define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
104# define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
105#elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
106# define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
107# define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
108#elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
109# define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
110# define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
111#else                          /* Generates a warning - but it always works */
112# define SQLITE_INT_TO_PTR(X)  ((void*)(X))
113# define SQLITE_PTR_TO_INT(X)  ((int)(X))
114#endif
115
116/*
117** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
118** 0 means mutexes are permanently disable and the library is never
119** threadsafe.  1 means the library is serialized which is the highest
120** level of threadsafety.  2 means the libary is multithreaded - multiple
121** threads can use SQLite as long as no two threads try to use the same
122** database connection at the same time.
123**
124** Older versions of SQLite used an optional THREADSAFE macro.
125** We support that for legacy.
126*/
127#if !defined(SQLITE_THREADSAFE)
128#if defined(THREADSAFE)
129# define SQLITE_THREADSAFE THREADSAFE
130#else
131# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
132#endif
133#endif
134
135/*
136** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
137** It determines whether or not the features related to
138** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
139** be overridden at runtime using the sqlite3_config() API.
140*/
141#if !defined(SQLITE_DEFAULT_MEMSTATUS)
142# define SQLITE_DEFAULT_MEMSTATUS 1
143#endif
144
145/*
146** Exactly one of the following macros must be defined in order to
147** specify which memory allocation subsystem to use.
148**
149**     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
150**     SQLITE_MEMDEBUG               // Debugging version of system malloc()
151**
152** (Historical note:  There used to be several other options, but we've
153** pared it down to just these two.)
154**
155** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
156** the default.
157*/
158#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1
159# error "At most one of the following compile-time configuration options\
160 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG"
161#endif
162#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0
163# define SQLITE_SYSTEM_MALLOC 1
164#endif
165
166/*
167** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
168** sizes of memory allocations below this value where possible.
169*/
170#if !defined(SQLITE_MALLOC_SOFT_LIMIT)
171# define SQLITE_MALLOC_SOFT_LIMIT 1024
172#endif
173
174/*
175** We need to define _XOPEN_SOURCE as follows in order to enable
176** recursive mutexes on most Unix systems.  But Mac OS X is different.
177** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
178** so it is omitted there.  See ticket #2673.
179**
180** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
181** implemented on some systems.  So we avoid defining it at all
182** if it is already defined or if it is unneeded because we are
183** not doing a threadsafe build.  Ticket #2681.
184**
185** See also ticket #2741.
186*/
187#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
188#  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
189#endif
190
191/*
192** The TCL headers are only needed when compiling the TCL bindings.
193*/
194#if defined(SQLITE_TCL) || defined(TCLSH)
195# include <tcl.h>
196#endif
197
198/*
199** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
200** Setting NDEBUG makes the code smaller and run faster.  So the following
201** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
202** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
203** feature.
204*/
205#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
206# define NDEBUG 1
207#endif
208
209/*
210** The testcase() macro is used to aid in coverage testing.  When
211** doing coverage testing, the condition inside the argument to
212** testcase() must be evaluated both true and false in order to
213** get full branch coverage.  The testcase() macro is inserted
214** to help ensure adequate test coverage in places where simple
215** condition/decision coverage is inadequate.  For example, testcase()
216** can be used to make sure boundary values are tested.  For
217** bitmask tests, testcase() can be used to make sure each bit
218** is significant and used at least once.  On switch statements
219** where multiple cases go to the same block of code, testcase()
220** can insure that all cases are evaluated.
221**
222*/
223#ifdef SQLITE_COVERAGE_TEST
224  void sqlite3Coverage(int);
225# define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
226#else
227# define testcase(X)
228#endif
229
230/*
231** The TESTONLY macro is used to enclose variable declarations or
232** other bits of code that are needed to support the arguments
233** within testcase() and assert() macros.
234*/
235#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
236# define TESTONLY(X)  X
237#else
238# define TESTONLY(X)
239#endif
240
241/*
242** Sometimes we need a small amount of code such as a variable initialization
243** to setup for a later assert() statement.  We do not want this code to
244** appear when assert() is disabled.  The following macro is therefore
245** used to contain that setup code.  The "VVA" acronym stands for
246** "Verification, Validation, and Accreditation".  In other words, the
247** code within VVA_ONLY() will only run during verification processes.
248*/
249#ifndef NDEBUG
250# define VVA_ONLY(X)  X
251#else
252# define VVA_ONLY(X)
253#endif
254
255/*
256** The ALWAYS and NEVER macros surround boolean expressions which
257** are intended to always be true or false, respectively.  Such
258** expressions could be omitted from the code completely.  But they
259** are included in a few cases in order to enhance the resilience
260** of SQLite to unexpected behavior - to make the code "self-healing"
261** or "ductile" rather than being "brittle" and crashing at the first
262** hint of unplanned behavior.
263**
264** In other words, ALWAYS and NEVER are added for defensive code.
265**
266** When doing coverage testing ALWAYS and NEVER are hard-coded to
267** be true and false so that the unreachable code then specify will
268** not be counted as untested code.
269*/
270#if defined(SQLITE_COVERAGE_TEST)
271# define ALWAYS(X)      (1)
272# define NEVER(X)       (0)
273#elif !defined(NDEBUG)
274# define ALWAYS(X)      ((X)?1:(assert(0),0))
275# define NEVER(X)       ((X)?(assert(0),1):0)
276#else
277# define ALWAYS(X)      (X)
278# define NEVER(X)       (X)
279#endif
280
281/*
282** Return true (non-zero) if the input is a integer that is too large
283** to fit in 32-bits.  This macro is used inside of various testcase()
284** macros to verify that we have tested SQLite for large-file support.
285*/
286#define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
287
288/*
289** The macro unlikely() is a hint that surrounds a boolean
290** expression that is usually false.  Macro likely() surrounds
291** a boolean expression that is usually true.  GCC is able to
292** use these hints to generate better code, sometimes.
293*/
294#if defined(__GNUC__) && 0
295# define likely(X)    __builtin_expect((X),1)
296# define unlikely(X)  __builtin_expect((X),0)
297#else
298# define likely(X)    !!(X)
299# define unlikely(X)  !!(X)
300#endif
301
302#include "sqlite3.h"
303#include "hash.h"
304#include "parse.h"
305#include <stdio.h>
306#include <stdlib.h>
307#include <string.h>
308#include <assert.h>
309#include <stddef.h>
310
311/*
312** If compiling for a processor that lacks floating point support,
313** substitute integer for floating-point
314*/
315#ifdef SQLITE_OMIT_FLOATING_POINT
316# define double sqlite_int64
317# define float sqlite_int64
318# define LONGDOUBLE_TYPE sqlite_int64
319# ifndef SQLITE_BIG_DBL
320#   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
321# endif
322# define SQLITE_OMIT_DATETIME_FUNCS 1
323# define SQLITE_OMIT_TRACE 1
324# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
325# undef SQLITE_HAVE_ISNAN
326#endif
327#ifndef SQLITE_BIG_DBL
328# define SQLITE_BIG_DBL (1e99)
329#endif
330
331/*
332** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
333** afterward. Having this macro allows us to cause the C compiler
334** to omit code used by TEMP tables without messy #ifndef statements.
335*/
336#ifdef SQLITE_OMIT_TEMPDB
337#define OMIT_TEMPDB 1
338#else
339#define OMIT_TEMPDB 0
340#endif
341
342/*
343** The "file format" number is an integer that is incremented whenever
344** the VDBE-level file format changes.  The following macros define the
345** the default file format for new databases and the maximum file format
346** that the library can read.
347*/
348#define SQLITE_MAX_FILE_FORMAT 4
349#ifndef SQLITE_DEFAULT_FILE_FORMAT
350# define SQLITE_DEFAULT_FILE_FORMAT 1
351#endif
352
353/*
354** Determine whether triggers are recursive by default.  This can be
355** changed at run-time using a pragma.
356*/
357#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
358# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
359#endif
360
361/*
362** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
363** on the command-line
364*/
365#ifndef SQLITE_TEMP_STORE
366# define SQLITE_TEMP_STORE 1
367#endif
368
369/*
370** GCC does not define the offsetof() macro so we'll have to do it
371** ourselves.
372*/
373#ifndef offsetof
374#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
375#endif
376
377/*
378** Check to see if this machine uses EBCDIC.  (Yes, believe it or
379** not, there are still machines out there that use EBCDIC.)
380*/
381#if 'A' == '\301'
382# define SQLITE_EBCDIC 1
383#else
384# define SQLITE_ASCII 1
385#endif
386
387/*
388** Integers of known sizes.  These typedefs might change for architectures
389** where the sizes very.  Preprocessor macros are available so that the
390** types can be conveniently redefined at compile-type.  Like this:
391**
392**         cc '-DUINTPTR_TYPE=long long int' ...
393*/
394#ifndef UINT32_TYPE
395# ifdef HAVE_UINT32_T
396#  define UINT32_TYPE uint32_t
397# else
398#  define UINT32_TYPE unsigned int
399# endif
400#endif
401#ifndef UINT16_TYPE
402# ifdef HAVE_UINT16_T
403#  define UINT16_TYPE uint16_t
404# else
405#  define UINT16_TYPE unsigned short int
406# endif
407#endif
408#ifndef INT16_TYPE
409# ifdef HAVE_INT16_T
410#  define INT16_TYPE int16_t
411# else
412#  define INT16_TYPE short int
413# endif
414#endif
415#ifndef UINT8_TYPE
416# ifdef HAVE_UINT8_T
417#  define UINT8_TYPE uint8_t
418# else
419#  define UINT8_TYPE unsigned char
420# endif
421#endif
422#ifndef INT8_TYPE
423# ifdef HAVE_INT8_T
424#  define INT8_TYPE int8_t
425# else
426#  define INT8_TYPE signed char
427# endif
428#endif
429#ifndef LONGDOUBLE_TYPE
430# define LONGDOUBLE_TYPE long double
431#endif
432typedef sqlite_int64 i64;          /* 8-byte signed integer */
433typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
434typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
435typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
436typedef INT16_TYPE i16;            /* 2-byte signed integer */
437typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
438typedef INT8_TYPE i8;              /* 1-byte signed integer */
439
440/*
441** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
442** that can be stored in a u32 without loss of data.  The value
443** is 0x00000000ffffffff.  But because of quirks of some compilers, we
444** have to specify the value in the less intuitive manner shown:
445*/
446#define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
447
448/*
449** Macros to determine whether the machine is big or little endian,
450** evaluated at runtime.
451*/
452#ifdef SQLITE_AMALGAMATION
453const int sqlite3one = 1;
454#else
455extern const int sqlite3one;
456#endif
457#if defined(i386) || defined(__i386__) || defined(_M_IX86)\
458                             || defined(__x86_64) || defined(__x86_64__)
459# define SQLITE_BIGENDIAN    0
460# define SQLITE_LITTLEENDIAN 1
461# define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
462#else
463# define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
464# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
465# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
466#endif
467
468/*
469** Constants for the largest and smallest possible 64-bit signed integers.
470** These macros are designed to work correctly on both 32-bit and 64-bit
471** compilers.
472*/
473#define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
474#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
475
476/*
477** Round up a number to the next larger multiple of 8.  This is used
478** to force 8-byte alignment on 64-bit architectures.
479*/
480#define ROUND8(x)     (((x)+7)&~7)
481
482/*
483** Round down to the nearest multiple of 8
484*/
485#define ROUNDDOWN8(x) ((x)&~7)
486
487/*
488** Assert that the pointer X is aligned to an 8-byte boundary.  This
489** macro is used only within assert() to verify that the code gets
490** all alignment restrictions correct.
491**
492** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
493** underlying malloc() implemention might return us 4-byte aligned
494** pointers.  In that case, only verify 4-byte alignment.
495*/
496#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
497# define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
498#else
499# define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
500#endif
501
502
503/*
504** An instance of the following structure is used to store the busy-handler
505** callback for a given sqlite handle.
506**
507** The sqlite.busyHandler member of the sqlite struct contains the busy
508** callback for the database handle. Each pager opened via the sqlite
509** handle is passed a pointer to sqlite.busyHandler. The busy-handler
510** callback is currently invoked only from within pager.c.
511*/
512typedef struct BusyHandler BusyHandler;
513struct BusyHandler {
514  int (*xFunc)(void *,int);  /* The busy callback */
515  void *pArg;                /* First arg to busy callback */
516  int nBusy;                 /* Incremented with each busy call */
517};
518
519/*
520** Name of the master database table.  The master database table
521** is a special table that holds the names and attributes of all
522** user tables and indices.
523*/
524#define MASTER_NAME       "sqlite_master"
525#define TEMP_MASTER_NAME  "sqlite_temp_master"
526
527/*
528** The root-page of the master database table.
529*/
530#define MASTER_ROOT       1
531
532/*
533** The name of the schema table.
534*/
535#define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
536
537/*
538** A convenience macro that returns the number of elements in
539** an array.
540*/
541#define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
542
543/*
544** The following value as a destructor means to use sqlite3DbFree().
545** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
546*/
547#define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3DbFree)
548
549/*
550** When SQLITE_OMIT_WSD is defined, it means that the target platform does
551** not support Writable Static Data (WSD) such as global and static variables.
552** All variables must either be on the stack or dynamically allocated from
553** the heap.  When WSD is unsupported, the variable declarations scattered
554** throughout the SQLite code must become constants instead.  The SQLITE_WSD
555** macro is used for this purpose.  And instead of referencing the variable
556** directly, we use its constant as a key to lookup the run-time allocated
557** buffer that holds real variable.  The constant is also the initializer
558** for the run-time allocated buffer.
559**
560** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
561** macros become no-ops and have zero performance impact.
562*/
563#ifdef SQLITE_OMIT_WSD
564  #define SQLITE_WSD const
565  #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
566  #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
567  int sqlite3_wsd_init(int N, int J);
568  void *sqlite3_wsd_find(void *K, int L);
569#else
570  #define SQLITE_WSD
571  #define GLOBAL(t,v) v
572  #define sqlite3GlobalConfig sqlite3Config
573#endif
574
575/*
576** The following macros are used to suppress compiler warnings and to
577** make it clear to human readers when a function parameter is deliberately
578** left unused within the body of a function. This usually happens when
579** a function is called via a function pointer. For example the
580** implementation of an SQL aggregate step callback may not use the
581** parameter indicating the number of arguments passed to the aggregate,
582** if it knows that this is enforced elsewhere.
583**
584** When a function parameter is not used at all within the body of a function,
585** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
586** However, these macros may also be used to suppress warnings related to
587** parameters that may or may not be used depending on compilation options.
588** For example those parameters only used in assert() statements. In these
589** cases the parameters are named as per the usual conventions.
