1/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11*************************************************************************
12** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances.  This file is solely interested in executing
16** the VDBE program.
17**
18** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19** to a VDBE.
20**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement.  VDBE programs are
23** similar in form to assembly language.  The program consists of
24** a linear sequence of operations.  Each operation has an opcode
25** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4
26** is a null-terminated string.  Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
28**
29** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem.  Each register can store
31** either an integer, a null-terminated string, a floating point
32** number, or the SQL "NULL" value.  An implicit conversion from one
33** type to the other occurs as necessary.
34**
35** Most of the code in this file is taken up by the sqlite3VdbeExec()
36** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
40** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files.  The formatting
42** of the code in this file is, therefore, important.  See other comments
43** in this file for details.  If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
45*/
46#include "sqliteInt.h"
47#include "vdbeInt.h"
48
49/*
50** Invoke this macro on memory cells just prior to changing the
51** value of the cell.  This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
55# define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
56#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
61** The following global variable is incremented every time a cursor
62** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
63** procedures use this information to make sure that indices are
64** working correctly.  This variable has no function other than to
65** help verify the correct operation of the library.
66*/
67#ifdef SQLITE_TEST
68int sqlite3_search_count = 0;
69#endif
70
71/*
72** When this global variable is positive, it gets decremented once before
73** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate and interrupt.
75**
76** This facility is used for testing purposes only.  It does not function
77** in an ordinary build.
78*/
79#ifdef SQLITE_TEST
80int sqlite3_interrupt_count = 0;
81#endif
82
83/*
84** The next global variable is incremented each type the OP_Sort opcode
85** is executed.  The test procedures use this information to make sure that
86** sorting is occurring or not occurring at appropriate times.   This variable
87** has no function other than to help verify the correct operation of the
88** library.
89*/
90#ifdef SQLITE_TEST
91int sqlite3_sort_count = 0;
92#endif
93
94/*
95** The next global variable records the size of the largest MEM_Blob
96** or MEM_Str that has been used by a VDBE opcode.  The test procedures
97** use this information to make sure that the zero-blob functionality
98** is working correctly.   This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
103static void updateMaxBlobsize(Mem *p){
104  if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105    sqlite3_max_blobsize = p->n;
106  }
107}
108#endif
109
110/*
111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126# define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
132** Convert the given register into a string if it isn't one
133** already. Return non-zero if a malloc() fails.
134*/
135#define Stringify(P, enc) \
136   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
137     { goto no_mem; }
138
139/*
140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
142** is responsible for deallocating that string.  Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
145**
146** This routine converts an ephemeral string into a dynamically allocated
147** string that the register itself controls.  In other words, it
148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
150#define Deephemeralize(P) \
151   if( ((P)->flags&MEM_Ephem)!=0 \
152       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
153
154/*
155** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
156** P if required.
157*/
158#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
159
160/*
161** Argument pMem points at a register that will be passed to a
162** user-defined function or returned to the user as the result of a query.
163** This routine sets the pMem->type variable used by the sqlite3_value_*()
164** routines.
165*/
166void sqlite3VdbeMemStoreType(Mem *pMem){
167  int flags = pMem->flags;
168  if( flags & MEM_Null ){
169    pMem->type = SQLITE_NULL;
170  }
171  else if( flags & MEM_Int ){
172    pMem->type = SQLITE_INTEGER;
173  }
174  else if( flags & MEM_Real ){
175    pMem->type = SQLITE_FLOAT;
176  }
177  else if( flags & MEM_Str ){
178    pMem->type = SQLITE_TEXT;
179  }else{
180    pMem->type = SQLITE_BLOB;
181  }
182}
183
184/*
185** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
186** if we run out of memory.
187*/
188static VdbeCursor *allocateCursor(
189  Vdbe *p,              /* The virtual machine */
190  int iCur,             /* Index of the new VdbeCursor */
191  int nField,           /* Number of fields in the table or index */
192  int iDb,              /* When database the cursor belongs to, or -1 */
193  int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
194){
195  /* Find the memory cell that will be used to store the blob of memory
196  ** required for this VdbeCursor structure. It is convenient to use a
197  ** vdbe memory cell to manage the memory allocation required for a
198  ** VdbeCursor structure for the following reasons:
199  **
200  **   * Sometimes cursor numbers are used for a couple of different
201  **     purposes in a vdbe program. The different uses might require
202  **     different sized allocations. Memory cells provide growable
203  **     allocations.
204  **
205  **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
206  **     be freed lazily via the sqlite3_release_memory() API. This
207  **     minimizes the number of malloc calls made by the system.
208  **
209  ** Memory cells for cursors are allocated at the top of the address
210  ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
211  ** cursor 1 is managed by memory cell (p->nMem-1), etc.
212  */
213  Mem *pMem = &p->aMem[p->nMem-iCur];
214
215  int nByte;
216  VdbeCursor *pCx = 0;
217  nByte =
218      ROUND8(sizeof(VdbeCursor)) +
219      (isBtreeCursor?sqlite3BtreeCursorSize():0) +
220      2*nField*sizeof(u32);
221
222  assert( iCur<p->nCursor );
223  if( p->apCsr[iCur] ){
224    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
225    p->apCsr[iCur] = 0;
226  }
227  if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
228    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
229    memset(pCx, 0, sizeof(VdbeCursor));
230    pCx->iDb = iDb;
231    pCx->nField = nField;
232    if( nField ){
233      pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
234    }
235    if( isBtreeCursor ){
236      pCx->pCursor = (BtCursor*)
237          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
238      sqlite3BtreeCursorZero(pCx->pCursor);
239    }
240  }
241  return pCx;
242}
243
244/*
245** Try to convert a value into a numeric representation if we can
246** do so without loss of information.  In other words, if the string
247** looks like a number, convert it into a number.  If it does not
248** look like a number, leave it alone.
249*/
250static void applyNumericAffinity(Mem *pRec){
251  if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
252    double rValue;
253    i64 iValue;
254    u8 enc = pRec->enc;
255    if( (pRec->flags&MEM_Str)==0 ) return;
256    if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
257    if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
258      pRec->u.i = iValue;
259      pRec->flags |= MEM_Int;
260    }else{
261      pRec->r = rValue;
262      pRec->flags |= MEM_Real;
263    }
264  }
265}
266
267/*
268** Processing is determine by the affinity parameter:
269**
270** SQLITE_AFF_INTEGER:
271** SQLITE_AFF_REAL:
272** SQLITE_AFF_NUMERIC:
273**    Try to convert pRec to an integer representation or a
274**    floating-point representation if an integer representation
275**    is not possible.  Note that the integer representation is
276**    always preferred, even if the affinity is REAL, because
277**    an integer representation is more space efficient on disk.
278**
279** SQLITE_AFF_TEXT:
280**    Convert pRec to a text representation.
281**
282** SQLITE_AFF_NONE:
283**    No-op.  pRec is unchanged.
284*/
285static void applyAffinity(
286  Mem *pRec,          /* The value to apply affinity to */
287  char affinity,      /* The affinity to be applied */
288  u8 enc              /* Use this text encoding */
289){
290  if( affinity==SQLITE_AFF_TEXT ){
291    /* Only attempt the conversion to TEXT if there is an integer or real
292    ** representation (blob and NULL do not get converted) but no string
293    ** representation.
294    */
295    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
296      sqlite3VdbeMemStringify(pRec, enc);
297    }
298    pRec->flags &= ~(MEM_Real|MEM_Int);
299  }else if( affinity!=SQLITE_AFF_NONE ){
300    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
301             || affinity==SQLITE_AFF_NUMERIC );
302    applyNumericAffinity(pRec);
303    if( pRec->flags & MEM_Real ){
304      sqlite3VdbeIntegerAffinity(pRec);
305    }
306  }
307}
308
309/*
310** Try to convert the type of a function argument or a result column
311** into a numeric representation.  Use either INTEGER or REAL whichever
312** is appropriate.  But only do the conversion if it is possible without
313** loss of information and return the revised type of the argument.
314*/
315int sqlite3_value_numeric_type(sqlite3_value *pVal){
316  Mem *pMem = (Mem*)pVal;
317  if( pMem->type==SQLITE_TEXT ){
318    applyNumericAffinity(pMem);
319    sqlite3VdbeMemStoreType(pMem);
320  }
321  return pMem->type;
322}
323
324/*
325** Exported version of applyAffinity(). This one works on sqlite3_value*,
326** not the internal Mem* type.
327*/
328void sqlite3ValueApplyAffinity(
329  sqlite3_value *pVal,
330  u8 affinity,
331  u8 enc
332){
333  applyAffinity((Mem *)pVal, affinity, enc);
334}
335
336#ifdef SQLITE_DEBUG
337/*
338** Write a nice string representation of the contents of cell pMem
339** into buffer zBuf, length nBuf.
340*/
341void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
342  char *zCsr = zBuf;
343  int f = pMem->flags;
344
345  static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
346
347  if( f&MEM_Blob ){
348    int i;
349    char c;
350    if( f & MEM_Dyn ){
351      c = 'z';
352      assert( (f & (MEM_Static|MEM_Ephem))==0 );
353    }else if( f & MEM_Static ){
354      c = 't';
355      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
356    }else if( f & MEM_Ephem ){
357      c = 'e';
358      assert( (f & (MEM_Static|MEM_Dyn))==0 );
359    }else{
360      c = 's';
361    }
362
363    sqlite3_snprintf(100, zCsr, "%c", c);
364    zCsr += sqlite3Strlen30(zCsr);
365    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
366    zCsr += sqlite3Strlen30(zCsr);
367    for(i=0; i<16 && i<pMem->n; i++){
368      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
369      zCsr += sqlite3Strlen30(zCsr);
370    }
371    for(i=0; i<16 && i<pMem->n; i++){
372      char z = pMem->z[i];
373      if( z<32 || z>126 ) *zCsr++ = '.';
374      else *zCsr++ = z;
375    }
376
377    sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
378    zCsr += sqlite3Strlen30(zCsr);
379    if( f & MEM_Zero ){
380      sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
381      zCsr += sqlite3Strlen30(zCsr);
382    }
383    *zCsr = '\0';
384  }else if( f & MEM_Str ){
385    int j, k;
386    zBuf[0] = ' ';
387    if( f & MEM_Dyn ){
388      zBuf[1] = 'z';
389      assert( (f & (MEM_Static|MEM_Ephem))==0 );
390    }else if( f & MEM_Static ){
391      zBuf[1] = 't';
392      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
393    }else if( f & MEM_Ephem ){
394      zBuf[1] = 'e';
395      assert( (f & (MEM_Static|MEM_Dyn))==0 );
396    }else{
397      zBuf[1] = 's';
398    }
399    k = 2;
400    sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
401    k += sqlite3Strlen30(&zBuf[k]);
402    zBuf[k++] = '[';
403    for(j=0; j<15 && j<pMem->n; j++){
404      u8 c = pMem->z[j];
405      if( c>=0x20 && c<0x7f ){
406        zBuf[k++] = c;
407      }else{
408        zBuf[k++] = '.';
409      }
410    }
411    zBuf[k++] = ']';
412    sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
413    k += sqlite3Strlen30(&zBuf[k]);
414    zBuf[k++] = 0;
415  }
416}
417#endif
418
419#ifdef SQLITE_DEBUG
420/*
421** Print the value of a register for tracing purposes:
422*/
423static void memTracePrint(FILE *out, Mem *p){
424  if( p->flags & MEM_Null ){
425    fprintf(out, " NULL");
426  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
427    fprintf(out, " si:%lld", p->u.i);
428  }else if( p->flags & MEM_Int ){
429    fprintf(out, " i:%lld", p->u.i);
430#ifndef SQLITE_OMIT_FLOATING_POINT
431  }else if( p->flags & MEM_Real ){
432    fprintf(out, " r:%g", p->r);
433#endif
434  }else if( p->flags & MEM_RowSet ){
435    fprintf(out, " (rowset)");
436  }else{
437    char zBuf[200];
438    sqlite3VdbeMemPrettyPrint(p, zBuf);
439    fprintf(out, " ");
440    fprintf(out, "%s", zBuf);
441  }
442}
443static void registerTrace(FILE *out, int iReg, Mem *p){
444  fprintf(out, "REG[%d] = ", iReg);
445  memTracePrint(out, p);
446  fprintf(out, "\n");
447}
448#endif
449
450#ifdef SQLITE_DEBUG
451#  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
452#else
453#  define REGISTER_TRACE(R,M)
454#endif
455
456
457#ifdef VDBE_PROFILE
458
459/*
460** hwtime.h contains inline assembler code for implementing
461** high-performance timing routines.
462*/
463#include "hwtime.h"
464
465#endif
466
467/*
468** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
469** sqlite3_interrupt() routine has been called.  If it has been, then
470** processing of the VDBE program is interrupted.
471**
472** This macro added to every instruction that does a jump in order to
473** implement a loop.  This test used to be on every single instruction,
474** but that meant we more testing that we needed.  By only testing the
475** flag on jump instructions, we get a (small) speed improvement.
476*/
477#define CHECK_FOR_INTERRUPT \
478   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
479
480
481#ifndef NDEBUG
482/*
483** This function is only called from within an assert() expression. It
484** checks that the sqlite3.nTransaction variable is correctly set to
485** the number of non-transaction savepoints currently in the
486** linked list starting at sqlite3.pSavepoint.
487**
488** Usage:
489**
490**     assert( checkSavepointCount(db) );
491*/
492static int checkSavepointCount(sqlite3 *db){
493  int n = 0;
494  Savepoint *p;
495  for(p=db->pSavepoint; p; p=p->pNext) n++;
496  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
497  return 1;
498}
499#endif
500
501/*
502** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
503** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
504** in memory obtained from sqlite3DbMalloc).
505*/
506static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
507  sqlite3 *db = p->db;
508  sqlite3DbFree(db, p->zErrMsg);
509  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
510  sqlite3_free(pVtab->zErrMsg);
511  pVtab->zErrMsg = 0;
512}
513
514
515/*
516** Execute as much of a VDBE program as we can then return.
517**
518** sqlite3VdbeMakeReady() must be called before this routine in order to
519** close the program with a final OP_Halt and to set up the callbacks
520** and the error message pointer.
521**
522** Whenever a row or result data is available, this routine will either
523** invoke the result callback (if there is one) or return with
524** SQLITE_ROW.
525**
526** If an attempt is made to open a locked database, then this routine
527** will either invoke the busy callback (if there is one) or it will
528** return SQLITE_BUSY.
529**
530** If an error occurs, an error message is written to memory obtained
531** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
532** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
533**
534** If the callback ever returns non-zero, then the program exits
535** immediately.  There will be no error message but the p->rc field is
536** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
537**
538** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
539** routine to return SQLITE_ERROR.
540**
541** Other fatal errors return SQLITE_ERROR.
542**
543** After this routine has finished, sqlite3VdbeFinalize() should be
544** used to clean up the mess that was left behind.