590*/
591#define UNUSED_PARAMETER(x) (void)(x)
592#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
593
594/*
595** Forward references to structures
596*/
597typedef struct AggInfo AggInfo;
598typedef struct AuthContext AuthContext;
599typedef struct AutoincInfo AutoincInfo;
600typedef struct Bitvec Bitvec;
601typedef struct CollSeq CollSeq;
602typedef struct Column Column;
603typedef struct Db Db;
604typedef struct Schema Schema;
605typedef struct Expr Expr;
606typedef struct ExprList ExprList;
607typedef struct ExprSpan ExprSpan;
608typedef struct FKey FKey;
609typedef struct FuncDestructor FuncDestructor;
610typedef struct FuncDef FuncDef;
611typedef struct FuncDefHash FuncDefHash;
612typedef struct IdList IdList;
613typedef struct Index Index;
614typedef struct IndexSample IndexSample;
615typedef struct KeyClass KeyClass;
616typedef struct KeyInfo KeyInfo;
617typedef struct Lookaside Lookaside;
618typedef struct LookasideSlot LookasideSlot;
619typedef struct Module Module;
620typedef struct NameContext NameContext;
621typedef struct Parse Parse;
622typedef struct RowSet RowSet;
623typedef struct Savepoint Savepoint;
624typedef struct Select Select;
625typedef struct SrcList SrcList;
626typedef struct StrAccum StrAccum;
627typedef struct Table Table;
628typedef struct TableLock TableLock;
629typedef struct Token Token;
630typedef struct Trigger Trigger;
631typedef struct TriggerPrg TriggerPrg;
632typedef struct TriggerStep TriggerStep;
633typedef struct UnpackedRecord UnpackedRecord;
634typedef struct VTable VTable;
635typedef struct Walker Walker;
636typedef struct WherePlan WherePlan;
637typedef struct WhereInfo WhereInfo;
638typedef struct WhereLevel WhereLevel;
639
640/*
641** Defer sourcing vdbe.h and btree.h until after the "u8" and
642** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
643** pointer types (i.e. FuncDef) defined above.
644*/
645#include "btree.h"
646#include "vdbe.h"
647#include "pager.h"
648#include "pcache.h"
649
650#include "os.h"
651#include "mutex.h"
652
653
654/*
655** Each database file to be accessed by the system is an instance
656** of the following structure.  There are normally two of these structures
657** in the sqlite.aDb[] array.  aDb[0] is the main database file and
658** aDb[1] is the database file used to hold temporary tables.  Additional
659** databases may be attached.
660*/
661struct Db {
662  char *zName;         /* Name of this database */
663  Btree *pBt;          /* The B*Tree structure for this database file */
664  u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
665  u8 safety_level;     /* How aggressive at syncing data to disk */
666  Schema *pSchema;     /* Pointer to database schema (possibly shared) */
667};
668
669/*
670** An instance of the following structure stores a database schema.
671**
672** Most Schema objects are associated with a Btree.  The exception is
673** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
674** In shared cache mode, a single Schema object can be shared by multiple
675** Btrees that refer to the same underlying BtShared object.
676**
677** Schema objects are automatically deallocated when the last Btree that
678** references them is destroyed.   The TEMP Schema is manually freed by
679** sqlite3_close().
680*
681** A thread must be holding a mutex on the corresponding Btree in order
682** to access Schema content.  This implies that the thread must also be
683** holding a mutex on the sqlite3 connection pointer that owns the Btree.
684** For a TEMP Schema, on the connection mutex is required.
685*/
686struct Schema {
687  int schema_cookie;   /* Database schema version number for this file */
688  int iGeneration;     /* Generation counter.  Incremented with each change */
689  Hash tblHash;        /* All tables indexed by name */
690  Hash idxHash;        /* All (named) indices indexed by name */
691  Hash trigHash;       /* All triggers indexed by name */
692  Hash fkeyHash;       /* All foreign keys by referenced table name */
693  Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
694  u8 file_format;      /* Schema format version for this file */
695  u8 enc;              /* Text encoding used by this database */
696  u16 flags;           /* Flags associated with this schema */
697  int cache_size;      /* Number of pages to use in the cache */
698};
699
700/*
701** These macros can be used to test, set, or clear bits in the
702** Db.pSchema->flags field.
703*/
704#define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
705#define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
706#define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
707#define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
708
709/*
710** Allowed values for the DB.pSchema->flags field.
711**
712** The DB_SchemaLoaded flag is set after the database schema has been
713** read into internal hash tables.
714**
715** DB_UnresetViews means that one or more views have column names that
716** have been filled out.  If the schema changes, these column names might
717** changes and so the view will need to be reset.
718*/
719#define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
720#define DB_UnresetViews    0x0002  /* Some views have defined column names */
721#define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
722
723/*
724** The number of different kinds of things that can be limited
725** using the sqlite3_limit() interface.
726*/
727#define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
728
729/*
730** Lookaside malloc is a set of fixed-size buffers that can be used
731** to satisfy small transient memory allocation requests for objects
732** associated with a particular database connection.  The use of
733** lookaside malloc provides a significant performance enhancement
734** (approx 10%) by avoiding numerous malloc/free requests while parsing
735** SQL statements.
736**
737** The Lookaside structure holds configuration information about the
738** lookaside malloc subsystem.  Each available memory allocation in
739** the lookaside subsystem is stored on a linked list of LookasideSlot
740** objects.
741**
742** Lookaside allocations are only allowed for objects that are associated
743** with a particular database connection.  Hence, schema information cannot
744** be stored in lookaside because in shared cache mode the schema information
745** is shared by multiple database connections.  Therefore, while parsing
746** schema information, the Lookaside.bEnabled flag is cleared so that
747** lookaside allocations are not used to construct the schema objects.
748*/
749struct Lookaside {
750  u16 sz;                 /* Size of each buffer in bytes */
751  u8 bEnabled;            /* False to disable new lookaside allocations */
752  u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
753  int nOut;               /* Number of buffers currently checked out */
754  int mxOut;              /* Highwater mark for nOut */
755  int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
756  LookasideSlot *pFree;   /* List of available buffers */
757  void *pStart;           /* First byte of available memory space */
758  void *pEnd;             /* First byte past end of available space */
759};
760struct LookasideSlot {
761  LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
762};
763
764/*
765** A hash table for function definitions.
766**
767** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
768** Collisions are on the FuncDef.pHash chain.
769*/
770struct FuncDefHash {
771  FuncDef *a[23];       /* Hash table for functions */
772};
773
774/*
775** Each database connection is an instance of the following structure.
776**
777** The sqlite.lastRowid records the last insert rowid generated by an
778** insert statement.  Inserts on views do not affect its value.  Each
779** trigger has its own context, so that lastRowid can be updated inside
780** triggers as usual.  The previous value will be restored once the trigger
781** exits.  Upon entering a before or instead of trigger, lastRowid is no
782** longer (since after version 2.8.12) reset to -1.
783**
784** The sqlite.nChange does not count changes within triggers and keeps no
785** context.  It is reset at start of sqlite3_exec.
786** The sqlite.lsChange represents the number of changes made by the last
787** insert, update, or delete statement.  It remains constant throughout the
788** length of a statement and is then updated by OP_SetCounts.  It keeps a
789** context stack just like lastRowid so that the count of changes
790** within a trigger is not seen outside the trigger.  Changes to views do not
791** affect the value of lsChange.
792** The sqlite.csChange keeps track of the number of current changes (since
793** the last statement) and is used to update sqlite_lsChange.
794**
795** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
796** store the most recent error code and, if applicable, string. The
797** internal function sqlite3Error() is used to set these variables
798** consistently.
799*/
800struct sqlite3 {
801  sqlite3_vfs *pVfs;            /* OS Interface */
802  int nDb;                      /* Number of backends currently in use */
803  Db *aDb;                      /* All backends */
804  int flags;                    /* Miscellaneous flags. See below */
805  int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
806  int errCode;                  /* Most recent error code (SQLITE_*) */
807  int errMask;                  /* & result codes with this before returning */
808  u8 autoCommit;                /* The auto-commit flag. */
809  u8 temp_store;                /* 1: file 2: memory 0: default */
810  u8 mallocFailed;              /* True if we have seen a malloc failure */
811  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
812  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
813  u8 suppressErr;               /* Do not issue error messages if true */
814  int nextPagesize;             /* Pagesize after VACUUM if >0 */
815  int nTable;                   /* Number of tables in the database */
816  CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
817  i64 lastRowid;                /* ROWID of most recent insert (see above) */
818  u32 magic;                    /* Magic number for detect library misuse */
819  int nChange;                  /* Value returned by sqlite3_changes() */
820  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
821  sqlite3_mutex *mutex;         /* Connection mutex */
822  int aLimit[SQLITE_N_LIMIT];   /* Limits */
823  struct sqlite3InitInfo {      /* Information used during initialization */
824    int iDb;                    /* When back is being initialized */
825    int newTnum;                /* Rootpage of table being initialized */
826    u8 busy;                    /* TRUE if currently initializing */
827    u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
828  } init;
829  int nExtension;               /* Number of loaded extensions */
830  void **aExtension;            /* Array of shared library handles */
831  struct Vdbe *pVdbe;           /* List of active virtual machines */
832  int activeVdbeCnt;            /* Number of VDBEs currently executing */
833  int writeVdbeCnt;             /* Number of active VDBEs that are writing */
834  int vdbeExecCnt;              /* Number of nested calls to VdbeExec() */
835  void (*xTrace)(void*,const char*);        /* Trace function */
836  void *pTraceArg;                          /* Argument to the trace function */
837  void (*xProfile)(void*,const char*,u64);  /* Profiling function */
838  void *pProfileArg;                        /* Argument to profile function */
839  void *pCommitArg;                 /* Argument to xCommitCallback() */
840  int (*xCommitCallback)(void*);    /* Invoked at every commit. */
841  void *pRollbackArg;               /* Argument to xRollbackCallback() */
842  void (*xRollbackCallback)(void*); /* Invoked at every commit. */
843  void *pUpdateArg;
844  void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
845#ifndef SQLITE_OMIT_WAL
846  int (*xWalCallback)(void *, sqlite3 *, const char *, int);
847  void *pWalArg;
848#endif
849  void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
850  void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
851  void *pCollNeededArg;
852  sqlite3_value *pErr;          /* Most recent error message */
853  char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
854  char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
855  union {
856    volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
857    double notUsed1;            /* Spacer */
858  } u1;
859  Lookaside lookaside;          /* Lookaside malloc configuration */
860#ifndef SQLITE_OMIT_AUTHORIZATION
861  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
862                                /* Access authorization function */
863  void *pAuthArg;               /* 1st argument to the access auth function */
864#endif
865#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
866  int (*xProgress)(void *);     /* The progress callback */
867  void *pProgressArg;           /* Argument to the progress callback */
868  int nProgressOps;             /* Number of opcodes for progress callback */
869#endif
870#ifndef SQLITE_OMIT_VIRTUALTABLE
871  Hash aModule;                 /* populated by sqlite3_create_module() */
872  Table *pVTab;                 /* vtab with active Connect/Create method */
873  VTable **aVTrans;             /* Virtual tables with open transactions */
874  int nVTrans;                  /* Allocated size of aVTrans */
875  VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
876#endif
877  FuncDefHash aFunc;            /* Hash table of connection functions */
878  Hash aCollSeq;                /* All collating sequences */
879  BusyHandler busyHandler;      /* Busy callback */
880  int busyTimeout;              /* Busy handler timeout, in msec */
881  Db aDbStatic[2];              /* Static space for the 2 default backends */
882  Savepoint *pSavepoint;        /* List of active savepoints */
883  int nSavepoint;               /* Number of non-transaction savepoints */
884  int nStatement;               /* Number of nested statement-transactions  */
885  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
886  i64 nDeferredCons;            /* Net deferred constraints this transaction. */
887  int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
888
889#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
890  /* The following variables are all protected by the STATIC_MASTER
891  ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
892  **
893  ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
894  ** unlock so that it can proceed.
895  **
896  ** When X.pBlockingConnection==Y, that means that something that X tried
897  ** tried to do recently failed with an SQLITE_LOCKED error due to locks
898  ** held by Y.
899  */
900  sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
901  sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
902  void *pUnlockArg;                     /* Argument to xUnlockNotify */
903  void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
904  sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
905#endif
906};
907
908/*
909** A macro to discover the encoding of a database.
910*/
911#define ENC(db) ((db)->aDb[0].pSchema->enc)
912
913/*
914** Possible values for the sqlite3.flags.
915*/
916#define SQLITE_VdbeTrace      0x00000100  /* True to trace VDBE execution */
917#define SQLITE_InternChanges  0x00000200  /* Uncommitted Hash table changes */
918#define SQLITE_FullColNames   0x00000400  /* Show full column names on SELECT */
919#define SQLITE_ShortColNames  0x00000800  /* Show short columns names */
920#define SQLITE_CountRows      0x00001000  /* Count rows changed by INSERT, */
921                                          /*   DELETE, or UPDATE and return */
922                                          /*   the count using a callback. */
923#define SQLITE_NullCallback   0x00002000  /* Invoke the callback once if the */
924                                          /*   result set is empty */
925#define SQLITE_SqlTrace       0x00004000  /* Debug print SQL as it executes */
926#define SQLITE_VdbeListing    0x00008000  /* Debug listings of VDBE programs */
927#define SQLITE_WriteSchema    0x00010000  /* OK to update SQLITE_MASTER */
928#define SQLITE_NoReadlock     0x00020000  /* Readlocks are omitted when
929                                          ** accessing read-only databases */
930#define SQLITE_IgnoreChecks   0x00040000  /* Do not enforce check constraints */
931#define SQLITE_ReadUncommitted 0x0080000  /* For shared-cache mode */
932#define SQLITE_LegacyFileFmt  0x00100000  /* Create new databases in format 1 */
933#define SQLITE_FullFSync      0x00200000  /* Use full fsync on the backend */
934#define SQLITE_CkptFullFSync  0x00400000  /* Use full fsync for checkpoint */
935#define SQLITE_RecoveryMode   0x00800000  /* Ignore schema errors */
936#define SQLITE_ReverseOrder   0x01000000  /* Reverse unordered SELECTs */
937#define SQLITE_RecTriggers    0x02000000  /* Enable recursive triggers */
938#define SQLITE_ForeignKeys    0x04000000  /* Enforce foreign key constraints  */
939#define SQLITE_AutoIndex      0x08000000  /* Enable automatic indexes */
940#define SQLITE_PreferBuiltin  0x10000000  /* Preference to built-in funcs */
941#define SQLITE_LoadExtension  0x20000000  /* Enable load_extension */
942#define SQLITE_EnableTrigger  0x40000000  /* True to enable triggers */
943
944/*
945** Bits of the sqlite3.flags field that are used by the
946** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
947** These must be the low-order bits of the flags field.