545*/
546int sqlite3VdbeExec(
547  Vdbe *p                    /* The VDBE */
548){
549  int pc=0;                  /* The program counter */
550  Op *aOp = p->aOp;          /* Copy of p->aOp */
551  Op *pOp;                   /* Current operation */
552  int rc = SQLITE_OK;        /* Value to return */
553  sqlite3 *db = p->db;       /* The database */
554  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
555  u8 encoding = ENC(db);     /* The database encoding */
556#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
557  int checkProgress;         /* True if progress callbacks are enabled */
558  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
559#endif
560  Mem *aMem = p->aMem;       /* Copy of p->aMem */
561  Mem *pIn1 = 0;             /* 1st input operand */
562  Mem *pIn2 = 0;             /* 2nd input operand */
563  Mem *pIn3 = 0;             /* 3rd input operand */
564  Mem *pOut = 0;             /* Output operand */
565  int iCompare = 0;          /* Result of last OP_Compare operation */
566  int *aPermute = 0;         /* Permutation of columns for OP_Compare */
567#ifdef VDBE_PROFILE
568  u64 start;                 /* CPU clock count at start of opcode */
569  int origPc;                /* Program counter at start of opcode */
570#endif
571  /*** INSERT STACK UNION HERE ***/
572
573  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
574  sqlite3VdbeEnter(p);
575  if( p->rc==SQLITE_NOMEM ){
576    /* This happens if a malloc() inside a call to sqlite3_column_text() or
577    ** sqlite3_column_text16() failed.  */
578    goto no_mem;
579  }
580  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
581  p->rc = SQLITE_OK;
582  assert( p->explain==0 );
583  p->pResultSet = 0;
584  db->busyHandler.nBusy = 0;
585  CHECK_FOR_INTERRUPT;
586  sqlite3VdbeIOTraceSql(p);
587#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
588  checkProgress = db->xProgress!=0;
589#endif
590#ifdef SQLITE_DEBUG
591  sqlite3BeginBenignMalloc();
592  if( p->pc==0  && (p->db->flags & SQLITE_VdbeListing)!=0 ){
593    int i;
594    printf("VDBE Program Listing:\n");
595    sqlite3VdbePrintSql(p);
596    for(i=0; i<p->nOp; i++){
597      sqlite3VdbePrintOp(stdout, i, &aOp[i]);
598    }
599  }
600  sqlite3EndBenignMalloc();
601#endif
602  for(pc=p->pc; rc==SQLITE_OK; pc++){
603    assert( pc>=0 && pc<p->nOp );
604    if( db->mallocFailed ) goto no_mem;
605#ifdef VDBE_PROFILE
606    origPc = pc;
607    start = sqlite3Hwtime();
608#endif
609    pOp = &aOp[pc];
610
611    /* Only allow tracing if SQLITE_DEBUG is defined.
612    */
613#ifdef SQLITE_DEBUG
614    if( p->trace ){
615      if( pc==0 ){
616        printf("VDBE Execution Trace:\n");
617        sqlite3VdbePrintSql(p);
618      }
619      sqlite3VdbePrintOp(p->trace, pc, pOp);
620    }
621#endif
622
623
624    /* Check to see if we need to simulate an interrupt.  This only happens
625    ** if we have a special test build.
626    */
627#ifdef SQLITE_TEST
628    if( sqlite3_interrupt_count>0 ){
629      sqlite3_interrupt_count--;
630      if( sqlite3_interrupt_count==0 ){
631        sqlite3_interrupt(db);
632      }
633    }
634#endif
635
636#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
637    /* Call the progress callback if it is configured and the required number
638    ** of VDBE ops have been executed (either since this invocation of
639    ** sqlite3VdbeExec() or since last time the progress callback was called).
640    ** If the progress callback returns non-zero, exit the virtual machine with
641    ** a return code SQLITE_ABORT.
642    */
643    if( checkProgress ){
644      if( db->nProgressOps==nProgressOps ){
645        int prc;
646        prc = db->xProgress(db->pProgressArg);
647        if( prc!=0 ){
648          rc = SQLITE_INTERRUPT;
649          goto vdbe_error_halt;
650        }
651        nProgressOps = 0;
652      }
653      nProgressOps++;
654    }
655#endif
656
657    /* On any opcode with the "out2-prerelase" tag, free any
658    ** external allocations out of mem[p2] and set mem[p2] to be
659    ** an undefined integer.  Opcodes will either fill in the integer
660    ** value or convert mem[p2] to a different type.
661    */
662    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
663    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
664      assert( pOp->p2>0 );
665      assert( pOp->p2<=p->nMem );
666      pOut = &aMem[pOp->p2];
667      memAboutToChange(p, pOut);
668      sqlite3VdbeMemReleaseExternal(pOut);
669      pOut->flags = MEM_Int;
670    }
671
672    /* Sanity checking on other operands */
673#ifdef SQLITE_DEBUG
674    if( (pOp->opflags & OPFLG_IN1)!=0 ){
675      assert( pOp->p1>0 );
676      assert( pOp->p1<=p->nMem );
677      assert( memIsValid(&aMem[pOp->p1]) );
678      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
679    }
680    if( (pOp->opflags & OPFLG_IN2)!=0 ){
681      assert( pOp->p2>0 );
682      assert( pOp->p2<=p->nMem );
683      assert( memIsValid(&aMem[pOp->p2]) );
684      REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
685    }
686    if( (pOp->opflags & OPFLG_IN3)!=0 ){
687      assert( pOp->p3>0 );
688      assert( pOp->p3<=p->nMem );
689      assert( memIsValid(&aMem[pOp->p3]) );
690      REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
691    }
692    if( (pOp->opflags & OPFLG_OUT2)!=0 ){
693      assert( pOp->p2>0 );
694      assert( pOp->p2<=p->nMem );
695      memAboutToChange(p, &aMem[pOp->p2]);
696    }
697    if( (pOp->opflags & OPFLG_OUT3)!=0 ){
698      assert( pOp->p3>0 );
699      assert( pOp->p3<=p->nMem );
700      memAboutToChange(p, &aMem[pOp->p3]);
701    }
702#endif
703
704    switch( pOp->opcode ){
705
706/*****************************************************************************
707** What follows is a massive switch statement where each case implements a
708** separate instruction in the virtual machine.  If we follow the usual
709** indentation conventions, each case should be indented by 6 spaces.  But
710** that is a lot of wasted space on the left margin.  So the code within
711** the switch statement will break with convention and be flush-left. Another
712** big comment (similar to this one) will mark the point in the code where
713** we transition back to normal indentation.
714**
715** The formatting of each case is important.  The makefile for SQLite
716** generates two C files "opcodes.h" and "opcodes.c" by scanning this
717** file looking for lines that begin with "case OP_".  The opcodes.h files
718** will be filled with #defines that give unique integer values to each
719** opcode and the opcodes.c file is filled with an array of strings where
720** each string is the symbolic name for the corresponding opcode.  If the
721** case statement is followed by a comment of the form "/# same as ... #/"
722** that comment is used to determine the particular value of the opcode.
723**
724** Other keywords in the comment that follows each case are used to
725** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
726** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
727** the mkopcodeh.awk script for additional information.
728**
729** Documentation about VDBE opcodes is generated by scanning this file
730** for lines of that contain "Opcode:".  That line and all subsequent
731** comment lines are used in the generation of the opcode.html documentation
732** file.
733**
734** SUMMARY:
735**
736**     Formatting is important to scripts that scan this file.
737**     Do not deviate from the formatting style currently in use.
738**
739*****************************************************************************/
740
741/* Opcode:  Goto * P2 * * *
742**
743** An unconditional jump to address P2.
744** The next instruction executed will be
745** the one at index P2 from the beginning of
746** the program.
747*/
748case OP_Goto: {             /* jump */
749  CHECK_FOR_INTERRUPT;
750  pc = pOp->p2 - 1;
751  break;
752}
753
754/* Opcode:  Gosub P1 P2 * * *
755**
756** Write the current address onto register P1
757** and then jump to address P2.
758*/
759case OP_Gosub: {            /* jump, in1 */
760  pIn1 = &aMem[pOp->p1];
761  assert( (pIn1->flags & MEM_Dyn)==0 );
762  memAboutToChange(p, pIn1);
763  pIn1->flags = MEM_Int;
764  pIn1->u.i = pc;
765  REGISTER_TRACE(pOp->p1, pIn1);
766  pc = pOp->p2 - 1;
767  break;
768}
769
770/* Opcode:  Return P1 * * * *
771**
772** Jump to the next instruction after the address in register P1.
773*/
774case OP_Return: {           /* in1 */
775  pIn1 = &aMem[pOp->p1];
776  assert( pIn1->flags & MEM_Int );
777  pc = (int)pIn1->u.i;
778  break;
779}
780
781/* Opcode:  Yield P1 * * * *
782**
783** Swap the program counter with the value in register P1.
784*/
785case OP_Yield: {            /* in1 */
786  int pcDest;
787  pIn1 = &aMem[pOp->p1];
788  assert( (pIn1->flags & MEM_Dyn)==0 );
789  pIn1->flags = MEM_Int;
790  pcDest = (int)pIn1->u.i;
791  pIn1->u.i = pc;
792  REGISTER_TRACE(pOp->p1, pIn1);
793  pc = pcDest;
794  break;
795}
796
797/* Opcode:  HaltIfNull  P1 P2 P3 P4 *
798**
799** Check the value in register P3.  If is is NULL then Halt using
800** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
801** value in register P3 is not NULL, then this routine is a no-op.
802*/
803case OP_HaltIfNull: {      /* in3 */
804  pIn3 = &aMem[pOp->p3];
805  if( (pIn3->flags & MEM_Null)==0 ) break;
806  /* Fall through into OP_Halt */
807}
808
809/* Opcode:  Halt P1 P2 * P4 *
810**
811** Exit immediately.  All open cursors, etc are closed
812** automatically.
813**
814** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
815** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
816** For errors, it can be some other value.  If P1!=0 then P2 will determine
817** whether or not to rollback the current transaction.  Do not rollback
818** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
819** then back out all changes that have occurred during this execution of the
820** VDBE, but do not rollback the transaction.
821**
822** If P4 is not null then it is an error message string.
823**
824** There is an implied "Halt 0 0 0" instruction inserted at the very end of
825** every program.  So a jump past the last instruction of the program
826** is the same as executing Halt.
827*/
828case OP_Halt: {
829  if( pOp->p1==SQLITE_OK && p->pFrame ){
830    /* Halt the sub-program. Return control to the parent frame. */
831    VdbeFrame *pFrame = p->pFrame;
832    p->pFrame = pFrame->pParent;
833    p->nFrame--;
834    sqlite3VdbeSetChanges(db, p->nChange);
835    pc = sqlite3VdbeFrameRestore(pFrame);
836    if( pOp->p2==OE_Ignore ){
837      /* Instruction pc is the OP_Program that invoked the sub-program
838      ** currently being halted. If the p2 instruction of this OP_Halt
839      ** instruction is set to OE_Ignore, then the sub-program is throwing
840      ** an IGNORE exception. In this case jump to the address specified
841      ** as the p2 of the calling OP_Program.  */
842      pc = p->aOp[pc].p2-1;
843    }
844    aOp = p->aOp;
845    aMem = p->aMem;
846    break;
847  }
848
849  p->rc = pOp->p1;
850  p->errorAction = (u8)pOp->p2;
851  p->pc = pc;
852  if( pOp->p4.z ){
853    assert( p->rc!=SQLITE_OK );
854    sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
855    testcase( sqlite3GlobalConfig.xLog!=0 );
856    sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
857  }else if( p->rc ){
858    testcase( sqlite3GlobalConfig.xLog!=0 );
859    sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
860  }
861  rc = sqlite3VdbeHalt(p);
862  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
863  if( rc==SQLITE_BUSY ){
864    p->rc = rc = SQLITE_BUSY;
865  }else{
866    assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
867    assert( rc==SQLITE_OK || db->nDeferredCons>0 );
868    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
869  }
870  goto vdbe_return;
871}
872
873/* Opcode: Integer P1 P2 * * *
874**
875** The 32-bit integer value P1 is written into register P2.
876*/
877case OP_Integer: {         /* out2-prerelease */
878  pOut->u.i = pOp->p1;
879  break;
880}
881
882/* Opcode: Int64 * P2 * P4 *
883**
884** P4 is a pointer to a 64-bit integer value.
885** Write that value into register P2.
886*/
887case OP_Int64: {           /* out2-prerelease */
888  assert( pOp->p4.pI64!=0 );
889  pOut->u.i = *pOp->p4.pI64;
890  break;
891}
892
893#ifndef SQLITE_OMIT_FLOATING_POINT
894/* Opcode: Real * P2 * P4 *
895**
896** P4 is a pointer to a 64-bit floating point value.
897** Write that value into register P2.
898*/
899case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
900  pOut->flags = MEM_Real;
901  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
902  pOut->r = *pOp->p4.pReal;
903  break;
904}
905#endif
906
907/* Opcode: String8 * P2 * P4 *
908**
909** P4 points to a nul terminated UTF-8 string. This opcode is transformed
910** into an OP_String before it is executed for the first time.
911*/
912case OP_String8: {         /* same as TK_STRING, out2-prerelease */
913  assert( pOp->p4.z!=0 );
914  pOp->opcode = OP_String;
915  pOp->p1 = sqlite3Strlen30(pOp->p4.z);
916
917#ifndef SQLITE_OMIT_UTF16
918  if( encoding!=SQLITE_UTF8 ){
919    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
920    if( rc==SQLITE_TOOBIG ) goto too_big;
921    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
922    assert( pOut->zMalloc==pOut->z );
923    assert( pOut->flags & MEM_Dyn );
924    pOut->zMalloc = 0;
925    pOut->flags |= MEM_Static;
926    pOut->flags &= ~MEM_Dyn;
927    if( pOp->p4type==P4_DYNAMIC ){
928      sqlite3DbFree(db, pOp->p4.z);
929    }
930    pOp->p4type = P4_DYNAMIC;
931    pOp->p4.z = pOut->z;
932    pOp->p1 = pOut->n;
933  }
934#endif
935  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
936    goto too_big;
937  }
938  /* Fall through to the next case, OP_String */
939}
940
941/* Opcode: String P1 P2 * P4 *
942**
943** The string value P4 of length P1 (bytes) is stored in register P2.
944*/
945case OP_String: {          /* out2-prerelease */
946  assert( pOp->p4.z!=0 );
947  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
948  pOut->z = pOp->p4.z;
949  pOut->n = pOp->p1;
950  pOut->enc = encoding;
951  UPDATE_MAX_BLOBSIZE(pOut);
952  break;
953}
954
955/* Opcode: Null * P2 * * *
956**
957** Write a NULL into register P2.
958*/
959case OP_Null: {           /* out2-prerelease */
960  pOut->flags = MEM_Null;
961  break;
962}
963
964
965/* Opcode: Blob P1 P2 * P4
966**
967** P4 points to a blob of data P1 bytes long.  Store this
968** blob in register P2.
969*/
970case OP_Blob: {                /* out2-prerelease */
971  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
972  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
973  pOut->enc = encoding;
974  UPDATE_MAX_BLOBSIZE(pOut);
975  break;
976}
977
978/* Opcode: Variable P1 P2 * P4 *
979**
980** Transfer the values of bound parameter P1 into register P2
981**
982** If the parameter is named, then its name appears in P4 and P3==1.
983** The P4 value is used by sqlite3_bind_parameter_name().
984*/
985case OP_Variable: {            /* out2-prerelease */
986  Mem *pVar;       /* Value being transferred */
987
988  assert( pOp->p1>0 && pOp->p1<=p->nVar );
989  pVar = &p->aVar[pOp->p1 - 1];
990  if( sqlite3VdbeMemTooBig(pVar) ){
991    goto too_big;
992  }
993  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
994  UPDATE_MAX_BLOBSIZE(pOut);
995  break;
996}
997
998/* Opcode: Move P1 P2 P3 * *
999**
1000** Move the values in register P1..P1+P3-1 over into
1001** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
1002** left holding a NULL.  It is an error for register ranges
1003** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
1004*/
1005case OP_Move: {
1006  char *zMalloc;   /* Holding variable for allocated memory */
1007  int n;           /* Number of registers left to copy */
1008  int p1;          /* Register to copy from */
1009  int p2;          /* Register to copy to */
1010
1011  n = pOp->p3;
1012  p1 = pOp->p1;
1013  p2 = pOp->p2;
1014  assert( n>0 && p1>0 && p2>0 );
1015  assert( p1+n<=p2 || p2+n<=p1 );
1016
1017  pIn1 = &aMem[p1];
1018  pOut = &aMem[p2];
1019  while( n-- ){
1020    assert( pOut<=&aMem[p->nMem] );
1021    assert( pIn1<=&aMem[p->nMem] );
1022    assert( memIsValid(pIn1) );
1023    memAboutToChange(p, pOut);
1024    zMalloc = pOut->zMalloc;
1025    pOut->zMalloc = 0;
1026    sqlite3VdbeMemMove(pOut, pIn1);
1027    pIn1->zMalloc = zMalloc;
1028    REGISTER_TRACE(p2++, pOut);
1029    pIn1++;
1030    pOut++;
1031  }
1032  break;
1033}
1034
1035/* Opcode: Copy P1 P2 * * *
1036**
1037** Make a copy of register P1 into register P2.
1038**
1039** This instruction makes a deep copy of the value.  A duplicate
1040** is made of any string or blob constant.  See also OP_SCopy.