948*/
949#define SQLITE_QueryFlattener 0x01        /* Disable query flattening */
950#define SQLITE_ColumnCache    0x02        /* Disable the column cache */
951#define SQLITE_IndexSort      0x04        /* Disable indexes for sorting */
952#define SQLITE_IndexSearch    0x08        /* Disable indexes for searching */
953#define SQLITE_IndexCover     0x10        /* Disable index covering table */
954#define SQLITE_GroupByOrder   0x20        /* Disable GROUPBY cover of ORDERBY */
955#define SQLITE_FactorOutConst 0x40        /* Disable factoring out constants */
956#define SQLITE_OptMask        0xff        /* Mask of all disablable opts */
957
958/*
959** Possible values for the sqlite.magic field.
960** The numbers are obtained at random and have no special meaning, other
961** than being distinct from one another.
962*/
963#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
964#define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
965#define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
966#define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
967#define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
968
969/*
970** Each SQL function is defined by an instance of the following
971** structure.  A pointer to this structure is stored in the sqlite.aFunc
972** hash table.  When multiple functions have the same name, the hash table
973** points to a linked list of these structures.
974*/
975struct FuncDef {
976  i16 nArg;            /* Number of arguments.  -1 means unlimited */
977  u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
978  u8 flags;            /* Some combination of SQLITE_FUNC_* */
979  void *pUserData;     /* User data parameter */
980  FuncDef *pNext;      /* Next function with same name */
981  void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
982  void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
983  void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
984  char *zName;         /* SQL name of the function. */
985  FuncDef *pHash;      /* Next with a different name but the same hash */
986  FuncDestructor *pDestructor;   /* Reference counted destructor function */
987};
988
989/*
990** This structure encapsulates a user-function destructor callback (as
991** configured using create_function_v2()) and a reference counter. When
992** create_function_v2() is called to create a function with a destructor,
993** a single object of this type is allocated. FuncDestructor.nRef is set to
994** the number of FuncDef objects created (either 1 or 3, depending on whether
995** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
996** member of each of the new FuncDef objects is set to point to the allocated
997** FuncDestructor.
998**
999** Thereafter, when one of the FuncDef objects is deleted, the reference
1000** count on this object is decremented. When it reaches 0, the destructor
1001** is invoked and the FuncDestructor structure freed.
1002*/
1003struct FuncDestructor {
1004  int nRef;
1005  void (*xDestroy)(void *);
1006  void *pUserData;
1007};
1008
1009/*
1010** Possible values for FuncDef.flags
1011*/
1012#define SQLITE_FUNC_LIKE     0x01 /* Candidate for the LIKE optimization */
1013#define SQLITE_FUNC_CASE     0x02 /* Case-sensitive LIKE-type function */
1014#define SQLITE_FUNC_EPHEM    0x04 /* Ephemeral.  Delete with VDBE */
1015#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
1016#define SQLITE_FUNC_PRIVATE  0x10 /* Allowed for internal use only */
1017#define SQLITE_FUNC_COUNT    0x20 /* Built-in count(*) aggregate */
1018#define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */
1019
1020/*
1021** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1022** used to create the initializers for the FuncDef structures.
1023**
1024**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1025**     Used to create a scalar function definition of a function zName
1026**     implemented by C function xFunc that accepts nArg arguments. The
1027**     value passed as iArg is cast to a (void*) and made available
1028**     as the user-data (sqlite3_user_data()) for the function. If
1029**     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1030**
1031**   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1032**     Used to create an aggregate function definition implemented by
1033**     the C functions xStep and xFinal. The first four parameters
1034**     are interpreted in the same way as the first 4 parameters to
1035**     FUNCTION().
1036**
1037**   LIKEFUNC(zName, nArg, pArg, flags)
1038**     Used to create a scalar function definition of a function zName
1039**     that accepts nArg arguments and is implemented by a call to C
1040**     function likeFunc. Argument pArg is cast to a (void *) and made
1041**     available as the function user-data (sqlite3_user_data()). The
1042**     FuncDef.flags variable is set to the value passed as the flags
1043**     parameter.
1044*/
1045#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1046  {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
1047   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1048#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1049  {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
1050   pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1051#define LIKEFUNC(zName, nArg, arg, flags) \
1052  {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1053#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1054  {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
1055   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1056
1057/*
1058** All current savepoints are stored in a linked list starting at
1059** sqlite3.pSavepoint. The first element in the list is the most recently
1060** opened savepoint. Savepoints are added to the list by the vdbe
1061** OP_Savepoint instruction.
1062*/
1063struct Savepoint {
1064  char *zName;                        /* Savepoint name (nul-terminated) */
1065  i64 nDeferredCons;                  /* Number of deferred fk violations */
1066  Savepoint *pNext;                   /* Parent savepoint (if any) */
1067};
1068
1069/*
1070** The following are used as the second parameter to sqlite3Savepoint(),
1071** and as the P1 argument to the OP_Savepoint instruction.
1072*/
1073#define SAVEPOINT_BEGIN      0
1074#define SAVEPOINT_RELEASE    1
1075#define SAVEPOINT_ROLLBACK   2
1076
1077
1078/*
1079** Each SQLite module (virtual table definition) is defined by an
1080** instance of the following structure, stored in the sqlite3.aModule
1081** hash table.
1082*/
1083struct Module {
1084  const sqlite3_module *pModule;       /* Callback pointers */
1085  const char *zName;                   /* Name passed to create_module() */
1086  void *pAux;                          /* pAux passed to create_module() */
1087  void (*xDestroy)(void *);            /* Module destructor function */
1088};
1089
1090/*
1091** information about each column of an SQL table is held in an instance
1092** of this structure.
1093*/
1094struct Column {
1095  char *zName;     /* Name of this column */
1096  Expr *pDflt;     /* Default value of this column */
1097  char *zDflt;     /* Original text of the default value */
1098  char *zType;     /* Data type for this column */
1099  char *zColl;     /* Collating sequence.  If NULL, use the default */
1100  u8 notNull;      /* True if there is a NOT NULL constraint */
1101  u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
1102  char affinity;   /* One of the SQLITE_AFF_... values */
1103#ifndef SQLITE_OMIT_VIRTUALTABLE
1104  u8 isHidden;     /* True if this column is 'hidden' */
1105#endif
1106};
1107
1108/*
1109** A "Collating Sequence" is defined by an instance of the following
1110** structure. Conceptually, a collating sequence consists of a name and
1111** a comparison routine that defines the order of that sequence.
1112**
1113** There may two separate implementations of the collation function, one
1114** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
1115** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
1116** native byte order. When a collation sequence is invoked, SQLite selects
1117** the version that will require the least expensive encoding
1118** translations, if any.
1119**
1120** The CollSeq.pUser member variable is an extra parameter that passed in
1121** as the first argument to the UTF-8 comparison function, xCmp.
1122** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
1123** xCmp16.
1124**
1125** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
1126** collating sequence is undefined.  Indices built on an undefined
1127** collating sequence may not be read or written.
1128*/
1129struct CollSeq {
1130  char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1131  u8 enc;               /* Text encoding handled by xCmp() */
1132  u8 type;              /* One of the SQLITE_COLL_... values below */
1133  void *pUser;          /* First argument to xCmp() */
1134  int (*xCmp)(void*,int, const void*, int, const void*);
1135  void (*xDel)(void*);  /* Destructor for pUser */
1136};
1137
1138/*
1139** Allowed values of CollSeq.type:
1140*/
1141#define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
1142#define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
1143#define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
1144#define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
1145
1146/*
1147** A sort order can be either ASC or DESC.
1148*/
1149#define SQLITE_SO_ASC       0  /* Sort in ascending order */
1150#define SQLITE_SO_DESC      1  /* Sort in ascending order */
1151
1152/*
1153** Column affinity types.
1154**
1155** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1156** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1157** the speed a little by numbering the values consecutively.
1158**
1159** But rather than start with 0 or 1, we begin with 'a'.  That way,
1160** when multiple affinity types are concatenated into a string and
1161** used as the P4 operand, they will be more readable.
1162**
1163** Note also that the numeric types are grouped together so that testing
1164** for a numeric type is a single comparison.
1165*/
1166#define SQLITE_AFF_TEXT     'a'
1167#define SQLITE_AFF_NONE     'b'
1168#define SQLITE_AFF_NUMERIC  'c'
1169#define SQLITE_AFF_INTEGER  'd'
1170#define SQLITE_AFF_REAL     'e'
1171
1172#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1173
1174/*
1175** The SQLITE_AFF_MASK values masks off the significant bits of an
1176** affinity value.
1177*/
1178#define SQLITE_AFF_MASK     0x67
1179
1180/*
1181** Additional bit values that can be ORed with an affinity without
1182** changing the affinity.
1183*/
1184#define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
1185#define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
1186#define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1187
1188/*
1189** An object of this type is created for each virtual table present in
1190** the database schema.
1191**
1192** If the database schema is shared, then there is one instance of this
1193** structure for each database connection (sqlite3*) that uses the shared
1194** schema. This is because each database connection requires its own unique
1195** instance of the sqlite3_vtab* handle used to access the virtual table
1196** implementation. sqlite3_vtab* handles can not be shared between
1197** database connections, even when the rest of the in-memory database
1198** schema is shared, as the implementation often stores the database
1199** connection handle passed to it via the xConnect() or xCreate() method
1200** during initialization internally. This database connection handle may
1201** then be used by the virtual table implementation to access real tables
1202** within the database. So that they appear as part of the callers
1203** transaction, these accesses need to be made via the same database
1204** connection as that used to execute SQL operations on the virtual table.
1205**
1206** All VTable objects that correspond to a single table in a shared
1207** database schema are initially stored in a linked-list pointed to by
1208** the Table.pVTable member variable of the corresponding Table object.
1209** When an sqlite3_prepare() operation is required to access the virtual
1210** table, it searches the list for the VTable that corresponds to the
1211** database connection doing the preparing so as to use the correct
1212** sqlite3_vtab* handle in the compiled query.
1213**
1214** When an in-memory Table object is deleted (for example when the
1215** schema is being reloaded for some reason), the VTable objects are not
1216** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1217** immediately. Instead, they are moved from the Table.pVTable list to
1218** another linked list headed by the sqlite3.pDisconnect member of the
1219** corresponding sqlite3 structure. They are then deleted/xDisconnected
1220** next time a statement is prepared using said sqlite3*. This is done
1221** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1222** Refer to comments above function sqlite3VtabUnlockList() for an
1223** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1224** list without holding the corresponding sqlite3.mutex mutex.
1225**
1226** The memory for objects of this type is always allocated by
1227** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1228** the first argument.
1229*/
1230struct VTable {
1231  sqlite3 *db;              /* Database connection associated with this table */
1232  Module *pMod;             /* Pointer to module implementation */
1233  sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1234  int nRef;                 /* Number of pointers to this structure */
1235  VTable *pNext;            /* Next in linked list (see above) */
1236};
1237
1238/*
1239** Each SQL table is represented in memory by an instance of the
1240** following structure.
1241**
1242** Table.zName is the name of the table.  The case of the original
1243** CREATE TABLE statement is stored, but case is not significant for
1244** comparisons.
1245**
1246** Table.nCol is the number of columns in this table.  Table.aCol is a
1247** pointer to an array of Column structures, one for each column.
1248**
1249** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1250** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1251** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1252** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1253** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1254** is generated for each row of the table.  TF_HasPrimaryKey is set if
1255** the table has any PRIMARY KEY, INTEGER or otherwise.
1256**
1257** Table.tnum is the page number for the root BTree page of the table in the
1258** database file.  If Table.iDb is the index of the database table backend
1259** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1260** holds temporary tables and indices.  If TF_Ephemeral is set
1261** then the table is stored in a file that is automatically deleted
1262** when the VDBE cursor to the table is closed.  In this case Table.tnum
1263** refers VDBE cursor number that holds the table open, not to the root
1264** page number.  Transient tables are used to hold the results of a
1265** sub-query that appears instead of a real table name in the FROM clause
1266** of a SELECT statement.
1267*/
1268struct Table {
1269  char *zName;         /* Name of the table or view */
1270  int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1271  int nCol;            /* Number of columns in this table */
1272  Column *aCol;        /* Information about each column */
1273  Index *pIndex;       /* List of SQL indexes on this table. */
1274  int tnum;            /* Root BTree node for this table (see note above) */
1275  unsigned nRowEst;    /* Estimated rows in table - from sqlite_stat1 table */
1276  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1277  u16 nRef;            /* Number of pointers to this Table */
1278  u8 tabFlags;         /* Mask of TF_* values */
1279  u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1280  FKey *pFKey;         /* Linked list of all foreign keys in this table */
1281  char *zColAff;       /* String defining the affinity of each column */
1282#ifndef SQLITE_OMIT_CHECK
1283  Expr *pCheck;        /* The AND of all CHECK constraints */
1284#endif
1285#ifndef SQLITE_OMIT_ALTERTABLE
1286  int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1287#endif
1288#ifndef SQLITE_OMIT_VIRTUALTABLE
1289  VTable *pVTable;     /* List of VTable objects. */
1290  int nModuleArg;      /* Number of arguments to the module */
1291  char **azModuleArg;  /* Text of all module args. [0] is module name */
1292#endif
1293  Trigger *pTrigger;   /* List of triggers stored in pSchema */
1294  Schema *pSchema;     /* Schema that contains this table */
1295  Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1296};
1297
1298/*
1299** Allowed values for Tabe.tabFlags.
1300*/
1301#define TF_Readonly        0x01    /* Read-only system table */
1302#define TF_Ephemeral       0x02    /* An ephemeral table */
1303#define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1304#define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1305#define TF_Virtual         0x10    /* Is a virtual table */
1306#define TF_NeedMetadata    0x20    /* aCol[].zType and aCol[].pColl missing */
1307
1308
1309
1310/*
1311** Test to see whether or not a table is a virtual table.  This is
1312** done as a macro so that it will be optimized out when virtual
1313** table support is omitted from the build.
1314*/
1315#ifndef SQLITE_OMIT_VIRTUALTABLE
1316#  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1317#  define IsHiddenColumn(X) ((X)->isHidden)
1318#else
1319#  define IsVirtual(X)      0
1320#  define IsHiddenColumn(X) 0
1321#endif
1322
1323/*
1324** Each foreign key constraint is an instance of the following structure.
1325**
1326** A foreign key is associated with two tables.  The "from" table is
1327** the table that contains the REFERENCES clause that creates the foreign
1328** key.  The "to" table is the table that is named in the REFERENCES clause.
1329** Consider this example:
1330**
1331**     CREATE TABLE ex1(
1332**       a INTEGER PRIMARY KEY,
1333**       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1334**     );
1335**
1336** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1337**
1338** Each REFERENCES clause generates an instance of the following structure
1339** which is attached to the from-table.  The to-table need not exist when
1340** the from-table is created.  The existence of the to-table is not checked.