1041*/
1042case OP_Copy: {             /* in1, out2 */
1043  pIn1 = &aMem[pOp->p1];
1044  pOut = &aMem[pOp->p2];
1045  assert( pOut!=pIn1 );
1046  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1047  Deephemeralize(pOut);
1048  REGISTER_TRACE(pOp->p2, pOut);
1049  break;
1050}
1051
1052/* Opcode: SCopy P1 P2 * * *
1053**
1054** Make a shallow copy of register P1 into register P2.
1055**
1056** This instruction makes a shallow copy of the value.  If the value
1057** is a string or blob, then the copy is only a pointer to the
1058** original and hence if the original changes so will the copy.
1059** Worse, if the original is deallocated, the copy becomes invalid.
1060** Thus the program must guarantee that the original will not change
1061** during the lifetime of the copy.  Use OP_Copy to make a complete
1062** copy.
1063*/
1064case OP_SCopy: {            /* in1, out2 */
1065  pIn1 = &aMem[pOp->p1];
1066  pOut = &aMem[pOp->p2];
1067  assert( pOut!=pIn1 );
1068  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1069#ifdef SQLITE_DEBUG
1070  if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1071#endif
1072  REGISTER_TRACE(pOp->p2, pOut);
1073  break;
1074}
1075
1076/* Opcode: ResultRow P1 P2 * * *
1077**
1078** The registers P1 through P1+P2-1 contain a single row of
1079** results. This opcode causes the sqlite3_step() call to terminate
1080** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1081** structure to provide access to the top P1 values as the result
1082** row.
1083*/
1084case OP_ResultRow: {
1085  Mem *pMem;
1086  int i;
1087  assert( p->nResColumn==pOp->p2 );
1088  assert( pOp->p1>0 );
1089  assert( pOp->p1+pOp->p2<=p->nMem+1 );
1090
1091  /* If this statement has violated immediate foreign key constraints, do
1092  ** not return the number of rows modified. And do not RELEASE the statement
1093  ** transaction. It needs to be rolled back.  */
1094  if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1095    assert( db->flags&SQLITE_CountRows );
1096    assert( p->usesStmtJournal );
1097    break;
1098  }
1099
1100  /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1101  ** DML statements invoke this opcode to return the number of rows
1102  ** modified to the user. This is the only way that a VM that
1103  ** opens a statement transaction may invoke this opcode.
1104  **
1105  ** In case this is such a statement, close any statement transaction
1106  ** opened by this VM before returning control to the user. This is to
1107  ** ensure that statement-transactions are always nested, not overlapping.
1108  ** If the open statement-transaction is not closed here, then the user
1109  ** may step another VM that opens its own statement transaction. This
1110  ** may lead to overlapping statement transactions.
1111  **
1112  ** The statement transaction is never a top-level transaction.  Hence
1113  ** the RELEASE call below can never fail.
1114  */
1115  assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1116  rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1117  if( NEVER(rc!=SQLITE_OK) ){
1118    break;
1119  }
1120
1121  /* Invalidate all ephemeral cursor row caches */
1122  p->cacheCtr = (p->cacheCtr + 2)|1;
1123
1124  /* Make sure the results of the current row are \000 terminated
1125  ** and have an assigned type.  The results are de-ephemeralized as
1126  ** as side effect.
1127  */
1128  pMem = p->pResultSet = &aMem[pOp->p1];
1129  for(i=0; i<pOp->p2; i++){
1130    assert( memIsValid(&pMem[i]) );
1131    Deephemeralize(&pMem[i]);
1132    assert( (pMem[i].flags & MEM_Ephem)==0
1133            || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1134    sqlite3VdbeMemNulTerminate(&pMem[i]);
1135    sqlite3VdbeMemStoreType(&pMem[i]);
1136    REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1137  }
1138  if( db->mallocFailed ) goto no_mem;
1139
1140  /* Return SQLITE_ROW
1141  */
1142  p->pc = pc + 1;
1143  rc = SQLITE_ROW;
1144  goto vdbe_return;
1145}
1146
1147/* Opcode: Concat P1 P2 P3 * *
1148**
1149** Add the text in register P1 onto the end of the text in
1150** register P2 and store the result in register P3.
1151** If either the P1 or P2 text are NULL then store NULL in P3.
1152**
1153**   P3 = P2 || P1
1154**
1155** It is illegal for P1 and P3 to be the same register. Sometimes,
1156** if P3 is the same register as P2, the implementation is able
1157** to avoid a memcpy().
1158*/
1159case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1160  i64 nByte;
1161
1162  pIn1 = &aMem[pOp->p1];
1163  pIn2 = &aMem[pOp->p2];
1164  pOut = &aMem[pOp->p3];
1165  assert( pIn1!=pOut );
1166  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1167    sqlite3VdbeMemSetNull(pOut);
1168    break;
1169  }
1170  if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1171  Stringify(pIn1, encoding);
1172  Stringify(pIn2, encoding);
1173  nByte = pIn1->n + pIn2->n;
1174  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1175    goto too_big;
1176  }
1177  MemSetTypeFlag(pOut, MEM_Str);
1178  if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1179    goto no_mem;
1180  }
1181  if( pOut!=pIn2 ){
1182    memcpy(pOut->z, pIn2->z, pIn2->n);
1183  }
1184  memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1185  pOut->z[nByte] = 0;
1186  pOut->z[nByte+1] = 0;
1187  pOut->flags |= MEM_Term;
1188  pOut->n = (int)nByte;
1189  pOut->enc = encoding;
1190  UPDATE_MAX_BLOBSIZE(pOut);
1191  break;
1192}
1193
1194/* Opcode: Add P1 P2 P3 * *
1195**
1196** Add the value in register P1 to the value in register P2
1197** and store the result in register P3.
1198** If either input is NULL, the result is NULL.
1199*/
1200/* Opcode: Multiply P1 P2 P3 * *
1201**
1202**
1203** Multiply the value in register P1 by the value in register P2
1204** and store the result in register P3.
1205** If either input is NULL, the result is NULL.
1206*/
1207/* Opcode: Subtract P1 P2 P3 * *
1208**
1209** Subtract the value in register P1 from the value in register P2
1210** and store the result in register P3.
1211** If either input is NULL, the result is NULL.
1212*/
1213/* Opcode: Divide P1 P2 P3 * *
1214**
1215** Divide the value in register P1 by the value in register P2
1216** and store the result in register P3 (P3=P2/P1). If the value in
1217** register P1 is zero, then the result is NULL. If either input is
1218** NULL, the result is NULL.
1219*/
1220/* Opcode: Remainder P1 P2 P3 * *
1221**
1222** Compute the remainder after integer division of the value in
1223** register P1 by the value in register P2 and store the result in P3.
1224** If the value in register P2 is zero the result is NULL.
1225** If either operand is NULL, the result is NULL.
1226*/
1227case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1228case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1229case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1230case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1231case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1232  int flags;      /* Combined MEM_* flags from both inputs */
1233  i64 iA;         /* Integer value of left operand */
1234  i64 iB;         /* Integer value of right operand */
1235  double rA;      /* Real value of left operand */
1236  double rB;      /* Real value of right operand */
1237
1238  pIn1 = &aMem[pOp->p1];
1239  applyNumericAffinity(pIn1);
1240  pIn2 = &aMem[pOp->p2];
1241  applyNumericAffinity(pIn2);
1242  pOut = &aMem[pOp->p3];
1243  flags = pIn1->flags | pIn2->flags;
1244  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1245  if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1246    iA = pIn1->u.i;
1247    iB = pIn2->u.i;
1248    switch( pOp->opcode ){
1249      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1250      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1251      case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1252      case OP_Divide: {
1253        if( iA==0 ) goto arithmetic_result_is_null;
1254        if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1255        iB /= iA;
1256        break;
1257      }
1258      default: {
1259        if( iA==0 ) goto arithmetic_result_is_null;
1260        if( iA==-1 ) iA = 1;
1261        iB %= iA;
1262        break;
1263      }
1264    }
1265    pOut->u.i = iB;
1266    MemSetTypeFlag(pOut, MEM_Int);
1267  }else{
1268fp_math:
1269    rA = sqlite3VdbeRealValue(pIn1);
1270    rB = sqlite3VdbeRealValue(pIn2);
1271    switch( pOp->opcode ){
1272      case OP_Add:         rB += rA;       break;
1273      case OP_Subtract:    rB -= rA;       break;
1274      case OP_Multiply:    rB *= rA;       break;
1275      case OP_Divide: {
1276        /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1277        if( rA==(double)0 ) goto arithmetic_result_is_null;
1278        rB /= rA;
1279        break;
1280      }
1281      default: {
1282        iA = (i64)rA;
1283        iB = (i64)rB;
1284        if( iA==0 ) goto arithmetic_result_is_null;
1285        if( iA==-1 ) iA = 1;
1286        rB = (double)(iB % iA);
1287        break;
1288      }
1289    }
1290#ifdef SQLITE_OMIT_FLOATING_POINT
1291    pOut->u.i = rB;
1292    MemSetTypeFlag(pOut, MEM_Int);
1293#else
1294    if( sqlite3IsNaN(rB) ){
1295      goto arithmetic_result_is_null;
1296    }
1297    pOut->r = rB;
1298    MemSetTypeFlag(pOut, MEM_Real);
1299    if( (flags & MEM_Real)==0 ){
1300      sqlite3VdbeIntegerAffinity(pOut);
1301    }
1302#endif
1303  }
1304  break;
1305
1306arithmetic_result_is_null:
1307  sqlite3VdbeMemSetNull(pOut);
1308  break;
1309}
1310
1311/* Opcode: CollSeq * * P4
1312**
1313** P4 is a pointer to a CollSeq struct. If the next call to a user function
1314** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1315** be returned. This is used by the built-in min(), max() and nullif()
1316** functions.
1317**
1318** The interface used by the implementation of the aforementioned functions
1319** to retrieve the collation sequence set by this opcode is not available
1320** publicly, only to user functions defined in func.c.
1321*/
1322case OP_CollSeq: {
1323  assert( pOp->p4type==P4_COLLSEQ );
1324  break;
1325}
1326
1327/* Opcode: Function P1 P2 P3 P4 P5
1328**
1329** Invoke a user function (P4 is a pointer to a Function structure that
1330** defines the function) with P5 arguments taken from register P2 and
1331** successors.  The result of the function is stored in register P3.
1332** Register P3 must not be one of the function inputs.
1333**
1334** P1 is a 32-bit bitmask indicating whether or not each argument to the
1335** function was determined to be constant at compile time. If the first
1336** argument was constant then bit 0 of P1 is set. This is used to determine
1337** whether meta data associated with a user function argument using the
1338** sqlite3_set_auxdata() API may be safely retained until the next
1339** invocation of this opcode.
1340**
1341** See also: AggStep and AggFinal
1342*/
1343case OP_Function: {
1344  int i;
1345  Mem *pArg;
1346  sqlite3_context ctx;
1347  sqlite3_value **apVal;
1348  int n;
1349
1350  n = pOp->p5;
1351  apVal = p->apArg;
1352  assert( apVal || n==0 );
1353  assert( pOp->p3>0 && pOp->p3<=p->nMem );
1354  pOut = &aMem[pOp->p3];
1355  memAboutToChange(p, pOut);
1356
1357  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
1358  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1359  pArg = &aMem[pOp->p2];
1360  for(i=0; i<n; i++, pArg++){
1361    assert( memIsValid(pArg) );
1362    apVal[i] = pArg;
1363    Deephemeralize(pArg);
1364    sqlite3VdbeMemStoreType(pArg);
1365    REGISTER_TRACE(pOp->p2+i, pArg);
1366  }
1367
1368  assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1369  if( pOp->p4type==P4_FUNCDEF ){
1370    ctx.pFunc = pOp->p4.pFunc;
1371    ctx.pVdbeFunc = 0;
1372  }else{
1373    ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1374    ctx.pFunc = ctx.pVdbeFunc->pFunc;
1375  }
1376
1377  ctx.s.flags = MEM_Null;
1378  ctx.s.db = db;
1379  ctx.s.xDel = 0;
1380  ctx.s.zMalloc = 0;
1381
1382  /* The output cell may already have a buffer allocated. Move
1383  ** the pointer to ctx.s so in case the user-function can use
1384  ** the already allocated buffer instead of allocating a new one.
1385  */
1386  sqlite3VdbeMemMove(&ctx.s, pOut);
1387  MemSetTypeFlag(&ctx.s, MEM_Null);
1388
1389  ctx.isError = 0;
1390  if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
1391    assert( pOp>aOp );
1392    assert( pOp[-1].p4type==P4_COLLSEQ );
1393    assert( pOp[-1].opcode==OP_CollSeq );
1394    ctx.pColl = pOp[-1].p4.pColl;
1395  }
1396  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
1397  if( db->mallocFailed ){
1398    /* Even though a malloc() has failed, the implementation of the
1399    ** user function may have called an sqlite3_result_XXX() function
1400    ** to return a value. The following call releases any resources
1401    ** associated with such a value.
1402    */
1403    sqlite3VdbeMemRelease(&ctx.s);
1404    goto no_mem;
1405  }
1406
1407  /* If any auxiliary data functions have been called by this user function,
1408  ** immediately call the destructor for any non-static values.
1409  */
1410  if( ctx.pVdbeFunc ){
1411    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1412    pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1413    pOp->p4type = P4_VDBEFUNC;
1414  }
1415
1416  /* If the function returned an error, throw an exception */
1417  if( ctx.isError ){
1418    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1419    rc = ctx.isError;
1420  }
1421
1422  /* Copy the result of the function into register P3 */
1423  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1424  sqlite3VdbeMemMove(pOut, &ctx.s);
1425  if( sqlite3VdbeMemTooBig(pOut) ){
1426    goto too_big;
1427  }
1428
1429#if 0
1430  /* The app-defined function has done something that as caused this
1431  ** statement to expire.  (Perhaps the function called sqlite3_exec()
1432  ** with a CREATE TABLE statement.)
1433  */
1434  if( p->expired ) rc = SQLITE_ABORT;
1435#endif
1436
1437  REGISTER_TRACE(pOp->p3, pOut);
1438  UPDATE_MAX_BLOBSIZE(pOut);
1439  break;
1440}
1441
1442/* Opcode: BitAnd P1 P2 P3 * *
1443**
1444** Take the bit-wise AND of the values in register P1 and P2 and
1445** store the result in register P3.
1446** If either input is NULL, the result is NULL.
1447*/
1448/* Opcode: BitOr P1 P2 P3 * *
1449**
1450** Take the bit-wise OR of the values in register P1 and P2 and
1451** store the result in register P3.
1452** If either input is NULL, the result is NULL.
1453*/
1454/* Opcode: ShiftLeft P1 P2 P3 * *
1455**
1456** Shift the integer value in register P2 to the left by the
1457** number of bits specified by the integer in register P1.
1458** Store the result in register P3.
1459** If either input is NULL, the result is NULL.
1460*/
1461/* Opcode: ShiftRight P1 P2 P3 * *
1462**
1463** Shift the integer value in register P2 to the right by the
1464** number of bits specified by the integer in register P1.
1465** Store the result in register P3.
1466** If either input is NULL, the result is NULL.
1467*/
1468case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1469case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1470case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1471case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1472  i64 iA;
1473  u64 uA;
1474  i64 iB;
1475  u8 op;
1476
1477  pIn1 = &aMem[pOp->p1];
1478  pIn2 = &aMem[pOp->p2];
1479  pOut = &aMem[pOp->p3];
1480  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1481    sqlite3VdbeMemSetNull(pOut);
1482    break;
1483  }
1484  iA = sqlite3VdbeIntValue(pIn2);
1485  iB = sqlite3VdbeIntValue(pIn1);
1486  op = pOp->opcode;
1487  if( op==OP_BitAnd ){
1488    iA &= iB;
1489  }else if( op==OP_BitOr ){
1490    iA |= iB;
1491  }else if( iB!=0 ){
1492    assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1493
1494    /* If shifting by a negative amount, shift in the other direction */
1495    if( iB<0 ){
1496      assert( OP_ShiftRight==OP_ShiftLeft+1 );
1497      op = 2*OP_ShiftLeft + 1 - op;
1498      iB = iB>(-64) ? -iB : 64;
1499    }
1500
1501    if( iB>=64 ){
1502      iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1503    }else{
1504      memcpy(&uA, &iA, sizeof(uA));
1505      if( op==OP_ShiftLeft ){
1506        uA <<= iB;
1507      }else{
1508        uA >>= iB;
1509        /* Sign-extend on a right shift of a negative number */
1510        if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1511      }
1512      memcpy(&iA, &uA, sizeof(iA));
1513    }
1514  }
1515  pOut->u.i = iA;
1516  MemSetTypeFlag(pOut, MEM_Int);
1517  break;
1518}
1519
1520/* Opcode: AddImm  P1 P2 * * *
1521**
1522** Add the constant P2 to the value in register P1.
1523** The result is always an integer.
1524**
1525** To force any register to be an integer, just add 0.
1526*/
1527case OP_AddImm: {            /* in1 */
1528  pIn1 = &aMem[pOp->p1];
1529  memAboutToChange(p, pIn1);
1530  sqlite3VdbeMemIntegerify(pIn1);
1531  pIn1->u.i += pOp->p2;
1532  break;
1533}
1534
1535/* Opcode: MustBeInt P1 P2 * * *
1536**
1537** Force the value in register P1 to be an integer.  If the value
1538** in P1 is not an integer and cannot be converted into an integer
1539** without data loss, then jump immediately to P2, or if P2==0
1540** raise an SQLITE_MISMATCH exception.
1541*/
1542case OP_MustBeInt: {            /* jump, in1 */
1543  pIn1 = &aMem[pOp->p1];
1544  applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1545  if( (pIn1->flags & MEM_Int)==0 ){
1546    if( pOp->p2==0 ){
1547      rc = SQLITE_MISMATCH;
1548      goto abort_due_to_error;
1549    }else{
1550      pc = pOp->p2 - 1;
1551    }
1552  }else{
1553    MemSetTypeFlag(pIn1, MEM_Int);
1554  }
1555  break;
1556}
1557
1558#ifndef SQLITE_OMIT_FLOATING_POINT
1559/* Opcode: RealAffinity P1 * * * *
1560**
1561** If register P1 holds an integer convert it to a real value.
1562**
1563** This opcode is used when extracting information from a column that
1564** has REAL affinity.  Such column values may still be stored as
1565** integers, for space efficiency, but after extraction we want them
1566** to have only a real value.
1567*/
1568case OP_RealAffinity: {                  /* in1 */
1569  pIn1 = &aMem[pOp->p1];
1570  if( pIn1->flags & MEM_Int ){
1571    sqlite3VdbeMemRealify(pIn1);
1572  }
1573  break;
1574}
1575#endif
1576
1577#ifndef SQLITE_OMIT_CAST
1578/* Opcode: ToText P1 * * * *
1579**
1580** Force the value in register P1 to be text.
1581** If the value is numeric, convert it to a string using the
1582** equivalent of printf().  Blob values are unchanged and
1583** are afterwards simply interpreted as text.
1584**
1585** A NULL value is not changed by this routine.  It remains NULL.
1586*/
1587case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
1588  pIn1 = &aMem[pOp->p1];
1589  memAboutToChange(p, pIn1);
1590  if( pIn1->flags & MEM_Null ) break;
1591  assert( MEM_Str==(MEM_Blob>>3) );
1592  pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1593  applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1594  rc = ExpandBlob(pIn1);
1595  assert( pIn1->flags & MEM_Str || db->mallocFailed );
1596  pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
1597  UPDATE_MAX_BLOBSIZE(pIn1);
1598  break;
1599}
1600
1601/* Opcode: ToBlob P1 * * * *
1602**
1603** Force the value in register P1 to be a BLOB.
1604** If the value is numeric, convert it to a string first.
1605** Strings are simply reinterpreted as blobs with no change
1606** to the underlying data.
1607**
1608** A NULL value is not changed by this routine.  It remains NULL.
1609*/
1610case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
1611  pIn1 = &aMem[pOp->p1];
1612  if( pIn1->flags & MEM_Null ) break;
1613  if( (pIn1->flags & MEM_Blob)==0 ){
1614    applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1615    assert( pIn1->flags & MEM_Str || db->mallocFailed );
1616    MemSetTypeFlag(pIn1, MEM_Blob);
1617  }else{
1618    pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
1619  }
1620  UPDATE_MAX_BLOBSIZE(pIn1);
1621  break;
1622}
1623
1624/* Opcode: ToNumeric P1 * * * *
1625**
1626** Force the value in register P1 to be numeric (either an
1627** integer or a floating-point number.)
1628** If the value is text or blob, try to convert it to an using the
1629** equivalent of atoi() or atof() and store 0 if no such conversion
1630** is possible.
1631**
1632** A NULL value is not changed by this routine.  It remains NULL.
1633*/
1634case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
1635  pIn1 = &aMem[pOp->p1];
1636  sqlite3VdbeMemNumerify(pIn1);
1637  break;
1638}
1639#endif /* SQLITE_OMIT_CAST */
1640
1641/* Opcode: ToInt P1 * * * *
1642**
1643** Force the value in register P1 to be an integer.  If
1644** The value is currently a real number, drop its fractional part.
1645** If the value is text or blob, try to convert it to an integer using the
1646** equivalent of atoi() and store 0 if no such conversion is possible.
1647**
1648** A NULL value is not changed by this routine.  It remains NULL.
1649*/
1650case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
1651  pIn1 = &aMem[pOp->p1];
1652  if( (pIn1->flags & MEM_Null)==0 ){
1653    sqlite3VdbeMemIntegerify(pIn1);
1654  }
1655  break;
1656}
1657
1658#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1659/* Opcode: ToReal P1 * * * *
1660**
1661** Force the value in register P1 to be a floating point number.
1662** If The value is currently an integer, convert it.
1663** If the value is text or blob, try to convert it to an integer using the
1664** equivalent of atoi() and store 0.0 if no such conversion is possible.
1665**
1666** A NULL value is not changed by this routine.  It remains NULL.
1667*/
1668case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
1669  pIn1 = &aMem[pOp->p1];
1670  memAboutToChange(p, pIn1);
1671  if( (pIn1->flags & MEM_Null)==0 ){
1672    sqlite3VdbeMemRealify(pIn1);
1673  }
1674  break;
1675}
1676#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1677
1678/* Opcode: Lt P1 P2 P3 P4 P5
1679**
1680** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1681** jump to address P2.
1682**
1683** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1684** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1685** bit is clear then fall through if either operand is NULL.
1686**
1687** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1688** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1689** to coerce both inputs according to this affinity before the
1690** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1691** affinity is used. Note that the affinity conversions are stored
1692** back into the input registers P1 and P3.  So this opcode can cause
1693** persistent changes to registers P1 and P3.
1694**
1695** Once any conversions have taken place, and neither value is NULL,
1696** the values are compared. If both values are blobs then memcmp() is
1697** used to determine the results of the comparison.  If both values
1698** are text, then the appropriate collating function specified in
1699** P4 is  used to do the comparison.  If P4 is not specified then
1700** memcmp() is used to compare text string.  If both values are
1701** numeric, then a numeric comparison is used. If the two values
1702** are of different types, then numbers are considered less than
1703** strings and strings are considered less than blobs.
1704**
1705** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1706** store a boolean result (either 0, or 1, or NULL) in register P2.
1707*/
1708/* Opcode: Ne P1 P2 P3 P4 P5
1709**
1710** This works just like the Lt opcode except that the jump is taken if
1711** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1712** additional information.
1713**
1714** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1715** true or false and is never NULL.  If both operands are NULL then the result
1716** of comparison is false.  If either operand is NULL then the result is true.
1717** If neither operand is NULL the the result is the same as it would be if
1718** the SQLITE_NULLEQ flag were omitted from P5.
1719*/
1720/* Opcode: Eq P1 P2 P3 P4 P5
1721**
1722** This works just like the Lt opcode except that the jump is taken if
1723** the operands in registers P1 and P3 are equal.
1724** See the Lt opcode for additional information.
1725**
1726** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1727** true or false and is never NULL.  If both operands are NULL then the result
1728** of comparison is true.  If either operand is NULL then the result is false.
1729** If neither operand is NULL the the result is the same as it would be if
1730** the SQLITE_NULLEQ flag were omitted from P5.
1731*/
1732/* Opcode: Le P1 P2 P3 P4 P5
1733**
1734** This works just like the Lt opcode except that the jump is taken if
1735** the content of register P3 is less than or equal to the content of
1736** register P1.  See the Lt opcode for additional information.
1737*/
1738/* Opcode: Gt P1 P2 P3 P4 P5
1739**
1740** This works just like the Lt opcode except that the jump is taken if
1741** the content of register P3 is greater than the content of
1742** register P1.  See the Lt opcode for additional information.
1743*/
1744/* Opcode: Ge P1 P2 P3 P4 P5
1745**
1746** This works just like the Lt opcode except that the jump is taken if
1747** the content of register P3 is greater than or equal to the content of
1748** register P1.  See the Lt opcode for additional information.
1749*/
1750case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1751case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1752case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1753case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1754case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1755case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1756  int res;            /* Result of the comparison of pIn1 against pIn3 */
1757  char affinity;      /* Affinity to use for comparison */
1758  u16 flags1;         /* Copy of initial value of pIn1->flags */
1759  u16 flags3;         /* Copy of initial value of pIn3->flags */
1760
1761  pIn1 = &aMem[pOp->p1];
1762  pIn3 = &aMem[pOp->p3];
1763  flags1 = pIn1->flags;
1764  flags3 = pIn3->flags;
1765  if( (pIn1->flags | pIn3->flags)&MEM_Null ){
1766    /* One or both operands are NULL */
1767    if( pOp->p5 & SQLITE_NULLEQ ){
1768      /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1769      ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1770      ** or not both operands are null.
1771      */
1772      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1773      res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
1774    }else{
1775      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1776      ** then the result is always NULL.
1777      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1778      */
1779      if( pOp->p5 & SQLITE_STOREP2 ){
1780        pOut = &aMem[pOp->p2];
1781        MemSetTypeFlag(pOut, MEM_Null);
1782        REGISTER_TRACE(pOp->p2, pOut);
1783      }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1784        pc = pOp->p2-1;
1785      }
1786      break;
1787    }
1788  }else{
1789    /* Neither operand is NULL.  Do a comparison. */
1790    affinity = pOp->p5 & SQLITE_AFF_MASK;
1791    if( affinity ){
1792      applyAffinity(pIn1, affinity, encoding);
1793      applyAffinity(pIn3, affinity, encoding);
1794      if( db->mallocFailed ) goto no_mem;
1795    }
1796
1797    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1798    ExpandBlob(pIn1);
1799    ExpandBlob(pIn3);
1800    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1801  }
1802  switch( pOp->opcode ){
1803    case OP_Eq:    res = res==0;     break;
1804    case OP_Ne:    res = res!=0;     break;
1805    case OP_Lt:    res = res<0;      break;
1806    case OP_Le:    res = res<=0;     break;
1807    case OP_Gt:    res = res>0;      break;
1808    default:       res = res>=0;     break;
1809  }
1810
1811  if( pOp->p5 & SQLITE_STOREP2 ){
1812    pOut = &aMem[pOp->p2];
1813    memAboutToChange(p, pOut);
1814    MemSetTypeFlag(pOut, MEM_Int);
1815    pOut->u.i = res;
1816    REGISTER_TRACE(pOp->p2, pOut);
1817  }else if( res ){
1818    pc = pOp->p2-1;
1819  }
1820
1821  /* Undo any changes made by applyAffinity() to the input registers. */
1822  pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1823  pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
1824  break;
1825}
1826
1827/* Opcode: Permutation * * * P4 *
1828**
1829** Set the permutation used by the OP_Compare operator to be the array
1830** of integers in P4.
1831**
1832** The permutation is only valid until the next OP_Permutation, OP_Compare,
1833** OP_Halt, or OP_ResultRow.  Typically the OP_Permutation should occur
1834** immediately prior to the OP_Compare.
1835*/
1836case OP_Permutation: {
1837  assert( pOp->p4type==P4_INTARRAY );
1838  assert( pOp->p4.ai );
1839  aPermute = pOp->p4.ai;
1840  break;
1841}
1842
1843/* Opcode: Compare P1 P2 P3 P4 *
1844**
1845** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1846** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
1847** the comparison for use by the next OP_Jump instruct.
1848**
1849** P4 is a KeyInfo structure that defines collating sequences and sort
1850** orders for the comparison.  The permutation applies to registers
1851** only.  The KeyInfo elements are used sequentially.
1852**
1853** The comparison is a sort comparison, so NULLs compare equal,
1854** NULLs are less than numbers, numbers are less than strings,
1855** and strings are less than blobs.
1856*/
1857case OP_Compare: {
1858  int n;
1859  int i;
1860  int p1;
1861  int p2;
1862  const KeyInfo *pKeyInfo;
1863  int idx;
1864  CollSeq *pColl;    /* Collating sequence to use on this term */
1865  int bRev;          /* True for DESCENDING sort order */
1866
1867  n = pOp->p3;
1868  pKeyInfo = pOp->p4.pKeyInfo;
1869  assert( n>0 );
1870  assert( pKeyInfo!=0 );
1871  p1 = pOp->p1;
1872  p2 = pOp->p2;
1873#if SQLITE_DEBUG
1874  if( aPermute ){
1875    int k, mx = 0;
1876    for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1877    assert( p1>0 && p1+mx<=p->nMem+1 );
1878    assert( p2>0 && p2+mx<=p->nMem+1 );
1879  }else{
1880    assert( p1>0 && p1+n<=p->nMem+1 );
1881    assert( p2>0 && p2+n<=p->nMem+1 );
1882  }
1883#endif /* SQLITE_DEBUG */
1884  for(i=0; i<n; i++){
1885    idx = aPermute ? aPermute[i] : i;
1886    assert( memIsValid(&aMem[p1+idx]) );
1887    assert( memIsValid(&aMem[p2+idx]) );
1888    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1889    REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
1890    assert( i<pKeyInfo->nField );
1891    pColl = pKeyInfo->aColl[i];
1892    bRev = pKeyInfo->aSortOrder[i];
1893    iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
1894    if( iCompare ){
1895      if( bRev ) iCompare = -iCompare;
1896      break;
1897    }
1898  }
1899  aPermute = 0;
1900  break;
1901}
1902
1903/* Opcode: Jump P1 P2 P3 * *
1904**
1905** Jump to the instruction at address P1, P2, or P3 depending on whether
1906** in the most recent OP_Compare instruction the P1 vector was less than
1907** equal to, or greater than the P2 vector, respectively.
1908*/
1909case OP_Jump: {             /* jump */
1910  if( iCompare<0 ){
1911    pc = pOp->p1 - 1;
1912  }else if( iCompare==0 ){
1913    pc = pOp->p2 - 1;
1914  }else{
1915    pc = pOp->p3 - 1;
1916  }
1917  break;
1918}
1919
1920/* Opcode: And P1 P2 P3 * *
1921**
1922** Take the logical AND of the values in registers P1 and P2 and
1923** write the result into register P3.
1924**
1925** If either P1 or P2 is 0 (false) then the result is 0 even if
1926** the other input is NULL.  A NULL and true or two NULLs give
1927** a NULL output.
1928*/
1929/* Opcode: Or P1 P2 P3 * *
1930**
1931** Take the logical OR of the values in register P1 and P2 and
1932** store the answer in register P3.
1933**
1934** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1935** even if the other input is NULL.  A NULL and false or two NULLs
1936** give a NULL output.
1937*/
1938case OP_And:              /* same as TK_AND, in1, in2, out3 */
1939case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
1940  int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1941  int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1942
1943  pIn1 = &aMem[pOp->p1];
1944  if( pIn1->flags & MEM_Null ){
1945    v1 = 2;
1946  }else{
1947    v1 = sqlite3VdbeIntValue(pIn1)!=0;
1948  }
1949  pIn2 = &aMem[pOp->p2];
1950  if( pIn2->flags & MEM_Null ){
1951    v2 = 2;
1952  }else{
1953    v2 = sqlite3VdbeIntValue(pIn2)!=0;
1954  }
1955  if( pOp->opcode==OP_And ){
1956    static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1957    v1 = and_logic[v1*3+v2];
1958  }else{
1959    static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1960    v1 = or_logic[v1*3+v2];
1961  }
1962  pOut = &aMem[pOp->p3];
1963  if( v1==2 ){
1964    MemSetTypeFlag(pOut, MEM_Null);
1965  }else{
1966    pOut->u.i = v1;
1967    MemSetTypeFlag(pOut, MEM_Int);
1968  }
1969  break;
1970}
1971
1972/* Opcode: Not P1 P2 * * *
1973**
1974** Interpret the value in register P1 as a boolean value.  Store the
1975** boolean complement in register P2.  If the value in register P1 is
1976** NULL, then a NULL is stored in P2.