1341*/
1342struct FKey {
1343  Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1344  FKey *pNextFrom;  /* Next foreign key in pFrom */
1345  char *zTo;        /* Name of table that the key points to (aka: Parent) */
1346  FKey *pNextTo;    /* Next foreign key on table named zTo */
1347  FKey *pPrevTo;    /* Previous foreign key on table named zTo */
1348  int nCol;         /* Number of columns in this key */
1349  /* EV: R-30323-21917 */
1350  u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
1351  u8 aAction[2];          /* ON DELETE and ON UPDATE actions, respectively */
1352  Trigger *apTrigger[2];  /* Triggers for aAction[] actions */
1353  struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
1354    int iFrom;         /* Index of column in pFrom */
1355    char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
1356  } aCol[1];        /* One entry for each of nCol column s */
1357};
1358
1359/*
1360** SQLite supports many different ways to resolve a constraint
1361** error.  ROLLBACK processing means that a constraint violation
1362** causes the operation in process to fail and for the current transaction
1363** to be rolled back.  ABORT processing means the operation in process
1364** fails and any prior changes from that one operation are backed out,
1365** but the transaction is not rolled back.  FAIL processing means that
1366** the operation in progress stops and returns an error code.  But prior
1367** changes due to the same operation are not backed out and no rollback
1368** occurs.  IGNORE means that the particular row that caused the constraint
1369** error is not inserted or updated.  Processing continues and no error
1370** is returned.  REPLACE means that preexisting database rows that caused
1371** a UNIQUE constraint violation are removed so that the new insert or
1372** update can proceed.  Processing continues and no error is reported.
1373**
1374** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1375** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1376** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1377** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1378** referenced table row is propagated into the row that holds the
1379** foreign key.
1380**
1381** The following symbolic values are used to record which type
1382** of action to take.
1383*/
1384#define OE_None     0   /* There is no constraint to check */
1385#define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1386#define OE_Abort    2   /* Back out changes but do no rollback transaction */
1387#define OE_Fail     3   /* Stop the operation but leave all prior changes */
1388#define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1389#define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1390
1391#define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1392#define OE_SetNull  7   /* Set the foreign key value to NULL */
1393#define OE_SetDflt  8   /* Set the foreign key value to its default */
1394#define OE_Cascade  9   /* Cascade the changes */
1395
1396#define OE_Default  99  /* Do whatever the default action is */
1397
1398
1399/*
1400** An instance of the following structure is passed as the first
1401** argument to sqlite3VdbeKeyCompare and is used to control the
1402** comparison of the two index keys.
1403*/
1404struct KeyInfo {
1405  sqlite3 *db;        /* The database connection */
1406  u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1407  u16 nField;         /* Number of entries in aColl[] */
1408  u8 *aSortOrder;     /* Sort order for each column.  May be NULL */
1409  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1410};
1411
1412/*
1413** An instance of the following structure holds information about a
1414** single index record that has already been parsed out into individual
1415** values.
1416**
1417** A record is an object that contains one or more fields of data.
1418** Records are used to store the content of a table row and to store
1419** the key of an index.  A blob encoding of a record is created by
1420** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1421** OP_Column opcode.
1422**
1423** This structure holds a record that has already been disassembled
1424** into its constituent fields.
1425*/
1426struct UnpackedRecord {
1427  KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1428  u16 nField;         /* Number of entries in apMem[] */
1429  u16 flags;          /* Boolean settings.  UNPACKED_... below */
1430  i64 rowid;          /* Used by UNPACKED_PREFIX_SEARCH */
1431  Mem *aMem;          /* Values */
1432};
1433
1434/*
1435** Allowed values of UnpackedRecord.flags
1436*/
1437#define UNPACKED_NEED_FREE     0x0001  /* Memory is from sqlite3Malloc() */
1438#define UNPACKED_NEED_DESTROY  0x0002  /* apMem[]s should all be destroyed */
1439#define UNPACKED_IGNORE_ROWID  0x0004  /* Ignore trailing rowid on key1 */
1440#define UNPACKED_INCRKEY       0x0008  /* Make this key an epsilon larger */
1441#define UNPACKED_PREFIX_MATCH  0x0010  /* A prefix match is considered OK */
1442#define UNPACKED_PREFIX_SEARCH 0x0020  /* A prefix match is considered OK */
1443
1444/*
1445** Each SQL index is represented in memory by an
1446** instance of the following structure.
1447**
1448** The columns of the table that are to be indexed are described
1449** by the aiColumn[] field of this structure.  For example, suppose
1450** we have the following table and index:
1451**
1452**     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1453**     CREATE INDEX Ex2 ON Ex1(c3,c1);
1454**
1455** In the Table structure describing Ex1, nCol==3 because there are
1456** three columns in the table.  In the Index structure describing
1457** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1458** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1459** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1460** The second column to be indexed (c1) has an index of 0 in
1461** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1462**
1463** The Index.onError field determines whether or not the indexed columns
1464** must be unique and what to do if they are not.  When Index.onError=OE_None,
1465** it means this is not a unique index.  Otherwise it is a unique index
1466** and the value of Index.onError indicate the which conflict resolution
1467** algorithm to employ whenever an attempt is made to insert a non-unique
1468** element.
1469*/
1470struct Index {
1471  char *zName;     /* Name of this index */
1472  int nColumn;     /* Number of columns in the table used by this index */
1473  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
1474  unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1475  Table *pTable;   /* The SQL table being indexed */
1476  int tnum;        /* Page containing root of this index in database file */
1477  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1478  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
1479  u8 bUnordered;   /* Use this index for == or IN queries only */
1480  char *zColAff;   /* String defining the affinity of each column */
1481  Index *pNext;    /* The next index associated with the same table */
1482  Schema *pSchema; /* Schema containing this index */
1483  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
1484  char **azColl;   /* Array of collation sequence names for index */
1485  IndexSample *aSample;    /* Array of SQLITE_INDEX_SAMPLES samples */
1486};
1487
1488/*
1489** Each sample stored in the sqlite_stat2 table is represented in memory
1490** using a structure of this type.
1491*/
1492struct IndexSample {
1493  union {
1494    char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
1495    double r;       /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
1496  } u;
1497  u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
1498  u8 nByte;         /* Size in byte of text or blob. */
1499};
1500
1501/*
1502** Each token coming out of the lexer is an instance of
1503** this structure.  Tokens are also used as part of an expression.
1504**
1505** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1506** may contain random values.  Do not make any assumptions about Token.dyn
1507** and Token.n when Token.z==0.
1508*/
1509struct Token {
1510  const char *z;     /* Text of the token.  Not NULL-terminated! */
1511  unsigned int n;    /* Number of characters in this token */
1512};
1513
1514/*
1515** An instance of this structure contains information needed to generate
1516** code for a SELECT that contains aggregate functions.
1517**
1518** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1519** pointer to this structure.  The Expr.iColumn field is the index in
1520** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1521** code for that node.
1522**
1523** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1524** original Select structure that describes the SELECT statement.  These
1525** fields do not need to be freed when deallocating the AggInfo structure.
1526*/
1527struct AggInfo {
1528  u8 directMode;          /* Direct rendering mode means take data directly
1529                          ** from source tables rather than from accumulators */
1530  u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1531                          ** than the source table */
1532  int sortingIdx;         /* Cursor number of the sorting index */
1533  ExprList *pGroupBy;     /* The group by clause */
1534  int nSortingColumn;     /* Number of columns in the sorting index */
1535  struct AggInfo_col {    /* For each column used in source tables */
1536    Table *pTab;             /* Source table */
1537    int iTable;              /* Cursor number of the source table */
1538    int iColumn;             /* Column number within the source table */
1539    int iSorterColumn;       /* Column number in the sorting index */
1540    int iMem;                /* Memory location that acts as accumulator */
1541    Expr *pExpr;             /* The original expression */
1542  } *aCol;
1543  int nColumn;            /* Number of used entries in aCol[] */
1544  int nColumnAlloc;       /* Number of slots allocated for aCol[] */
1545  int nAccumulator;       /* Number of columns that show through to the output.
1546                          ** Additional columns are used only as parameters to
1547                          ** aggregate functions */
1548  struct AggInfo_func {   /* For each aggregate function */
1549    Expr *pExpr;             /* Expression encoding the function */
1550    FuncDef *pFunc;          /* The aggregate function implementation */
1551    int iMem;                /* Memory location that acts as accumulator */
1552    int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1553  } *aFunc;
1554  int nFunc;              /* Number of entries in aFunc[] */
1555  int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
1556};
1557
1558/*
1559** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1560** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1561** than 32767 we have to make it 32-bit.  16-bit is preferred because
1562** it uses less memory in the Expr object, which is a big memory user
1563** in systems with lots of prepared statements.  And few applications
1564** need more than about 10 or 20 variables.  But some extreme users want
1565** to have prepared statements with over 32767 variables, and for them
1566** the option is available (at compile-time).
1567*/
1568#if SQLITE_MAX_VARIABLE_NUMBER<=32767
1569typedef i16 ynVar;
1570#else
1571typedef int ynVar;
1572#endif
1573
1574/*
1575** Each node of an expression in the parse tree is an instance
1576** of this structure.
1577**
1578** Expr.op is the opcode. The integer parser token codes are reused
1579** as opcodes here. For example, the parser defines TK_GE to be an integer
1580** code representing the ">=" operator. This same integer code is reused
1581** to represent the greater-than-or-equal-to operator in the expression
1582** tree.
1583**
1584** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1585** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1586** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1587** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1588** then Expr.token contains the name of the function.
1589**
1590** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1591** binary operator. Either or both may be NULL.
1592**
1593** Expr.x.pList is a list of arguments if the expression is an SQL function,
1594** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1595** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1596** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1597** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1598** valid.
1599**
1600** An expression of the form ID or ID.ID refers to a column in a table.
1601** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1602** the integer cursor number of a VDBE cursor pointing to that table and
1603** Expr.iColumn is the column number for the specific column.  If the
1604** expression is used as a result in an aggregate SELECT, then the
1605** value is also stored in the Expr.iAgg column in the aggregate so that
1606** it can be accessed after all aggregates are computed.
1607**
1608** If the expression is an unbound variable marker (a question mark
1609** character '?' in the original SQL) then the Expr.iTable holds the index
1610** number for that variable.
1611**
1612** If the expression is a subquery then Expr.iColumn holds an integer
1613** register number containing the result of the subquery.  If the
1614** subquery gives a constant result, then iTable is -1.  If the subquery
1615** gives a different answer at different times during statement processing
1616** then iTable is the address of a subroutine that computes the subquery.
1617**
1618** If the Expr is of type OP_Column, and the table it is selecting from
1619** is a disk table or the "old.*" pseudo-table, then pTab points to the
1620** corresponding table definition.
1621**
1622** ALLOCATION NOTES:
1623**
1624** Expr objects can use a lot of memory space in database schema.  To
1625** help reduce memory requirements, sometimes an Expr object will be
1626** truncated.  And to reduce the number of memory allocations, sometimes
1627** two or more Expr objects will be stored in a single memory allocation,
1628** together with Expr.zToken strings.
1629**
1630** If the EP_Reduced and EP_TokenOnly flags are set when
1631** an Expr object is truncated.  When EP_Reduced is set, then all
1632** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1633** are contained within the same memory allocation.  Note, however, that
1634** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1635** allocated, regardless of whether or not EP_Reduced is set.
1636*/
1637struct Expr {
1638  u8 op;                 /* Operation performed by this node */
1639  char affinity;         /* The affinity of the column or 0 if not a column */
1640  u16 flags;             /* Various flags.  EP_* See below */
1641  union {
1642    char *zToken;          /* Token value. Zero terminated and dequoted */
1643    int iValue;            /* Non-negative integer value if EP_IntValue */
1644  } u;
1645
1646  /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1647  ** space is allocated for the fields below this point. An attempt to
1648  ** access them will result in a segfault or malfunction.
1649  *********************************************************************/
1650
1651  Expr *pLeft;           /* Left subnode */
1652  Expr *pRight;          /* Right subnode */
1653  union {
1654    ExprList *pList;     /* Function arguments or in "<expr> IN (<expr-list)" */
1655    Select *pSelect;     /* Used for sub-selects and "<expr> IN (<select>)" */
1656  } x;
1657  CollSeq *pColl;        /* The collation type of the column or 0 */
1658
1659  /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1660  ** space is allocated for the fields below this point. An attempt to
1661  ** access them will result in a segfault or malfunction.
1662  *********************************************************************/
1663
1664  int iTable;            /* TK_COLUMN: cursor number of table holding column
1665                         ** TK_REGISTER: register number
1666                         ** TK_TRIGGER: 1 -> new, 0 -> old */
1667  ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
1668                         ** TK_VARIABLE: variable number (always >= 1). */
1669  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1670  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
1671  u8 flags2;             /* Second set of flags.  EP2_... */
1672  u8 op2;                /* If a TK_REGISTER, the original value of Expr.op */
1673  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1674  Table *pTab;           /* Table for TK_COLUMN expressions. */
1675#if SQLITE_MAX_EXPR_DEPTH>0
1676  int nHeight;           /* Height of the tree headed by this node */
1677#endif
1678};
1679
1680/*
1681** The following are the meanings of bits in the Expr.flags field.
1682*/
1683#define EP_FromJoin   0x0001  /* Originated in ON or USING clause of a join */
1684#define EP_Agg        0x0002  /* Contains one or more aggregate functions */
1685#define EP_Resolved   0x0004  /* IDs have been resolved to COLUMNs */
1686#define EP_Error      0x0008  /* Expression contains one or more errors */
1687#define EP_Distinct   0x0010  /* Aggregate function with DISTINCT keyword */
1688#define EP_VarSelect  0x0020  /* pSelect is correlated, not constant */
1689#define EP_DblQuoted  0x0040  /* token.z was originally in "..." */
1690#define EP_InfixFunc  0x0080  /* True for an infix function: LIKE, GLOB, etc */
1691#define EP_ExpCollate 0x0100  /* Collating sequence specified explicitly */
1692#define EP_FixedDest  0x0200  /* Result needed in a specific register */
1693#define EP_IntValue   0x0400  /* Integer value contained in u.iValue */
1694#define EP_xIsSelect  0x0800  /* x.pSelect is valid (otherwise x.pList is) */
1695
1696#define EP_Reduced    0x1000  /* Expr struct is EXPR_REDUCEDSIZE bytes only */
1697#define EP_TokenOnly  0x2000  /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
1698#define EP_Static     0x4000  /* Held in memory not obtained from malloc() */
1699
1700/*
1701** The following are the meanings of bits in the Expr.flags2 field.
1702*/
1703#define EP2_MallocedToken  0x0001  /* Need to sqlite3DbFree() Expr.zToken */
1704#define EP2_Irreducible    0x0002  /* Cannot EXPRDUP_REDUCE this Expr */
1705
1706/*
1707** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
1708** flag on an expression structure.  This flag is used for VV&A only.  The
1709** routine is implemented as a macro that only works when in debugging mode,
1710** so as not to burden production code.
1711*/
1712#ifdef SQLITE_DEBUG
1713# define ExprSetIrreducible(X)  (X)->flags2 |= EP2_Irreducible
1714#else
1715# define ExprSetIrreducible(X)
1716#endif
1717
1718/*
1719** These macros can be used to test, set, or clear bits in the
1720** Expr.flags field.