1977*/
1978case OP_Not: {                /* same as TK_NOT, in1, out2 */
1979  pIn1 = &aMem[pOp->p1];
1980  pOut = &aMem[pOp->p2];
1981  if( pIn1->flags & MEM_Null ){
1982    sqlite3VdbeMemSetNull(pOut);
1983  }else{
1984    sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
1985  }
1986  break;
1987}
1988
1989/* Opcode: BitNot P1 P2 * * *
1990**
1991** Interpret the content of register P1 as an integer.  Store the
1992** ones-complement of the P1 value into register P2.  If P1 holds
1993** a NULL then store a NULL in P2.
1994*/
1995case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
1996  pIn1 = &aMem[pOp->p1];
1997  pOut = &aMem[pOp->p2];
1998  if( pIn1->flags & MEM_Null ){
1999    sqlite3VdbeMemSetNull(pOut);
2000  }else{
2001    sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2002  }
2003  break;
2004}
2005
2006/* Opcode: If P1 P2 P3 * *
2007**
2008** Jump to P2 if the value in register P1 is true.  The value is
2009** is considered true if it is numeric and non-zero.  If the value
2010** in P1 is NULL then take the jump if P3 is true.
2011*/
2012/* Opcode: IfNot P1 P2 P3 * *
2013**
2014** Jump to P2 if the value in register P1 is False.  The value is
2015** is considered true if it has a numeric value of zero.  If the value
2016** in P1 is NULL then take the jump if P3 is true.
2017*/
2018case OP_If:                 /* jump, in1 */
2019case OP_IfNot: {            /* jump, in1 */
2020  int c;
2021  pIn1 = &aMem[pOp->p1];
2022  if( pIn1->flags & MEM_Null ){
2023    c = pOp->p3;
2024  }else{
2025#ifdef SQLITE_OMIT_FLOATING_POINT
2026    c = sqlite3VdbeIntValue(pIn1)!=0;
2027#else
2028    c = sqlite3VdbeRealValue(pIn1)!=0.0;
2029#endif
2030    if( pOp->opcode==OP_IfNot ) c = !c;
2031  }
2032  if( c ){
2033    pc = pOp->p2-1;
2034  }
2035  break;
2036}
2037
2038/* Opcode: IsNull P1 P2 * * *
2039**
2040** Jump to P2 if the value in register P1 is NULL.
2041*/
2042case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2043  pIn1 = &aMem[pOp->p1];
2044  if( (pIn1->flags & MEM_Null)!=0 ){
2045    pc = pOp->p2 - 1;
2046  }
2047  break;
2048}
2049
2050/* Opcode: NotNull P1 P2 * * *
2051**
2052** Jump to P2 if the value in register P1 is not NULL.
2053*/
2054case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2055  pIn1 = &aMem[pOp->p1];
2056  if( (pIn1->flags & MEM_Null)==0 ){
2057    pc = pOp->p2 - 1;
2058  }
2059  break;
2060}
2061
2062/* Opcode: Column P1 P2 P3 P4 P5
2063**
2064** Interpret the data that cursor P1 points to as a structure built using
2065** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2066** information about the format of the data.)  Extract the P2-th column
2067** from this record.  If there are less that (P2+1)
2068** values in the record, extract a NULL.
2069**
2070** The value extracted is stored in register P3.
2071**
2072** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2073** if the P4 argument is a P4_MEM use the value of the P4 argument as
2074** the result.
2075**
2076** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2077** then the cache of the cursor is reset prior to extracting the column.
2078** The first OP_Column against a pseudo-table after the value of the content
2079** register has changed should have this bit set.
2080*/
2081case OP_Column: {
2082  u32 payloadSize;   /* Number of bytes in the record */
2083  i64 payloadSize64; /* Number of bytes in the record */
2084  int p1;            /* P1 value of the opcode */
2085  int p2;            /* column number to retrieve */
2086  VdbeCursor *pC;    /* The VDBE cursor */
2087  char *zRec;        /* Pointer to complete record-data */
2088  BtCursor *pCrsr;   /* The BTree cursor */
2089  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
2090  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2091  int nField;        /* number of fields in the record */
2092  int len;           /* The length of the serialized data for the column */
2093  int i;             /* Loop counter */
2094  char *zData;       /* Part of the record being decoded */
2095  Mem *pDest;        /* Where to write the extracted value */
2096  Mem sMem;          /* For storing the record being decoded */
2097  u8 *zIdx;          /* Index into header */
2098  u8 *zEndHdr;       /* Pointer to first byte after the header */
2099  u32 offset;        /* Offset into the data */
2100  u32 szField;       /* Number of bytes in the content of a field */
2101  int szHdr;         /* Size of the header size field at start of record */
2102  int avail;         /* Number of bytes of available data */
2103  Mem *pReg;         /* PseudoTable input register */
2104
2105
2106  p1 = pOp->p1;
2107  p2 = pOp->p2;
2108  pC = 0;
2109  memset(&sMem, 0, sizeof(sMem));
2110  assert( p1<p->nCursor );
2111  assert( pOp->p3>0 && pOp->p3<=p->nMem );
2112  pDest = &aMem[pOp->p3];
2113  memAboutToChange(p, pDest);
2114  MemSetTypeFlag(pDest, MEM_Null);
2115  zRec = 0;
2116
2117  /* This block sets the variable payloadSize to be the total number of
2118  ** bytes in the record.
2119  **
2120  ** zRec is set to be the complete text of the record if it is available.
2121  ** The complete record text is always available for pseudo-tables
2122  ** If the record is stored in a cursor, the complete record text
2123  ** might be available in the  pC->aRow cache.  Or it might not be.
2124  ** If the data is unavailable,  zRec is set to NULL.
2125  **
2126  ** We also compute the number of columns in the record.  For cursors,
2127  ** the number of columns is stored in the VdbeCursor.nField element.
2128  */
2129  pC = p->apCsr[p1];
2130  assert( pC!=0 );
2131#ifndef SQLITE_OMIT_VIRTUALTABLE
2132  assert( pC->pVtabCursor==0 );
2133#endif
2134  pCrsr = pC->pCursor;
2135  if( pCrsr!=0 ){
2136    /* The record is stored in a B-Tree */
2137    rc = sqlite3VdbeCursorMoveto(pC);
2138    if( rc ) goto abort_due_to_error;
2139    if( pC->nullRow ){
2140      payloadSize = 0;
2141    }else if( pC->cacheStatus==p->cacheCtr ){
2142      payloadSize = pC->payloadSize;
2143      zRec = (char*)pC->aRow;
2144    }else if( pC->isIndex ){
2145      assert( sqlite3BtreeCursorIsValid(pCrsr) );
2146      rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2147      assert( rc==SQLITE_OK );   /* True because of CursorMoveto() call above */
2148      /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2149      ** payload size, so it is impossible for payloadSize64 to be
2150      ** larger than 32 bits. */
2151      assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2152      payloadSize = (u32)payloadSize64;
2153    }else{
2154      assert( sqlite3BtreeCursorIsValid(pCrsr) );
2155      rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
2156      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2157    }
2158  }else if( pC->pseudoTableReg>0 ){
2159    pReg = &aMem[pC->pseudoTableReg];
2160    assert( pReg->flags & MEM_Blob );
2161    assert( memIsValid(pReg) );
2162    payloadSize = pReg->n;
2163    zRec = pReg->z;
2164    pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
2165    assert( payloadSize==0 || zRec!=0 );
2166  }else{
2167    /* Consider the row to be NULL */
2168    payloadSize = 0;
2169  }
2170
2171  /* If payloadSize is 0, then just store a NULL */
2172  if( payloadSize==0 ){
2173    assert( pDest->flags&MEM_Null );
2174    goto op_column_out;
2175  }
2176  assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2177  if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2178    goto too_big;
2179  }
2180
2181  nField = pC->nField;
2182  assert( p2<nField );
2183
2184  /* Read and parse the table header.  Store the results of the parse
2185  ** into the record header cache fields of the cursor.
2186  */
2187  aType = pC->aType;
2188  if( pC->cacheStatus==p->cacheCtr ){
2189    aOffset = pC->aOffset;
2190  }else{
2191    assert(aType);
2192    avail = 0;
2193    pC->aOffset = aOffset = &aType[nField];
2194    pC->payloadSize = payloadSize;
2195    pC->cacheStatus = p->cacheCtr;
2196
2197    /* Figure out how many bytes are in the header */
2198    if( zRec ){
2199      zData = zRec;
2200    }else{
2201      if( pC->isIndex ){
2202        zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2203      }else{
2204        zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2205      }
2206      /* If KeyFetch()/DataFetch() managed to get the entire payload,
2207      ** save the payload in the pC->aRow cache.  That will save us from
2208      ** having to make additional calls to fetch the content portion of
2209      ** the record.
2210      */
2211      assert( avail>=0 );
2212      if( payloadSize <= (u32)avail ){
2213        zRec = zData;
2214        pC->aRow = (u8*)zData;
2215      }else{
2216        pC->aRow = 0;
2217      }
2218    }
2219    /* The following assert is true in all cases accept when
2220    ** the database file has been corrupted externally.
2221    **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2222    szHdr = getVarint32((u8*)zData, offset);
2223
2224    /* Make sure a corrupt database has not given us an oversize header.
2225    ** Do this now to avoid an oversize memory allocation.
2226    **
2227    ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2228    ** types use so much data space that there can only be 4096 and 32 of
2229    ** them, respectively.  So the maximum header length results from a
2230    ** 3-byte type for each of the maximum of 32768 columns plus three
2231    ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2232    */
2233    if( offset > 98307 ){
2234      rc = SQLITE_CORRUPT_BKPT;
2235      goto op_column_out;
2236    }
2237
2238    /* Compute in len the number of bytes of data we need to read in order
2239    ** to get nField type values.  offset is an upper bound on this.  But
2240    ** nField might be significantly less than the true number of columns
2241    ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2242    ** We want to minimize len in order to limit the size of the memory
2243    ** allocation, especially if a corrupt database file has caused offset
2244    ** to be oversized. Offset is limited to 98307 above.  But 98307 might
2245    ** still exceed Robson memory allocation limits on some configurations.
2246    ** On systems that cannot tolerate large memory allocations, nField*5+3
2247    ** will likely be much smaller since nField will likely be less than
2248    ** 20 or so.  This insures that Robson memory allocation limits are
2249    ** not exceeded even for corrupt database files.
2250    */
2251    len = nField*5 + 3;
2252    if( len > (int)offset ) len = (int)offset;
2253
2254    /* The KeyFetch() or DataFetch() above are fast and will get the entire
2255    ** record header in most cases.  But they will fail to get the complete
2256    ** record header if the record header does not fit on a single page
2257    ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
2258    ** acquire the complete header text.
2259    */
2260    if( !zRec && avail<len ){
2261      sMem.flags = 0;
2262      sMem.db = 0;
2263      rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
2264      if( rc!=SQLITE_OK ){
2265        goto op_column_out;
2266      }
2267      zData = sMem.z;
2268    }
2269    zEndHdr = (u8 *)&zData[len];
2270    zIdx = (u8 *)&zData[szHdr];
2271
2272    /* Scan the header and use it to fill in the aType[] and aOffset[]
2273    ** arrays.  aType[i] will contain the type integer for the i-th
2274    ** column and aOffset[i] will contain the offset from the beginning
2275    ** of the record to the start of the data for the i-th column
2276    */
2277    for(i=0; i<nField; i++){
2278      if( zIdx<zEndHdr ){
2279        aOffset[i] = offset;
2280        zIdx += getVarint32(zIdx, aType[i]);
2281        szField = sqlite3VdbeSerialTypeLen(aType[i]);
2282        offset += szField;
2283        if( offset<szField ){  /* True if offset overflows */
2284          zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
2285          break;
2286        }
2287      }else{
2288        /* If i is less that nField, then there are less fields in this
2289        ** record than SetNumColumns indicated there are columns in the
2290        ** table. Set the offset for any extra columns not present in
2291        ** the record to 0. This tells code below to store a NULL
2292        ** instead of deserializing a value from the record.
2293        */
2294        aOffset[i] = 0;
2295      }
2296    }
2297    sqlite3VdbeMemRelease(&sMem);
2298    sMem.flags = MEM_Null;
2299
2300    /* If we have read more header data than was contained in the header,
2301    ** or if the end of the last field appears to be past the end of the
2302    ** record, or if the end of the last field appears to be before the end
2303    ** of the record (when all fields present), then we must be dealing
2304    ** with a corrupt database.
2305    */
2306    if( (zIdx > zEndHdr) || (offset > payloadSize)
2307         || (zIdx==zEndHdr && offset!=payloadSize) ){
2308      rc = SQLITE_CORRUPT_BKPT;
2309      goto op_column_out;
2310    }
2311  }
2312
2313  /* Get the column information. If aOffset[p2] is non-zero, then
2314  ** deserialize the value from the record. If aOffset[p2] is zero,
2315  ** then there are not enough fields in the record to satisfy the
2316  ** request.  In this case, set the value NULL or to P4 if P4 is
2317  ** a pointer to a Mem object.
2318  */
2319  if( aOffset[p2] ){
2320    assert( rc==SQLITE_OK );
2321    if( zRec ){
2322      sqlite3VdbeMemReleaseExternal(pDest);
2323      sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2324    }else{
2325      len = sqlite3VdbeSerialTypeLen(aType[p2]);
2326      sqlite3VdbeMemMove(&sMem, pDest);
2327      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
2328      if( rc!=SQLITE_OK ){
2329        goto op_column_out;
2330      }
2331      zData = sMem.z;
2332      sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
2333    }
2334    pDest->enc = encoding;
2335  }else{
2336    if( pOp->p4type==P4_MEM ){
2337      sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2338    }else{
2339      assert( pDest->flags&MEM_Null );
2340    }
2341  }
2342
2343  /* If we dynamically allocated space to hold the data (in the
2344  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2345  ** dynamically allocated space over to the pDest structure.
2346  ** This prevents a memory copy.
2347  */
2348  if( sMem.zMalloc ){
2349    assert( sMem.z==sMem.zMalloc );
2350    assert( !(pDest->flags & MEM_Dyn) );
2351    assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2352    pDest->flags &= ~(MEM_Ephem|MEM_Static);
2353    pDest->flags |= MEM_Term;
2354    pDest->z = sMem.z;
2355    pDest->zMalloc = sMem.zMalloc;
2356  }
2357
2358  rc = sqlite3VdbeMemMakeWriteable(pDest);
2359
2360op_column_out:
2361  UPDATE_MAX_BLOBSIZE(pDest);
2362  REGISTER_TRACE(pOp->p3, pDest);
2363  break;
2364}
2365
2366/* Opcode: Affinity P1 P2 * P4 *
2367**
2368** Apply affinities to a range of P2 registers starting with P1.
2369**
2370** P4 is a string that is P2 characters long. The nth character of the
2371** string indicates the column affinity that should be used for the nth
2372** memory cell in the range.
2373*/
2374case OP_Affinity: {
2375  const char *zAffinity;   /* The affinity to be applied */
2376  char cAff;               /* A single character of affinity */
2377
2378  zAffinity = pOp->p4.z;
2379  assert( zAffinity!=0 );
2380  assert( zAffinity[pOp->p2]==0 );
2381  pIn1 = &aMem[pOp->p1];
2382  while( (cAff = *(zAffinity++))!=0 ){
2383    assert( pIn1 <= &p->aMem[p->nMem] );
2384    assert( memIsValid(pIn1) );
2385    ExpandBlob(pIn1);
2386    applyAffinity(pIn1, cAff, encoding);
2387    pIn1++;
2388  }
2389  break;
2390}
2391
2392/* Opcode: MakeRecord P1 P2 P3 P4 *
2393**
2394** Convert P2 registers beginning with P1 into the [record format]
2395** use as a data record in a database table or as a key
2396** in an index.  The OP_Column opcode can decode the record later.