1721*/
1722#define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
1723#define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
1724#define ExprSetProperty(E,P)     (E)->flags|=(P)
1725#define ExprClearProperty(E,P)   (E)->flags&=~(P)
1726
1727/*
1728** Macros to determine the number of bytes required by a normal Expr
1729** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
1730** and an Expr struct with the EP_TokenOnly flag set.
1731*/
1732#define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
1733#define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
1734#define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
1735
1736/*
1737** Flags passed to the sqlite3ExprDup() function. See the header comment
1738** above sqlite3ExprDup() for details.
1739*/
1740#define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
1741
1742/*
1743** A list of expressions.  Each expression may optionally have a
1744** name.  An expr/name combination can be used in several ways, such
1745** as the list of "expr AS ID" fields following a "SELECT" or in the
1746** list of "ID = expr" items in an UPDATE.  A list of expressions can
1747** also be used as the argument to a function, in which case the a.zName
1748** field is not used.
1749*/
1750struct ExprList {
1751  int nExpr;             /* Number of expressions on the list */
1752  int nAlloc;            /* Number of entries allocated below */
1753  int iECursor;          /* VDBE Cursor associated with this ExprList */
1754  struct ExprList_item {
1755    Expr *pExpr;           /* The list of expressions */
1756    char *zName;           /* Token associated with this expression */
1757    char *zSpan;           /* Original text of the expression */
1758    u8 sortOrder;          /* 1 for DESC or 0 for ASC */
1759    u8 done;               /* A flag to indicate when processing is finished */
1760    u16 iCol;              /* For ORDER BY, column number in result set */
1761    u16 iAlias;            /* Index into Parse.aAlias[] for zName */
1762  } *a;                  /* One entry for each expression */
1763};
1764
1765/*
1766** An instance of this structure is used by the parser to record both
1767** the parse tree for an expression and the span of input text for an
1768** expression.
1769*/
1770struct ExprSpan {
1771  Expr *pExpr;          /* The expression parse tree */
1772  const char *zStart;   /* First character of input text */
1773  const char *zEnd;     /* One character past the end of input text */
1774};
1775
1776/*
1777** An instance of this structure can hold a simple list of identifiers,
1778** such as the list "a,b,c" in the following statements:
1779**
1780**      INSERT INTO t(a,b,c) VALUES ...;
1781**      CREATE INDEX idx ON t(a,b,c);
1782**      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1783**
1784** The IdList.a.idx field is used when the IdList represents the list of
1785** column names after a table name in an INSERT statement.  In the statement
1786**
1787**     INSERT INTO t(a,b,c) ...
1788**
1789** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1790*/
1791struct IdList {
1792  struct IdList_item {
1793    char *zName;      /* Name of the identifier */
1794    int idx;          /* Index in some Table.aCol[] of a column named zName */
1795  } *a;
1796  int nId;         /* Number of identifiers on the list */
1797  int nAlloc;      /* Number of entries allocated for a[] below */
1798};
1799
1800/*
1801** The bitmask datatype defined below is used for various optimizations.
1802**
1803** Changing this from a 64-bit to a 32-bit type limits the number of
1804** tables in a join to 32 instead of 64.  But it also reduces the size
1805** of the library by 738 bytes on ix86.
1806*/
1807typedef u64 Bitmask;
1808
1809/*
1810** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
1811*/
1812#define BMS  ((int)(sizeof(Bitmask)*8))
1813
1814/*
1815** The following structure describes the FROM clause of a SELECT statement.
1816** Each table or subquery in the FROM clause is a separate element of
1817** the SrcList.a[] array.
1818**
1819** With the addition of multiple database support, the following structure
1820** can also be used to describe a particular table such as the table that
1821** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
1822** such a table must be a simple name: ID.  But in SQLite, the table can
1823** now be identified by a database name, a dot, then the table name: ID.ID.
1824**
1825** The jointype starts out showing the join type between the current table
1826** and the next table on the list.  The parser builds the list this way.
1827** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1828** jointype expresses the join between the table and the previous table.
1829**
1830** In the colUsed field, the high-order bit (bit 63) is set if the table
1831** contains more than 63 columns and the 64-th or later column is used.
1832*/
1833struct SrcList {
1834  i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
1835  i16 nAlloc;      /* Number of entries allocated in a[] below */
1836  struct SrcList_item {
1837    char *zDatabase;  /* Name of database holding this table */
1838    char *zName;      /* Name of the table */
1839    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
1840    Table *pTab;      /* An SQL table corresponding to zName */
1841    Select *pSelect;  /* A SELECT statement used in place of a table name */
1842    u8 isPopulated;   /* Temporary table associated with SELECT is populated */
1843    u8 jointype;      /* Type of join between this able and the previous */
1844    u8 notIndexed;    /* True if there is a NOT INDEXED clause */
1845#ifndef SQLITE_OMIT_EXPLAIN
1846    u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
1847#endif
1848    int iCursor;      /* The VDBE cursor number used to access this table */
1849    Expr *pOn;        /* The ON clause of a join */
1850    IdList *pUsing;   /* The USING clause of a join */
1851    Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
1852    char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
1853    Index *pIndex;    /* Index structure corresponding to zIndex, if any */
1854  } a[1];             /* One entry for each identifier on the list */
1855};
1856
1857/*
1858** Permitted values of the SrcList.a.jointype field
1859*/
1860#define JT_INNER     0x0001    /* Any kind of inner or cross join */
1861#define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
1862#define JT_NATURAL   0x0004    /* True for a "natural" join */
1863#define JT_LEFT      0x0008    /* Left outer join */
1864#define JT_RIGHT     0x0010    /* Right outer join */
1865#define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
1866#define JT_ERROR     0x0040    /* unknown or unsupported join type */
1867
1868
1869/*
1870** A WherePlan object holds information that describes a lookup
1871** strategy.
1872**
1873** This object is intended to be opaque outside of the where.c module.
1874** It is included here only so that that compiler will know how big it
1875** is.  None of the fields in this object should be used outside of
1876** the where.c module.
1877**
1878** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
1879** pTerm is only used when wsFlags&WHERE_MULTI_OR is true.  And pVtabIdx
1880** is only used when wsFlags&WHERE_VIRTUALTABLE is true.  It is never the
1881** case that more than one of these conditions is true.
1882*/
1883struct WherePlan {
1884  u32 wsFlags;                   /* WHERE_* flags that describe the strategy */
1885  u32 nEq;                       /* Number of == constraints */
1886  double nRow;                   /* Estimated number of rows (for EQP) */
1887  union {
1888    Index *pIdx;                   /* Index when WHERE_INDEXED is true */
1889    struct WhereTerm *pTerm;       /* WHERE clause term for OR-search */
1890    sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
1891  } u;
1892};
1893
1894/*
1895** For each nested loop in a WHERE clause implementation, the WhereInfo
1896** structure contains a single instance of this structure.  This structure
1897** is intended to be private the the where.c module and should not be
1898** access or modified by other modules.
1899**
1900** The pIdxInfo field is used to help pick the best index on a
1901** virtual table.  The pIdxInfo pointer contains indexing
1902** information for the i-th table in the FROM clause before reordering.
1903** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1904** All other information in the i-th WhereLevel object for the i-th table
1905** after FROM clause ordering.
1906*/
1907struct WhereLevel {
1908  WherePlan plan;       /* query plan for this element of the FROM clause */
1909  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
1910  int iTabCur;          /* The VDBE cursor used to access the table */
1911  int iIdxCur;          /* The VDBE cursor used to access pIdx */
1912  int addrBrk;          /* Jump here to break out of the loop */
1913  int addrNxt;          /* Jump here to start the next IN combination */
1914  int addrCont;         /* Jump here to continue with the next loop cycle */
1915  int addrFirst;        /* First instruction of interior of the loop */
1916  u8 iFrom;             /* Which entry in the FROM clause */
1917  u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
1918  int p1, p2;           /* Operands of the opcode used to ends the loop */
1919  union {               /* Information that depends on plan.wsFlags */
1920    struct {
1921      int nIn;              /* Number of entries in aInLoop[] */
1922      struct InLoop {
1923        int iCur;              /* The VDBE cursor used by this IN operator */
1924        int addrInTop;         /* Top of the IN loop */
1925      } *aInLoop;           /* Information about each nested IN operator */
1926    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
1927  } u;
1928
1929  /* The following field is really not part of the current level.  But
1930  ** we need a place to cache virtual table index information for each
1931  ** virtual table in the FROM clause and the WhereLevel structure is
1932  ** a convenient place since there is one WhereLevel for each FROM clause
1933  ** element.
1934  */
1935  sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
1936};
1937
1938/*
1939** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
1940** and the WhereInfo.wctrlFlags member.
1941*/
1942#define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
1943#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
1944#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
1945#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
1946#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
1947#define WHERE_OMIT_OPEN        0x0010 /* Table cursors are already open */
1948#define WHERE_OMIT_CLOSE       0x0020 /* Omit close of table & index cursors */
1949#define WHERE_FORCE_TABLE      0x0040 /* Do not use an index-only search */
1950#define WHERE_ONETABLE_ONLY    0x0080 /* Only code the 1st table in pTabList */
1951
1952/*
1953** The WHERE clause processing routine has two halves.  The
1954** first part does the start of the WHERE loop and the second
1955** half does the tail of the WHERE loop.  An instance of
1956** this structure is returned by the first half and passed
1957** into the second half to give some continuity.
1958*/
1959struct WhereInfo {
1960  Parse *pParse;       /* Parsing and code generating context */
1961  u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
1962  u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
1963  u8 untestedTerms;    /* Not all WHERE terms resolved by outer loop */
1964  SrcList *pTabList;             /* List of tables in the join */
1965  int iTop;                      /* The very beginning of the WHERE loop */
1966  int iContinue;                 /* Jump here to continue with next record */
1967  int iBreak;                    /* Jump here to break out of the loop */
1968  int nLevel;                    /* Number of nested loop */
1969  struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
1970  double savedNQueryLoop;        /* pParse->nQueryLoop outside the WHERE loop */
1971  double nRowOut;                /* Estimated number of output rows */
1972  WhereLevel a[1];               /* Information about each nest loop in WHERE */
1973};
1974
1975/*
1976** A NameContext defines a context in which to resolve table and column
1977** names.  The context consists of a list of tables (the pSrcList) field and
1978** a list of named expression (pEList).  The named expression list may
1979** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
1980** to the table being operated on by INSERT, UPDATE, or DELETE.  The
1981** pEList corresponds to the result set of a SELECT and is NULL for
1982** other statements.
1983**
1984** NameContexts can be nested.  When resolving names, the inner-most
1985** context is searched first.  If no match is found, the next outer
1986** context is checked.  If there is still no match, the next context
1987** is checked.  This process continues until either a match is found
1988** or all contexts are check.  When a match is found, the nRef member of
1989** the context containing the match is incremented.
1990**
1991** Each subquery gets a new NameContext.  The pNext field points to the
1992** NameContext in the parent query.  Thus the process of scanning the
1993** NameContext list corresponds to searching through successively outer
1994** subqueries looking for a match.
1995*/
1996struct NameContext {
1997  Parse *pParse;       /* The parser */
1998  SrcList *pSrcList;   /* One or more tables used to resolve names */
1999  ExprList *pEList;    /* Optional list of named expressions */
2000  int nRef;            /* Number of names resolved by this context */
2001  int nErr;            /* Number of errors encountered while resolving names */
2002  u8 allowAgg;         /* Aggregate functions allowed here */
2003  u8 hasAgg;           /* True if aggregates are seen */
2004  u8 isCheck;          /* True if resolving names in a CHECK constraint */
2005  int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
2006  AggInfo *pAggInfo;   /* Information about aggregates at this level */
2007  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2008};
2009
2010/*
2011** An instance of the following structure contains all information
2012** needed to generate code for a single SELECT statement.
2013**
2014** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2015** If there is a LIMIT clause, the parser sets nLimit to the value of the
2016** limit and nOffset to the value of the offset (or 0 if there is not
2017** offset).  But later on, nLimit and nOffset become the memory locations
2018** in the VDBE that record the limit and offset counters.
2019**
2020** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2021** These addresses must be stored so that we can go back and fill in
2022** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2023** the number of columns in P2 can be computed at the same time
2024** as the OP_OpenEphm instruction is coded because not
2025** enough information about the compound query is known at that point.
2026** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2027** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
2028** sequences for the ORDER BY clause.
2029*/
2030struct Select {
2031  ExprList *pEList;      /* The fields of the result */
2032  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2033  char affinity;         /* MakeRecord with this affinity for SRT_Set */
2034  u16 selFlags;          /* Various SF_* values */
2035  SrcList *pSrc;         /* The FROM clause */
2036  Expr *pWhere;          /* The WHERE clause */
2037  ExprList *pGroupBy;    /* The GROUP BY clause */
2038  Expr *pHaving;         /* The HAVING clause */
2039  ExprList *pOrderBy;    /* The ORDER BY clause */
2040  Select *pPrior;        /* Prior select in a compound select statement */
2041  Select *pNext;         /* Next select to the left in a compound */
2042  Select *pRightmost;    /* Right-most select in a compound select statement */
2043  Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2044  Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2045  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2046  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
2047  double nSelectRow;     /* Estimated number of result rows */
2048};
2049
2050/*
2051** Allowed values for Select.selFlags.  The "SF" prefix stands for
2052** "Select Flag".
2053*/
2054#define SF_Distinct        0x0001  /* Output should be DISTINCT */
2055#define SF_Resolved        0x0002  /* Identifiers have been resolved */
2056#define SF_Aggregate       0x0004  /* Contains aggregate functions */
2057#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
2058#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
2059#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
2060
2061
2062/*
2063** The results of a select can be distributed in several ways.  The
2064** "SRT" prefix means "SELECT Result Type".
2065*/
2066#define SRT_Union        1  /* Store result as keys in an index */
2067#define SRT_Except       2  /* Remove result from a UNION index */
2068#define SRT_Exists       3  /* Store 1 if the result is not empty */
2069#define SRT_Discard      4  /* Do not save the results anywhere */
2070
2071/* The ORDER BY clause is ignored for all of the above */
2072#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
2073
2074#define SRT_Output       5  /* Output each row of result */
2075#define SRT_Mem          6  /* Store result in a memory cell */
2076#define SRT_Set          7  /* Store results as keys in an index */
2077#define SRT_Table        8  /* Store result as data with an automatic rowid */
2078#define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
2079#define SRT_Coroutine   10  /* Generate a single row of result */
2080
2081/*
2082** A structure used to customize the behavior of sqlite3Select(). See
2083** comments above sqlite3Select() for details.