2397**
2398** P4 may be a string that is P2 characters long.  The nth character of the
2399** string indicates the column affinity that should be used for the nth
2400** field of the index key.
2401**
2402** The mapping from character to affinity is given by the SQLITE_AFF_
2403** macros defined in sqliteInt.h.
2404**
2405** If P4 is NULL then all index fields have the affinity NONE.
2406*/
2407case OP_MakeRecord: {
2408  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2409  Mem *pRec;             /* The new record */
2410  u64 nData;             /* Number of bytes of data space */
2411  int nHdr;              /* Number of bytes of header space */
2412  i64 nByte;             /* Data space required for this record */
2413  int nZero;             /* Number of zero bytes at the end of the record */
2414  int nVarint;           /* Number of bytes in a varint */
2415  u32 serial_type;       /* Type field */
2416  Mem *pData0;           /* First field to be combined into the record */
2417  Mem *pLast;            /* Last field of the record */
2418  int nField;            /* Number of fields in the record */
2419  char *zAffinity;       /* The affinity string for the record */
2420  int file_format;       /* File format to use for encoding */
2421  int i;                 /* Space used in zNewRecord[] */
2422  int len;               /* Length of a field */
2423
2424  /* Assuming the record contains N fields, the record format looks
2425  ** like this:
2426  **
2427  ** ------------------------------------------------------------------------
2428  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2429  ** ------------------------------------------------------------------------
2430  **
2431  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2432  ** and so froth.
2433  **
2434  ** Each type field is a varint representing the serial type of the
2435  ** corresponding data element (see sqlite3VdbeSerialType()). The
2436  ** hdr-size field is also a varint which is the offset from the beginning
2437  ** of the record to data0.
2438  */
2439  nData = 0;         /* Number of bytes of data space */
2440  nHdr = 0;          /* Number of bytes of header space */
2441  nZero = 0;         /* Number of zero bytes at the end of the record */
2442  nField = pOp->p1;
2443  zAffinity = pOp->p4.z;
2444  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
2445  pData0 = &aMem[nField];
2446  nField = pOp->p2;
2447  pLast = &pData0[nField-1];
2448  file_format = p->minWriteFileFormat;
2449
2450  /* Identify the output register */
2451  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2452  pOut = &aMem[pOp->p3];
2453  memAboutToChange(p, pOut);
2454
2455  /* Loop through the elements that will make up the record to figure
2456  ** out how much space is required for the new record.
2457  */
2458  for(pRec=pData0; pRec<=pLast; pRec++){
2459    assert( memIsValid(pRec) );
2460    if( zAffinity ){
2461      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2462    }
2463    if( pRec->flags&MEM_Zero && pRec->n>0 ){
2464      sqlite3VdbeMemExpandBlob(pRec);
2465    }
2466    serial_type = sqlite3VdbeSerialType(pRec, file_format);
2467    len = sqlite3VdbeSerialTypeLen(serial_type);
2468    nData += len;
2469    nHdr += sqlite3VarintLen(serial_type);
2470    if( pRec->flags & MEM_Zero ){
2471      /* Only pure zero-filled BLOBs can be input to this Opcode.
2472      ** We do not allow blobs with a prefix and a zero-filled tail. */
2473      nZero += pRec->u.nZero;
2474    }else if( len ){
2475      nZero = 0;
2476    }
2477  }
2478
2479  /* Add the initial header varint and total the size */
2480  nHdr += nVarint = sqlite3VarintLen(nHdr);
2481  if( nVarint<sqlite3VarintLen(nHdr) ){
2482    nHdr++;
2483  }
2484  nByte = nHdr+nData-nZero;
2485  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2486    goto too_big;
2487  }
2488
2489  /* Make sure the output register has a buffer large enough to store
2490  ** the new record. The output register (pOp->p3) is not allowed to
2491  ** be one of the input registers (because the following call to
2492  ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2493  */
2494  if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
2495    goto no_mem;
2496  }
2497  zNewRecord = (u8 *)pOut->z;
2498
2499  /* Write the record */
2500  i = putVarint32(zNewRecord, nHdr);
2501  for(pRec=pData0; pRec<=pLast; pRec++){
2502    serial_type = sqlite3VdbeSerialType(pRec, file_format);
2503    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
2504  }
2505  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
2506    i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
2507  }
2508  assert( i==nByte );
2509
2510  assert( pOp->p3>0 && pOp->p3<=p->nMem );
2511  pOut->n = (int)nByte;
2512  pOut->flags = MEM_Blob | MEM_Dyn;
2513  pOut->xDel = 0;
2514  if( nZero ){
2515    pOut->u.nZero = nZero;
2516    pOut->flags |= MEM_Zero;
2517  }
2518  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2519  REGISTER_TRACE(pOp->p3, pOut);
2520  UPDATE_MAX_BLOBSIZE(pOut);
2521  break;
2522}
2523
2524/* Opcode: Count P1 P2 * * *
2525**
2526** Store the number of entries (an integer value) in the table or index
2527** opened by cursor P1 in register P2
2528*/
2529#ifndef SQLITE_OMIT_BTREECOUNT
2530case OP_Count: {         /* out2-prerelease */
2531  i64 nEntry;
2532  BtCursor *pCrsr;
2533
2534  pCrsr = p->apCsr[pOp->p1]->pCursor;
2535  if( pCrsr ){
2536    rc = sqlite3BtreeCount(pCrsr, &nEntry);
2537  }else{
2538    nEntry = 0;
2539  }
2540  pOut->u.i = nEntry;
2541  break;
2542}
2543#endif
2544
2545/* Opcode: Savepoint P1 * * P4 *
2546**
2547** Open, release or rollback the savepoint named by parameter P4, depending
2548** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2549** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2550*/
2551case OP_Savepoint: {
2552  int p1;                         /* Value of P1 operand */
2553  char *zName;                    /* Name of savepoint */
2554  int nName;
2555  Savepoint *pNew;
2556  Savepoint *pSavepoint;
2557  Savepoint *pTmp;
2558  int iSavepoint;
2559  int ii;
2560
2561  p1 = pOp->p1;
2562  zName = pOp->p4.z;
2563
2564  /* Assert that the p1 parameter is valid. Also that if there is no open
2565  ** transaction, then there cannot be any savepoints.
2566  */
2567  assert( db->pSavepoint==0 || db->autoCommit==0 );
2568  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2569  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2570  assert( checkSavepointCount(db) );
2571
2572  if( p1==SAVEPOINT_BEGIN ){
2573    if( db->writeVdbeCnt>0 ){
2574      /* A new savepoint cannot be created if there are active write
2575      ** statements (i.e. open read/write incremental blob handles).
2576      */
2577      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2578        "SQL statements in progress");
2579      rc = SQLITE_BUSY;
2580    }else{
2581      nName = sqlite3Strlen30(zName);
2582
2583      /* Create a new savepoint structure. */
2584      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2585      if( pNew ){
2586        pNew->zName = (char *)&pNew[1];
2587        memcpy(pNew->zName, zName, nName+1);
2588
2589        /* If there is no open transaction, then mark this as a special
2590        ** "transaction savepoint". */
2591        if( db->autoCommit ){
2592          db->autoCommit = 0;
2593          db->isTransactionSavepoint = 1;
2594        }else{
2595          db->nSavepoint++;
2596        }
2597
2598        /* Link the new savepoint into the database handle's list. */
2599        pNew->pNext = db->pSavepoint;
2600        db->pSavepoint = pNew;
2601        pNew->nDeferredCons = db->nDeferredCons;
2602      }
2603    }
2604  }else{
2605    iSavepoint = 0;
2606
2607    /* Find the named savepoint. If there is no such savepoint, then an
2608    ** an error is returned to the user.  */
2609    for(
2610      pSavepoint = db->pSavepoint;
2611      pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2612      pSavepoint = pSavepoint->pNext
2613    ){
2614      iSavepoint++;
2615    }
2616    if( !pSavepoint ){
2617      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2618      rc = SQLITE_ERROR;
2619    }else if(
2620        db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2621    ){
2622      /* It is not possible to release (commit) a savepoint if there are
2623      ** active write statements. It is not possible to rollback a savepoint
2624      ** if there are any active statements at all.
2625      */
2626      sqlite3SetString(&p->zErrMsg, db,
2627        "cannot %s savepoint - SQL statements in progress",
2628        (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2629      );
2630      rc = SQLITE_BUSY;
2631    }else{
2632
2633      /* Determine whether or not this is a transaction savepoint. If so,
2634      ** and this is a RELEASE command, then the current transaction
2635      ** is committed.
2636      */
2637      int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2638      if( isTransaction && p1==SAVEPOINT_RELEASE ){
2639        if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2640          goto vdbe_return;
2641        }
2642        db->autoCommit = 1;
2643        if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2644          p->pc = pc;
2645          db->autoCommit = 0;
2646          p->rc = rc = SQLITE_BUSY;
2647          goto vdbe_return;
2648        }
2649        db->isTransactionSavepoint = 0;
2650        rc = p->rc;
2651      }else{
2652        iSavepoint = db->nSavepoint - iSavepoint - 1;
2653        for(ii=0; ii<db->nDb; ii++){
2654          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2655          if( rc!=SQLITE_OK ){
2656            goto abort_due_to_error;
2657          }
2658        }
2659        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
2660          sqlite3ExpirePreparedStatements(db);
2661          sqlite3ResetInternalSchema(db, -1);
2662          db->flags = (db->flags | SQLITE_InternChanges);
2663        }
2664      }
2665
2666      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2667      ** savepoints nested inside of the savepoint being operated on. */
2668      while( db->pSavepoint!=pSavepoint ){
2669        pTmp = db->pSavepoint;
2670        db->pSavepoint = pTmp->pNext;
2671        sqlite3DbFree(db, pTmp);
2672        db->nSavepoint--;
2673      }
2674
2675      /* If it is a RELEASE, then destroy the savepoint being operated on
2676      ** too. If it is a ROLLBACK TO, then set the number of deferred
2677      ** constraint violations present in the database to the value stored
2678      ** when the savepoint was created.  */
2679      if( p1==SAVEPOINT_RELEASE ){
2680        assert( pSavepoint==db->pSavepoint );
2681        db->pSavepoint = pSavepoint->pNext;
2682        sqlite3DbFree(db, pSavepoint);
2683        if( !isTransaction ){
2684          db->nSavepoint--;
2685        }
2686      }else{
2687        db->nDeferredCons = pSavepoint->nDeferredCons;
2688      }
2689    }
2690  }
2691
2692  break;
2693}
2694
2695/* Opcode: AutoCommit P1 P2 * * *
2696**
2697** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2698** back any currently active btree transactions. If there are any active
2699** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
2700** there are active writing VMs or active VMs that use shared cache.
2701**
2702** This instruction causes the VM to halt.
2703*/
2704case OP_AutoCommit: {
2705  int desiredAutoCommit;
2706  int iRollback;
2707  int turnOnAC;
2708
2709  desiredAutoCommit = pOp->p1;
2710  iRollback = pOp->p2;
2711  turnOnAC = desiredAutoCommit && !db->autoCommit;
2712  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2713  assert( desiredAutoCommit==1 || iRollback==0 );
2714  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
2715
2716  if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
2717    /* If this instruction implements a ROLLBACK and other VMs are
2718    ** still running, and a transaction is active, return an error indicating
2719    ** that the other VMs must complete first.
2720    */
2721    sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2722        "SQL statements in progress");
2723    rc = SQLITE_BUSY;
2724  }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
2725    /* If this instruction implements a COMMIT and other VMs are writing
2726    ** return an error indicating that the other VMs must complete first.
2727    */
2728    sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2729        "SQL statements in progress");
2730    rc = SQLITE_BUSY;
2731  }else if( desiredAutoCommit!=db->autoCommit ){
2732    if( iRollback ){
2733      assert( desiredAutoCommit==1 );
2734      sqlite3RollbackAll(db);
2735      db->autoCommit = 1;
2736    }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2737      goto vdbe_return;
2738    }else{
2739      db->autoCommit = (u8)desiredAutoCommit;
2740      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2741        p->pc = pc;
2742        db->autoCommit = (u8)(1-desiredAutoCommit);
2743        p->rc = rc = SQLITE_BUSY;
2744        goto vdbe_return;
2745      }
2746    }
2747    assert( db->nStatement==0 );
2748    sqlite3CloseSavepoints(db);
2749    if( p->rc==SQLITE_OK ){
2750      rc = SQLITE_DONE;
2751    }else{
2752      rc = SQLITE_ERROR;
2753    }
2754    goto vdbe_return;
2755  }else{
2756    sqlite3SetString(&p->zErrMsg, db,
2757        (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2758        (iRollback)?"cannot rollback - no transaction is active":
2759                   "cannot commit - no transaction is active"));
2760
2761    rc = SQLITE_ERROR;
2762  }
2763  break;
2764}
2765
2766/* Opcode: Transaction P1 P2 * * *
2767**
2768** Begin a transaction.  The transaction ends when a Commit or Rollback
2769** opcode is encountered.  Depending on the ON CONFLICT setting, the
2770** transaction might also be rolled back if an error is encountered.
2771**
2772** P1 is the index of the database file on which the transaction is
2773** started.  Index 0 is the main database file and index 1 is the
2774** file used for temporary tables.  Indices of 2 or more are used for
2775** attached databases.
2776**
2777** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
2778** obtained on the database file when a write-transaction is started.  No
2779** other process can start another write transaction while this transaction is
2780** underway.  Starting a write transaction also creates a rollback journal. A
2781** write transaction must be started before any changes can be made to the
2782** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2783** on the file.
2784**
2785** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2786** true (this flag is set if the Vdbe may modify more than one row and may
2787** throw an ABORT exception), a statement transaction may also be opened.
2788** More specifically, a statement transaction is opened iff the database
2789** connection is currently not in autocommit mode, or if there are other
2790** active statements. A statement transaction allows the affects of this
2791** VDBE to be rolled back after an error without having to roll back the
2792** entire transaction. If no error is encountered, the statement transaction
2793** will automatically commit when the VDBE halts.
2794**
2795** If P2 is zero, then a read-lock is obtained on the database file.
2796*/
2797case OP_Transaction: {
2798  Btree *pBt;
2799
2800  assert( pOp->p1>=0 && pOp->p1<db->nDb );
2801  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2802  pBt = db->aDb[pOp->p1].pBt;
2803
2804  if( pBt ){
2805    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2806    if( rc==SQLITE_BUSY ){
2807      p->pc = pc;
2808      p->rc = rc = SQLITE_BUSY;
2809      goto vdbe_return;
2810    }
2811    if( rc!=SQLITE_OK ){
2812      goto abort_due_to_error;
2813    }
2814
2815    if( pOp->p2 && p->usesStmtJournal
2816     && (db->autoCommit==0 || db->activeVdbeCnt>1)
2817    ){
2818      assert( sqlite3BtreeIsInTrans(pBt) );
2819      if( p->iStatement==0 ){
2820        assert( db->nStatement>=0 && db->nSavepoint>=0 );
2821        db->nStatement++;
2822        p->iStatement = db->nSavepoint + db->nStatement;
2823      }
2824      rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2825
2826      /* Store the current value of the database handles deferred constraint
2827      ** counter. If the statement transaction needs to be rolled back,
2828      ** the value of this counter needs to be restored too.  */
2829      p->nStmtDefCons = db->nDeferredCons;
2830    }
2831  }
2832  break;
2833}
2834
2835/* Opcode: ReadCookie P1 P2 P3 * *
2836**
2837** Read cookie number P3 from database P1 and write it into register P2.
2838** P3==1 is the schema version.  P3==2 is the database format.
2839** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
2840** the main database file and P1==1 is the database file used to store
2841** temporary tables.
2842**
2843** There must be a read-lock on the database (either a transaction
2844** must be started or there must be an open cursor) before
2845** executing this instruction.
2846*/
2847case OP_ReadCookie: {               /* out2-prerelease */
2848  int iMeta;
2849  int iDb;
2850  int iCookie;
2851
2852  iDb = pOp->p1;
2853  iCookie = pOp->p3;
2854  assert( pOp->p3<SQLITE_N_BTREE_META );
2855  assert( iDb>=0 && iDb<db->nDb );
2856  assert( db->aDb[iDb].pBt!=0 );
2857  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
2858
2859  sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
2860  pOut->u.i = iMeta;
2861  break;
2862}
2863
2864/* Opcode: SetCookie P1 P2 P3 * *
2865**
2866** Write the content of register P3 (interpreted as an integer)
2867** into cookie number P2 of database P1.  P2==1 is the schema version.
2868** P2==2 is the database format. P2==3 is the recommended pager cache
2869** size, and so forth.  P1==0 is the main database file and P1==1 is the
2870** database file used to store temporary tables.
2871**
2872** A transaction must be started before executing this opcode.
2873*/
2874case OP_SetCookie: {       /* in3 */
2875  Db *pDb;
2876  assert( pOp->p2<SQLITE_N_BTREE_META );
2877  assert( pOp->p1>=0 && pOp->p1<db->nDb );
2878  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2879  pDb = &db->aDb[pOp->p1];
2880  assert( pDb->pBt!=0 );
2881  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
2882  pIn3 = &aMem[pOp->p3];
2883  sqlite3VdbeMemIntegerify(pIn3);
2884  /* See note about index shifting on OP_ReadCookie */
2885  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2886  if( pOp->p2==BTREE_SCHEMA_VERSION ){
2887    /* When the schema cookie changes, record the new cookie internally */
2888    pDb->pSchema->schema_cookie = (int)pIn3->u.i;
2889    db->flags |= SQLITE_InternChanges;
2890  }else if( pOp->p2==BTREE_FILE_FORMAT ){
2891    /* Record changes in the file format */
2892    pDb->pSchema->file_format = (u8)pIn3->u.i;
2893  }
2894  if( pOp->p1==1 ){
2895    /* Invalidate all prepared statements whenever the TEMP database
2896    ** schema is changed.  Ticket #1644 */
2897    sqlite3ExpirePreparedStatements(db);
2898    p->expired = 0;
2899  }
2900  break;
2901}
2902
2903/* Opcode: VerifyCookie P1 P2 P3 * *
2904**
2905** Check the value of global database parameter number 0 (the
2906** schema version) and make sure it is equal to P2 and that the
2907** generation counter on the local schema parse equals P3.
2908**
2909** P1 is the database number which is 0 for the main database file
2910** and 1 for the file holding temporary tables and some higher number
2911** for auxiliary databases.
2912**
2913** The cookie changes its value whenever the database schema changes.
2914** This operation is used to detect when that the cookie has changed
2915** and that the current process needs to reread the schema.
2916**
2917** Either a transaction needs to have been started or an OP_Open needs
2918** to be executed (to establish a read lock) before this opcode is
2919** invoked.
2920*/
2921case OP_VerifyCookie: {
2922  int iMeta;
2923  int iGen;
2924  Btree *pBt;
2925
2926  assert( pOp->p1>=0 && pOp->p1<db->nDb );
2927  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2928  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
2929  pBt = db->aDb[pOp->p1].pBt;
2930  if( pBt ){
2931    sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
2932    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
2933  }else{
2934    iGen = iMeta = 0;
2935  }
2936  if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
2937    sqlite3DbFree(db, p->zErrMsg);
2938    p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
2939    /* If the schema-cookie from the database file matches the cookie
2940    ** stored with the in-memory representation of the schema, do
2941    ** not reload the schema from the database file.
2942    **
2943    ** If virtual-tables are in use, this is not just an optimization.
2944    ** Often, v-tables store their data in other SQLite tables, which
2945    ** are queried from within xNext() and other v-table methods using
2946    ** prepared queries. If such a query is out-of-date, we do not want to
2947    ** discard the database schema, as the user code implementing the
2948    ** v-table would have to be ready for the sqlite3_vtab structure itself
2949    ** to be invalidated whenever sqlite3_step() is called from within
2950    ** a v-table method.
2951    */
2952    if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2953      sqlite3ResetInternalSchema(db, pOp->p1);
2954    }
2955
2956    p->expired = 1;
2957    rc = SQLITE_SCHEMA;
2958  }
2959  break;
2960}
2961
2962/* Opcode: OpenRead P1 P2 P3 P4 P5
2963**
2964** Open a read-only cursor for the database table whose root page is
2965** P2 in a database file.  The database file is determined by P3.
2966** P3==0 means the main database, P3==1 means the database used for
2967** temporary tables, and P3>1 means used the corresponding attached
2968** database.  Give the new cursor an identifier of P1.  The P1
2969** values need not be contiguous but all P1 values should be small integers.
2970** It is an error for P1 to be negative.
2971**
2972** If P5!=0 then use the content of register P2 as the root page, not
2973** the value of P2 itself.
2974**
2975** There will be a read lock on the database whenever there is an
2976** open cursor.  If the database was unlocked prior to this instruction
2977** then a read lock is acquired as part of this instruction.  A read
2978** lock allows other processes to read the database but prohibits
2979** any other process from modifying the database.  The read lock is
2980** released when all cursors are closed.  If this instruction attempts
2981** to get a read lock but fails, the script terminates with an
2982** SQLITE_BUSY error code.
2983**
2984** The P4 value may be either an integer (P4_INT32) or a pointer to
2985** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2986** structure, then said structure defines the content and collating
2987** sequence of the index being opened. Otherwise, if P4 is an integer
2988** value, it is set to the number of columns in the table.
2989**
2990** See also OpenWrite.
2991*/
2992/* Opcode: OpenWrite P1 P2 P3 P4 P5
2993**
2994** Open a read/write cursor named P1 on the table or index whose root
2995** page is P2.  Or if P5!=0 use the content of register P2 to find the
2996** root page.
2997**
2998** The P4 value may be either an integer (P4_INT32) or a pointer to
2999** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3000** structure, then said structure defines the content and collating
3001** sequence of the index being opened. Otherwise, if P4 is an integer
3002** value, it is set to the number of columns in the table, or to the
3003** largest index of any column of the table that is actually used.
3004**
3005** This instruction works just like OpenRead except that it opens the cursor
3006** in read/write mode.  For a given table, there can be one or more read-only
3007** cursors or a single read/write cursor but not both.
3008**
3009** See also OpenRead.
3010*/
3011case OP_OpenRead:
3012case OP_OpenWrite: {
3013  int nField;
3014  KeyInfo *pKeyInfo;
3015  int p2;
3016  int iDb;
3017  int wrFlag;
3018  Btree *pX;
3019  VdbeCursor *pCur;
3020  Db *pDb;
3021
3022  if( p->expired ){
3023    rc = SQLITE_ABORT;
3024    break;
3025  }
3026
3027  nField = 0;
3028  pKeyInfo = 0;
3029  p2 = pOp->p2;
3030  iDb = pOp->p3;
3031  assert( iDb>=0 && iDb<db->nDb );
3032  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
3033  pDb = &db->aDb[iDb];
3034  pX = pDb->pBt;
3035  assert( pX!=0 );
3036  if( pOp->opcode==OP_OpenWrite ){
3037    wrFlag = 1;
3038    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3039    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3040      p->minWriteFileFormat = pDb->pSchema->file_format;
3041    }
3042  }else{
3043    wrFlag = 0;
3044  }
3045  if( pOp->p5 ){
3046    assert( p2>0 );
3047    assert( p2<=p->nMem );
3048    pIn2 = &aMem[p2];
3049    assert( memIsValid(pIn2) );
3050    assert( (pIn2->flags & MEM_Int)!=0 );
3051    sqlite3VdbeMemIntegerify(pIn2);
3052    p2 = (int)pIn2->u.i;
3053    /* The p2 value always comes from a prior OP_CreateTable opcode and
3054    ** that opcode will always set the p2 value to 2 or more or else fail.
3055    ** If there were a failure, the prepared statement would have halted
3056    ** before reaching this instruction. */
3057    if( NEVER(p2<2) ) {
3058      rc = SQLITE_CORRUPT_BKPT;
3059      goto abort_due_to_error;
3060    }
3061  }
3062  if( pOp->p4type==P4_KEYINFO ){
3063    pKeyInfo = pOp->p4.pKeyInfo;
3064    pKeyInfo->enc = ENC(p->db);
3065    nField = pKeyInfo->nField+1;
3066  }else if( pOp->p4type==P4_INT32 ){
3067    nField = pOp->p4.i;
3068  }
3069  assert( pOp->p1>=0 );
3070  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3071  if( pCur==0 ) goto no_mem;
3072  pCur->nullRow = 1;
3073  pCur->isOrdered = 1;
3074  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3075  pCur->pKeyInfo = pKeyInfo;
3076
3077  /* Since it performs no memory allocation or IO, the only values that
3078  ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3079  ** SQLITE_EMPTY is only returned when attempting to open the table
3080  ** rooted at page 1 of a zero-byte database.  */
3081  assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
3082  if( rc==SQLITE_EMPTY ){
3083    pCur->pCursor = 0;
3084    rc = SQLITE_OK;
3085  }
3086
3087  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3088  ** SQLite used to check if the root-page flags were sane at this point
3089  ** and report database corruption if they were not, but this check has
3090  ** since moved into the btree layer.  */
3091  pCur->isTable = pOp->p4type!=P4_KEYINFO;
3092  pCur->isIndex = !pCur->isTable;
3093  break;
3094}
3095
3096/* Opcode: OpenEphemeral P1 P2 * P4 *
3097**
3098** Open a new cursor P1 to a transient table.
3099** The cursor is always opened read/write even if
3100** the main database is read-only.  The ephemeral
3101** table is deleted automatically when the cursor is closed.
3102**
3103** P2 is the number of columns in the ephemeral table.
3104** The cursor points to a BTree table if P4==0 and to a BTree index
3105** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3106** that defines the format of keys in the index.
3107**
3108** This opcode was once called OpenTemp.  But that created
3109** confusion because the term "temp table", might refer either
3110** to a TEMP table at the SQL level, or to a table opened by
3111** this opcode.  Then this opcode was call OpenVirtual.  But
3112** that created confusion with the whole virtual-table idea.
3113*/
3114/* Opcode: OpenAutoindex P1 P2 * P4 *
3115**
3116** This opcode works the same as OP_OpenEphemeral.  It has a
3117** different name to distinguish its use.  Tables created using
3118** by this opcode will be used for automatically created transient
3119** indices in joins.
3120*/
3121case OP_OpenAutoindex:
3122case OP_OpenEphemeral: {
3123  VdbeCursor *pCx;
3124  static const int vfsFlags =
3125      SQLITE_OPEN_READWRITE |
3126      SQLITE_OPEN_CREATE |
3127      SQLITE_OPEN_EXCLUSIVE |
3128      SQLITE_OPEN_DELETEONCLOSE |
3129      SQLITE_OPEN_TRANSIENT_DB;
3130
3131  assert( pOp->p1>=0 );
3132  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3133  if( pCx==0 ) goto no_mem;
3134  pCx->nullRow = 1;
3135  rc = sqlite3BtreeOpen(0, db, &pCx->pBt,
3136                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3137  if( rc==SQLITE_OK ){
3138    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3139  }
3140  if( rc==SQLITE_OK ){
3141    /* If a transient index is required, create it by calling
3142    ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3143    ** opening it. If a transient table is required, just use the
3144    ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3145    */
3146    if( pOp->p4.pKeyInfo ){
3147      int pgno;
3148      assert( pOp->p4type==P4_KEYINFO );
3149      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY);
3150      if( rc==SQLITE_OK ){
3151        assert( pgno==MASTER_ROOT+1 );
3152        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
3153                                (KeyInfo*)pOp->p4.z, pCx->pCursor);
3154        pCx->pKeyInfo = pOp->p4.pKeyInfo;
3155        pCx->pKeyInfo->enc = ENC(p->db);
3156      }
3157      pCx->isTable = 0;
3158    }else{
3159      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3160      pCx->isTable = 1;
3161    }
3162  }
3163  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3164  pCx->isIndex = !pCx->isTable;
3165  break;
3166}
3167
3168/* Opcode: OpenPseudo P1 P2 P3 * *
3169**
3170** Open a new cursor that points to a fake table that contains a single
3171** row of data.  The content of that one row in the content of memory
3172** register P2.  In other words, cursor P1 becomes an alias for the
3173** MEM_Blob content contained in register P2.
3174**
3175** A pseudo-table created by this opcode is used to hold a single
3176** row output from the sorter so that the row can be decomposed into
3177** individual columns using the OP_Column opcode.  The OP_Column opcode
3178** is the only cursor opcode that works with a pseudo-table.
3179**
3180** P3 is the number of fields in the records that will be stored by
3181** the pseudo-table.
3182*/
3183case OP_OpenPseudo: {
3184  VdbeCursor *pCx;
3185
3186  assert( pOp->p1>=0 );
3187  pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3188  if( pCx==0 ) goto no_mem;
3189  pCx->nullRow = 1;
3190  pCx->pseudoTableReg = pOp->p2;
3191  pCx->isTable = 1;
3192  pCx->isIndex = 0;
3193  break;
3194}
3195
3196/* Opcode: Close P1 * * * *
3197**
3198** Close a cursor previously opened as P1.  If P1 is not
3199** currently open, this instruction is a no-op.
3200*/
3201case OP_Close: {
3202  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3203  sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3204  p->apCsr[pOp->p1] = 0;
3205  break;
3206}
3207
3208/* Opcode: SeekGe P1 P2 P3 P4 *
3209**
3210** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3211** use the value in register P3 as the key.  If cursor P1 refers
3212** to an SQL index, then P3 is the first in an array of P4 registers
3213** that are used as an unpacked index key.
3214**
3215** Reposition cursor P1 so that  it points to the smallest entry that
3216** is greater than or equal to the key value. If there are no records
3217** greater than or equal to the key and P2 is not zero, then jump to P2.
3218**
3219** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3220*/
3221/* Opcode: SeekGt P1 P2 P3 P4 *
3222**
3223** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3224** use the value in register P3 as a key. If cursor P1 refers
3225** to an SQL index, then P3 is the first in an array of P4 registers
3226** that are used as an unpacked index key.
3227**
3228** Reposition cursor P1 so that  it points to the smallest entry that
3229** is greater than the key value. If there are no records greater than
3230** the key and P2 is not zero, then jump to P2.
3231**
3232** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3233*/
3234/* Opcode: SeekLt P1 P2 P3 P4 *
3235**
3236** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3237** use the value in register P3 as a key. If cursor P1 refers
3238** to an SQL index, then P3 is the first in an array of P4 registers
3239** that are used as an unpacked index key.
3240**
3241** Reposition cursor P1 so that  it points to the largest entry that
3242** is less than the key value. If there are no records less than
3243** the key and P2 is not zero, then jump to P2.
3244**
3245** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3246*/
3247/* Opcode: SeekLe P1 P2 P3 P4 *
3248**
3249** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3250** use the value in register P3 as a key. If cursor P1 refers
3251** to an SQL index, then P3 is the first in an array of P4 registers
3252** that are used as an unpacked index key.
3253**
3254** Reposition cursor P1 so that it points to the largest entry that
3255** is less than or equal to the key value. If there are no records
3256** less than or equal to the key and P2 is not zero, then jump to P2.