2084*/
2085typedef struct SelectDest SelectDest;
2086struct SelectDest {
2087  u8 eDest;         /* How to dispose of the results */
2088  u8 affinity;      /* Affinity used when eDest==SRT_Set */
2089  int iParm;        /* A parameter used by the eDest disposal method */
2090  int iMem;         /* Base register where results are written */
2091  int nMem;         /* Number of registers allocated */
2092};
2093
2094/*
2095** During code generation of statements that do inserts into AUTOINCREMENT
2096** tables, the following information is attached to the Table.u.autoInc.p
2097** pointer of each autoincrement table to record some side information that
2098** the code generator needs.  We have to keep per-table autoincrement
2099** information in case inserts are down within triggers.  Triggers do not
2100** normally coordinate their activities, but we do need to coordinate the
2101** loading and saving of autoincrement information.
2102*/
2103struct AutoincInfo {
2104  AutoincInfo *pNext;   /* Next info block in a list of them all */
2105  Table *pTab;          /* Table this info block refers to */
2106  int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2107  int regCtr;           /* Memory register holding the rowid counter */
2108};
2109
2110/*
2111** Size of the column cache
2112*/
2113#ifndef SQLITE_N_COLCACHE
2114# define SQLITE_N_COLCACHE 10
2115#endif
2116
2117/*
2118** At least one instance of the following structure is created for each
2119** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2120** statement. All such objects are stored in the linked list headed at
2121** Parse.pTriggerPrg and deleted once statement compilation has been
2122** completed.
2123**
2124** A Vdbe sub-program that implements the body and WHEN clause of trigger
2125** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2126** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2127** The Parse.pTriggerPrg list never contains two entries with the same
2128** values for both pTrigger and orconf.
2129**
2130** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2131** accessed (or set to 0 for triggers fired as a result of INSERT
2132** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2133** a mask of new.* columns used by the program.
2134*/
2135struct TriggerPrg {
2136  Trigger *pTrigger;      /* Trigger this program was coded from */
2137  int orconf;             /* Default ON CONFLICT policy */
2138  SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2139  u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2140  TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2141};
2142
2143/*
2144** The yDbMask datatype for the bitmask of all attached databases.
2145*/
2146#if SQLITE_MAX_ATTACHED>30
2147  typedef sqlite3_uint64 yDbMask;
2148#else
2149  typedef unsigned int yDbMask;
2150#endif
2151
2152/*
2153** An SQL parser context.  A copy of this structure is passed through
2154** the parser and down into all the parser action routine in order to
2155** carry around information that is global to the entire parse.
2156**
2157** The structure is divided into two parts.  When the parser and code
2158** generate call themselves recursively, the first part of the structure
2159** is constant but the second part is reset at the beginning and end of
2160** each recursion.
2161**
2162** The nTableLock and aTableLock variables are only used if the shared-cache
2163** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2164** used to store the set of table-locks required by the statement being
2165** compiled. Function sqlite3TableLock() is used to add entries to the
2166** list.
2167*/
2168struct Parse {
2169  sqlite3 *db;         /* The main database structure */
2170  int rc;              /* Return code from execution */
2171  char *zErrMsg;       /* An error message */
2172  Vdbe *pVdbe;         /* An engine for executing database bytecode */
2173  u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2174  u8 nameClash;        /* A permanent table name clashes with temp table name */
2175  u8 checkSchema;      /* Causes schema cookie check after an error */
2176  u8 nested;           /* Number of nested calls to the parser/code generator */
2177  u8 parseError;       /* True after a parsing error.  Ticket #1794 */
2178  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2179  u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
2180  int aTempReg[8];     /* Holding area for temporary registers */
2181  int nRangeReg;       /* Size of the temporary register block */
2182  int iRangeReg;       /* First register in temporary register block */
2183  int nErr;            /* Number of errors seen */
2184  int nTab;            /* Number of previously allocated VDBE cursors */
2185  int nMem;            /* Number of memory cells used so far */
2186  int nSet;            /* Number of sets used so far */
2187  int ckBase;          /* Base register of data during check constraints */
2188  int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2189  int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2190  u8 nColCache;        /* Number of entries in the column cache */
2191  u8 iColCache;        /* Next entry of the cache to replace */
2192  struct yColCache {
2193    int iTable;           /* Table cursor number */
2194    int iColumn;          /* Table column number */
2195    u8 tempReg;           /* iReg is a temp register that needs to be freed */
2196    int iLevel;           /* Nesting level */
2197    int iReg;             /* Reg with value of this column. 0 means none. */
2198    int lru;              /* Least recently used entry has the smallest value */
2199  } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2200  yDbMask writeMask;   /* Start a write transaction on these databases */
2201  yDbMask cookieMask;  /* Bitmask of schema verified databases */
2202  u8 isMultiWrite;     /* True if statement may affect/insert multiple rows */
2203  u8 mayAbort;         /* True if statement may throw an ABORT exception */
2204  int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
2205  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2206#ifndef SQLITE_OMIT_SHARED_CACHE
2207  int nTableLock;        /* Number of locks in aTableLock */
2208  TableLock *aTableLock; /* Required table locks for shared-cache mode */
2209#endif
2210  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2211  int regRoot;         /* Register holding root page number for new objects */
2212  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2213  int nMaxArg;         /* Max args passed to user function by sub-program */
2214
2215  /* Information used while coding trigger programs. */
2216  Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2217  Table *pTriggerTab;  /* Table triggers are being coded for */
2218  u32 oldmask;         /* Mask of old.* columns referenced */
2219  u32 newmask;         /* Mask of new.* columns referenced */
2220  u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2221  u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2222  u8 disableTriggers;  /* True to disable triggers */
2223  double nQueryLoop;   /* Estimated number of iterations of a query */
2224
2225  /* Above is constant between recursions.  Below is reset before and after
2226  ** each recursion */
2227
2228  int nVar;            /* Number of '?' variables seen in the SQL so far */
2229  int nVarExpr;        /* Number of used slots in apVarExpr[] */
2230  int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
2231  Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
2232  Vdbe *pReprepare;    /* VM being reprepared (sqlite3Reprepare()) */
2233  int nAlias;          /* Number of aliased result set columns */
2234  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
2235  int *aAlias;         /* Register used to hold aliased result */
2236  u8 explain;          /* True if the EXPLAIN flag is found on the query */
2237  Token sNameToken;    /* Token with unqualified schema object name */
2238  Token sLastToken;    /* The last token parsed */
2239  const char *zTail;   /* All SQL text past the last semicolon parsed */
2240  Table *pNewTable;    /* A table being constructed by CREATE TABLE */
2241  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2242  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2243#ifndef SQLITE_OMIT_VIRTUALTABLE
2244  Token sArg;                /* Complete text of a module argument */
2245  u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
2246  int nVtabLock;             /* Number of virtual tables to lock */
2247  Table **apVtabLock;        /* Pointer to virtual tables needing locking */
2248#endif
2249  int nHeight;            /* Expression tree height of current sub-select */
2250  Table *pZombieTab;      /* List of Table objects to delete after code gen */
2251  TriggerPrg *pTriggerPrg;    /* Linked list of coded triggers */
2252
2253#ifndef SQLITE_OMIT_EXPLAIN
2254  int iSelectId;
2255  int iNextSelectId;
2256#endif
2257};
2258
2259#ifdef SQLITE_OMIT_VIRTUALTABLE
2260  #define IN_DECLARE_VTAB 0
2261#else
2262  #define IN_DECLARE_VTAB (pParse->declareVtab)
2263#endif
2264
2265/*
2266** An instance of the following structure can be declared on a stack and used
2267** to save the Parse.zAuthContext value so that it can be restored later.
2268*/
2269struct AuthContext {
2270  const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2271  Parse *pParse;              /* The Parse structure */
2272};
2273
2274/*
2275** Bitfield flags for P5 value in OP_Insert and OP_Delete
2276*/
2277#define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2278#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2279#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2280#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2281#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2282#define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
2283
2284/*
2285 * Each trigger present in the database schema is stored as an instance of
2286 * struct Trigger.
2287 *
2288 * Pointers to instances of struct Trigger are stored in two ways.
2289 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2290 *    database). This allows Trigger structures to be retrieved by name.
2291 * 2. All triggers associated with a single table form a linked list, using the
2292 *    pNext member of struct Trigger. A pointer to the first element of the
2293 *    linked list is stored as the "pTrigger" member of the associated
2294 *    struct Table.
2295 *
2296 * The "step_list" member points to the first element of a linked list
2297 * containing the SQL statements specified as the trigger program.
2298 */
2299struct Trigger {
2300  char *zName;            /* The name of the trigger                        */
2301  char *table;            /* The table or view to which the trigger applies */
2302  u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2303  u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2304  Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2305  IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2306                             the <column-list> is stored here */
2307  Schema *pSchema;        /* Schema containing the trigger */
2308  Schema *pTabSchema;     /* Schema containing the table */
2309  TriggerStep *step_list; /* Link list of trigger program steps             */
2310  Trigger *pNext;         /* Next trigger associated with the table */
2311};
2312
2313/*
2314** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2315** determine which.
2316**
2317** If there are multiple triggers, you might of some BEFORE and some AFTER.
2318** In that cases, the constants below can be ORed together.
2319*/
2320#define TRIGGER_BEFORE  1
2321#define TRIGGER_AFTER   2
2322
2323/*
2324 * An instance of struct TriggerStep is used to store a single SQL statement
2325 * that is a part of a trigger-program.
2326 *
2327 * Instances of struct TriggerStep are stored in a singly linked list (linked
2328 * using the "pNext" member) referenced by the "step_list" member of the
2329 * associated struct Trigger instance. The first element of the linked list is
2330 * the first step of the trigger-program.
2331 *
2332 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2333 * "SELECT" statement. The meanings of the other members is determined by the
2334 * value of "op" as follows:
2335 *
2336 * (op == TK_INSERT)
2337 * orconf    -> stores the ON CONFLICT algorithm
2338 * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2339 *              this stores a pointer to the SELECT statement. Otherwise NULL.
2340 * target    -> A token holding the quoted name of the table to insert into.
2341 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2342 *              this stores values to be inserted. Otherwise NULL.
2343 * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2344 *              statement, then this stores the column-names to be
2345 *              inserted into.
2346 *
2347 * (op == TK_DELETE)
2348 * target    -> A token holding the quoted name of the table to delete from.
2349 * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2350 *              Otherwise NULL.
2351 *
2352 * (op == TK_UPDATE)
2353 * target    -> A token holding the quoted name of the table to update rows of.
2354 * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2355 *              Otherwise NULL.
2356 * pExprList -> A list of the columns to update and the expressions to update
2357 *              them to. See sqlite3Update() documentation of "pChanges"
2358 *              argument.
2359 *
2360 */
2361struct TriggerStep {
2362  u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2363  u8 orconf;           /* OE_Rollback etc. */
2364  Trigger *pTrig;      /* The trigger that this step is a part of */
2365  Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2366  Token target;        /* Target table for DELETE, UPDATE, INSERT */
2367  Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2368  ExprList *pExprList; /* SET clause for UPDATE.  VALUES clause for INSERT */
2369  IdList *pIdList;     /* Column names for INSERT */
2370  TriggerStep *pNext;  /* Next in the link-list */
2371  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2372};
2373
2374/*
2375** The following structure contains information used by the sqliteFix...
2376** routines as they walk the parse tree to make database references
2377** explicit.
2378*/
2379typedef struct DbFixer DbFixer;
2380struct DbFixer {
2381  Parse *pParse;      /* The parsing context.  Error messages written here */
2382  const char *zDb;    /* Make sure all objects are contained in this database */
2383  const char *zType;  /* Type of the container - used for error messages */
2384  const Token *pName; /* Name of the container - used for error messages */
2385};
2386
2387/*
2388** An objected used to accumulate the text of a string where we
2389** do not necessarily know how big the string will be in the end.
2390*/
2391struct StrAccum {
2392  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2393  char *zBase;         /* A base allocation.  Not from malloc. */
2394  char *zText;         /* The string collected so far */
2395  int  nChar;          /* Length of the string so far */
2396  int  nAlloc;         /* Amount of space allocated in zText */
2397  int  mxAlloc;        /* Maximum allowed string length */
2398  u8   mallocFailed;   /* Becomes true if any memory allocation fails */
2399  u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
2400  u8   tooBig;         /* Becomes true if string size exceeds limits */
2401};
2402
2403/*
2404** A pointer to this structure is used to communicate information
2405** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2406*/
2407typedef struct {
2408  sqlite3 *db;        /* The database being initialized */
2409  int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2410  char **pzErrMsg;    /* Error message stored here */
2411  int rc;             /* Result code stored here */
2412} InitData;
2413
2414/*
2415** Structure containing global configuration data for the SQLite library.
2416**
2417** This structure also contains some state information.
2418*/
2419struct Sqlite3Config {
2420  int bMemstat;                     /* True to enable memory status */
2421  int bCoreMutex;                   /* True to enable core mutexing */
2422  int bFullMutex;                   /* True to enable full mutexing */
2423  int mxStrlen;                     /* Maximum string length */
2424  int szLookaside;                  /* Default lookaside buffer size */
2425  int nLookaside;                   /* Default lookaside buffer count */
2426  sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2427  sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2428  sqlite3_pcache_methods pcache;    /* Low-level page-cache interface */
2429  void *pHeap;                      /* Heap storage space */
2430  int nHeap;                        /* Size of pHeap[] */
2431  int mnReq, mxReq;                 /* Min and max heap requests sizes */
2432  void *pScratch;                   /* Scratch memory */
2433  int szScratch;                    /* Size of each scratch buffer */
2434  int nScratch;                     /* Number of scratch buffers */
2435  void *pPage;                      /* Page cache memory */
2436  int szPage;                       /* Size of each page in pPage[] */
2437  int nPage;                        /* Number of pages in pPage[] */
2438  int mxParserStack;                /* maximum depth of the parser stack */
2439  int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2440  /* The above might be initialized to non-zero.  The following need to always
2441  ** initially be zero, however. */
2442  int isInit;                       /* True after initialization has finished */
2443  int inProgress;                   /* True while initialization in progress */
2444  int isMutexInit;                  /* True after mutexes are initialized */
2445  int isMallocInit;                 /* True after malloc is initialized */
2446  int isPCacheInit;                 /* True after malloc is initialized */
2447  sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2448  int nRefInitMutex;                /* Number of users of pInitMutex */
2449  void (*xLog)(void*,int,const char*); /* Function for logging */
2450  void *pLogArg;                       /* First argument to xLog() */
2451};
2452
2453/*
2454** Context pointer passed down through the tree-walk.
2455*/
2456struct Walker {
2457  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2458  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2459  Parse *pParse;                            /* Parser context.  */
2460  union {                                   /* Extra data for callback */
2461    NameContext *pNC;                          /* Naming context */
2462    int i;                                     /* Integer value */
2463  } u;
2464};
2465
2466/* Forward declarations */
2467int sqlite3WalkExpr(Walker*, Expr*);
2468int sqlite3WalkExprList(Walker*, ExprList*);
2469int sqlite3WalkSelect(Walker*, Select*);
2470int sqlite3WalkSelectExpr(Walker*, Select*);
2471int sqlite3WalkSelectFrom(Walker*, Select*);
2472
2473/*
2474** Return code from the parse-tree walking primitives and their
2475** callbacks.
2476*/
2477#define WRC_Continue    0   /* Continue down into children */
2478#define WRC_Prune       1   /* Omit children but continue walking siblings */
2479#define WRC_Abort       2   /* Abandon the tree walk */
2480
2481/*
2482** Assuming zIn points to the first byte of a UTF-8 character,
2483** advance zIn to point to the first byte of the next UTF-8 character.
2484*/
2485#define SQLITE_SKIP_UTF8(zIn) {                        \
2486  if( (*(zIn++))>=0xc0 ){                              \
2487    while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2488  }                                                    \
2489}
2490
2491/*
2492** The SQLITE_*_BKPT macros are substitutes for the error codes with
2493** the same name but without the _BKPT suffix.  These macros invoke
2494** routines that report the line-number on which the error originated
2495** using sqlite3_log().  The routines also provide a convenient place
2496** to set a debugger breakpoint.
2497*/
2498int sqlite3CorruptError(int);
2499int sqlite3MisuseError(int);
2500int sqlite3CantopenError(int);
2501#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
2502#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
2503#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
2504
2505
2506/*
2507** FTS4 is really an extension for FTS3.  It is enabled using the
2508** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
2509** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
2510*/
2511#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
2512# define SQLITE_ENABLE_FTS3
2513#endif
2514
2515/*
2516** The ctype.h header is needed for non-ASCII systems.  It is also
2517** needed by FTS3 when FTS3 is included in the amalgamation.
2518*/
2519#if !defined(SQLITE_ASCII) || \
2520    (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2521# include <ctype.h>
2522#endif
2523
2524/*
2525** The CoreServices.h and CoreFoundation.h headers are needed for excluding a
2526** -journal file from Time Machine backups when its associated database has
2527** previously been excluded by the client code.
2528*/
2529#if defined(__APPLE__)
2530#include <CoreServices/CoreServices.h>
2531#include <CoreFoundation/CoreFoundation.h>
2532#endif
2533
2534/*
2535** The following macros mimic the standard library functions toupper(),
2536** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2537** sqlite versions only work for ASCII characters, regardless of locale.
2538*/
2539#ifdef SQLITE_ASCII
2540# define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2541# define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2542# define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2543# define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2544# define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2545# define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2546# define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
2547#else
2548# define sqlite3Toupper(x)   toupper((unsigned char)(x))
2549# define sqlite3Isspace(x)   isspace((unsigned char)(x))
2550# define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
2551# define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
2552# define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
2553# define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
2554# define sqlite3Tolower(x)   tolower((unsigned char)(x))
2555#endif
2556
2557/*
2558** Internal function prototypes
2559*/
2560int sqlite3StrICmp(const char *, const char *);
2561int sqlite3Strlen30(const char*);
2562#define sqlite3StrNICmp sqlite3_strnicmp
2563
2564int sqlite3MallocInit(void);
2565void sqlite3MallocEnd(void);
2566void *sqlite3Malloc(int);
2567void *sqlite3MallocZero(int);
2568void *sqlite3DbMallocZero(sqlite3*, int);
2569void *sqlite3DbMallocRaw(sqlite3*, int);
2570char *sqlite3DbStrDup(sqlite3*,const char*);
2571char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2572void *sqlite3Realloc(void*, int);
2573void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2574void *sqlite3DbRealloc(sqlite3 *, void *, int);
2575void sqlite3DbFree(sqlite3*, void*);
2576int sqlite3MallocSize(void*);
2577int sqlite3DbMallocSize(sqlite3*, void*);
2578void *sqlite3ScratchMalloc(int);
2579void sqlite3ScratchFree(void*);
2580void *sqlite3PageMalloc(int);
2581void sqlite3PageFree(void*);
2582void sqlite3MemSetDefault(void);
2583void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2584int sqlite3HeapNearlyFull(void);
2585
2586/*
2587** On systems with ample stack space and that support alloca(), make
2588** use of alloca() to obtain space for large automatic objects.  By default,
2589** obtain space from malloc().
2590**
2591** The alloca() routine never returns NULL.  This will cause code paths
2592** that deal with sqlite3StackAlloc() failures to be unreachable.
2593*/
2594#ifdef SQLITE_USE_ALLOCA
2595# define sqlite3StackAllocRaw(D,N)   alloca(N)
2596# define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
2597# define sqlite3StackFree(D,P)
2598#else
2599# define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
2600# define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
2601# define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
2602#endif
2603
2604#ifdef SQLITE_ENABLE_MEMSYS3
2605const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
2606#endif
2607#ifdef SQLITE_ENABLE_MEMSYS5
2608const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
2609#endif
2610
2611
2612#ifndef SQLITE_MUTEX_OMIT
2613  sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
2614  sqlite3_mutex_methods const *sqlite3NoopMutex(void);
2615  sqlite3_mutex *sqlite3MutexAlloc(int);
2616  int sqlite3MutexInit(void);
2617  int sqlite3MutexEnd(void);
2618#endif
2619
2620int sqlite3StatusValue(int);
2621void sqlite3StatusAdd(int, int);
2622void sqlite3StatusSet(int, int);
2623
2624#ifndef SQLITE_OMIT_FLOATING_POINT
2625  int sqlite3IsNaN(double);
2626#else
2627# define sqlite3IsNaN(X)  0
2628#endif
2629
2630void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
2631#ifndef SQLITE_OMIT_TRACE
2632void sqlite3XPrintf(StrAccum*, const char*, ...);
2633#endif
2634char *sqlite3MPrintf(sqlite3*,const char*, ...);
2635char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
2636char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
2637#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
2638  void sqlite3DebugPrintf(const char*, ...);
2639#endif
2640#if defined(SQLITE_TEST)
2641  void *sqlite3TestTextToPtr(const char*);
2642#endif
2643void sqlite3SetString(char **, sqlite3*, const char*, ...);
2644void sqlite3ErrorMsg(Parse*, const char*, ...);
2645int sqlite3Dequote(char*);
2646int sqlite3KeywordCode(const unsigned char*, int);
2647int sqlite3RunParser(Parse*, const char*, char **);
2648void sqlite3FinishCoding(Parse*);
2649int sqlite3GetTempReg(Parse*);
2650void sqlite3ReleaseTempReg(Parse*,int);
2651int sqlite3GetTempRange(Parse*,int);
2652void sqlite3ReleaseTempRange(Parse*,int,int);
2653Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
2654Expr *sqlite3Expr(sqlite3*,int,const char*);
2655void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
2656Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
2657Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
2658Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
2659void sqlite3ExprAssignVarNumber(Parse*, Expr*);
2660void sqlite3ExprDelete(sqlite3*, Expr*);
2661ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
2662void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
2663void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
2664void sqlite3ExprListDelete(sqlite3*, ExprList*);
2665int sqlite3Init(sqlite3*, char**);
2666int sqlite3InitCallback(void*, int, char**, char**);
2667void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
2668void sqlite3ResetInternalSchema(sqlite3*, int);
2669void sqlite3BeginParse(Parse*,int);
2670void sqlite3CommitInternalChanges(sqlite3*);
2671Table *sqlite3ResultSetOfSelect(Parse*,Select*);
2672void sqlite3OpenMasterTable(Parse *, int);
2673void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
2674void sqlite3AddColumn(Parse*,Token*);
2675void sqlite3AddNotNull(Parse*, int);
2676void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
2677void sqlite3AddCheckConstraint(Parse*, Expr*);
2678void sqlite3AddColumnType(Parse*,Token*);
2679void sqlite3AddDefaultValue(Parse*,ExprSpan*);
2680void sqlite3AddCollateType(Parse*, Token*);
2681void sqlite3EndTable(Parse*,Token*,Token*,Select*);
2682
2683Bitvec *sqlite3BitvecCreate(u32);
2684int sqlite3BitvecTest(Bitvec*, u32);
2685int sqlite3BitvecSet(Bitvec*, u32);
2686void sqlite3BitvecClear(Bitvec*, u32, void*);
2687void sqlite3BitvecDestroy(Bitvec*);
2688u32 sqlite3BitvecSize(Bitvec*);
2689int sqlite3BitvecBuiltinTest(int,int*);
2690
2691RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
2692void sqlite3RowSetClear(RowSet*);
2693void sqlite3RowSetInsert(RowSet*, i64);
2694int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
2695int sqlite3RowSetNext(RowSet*, i64*);
2696
2697void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
2698
2699#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2700  int sqlite3ViewGetColumnNames(Parse*,Table*);
2701#else
2702# define sqlite3ViewGetColumnNames(A,B) 0
2703#endif
2704
2705void sqlite3DropTable(Parse*, SrcList*, int, int);
2706void sqlite3DeleteTable(sqlite3*, Table*);
2707#ifndef SQLITE_OMIT_AUTOINCREMENT
2708  void sqlite3AutoincrementBegin(Parse *pParse);
2709  void sqlite3AutoincrementEnd(Parse *pParse);
2710#else
2711# define sqlite3AutoincrementBegin(X)
2712# define sqlite3AutoincrementEnd(X)
2713#endif
2714void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
2715void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
2716IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
2717int sqlite3IdListIndex(IdList*,const char*);
2718SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
2719SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
2720SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
2721                                      Token*, Select*, Expr*, IdList*);
2722void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
2723int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
2724void sqlite3SrcListShiftJoinType(SrcList*);
2725void sqlite3SrcListAssignCursors(Parse*, SrcList*);
2726void sqlite3IdListDelete(sqlite3*, IdList*);
2727void sqlite3SrcListDelete(sqlite3*, SrcList*);
2728Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
2729                        Token*, int, int);
2730void sqlite3DropIndex(Parse*, SrcList*, int);
2731int sqlite3Select(Parse*, Select*, SelectDest*);
2732Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
2733                         Expr*,ExprList*,int,Expr*,Expr*);
2734void sqlite3SelectDelete(sqlite3*, Select*);
2735Table *sqlite3SrcListLookup(Parse*, SrcList*);
2736int sqlite3IsReadOnly(Parse*, Table*, int);
2737void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
2738#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
2739Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
2740#endif
2741void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2742void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
2743WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
2744void sqlite3WhereEnd(WhereInfo*);
2745int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int);
2746void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
2747void sqlite3ExprCodeMove(Parse*, int, int, int);
2748void sqlite3ExprCodeCopy(Parse*, int, int, int);
2749void sqlite3ExprCacheStore(Parse*, int, int, int);
2750void sqlite3ExprCachePush(Parse*);
2751void sqlite3ExprCachePop(Parse*, int);
2752void sqlite3ExprCacheRemove(Parse*, int, int);
2753void sqlite3ExprCacheClear(Parse*);
2754void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2755int sqlite3ExprCode(Parse*, Expr*, int);
2756int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2757int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2758int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2759void sqlite3ExprCodeConstants(Parse*, Expr*);
2760int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2761void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2762void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2763Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2764Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2765Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2766void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2767void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2768void sqlite3Vacuum(Parse*);
2769int sqlite3RunVacuum(char**, sqlite3*);
2770char *sqlite3NameFromToken(sqlite3*, Token*);
2771int sqlite3ExprCompare(Expr*, Expr*);
2772int sqlite3ExprListCompare(ExprList*, ExprList*);
2773void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2774void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2775Vdbe *sqlite3GetVdbe(Parse*);
2776void sqlite3PrngSaveState(void);
2777void sqlite3PrngRestoreState(void);
2778void sqlite3PrngResetState(void);
2779void sqlite3RollbackAll(sqlite3*);
2780void sqlite3CodeVerifySchema(Parse*, int);
2781void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
2782void sqlite3BeginTransaction(Parse*, int);
2783void sqlite3CommitTransaction(Parse*);
2784void sqlite3RollbackTransaction(Parse*);
2785void sqlite3Savepoint(Parse*, int, Token*);
2786void sqlite3CloseSavepoints(sqlite3 *);
2787int sqlite3ExprIsConstant(Expr*);
2788int sqlite3ExprIsConstantNotJoin(Expr*);
2789int sqlite3ExprIsConstantOrFunction(Expr*);
2790int sqlite3ExprIsInteger(Expr*, int*);
2791int sqlite3ExprCanBeNull(const Expr*);
2792void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
2793int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
2794int sqlite3IsRowid(const char*);
2795void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
2796void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2797int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2798void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2799                                     int*,int,int,int,int,int*);
2800void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
2801int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2802void sqlite3BeginWriteOperation(Parse*, int, int);
2803void sqlite3MultiWrite(Parse*);
2804void sqlite3MayAbort(Parse*);
2805void sqlite3HaltConstraint(Parse*, int, char*, int);
2806Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
2807ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
2808SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
2809IdList *sqlite3IdListDup(sqlite3*,IdList*);
2810Select *sqlite3SelectDup(sqlite3*,Select*,int);
2811void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
2812FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
2813void sqlite3RegisterBuiltinFunctions(sqlite3*);
2814void sqlite3RegisterDateTimeFunctions(void);
2815void sqlite3RegisterGlobalFunctions(void);
2816int sqlite3SafetyCheckOk(sqlite3*);
2817int sqlite3SafetyCheckSickOrOk(sqlite3*);
2818void sqlite3ChangeCookie(Parse*, int);
2819
2820#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
2821void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
2822#endif
2823
2824#ifndef SQLITE_OMIT_TRIGGER
2825  void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2826                           Expr*,int, int);
2827  void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2828  void sqlite3DropTrigger(Parse*, SrcList*, int);
2829  void sqlite3DropTriggerPtr(Parse*, Trigger*);
2830  Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
2831  Trigger *sqlite3TriggerList(Parse *, Table *);
2832  void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
2833                            int, int, int);
2834  void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
2835  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2836  void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2837  TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2838  TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2839                                        ExprList*,Select*,u8);
2840  TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
2841  TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2842  void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2843  void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2844  u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
2845# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
2846#else
2847# define sqlite3TriggersExist(B,C,D,E,F) 0
2848# define sqlite3DeleteTrigger(A,B)
2849# define sqlite3DropTriggerPtr(A,B)
2850# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2851# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
2852# define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
2853# define sqlite3TriggerList(X, Y) 0
2854# define sqlite3ParseToplevel(p) p
2855# define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
2856#endif
2857
2858int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2859void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2860void sqlite3DeferForeignKey(Parse*, int);
2861#ifndef SQLITE_OMIT_AUTHORIZATION
2862  void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2863  int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2864  void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2865  void sqlite3AuthContextPop(AuthContext*);
2866  int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
2867#else
2868# define sqlite3AuthRead(a,b,c,d)
2869# define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
2870# define sqlite3AuthContextPush(a,b,c)
2871# define sqlite3AuthContextPop(a)  ((void)(a))
2872#endif
2873void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2874void sqlite3Detach(Parse*, Expr*);
2875int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2876int sqlite3FixSrcList(DbFixer*, SrcList*);
2877int sqlite3FixSelect(DbFixer*, Select*);
2878int sqlite3FixExpr(DbFixer*, Expr*);
2879int sqlite3FixExprList(DbFixer*, ExprList*);
2880int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2881int sqlite3AtoF(const char *z, double*, int, u8);
2882int sqlite3GetInt32(const char *, int*);
2883int sqlite3Atoi(const char*);
2884int sqlite3Utf16ByteLen(const void *pData, int nChar);
2885int sqlite3Utf8CharLen(const char *pData, int nByte);
2886int sqlite3Utf8Read(const u8*, const u8**);
2887
2888/*
2889** Routines to read and write variable-length integers.  These used to
2890** be defined locally, but now we use the varint routines in the util.c
2891** file.  Code should use the MACRO forms below, as the Varint32 versions
2892** are coded to assume the single byte case is already handled (which
2893** the MACRO form does).
2894*/
2895int sqlite3PutVarint(unsigned char*, u64);
2896int sqlite3PutVarint32(unsigned char*, u32);
2897u8 sqlite3GetVarint(const unsigned char *, u64 *);
2898u8 sqlite3GetVarint32(const unsigned char *, u32 *);
2899int sqlite3VarintLen(u64 v);
2900
2901/*
2902** The header of a record consists of a sequence variable-length integers.
2903** These integers are almost always small and are encoded as a single byte.
2904** The following macros take advantage this fact to provide a fast encode
2905** and decode of the integers in a record header.  It is faster for the common
2906** case where the integer is a single byte.  It is a little slower when the
2907** integer is two or more bytes.  But overall it is faster.
2908**
2909** The following expressions are equivalent:
2910**
2911**     x = sqlite3GetVarint32( A, &B );
2912**     x = sqlite3PutVarint32( A, B );
2913**
2914**     x = getVarint32( A, B );
2915**     x = putVarint32( A, B );
2916**
2917*/
2918#define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
2919#define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
2920#define getVarint    sqlite3GetVarint
2921#define putVarint    sqlite3PutVarint
2922
2923
2924const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
2925void sqlite3TableAffinityStr(Vdbe *, Table *);
2926char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2927int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2928char sqlite3ExprAffinity(Expr *pExpr);
2929int sqlite3Atoi64(const char*, i64*, int, u8);
2930void sqlite3Error(sqlite3*, int, const char*,...);
2931void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2932int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2933const char *sqlite3ErrStr(int);
2934int sqlite3ReadSchema(Parse *pParse);
2935CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
2936CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
2937CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2938Expr *sqlite3ExprSetColl(Expr*, CollSeq*);
2939Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*);
2940int sqlite3CheckCollSeq(Parse *, CollSeq *);
2941int sqlite3CheckObjectName(Parse *, const char *);
2942void sqlite3VdbeSetChanges(sqlite3 *, int);
2943int sqlite3AddInt64(i64*,i64);
2944int sqlite3SubInt64(i64*,i64);
2945int sqlite3MulInt64(i64*,i64);
2946int sqlite3AbsInt32(int);
2947
2948const void *sqlite3ValueText(sqlite3_value*, u8);
2949int sqlite3ValueBytes(sqlite3_value*, u8);
2950void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
2951                        void(*)(void*));
2952void sqlite3ValueFree(sqlite3_value*);
2953sqlite3_value *sqlite3ValueNew(sqlite3 *);
2954char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
2955#ifdef SQLITE_ENABLE_STAT2
2956char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
2957#endif
2958int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
2959void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
2960#ifndef SQLITE_AMALGAMATION
2961extern const unsigned char sqlite3OpcodeProperty[];
2962extern const unsigned char sqlite3UpperToLower[];
2963extern const unsigned char sqlite3CtypeMap[];
2964extern const Token sqlite3IntTokens[];
2965extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
2966extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
2967#ifndef SQLITE_OMIT_WSD
2968extern int sqlite3PendingByte;
2969#endif
2970#endif
2971void sqlite3RootPageMoved(sqlite3*, int, int, int);
2972void sqlite3Reindex(Parse*, Token*, Token*);
2973void sqlite3AlterFunctions(void);
2974void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
2975int sqlite3GetToken(const unsigned char *, int *);
2976void sqlite3NestedParse(Parse*, const char*, ...);
2977void sqlite3ExpirePreparedStatements(sqlite3*);
2978int sqlite3CodeSubselect(Parse *, Expr *, int, int);
2979void sqlite3SelectPrep(Parse*, Select*, NameContext*);
2980int sqlite3ResolveExprNames(NameContext*, Expr*);
2981void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
2982int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
2983void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
2984void sqlite3AlterFinishAddColumn(Parse *, Token *);
2985void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
2986CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
2987char sqlite3AffinityType(const char*);
2988void sqlite3Analyze(Parse*, Token*, Token*);
2989int sqlite3InvokeBusyHandler(BusyHandler*);
2990int sqlite3FindDb(sqlite3*, Token*);
2991int sqlite3FindDbName(sqlite3 *, const char *);
2992int sqlite3AnalysisLoad(sqlite3*,int iDB);
2993void sqlite3DeleteIndexSamples(sqlite3*,Index*);
2994void sqlite3DefaultRowEst(Index*);
2995void sqlite3RegisterLikeFunctions(sqlite3*, int);
2996int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
2997void sqlite3MinimumFileFormat(Parse*, int, int);
2998void sqlite3SchemaClear(void *);
2999Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3000int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3001KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
3002int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3003  void (*)(sqlite3_context*,int,sqlite3_value **),
3004  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3005  FuncDestructor *pDestructor
3006);
3007int sqlite3ApiExit(sqlite3 *db, int);
3008int sqlite3OpenTempDatabase(Parse *);
3009
3010void sqlite3StrAccumInit(StrAccum*, char*, int, int);
3011void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3012char *sqlite3StrAccumFinish(StrAccum*);
3013void sqlite3StrAccumReset(StrAccum*);
3014void sqlite3SelectDestInit(SelectDest*,int,int);
3015Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3016
3017void sqlite3BackupRestart(sqlite3_backup *);
3018void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3019
3020/*
3021** The interface to the LEMON-generated parser
3022*/
3023void *sqlite3ParserAlloc(void*(*)(size_t));
3024void sqlite3ParserFree(void*, void(*)(void*));
3025void sqlite3Parser(void*, int, Token, Parse*);
3026#ifdef YYTRACKMAXSTACKDEPTH
3027  int sqlite3ParserStackPeak(void*);
3028#endif
3029
3030void sqlite3AutoLoadExtensions(sqlite3*);
3031#ifndef SQLITE_OMIT_LOAD_EXTENSION
3032  void sqlite3CloseExtensions(sqlite3*);
3033#else
3034# define sqlite3CloseExtensions(X)
3035#endif
3036
3037#ifndef SQLITE_OMIT_SHARED_CACHE
3038  void sqlite3TableLock(Parse *, int, int, u8, const char *);
3039#else
3040  #define sqlite3TableLock(v,w,x,y,z)
3041#endif
3042
3043#ifdef SQLITE_TEST
3044  int sqlite3Utf8To8(unsigned char*);
3045#endif
3046
3047#ifdef SQLITE_OMIT_VIRTUALTABLE
3048#  define sqlite3VtabClear(Y)
3049#  define sqlite3VtabSync(X,Y) SQLITE_OK
3050#  define sqlite3VtabRollback(X)
3051#  define sqlite3VtabCommit(X)
3052#  define sqlite3VtabInSync(db) 0
3053#  define sqlite3VtabLock(X)
3054#  define sqlite3VtabUnlock(X)
3055#  define sqlite3VtabUnlockList(X)
3056#else
3057   void sqlite3VtabClear(sqlite3 *db, Table*);
3058   int sqlite3VtabSync(sqlite3 *db, char **);
3059   int sqlite3VtabRollback(sqlite3 *db);
3060   int sqlite3VtabCommit(sqlite3 *db);
3061   void sqlite3VtabLock(VTable *);
3062   void sqlite3VtabUnlock(VTable *);
3063   void sqlite3VtabUnlockList(sqlite3*);
3064#  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3065#endif
3066void sqlite3VtabMakeWritable(Parse*,Table*);
3067void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
3068void sqlite3VtabFinishParse(Parse*, Token*);
3069void sqlite3VtabArgInit(Parse*);
3070void sqlite3VtabArgExtend(Parse*, Token*);
3071int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3072int sqlite3VtabCallConnect(Parse*, Table*);
3073int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3074int sqlite3VtabBegin(sqlite3 *, VTable *);
3075FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3076void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3077int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3078int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3079int sqlite3Reprepare(Vdbe*);
3080void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3081CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3082int sqlite3TempInMemory(const sqlite3*);
3083VTable *sqlite3GetVTable(sqlite3*, Table*);
3084const char *sqlite3JournalModename(int);
3085int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3086int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3087
3088/* Declarations for functions in fkey.c. All of these are replaced by
3089** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3090** key functionality is available. If OMIT_TRIGGER is defined but
3091** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3092** this case foreign keys are parsed, but no other functionality is
3093** provided (enforcement of FK constraints requires the triggers sub-system).
3094*/
3095#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3096  void sqlite3FkCheck(Parse*, Table*, int, int);
3097  void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3098  void sqlite3FkActions(Parse*, Table*, ExprList*, int);
3099  int sqlite3FkRequired(Parse*, Table*, int*, int);
3100  u32 sqlite3FkOldmask(Parse*, Table*);
3101  FKey *sqlite3FkReferences(Table *);
3102#else
3103  #define sqlite3FkActions(a,b,c,d)
3104  #define sqlite3FkCheck(a,b,c,d)
3105  #define sqlite3FkDropTable(a,b,c)
3106  #define sqlite3FkOldmask(a,b)      0
3107  #define sqlite3FkRequired(a,b,c,d) 0
3108#endif
3109#ifndef SQLITE_OMIT_FOREIGN_KEY
3110  void sqlite3FkDelete(sqlite3 *, Table*);
3111#else
3112  #define sqlite3FkDelete(a,b)
3113#endif
3114
3115
3116/*
3117** Available fault injectors.  Should be numbered beginning with 0.
3118*/
3119#define SQLITE_FAULTINJECTOR_MALLOC     0
3120#define SQLITE_FAULTINJECTOR_COUNT      1
3121
3122/*
3123** The interface to the code in fault.c used for identifying "benign"
3124** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3125** is not defined.
3126*/
3127#ifndef SQLITE_OMIT_BUILTIN_TEST
3128  void sqlite3BeginBenignMalloc(void);
3129  void sqlite3EndBenignMalloc(void);
3130#else
3131  #define sqlite3BeginBenignMalloc()
3132  #define sqlite3EndBenignMalloc()
3133#endif
3134
3135#define IN_INDEX_ROWID           1
3136#define IN_INDEX_EPH             2
3137#define IN_INDEX_INDEX           3
3138int sqlite3FindInIndex(Parse *, Expr *, int*);
3139
3140#ifdef SQLITE_ENABLE_ATOMIC_WRITE
3141  int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3142  int sqlite3JournalSize(sqlite3_vfs *);
3143  int sqlite3JournalCreate(sqlite3_file *);
3144#else
3145  #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3146#endif
3147
3148void sqlite3MemJournalOpen(sqlite3_file *);
3149int sqlite3MemJournalSize(void);
3150int sqlite3IsMemJournal(sqlite3_file *);
3151
3152#if SQLITE_MAX_EXPR_DEPTH>0
3153  void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
3154  int sqlite3SelectExprHeight(Select *);
3155  int sqlite3ExprCheckHeight(Parse*, int);
3156#else
3157  #define sqlite3ExprSetHeight(x,y)
3158  #define sqlite3SelectExprHeight(x) 0
3159  #define sqlite3ExprCheckHeight(x,y)
3160#endif
3161
3162u32 sqlite3Get4byte(const u8*);
3163void sqlite3Put4byte(u8*, u32);
3164
3165#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3166  void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3167  void sqlite3ConnectionUnlocked(sqlite3 *db);
3168  void sqlite3ConnectionClosed(sqlite3 *db);
3169#else
3170  #define sqlite3ConnectionBlocked(x,y)
3171  #define sqlite3ConnectionUnlocked(x)
3172  #define sqlite3ConnectionClosed(x)
3173#endif
3174
3175#ifdef SQLITE_DEBUG
3176  void sqlite3ParserTrace(FILE*, char *);
3177#endif
3178
3179/*
3180** If the SQLITE_ENABLE IOTRACE exists then the global variable
3181** sqlite3IoTrace is a pointer to a printf-like routine used to
3182** print I/O tracing messages.
3183*/
3184#ifdef SQLITE_ENABLE_IOTRACE
3185# define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3186  void sqlite3VdbeIOTraceSql(Vdbe*);
3187SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3188#else
3189# define IOTRACE(A)
3190# define sqlite3VdbeIOTraceSql(X)
3191#endif
3192
3193/*
3194** These routines are available for the mem2.c debugging memory allocator
3195** only.  They are used to verify that different "types" of memory
3196** allocations are properly tracked by the system.
3197**
3198** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3199** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3200** a single bit set.
3201**
3202** sqlite3MemdebugHasType() returns true if any of the bits in its second
3203** argument match the type set by the previous sqlite3MemdebugSetType().
3204** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3205**
3206** sqlite3MemdebugNoType() returns true if none of the bits in its second
3207** argument match the type set by the previous sqlite3MemdebugSetType().
3208**
3209** Perhaps the most important point is the difference between MEMTYPE_HEAP
3210** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3211** it might have been allocated by lookaside, except the allocation was
3212** too large or lookaside was already full.  It is important to verify
3213** that allocations that might have been satisfied by lookaside are not
3214** passed back to non-lookaside free() routines.  Asserts such as the
3215** example above are placed on the non-lookaside free() routines to verify
3216** this constraint.
3217**
3218** All of this is no-op for a production build.  It only comes into
3219** play when the SQLITE_MEMDEBUG compile-time option is used.
3220*/
3221#ifdef SQLITE_MEMDEBUG
3222  void sqlite3MemdebugSetType(void*,u8);
3223  int sqlite3MemdebugHasType(void*,u8);
3224  int sqlite3MemdebugNoType(void*,u8);
3225#else
3226# define sqlite3MemdebugSetType(X,Y)  /* no-op */
3227# define sqlite3MemdebugHasType(X,Y)  1
3228# define sqlite3MemdebugNoType(X,Y)   1
3229#endif
3230#define MEMTYPE_HEAP       0x01  /* General heap allocations */
3231#define MEMTYPE_LOOKASIDE  0x02  /* Might have been lookaside memory */
3232#define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3233#define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3234#define MEMTYPE_DB         0x10  /* Uses sqlite3DbMalloc, not sqlite_malloc */
3235
3236#endif /* _SQLITEINT_H_ */
3237