3257**
3258** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3259*/
3260case OP_SeekLt:         /* jump, in3 */
3261case OP_SeekLe:         /* jump, in3 */
3262case OP_SeekGe:         /* jump, in3 */
3263case OP_SeekGt: {       /* jump, in3 */
3264  int res;
3265  int oc;
3266  VdbeCursor *pC;
3267  UnpackedRecord r;
3268  int nField;
3269  i64 iKey;      /* The rowid we are to seek to */
3270
3271  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3272  assert( pOp->p2!=0 );
3273  pC = p->apCsr[pOp->p1];
3274  assert( pC!=0 );
3275  assert( pC->pseudoTableReg==0 );
3276  assert( OP_SeekLe == OP_SeekLt+1 );
3277  assert( OP_SeekGe == OP_SeekLt+2 );
3278  assert( OP_SeekGt == OP_SeekLt+3 );
3279  assert( pC->isOrdered );
3280  if( pC->pCursor!=0 ){
3281    oc = pOp->opcode;
3282    pC->nullRow = 0;
3283    if( pC->isTable ){
3284      /* The input value in P3 might be of any type: integer, real, string,
3285      ** blob, or NULL.  But it needs to be an integer before we can do
3286      ** the seek, so covert it. */
3287      pIn3 = &aMem[pOp->p3];
3288      applyNumericAffinity(pIn3);
3289      iKey = sqlite3VdbeIntValue(pIn3);
3290      pC->rowidIsValid = 0;
3291
3292      /* If the P3 value could not be converted into an integer without
3293      ** loss of information, then special processing is required... */
3294      if( (pIn3->flags & MEM_Int)==0 ){
3295        if( (pIn3->flags & MEM_Real)==0 ){
3296          /* If the P3 value cannot be converted into any kind of a number,
3297          ** then the seek is not possible, so jump to P2 */
3298          pc = pOp->p2 - 1;
3299          break;
3300        }
3301        /* If we reach this point, then the P3 value must be a floating
3302        ** point number. */
3303        assert( (pIn3->flags & MEM_Real)!=0 );
3304
3305        if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3306          /* The P3 value is too large in magnitude to be expressed as an
3307          ** integer. */
3308          res = 1;
3309          if( pIn3->r<0 ){
3310            if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3311              rc = sqlite3BtreeFirst(pC->pCursor, &res);
3312              if( rc!=SQLITE_OK ) goto abort_due_to_error;
3313            }
3314          }else{
3315            if( oc<=OP_SeekLe ){  assert( oc==OP_SeekLt || oc==OP_SeekLe );
3316              rc = sqlite3BtreeLast(pC->pCursor, &res);
3317              if( rc!=SQLITE_OK ) goto abort_due_to_error;
3318            }
3319          }
3320          if( res ){
3321            pc = pOp->p2 - 1;
3322          }
3323          break;
3324        }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3325          /* Use the ceiling() function to convert real->int */
3326          if( pIn3->r > (double)iKey ) iKey++;
3327        }else{
3328          /* Use the floor() function to convert real->int */
3329          assert( oc==OP_SeekLe || oc==OP_SeekGt );
3330          if( pIn3->r < (double)iKey ) iKey--;
3331        }
3332      }
3333      rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3334      if( rc!=SQLITE_OK ){
3335        goto abort_due_to_error;
3336      }
3337      if( res==0 ){
3338        pC->rowidIsValid = 1;
3339        pC->lastRowid = iKey;
3340      }
3341    }else{
3342      nField = pOp->p4.i;
3343      assert( pOp->p4type==P4_INT32 );
3344      assert( nField>0 );
3345      r.pKeyInfo = pC->pKeyInfo;
3346      r.nField = (u16)nField;
3347
3348      /* The next line of code computes as follows, only faster:
3349      **   if( oc==OP_SeekGt || oc==OP_SeekLe ){
3350      **     r.flags = UNPACKED_INCRKEY;
3351      **   }else{
3352      **     r.flags = 0;
3353      **   }
3354      */
3355      r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3356      assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3357      assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3358      assert( oc!=OP_SeekGe || r.flags==0 );
3359      assert( oc!=OP_SeekLt || r.flags==0 );
3360
3361      r.aMem = &aMem[pOp->p3];
3362#ifdef SQLITE_DEBUG
3363      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3364#endif
3365      ExpandBlob(r.aMem);
3366      rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3367      if( rc!=SQLITE_OK ){
3368        goto abort_due_to_error;
3369      }
3370      pC->rowidIsValid = 0;
3371    }
3372    pC->deferredMoveto = 0;
3373    pC->cacheStatus = CACHE_STALE;
3374#ifdef SQLITE_TEST
3375    sqlite3_search_count++;
3376#endif
3377    if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3378      if( res<0 || (res==0 && oc==OP_SeekGt) ){
3379        rc = sqlite3BtreeNext(pC->pCursor, &res);
3380        if( rc!=SQLITE_OK ) goto abort_due_to_error;
3381        pC->rowidIsValid = 0;
3382      }else{
3383        res = 0;
3384      }
3385    }else{
3386      assert( oc==OP_SeekLt || oc==OP_SeekLe );
3387      if( res>0 || (res==0 && oc==OP_SeekLt) ){
3388        rc = sqlite3BtreePrevious(pC->pCursor, &res);
3389        if( rc!=SQLITE_OK ) goto abort_due_to_error;
3390        pC->rowidIsValid = 0;
3391      }else{
3392        /* res might be negative because the table is empty.  Check to
3393        ** see if this is the case.
3394        */
3395        res = sqlite3BtreeEof(pC->pCursor);
3396      }
3397    }
3398    assert( pOp->p2>0 );
3399    if( res ){
3400      pc = pOp->p2 - 1;
3401    }
3402  }else{
3403    /* This happens when attempting to open the sqlite3_master table
3404    ** for read access returns SQLITE_EMPTY. In this case always
3405    ** take the jump (since there are no records in the table).
3406    */
3407    pc = pOp->p2 - 1;
3408  }
3409  break;
3410}
3411
3412/* Opcode: Seek P1 P2 * * *
3413**
3414** P1 is an open table cursor and P2 is a rowid integer.  Arrange
3415** for P1 to move so that it points to the rowid given by P2.
3416**
3417** This is actually a deferred seek.  Nothing actually happens until
3418** the cursor is used to read a record.  That way, if no reads
3419** occur, no unnecessary I/O happens.
3420*/
3421case OP_Seek: {    /* in2 */
3422  VdbeCursor *pC;
3423
3424  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3425  pC = p->apCsr[pOp->p1];
3426  assert( pC!=0 );
3427  if( ALWAYS(pC->pCursor!=0) ){
3428    assert( pC->isTable );
3429    pC->nullRow = 0;
3430    pIn2 = &aMem[pOp->p2];
3431    pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3432    pC->rowidIsValid = 0;
3433    pC->deferredMoveto = 1;
3434  }
3435  break;
3436}
3437
3438
3439/* Opcode: Found P1 P2 P3 P4 *
3440**
3441** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3442** P4>0 then register P3 is the first of P4 registers that form an unpacked
3443** record.
3444**
3445** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3446** is a prefix of any entry in P1 then a jump is made to P2 and
3447** P1 is left pointing at the matching entry.
3448*/
3449/* Opcode: NotFound P1 P2 P3 P4 *
3450**
3451** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3452** P4>0 then register P3 is the first of P4 registers that form an unpacked
3453** record.
3454**
3455** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3456** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3457** does contain an entry whose prefix matches the P3/P4 record then control
3458** falls through to the next instruction and P1 is left pointing at the
3459** matching entry.
3460**
3461** See also: Found, NotExists, IsUnique
3462*/
3463case OP_NotFound:       /* jump, in3 */
3464case OP_Found: {        /* jump, in3 */
3465  int alreadyExists;
3466  VdbeCursor *pC;
3467  int res;
3468  UnpackedRecord *pIdxKey;
3469  UnpackedRecord r;
3470  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3471
3472#ifdef SQLITE_TEST
3473  sqlite3_found_count++;
3474#endif
3475
3476  alreadyExists = 0;
3477  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3478  assert( pOp->p4type==P4_INT32 );
3479  pC = p->apCsr[pOp->p1];
3480  assert( pC!=0 );
3481  pIn3 = &aMem[pOp->p3];
3482  if( ALWAYS(pC->pCursor!=0) ){
3483
3484    assert( pC->isTable==0 );
3485    if( pOp->p4.i>0 ){
3486      r.pKeyInfo = pC->pKeyInfo;
3487      r.nField = (u16)pOp->p4.i;
3488      r.aMem = pIn3;
3489#ifdef SQLITE_DEBUG
3490      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3491#endif
3492      r.flags = UNPACKED_PREFIX_MATCH;
3493      pIdxKey = &r;
3494    }else{
3495      assert( pIn3->flags & MEM_Blob );
3496      assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
3497      pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
3498                                        aTempRec, sizeof(aTempRec));
3499      if( pIdxKey==0 ){
3500        goto no_mem;
3501      }
3502      pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3503    }
3504    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3505    if( pOp->p4.i==0 ){
3506      sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
3507    }
3508    if( rc!=SQLITE_OK ){
3509      break;
3510    }
3511    alreadyExists = (res==0);
3512    pC->deferredMoveto = 0;
3513    pC->cacheStatus = CACHE_STALE;
3514  }
3515  if( pOp->opcode==OP_Found ){
3516    if( alreadyExists ) pc = pOp->p2 - 1;
3517  }else{
3518    if( !alreadyExists ) pc = pOp->p2 - 1;
3519  }
3520  break;
3521}
3522
3523/* Opcode: IsUnique P1 P2 P3 P4 *
3524**
3525** Cursor P1 is open on an index b-tree - that is to say, a btree which
3526** no data and where the key are records generated by OP_MakeRecord with
3527** the list field being the integer ROWID of the entry that the index
3528** entry refers to.
3529**
3530** The P3 register contains an integer record number. Call this record
3531** number R. Register P4 is the first in a set of N contiguous registers
3532** that make up an unpacked index key that can be used with cursor P1.
3533** The value of N can be inferred from the cursor. N includes the rowid
3534** value appended to the end of the index record. This rowid value may
3535** or may not be the same as R.
3536**
3537** If any of the N registers beginning with register P4 contains a NULL
3538** value, jump immediately to P2.
3539**
3540** Otherwise, this instruction checks if cursor P1 contains an entry
3541** where the first (N-1) fields match but the rowid value at the end
3542** of the index entry is not R. If there is no such entry, control jumps
3543** to instruction P2. Otherwise, the rowid of the conflicting index
3544** entry is copied to register P3 and control falls through to the next
3545** instruction.
3546**
3547** See also: NotFound, NotExists, Found
3548*/
3549case OP_IsUnique: {        /* jump, in3 */
3550  u16 ii;
3551  VdbeCursor *pCx;
3552  BtCursor *pCrsr;
3553  u16 nField;
3554  Mem *aMx;
3555  UnpackedRecord r;                  /* B-Tree index search key */
3556  i64 R;                             /* Rowid stored in register P3 */
3557
3558  pIn3 = &aMem[pOp->p3];
3559  aMx = &aMem[pOp->p4.i];
3560  /* Assert that the values of parameters P1 and P4 are in range. */
3561  assert( pOp->p4type==P4_INT32 );
3562  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3563  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3564
3565  /* Find the index cursor. */
3566  pCx = p->apCsr[pOp->p1];
3567  assert( pCx->deferredMoveto==0 );
3568  pCx->seekResult = 0;
3569  pCx->cacheStatus = CACHE_STALE;
3570  pCrsr = pCx->pCursor;
3571
3572  /* If any of the values are NULL, take the jump. */
3573  nField = pCx->pKeyInfo->nField;
3574  for(ii=0; ii<nField; ii++){
3575    if( aMx[ii].flags & MEM_Null ){
3576      pc = pOp->p2 - 1;
3577      pCrsr = 0;
3578      break;
3579    }
3580  }
3581  assert( (aMx[nField].flags & MEM_Null)==0 );
3582
3583  if( pCrsr!=0 ){
3584    /* Populate the index search key. */
3585    r.pKeyInfo = pCx->pKeyInfo;
3586    r.nField = nField + 1;
3587    r.flags = UNPACKED_PREFIX_SEARCH;
3588    r.aMem = aMx;
3589#ifdef SQLITE_DEBUG
3590    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3591#endif
3592
3593    /* Extract the value of R from register P3. */
3594    sqlite3VdbeMemIntegerify(pIn3);
3595    R = pIn3->u.i;
3596
3597    /* Search the B-Tree index. If no conflicting record is found, jump
3598    ** to P2. Otherwise, copy the rowid of the conflicting record to
3599    ** register P3 and fall through to the next instruction.  */
3600    rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3601    if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
3602      pc = pOp->p2 - 1;
3603    }else{
3604      pIn3->u.i = r.rowid;
3605    }
3606  }
3607  break;
3608}
3609
3610/* Opcode: NotExists P1 P2 P3 * *
3611**
3612** Use the content of register P3 as a integer key.  If a record
3613** with that key does not exist in table of P1, then jump to P2.
3614** If the record does exist, then fall through.  The cursor is left
3615** pointing to the record if it exists.
3616**
3617** The difference between this operation and NotFound is that this
3618** operation assumes the key is an integer and that P1 is a table whereas
3619** NotFound assumes key is a blob constructed from MakeRecord and
3620** P1 is an index.
3621**
3622** See also: Found, NotFound, IsUnique
3623*/
3624case OP_NotExists: {        /* jump, in3 */
3625  VdbeCursor *pC;
3626  BtCursor *pCrsr;
3627  int res;
3628  u64 iKey;
3629
3630  pIn3 = &aMem[pOp->p3];
3631  assert( pIn3->flags & MEM_Int );
3632  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3633  pC = p->apCsr[pOp->p1];
3634  assert( pC!=0 );
3635  assert( pC->isTable );
3636  assert( pC->pseudoTableReg==0 );
3637  pCrsr = pC->pCursor;
3638  if( pCrsr!=0 ){
3639    res = 0;
3640    iKey = pIn3->u.i;
3641    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3642    pC->lastRowid = pIn3->u.i;
3643    pC->rowidIsValid = res==0 ?1:0;
3644    pC->nullRow = 0;
3645    pC->cacheStatus = CACHE_STALE;
3646    pC->deferredMoveto = 0;
3647    if( res!=0 ){
3648      pc = pOp->p2 - 1;
3649      assert( pC->rowidIsValid==0 );
3650    }
3651    pC->seekResult = res;
3652  }else{
3653    /* This happens when an attempt to open a read cursor on the
3654    ** sqlite_master table returns SQLITE_EMPTY.
3655    */
3656    pc = pOp->p2 - 1;
3657    assert( pC->rowidIsValid==0 );
3658    pC->seekResult = 0;
3659  }
3660  break;
3661}
3662
3663/* Opcode: Sequence P1 P2 * * *
3664**
3665** Find the next available sequence number for cursor P1.
3666** Write the sequence number into register P2.
3667** The sequence number on the cursor is incremented after this
3668** instruction.
3669*/
3670case OP_Sequence: {           /* out2-prerelease */
3671  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3672  assert( p->apCsr[pOp->p1]!=0 );
3673  pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3674  break;
3675}
3676
3677
3678/* Opcode: NewRowid P1 P2 P3 * *
3679**
3680** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3681** The record number is not previously used as a key in the database
3682** table that cursor P1 points to.  The new record number is written
3683** written to register P2.
3684**
3685** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3686** the largest previously generated record number. No new record numbers are
3687** allowed to be less than this value. When this value reaches its maximum,
3688** a SQLITE_FULL error is generated. The P3 register is updated with the '
3689** generated record number. This P3 mechanism is used to help implement the
3690** AUTOINCREMENT feature.
3691*/
3692case OP_NewRowid: {           /* out2-prerelease */
3693  i64 v;                 /* The new rowid */
3694  VdbeCursor *pC;        /* Cursor of table to get the new rowid */
3695  int res;               /* Result of an sqlite3BtreeLast() */
3696  int cnt;               /* Counter to limit the number of searches */
3697  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
3698  VdbeFrame *pFrame;     /* Root frame of VDBE */
3699
3700  v = 0;
3701  res = 0;
3702  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3703  pC = p->apCsr[pOp->p1];
3704  assert( pC!=0 );
3705  if( NEVER(pC->pCursor==0) ){
3706    /* The zero initialization above is all that is needed */
3707  }else{
3708    /* The next rowid or record number (different terms for the same
3709    ** thing) is obtained in a two-step algorithm.
3710    **
3711    ** First we attempt to find the largest existing rowid and add one
3712    ** to that.  But if the largest existing rowid is already the maximum
3713    ** positive integer, we have to fall through to the second
3714    ** probabilistic algorithm
3715    **
3716    ** The second algorithm is to select a rowid at random and see if
3717    ** it already exists in the table.  If it does not exist, we have
3718    ** succeeded.  If the random rowid does exist, we select a new one
3719    ** and try again, up to 100 times.
3720    */
3721    assert( pC->isTable );
3722
3723#ifdef SQLITE_32BIT_ROWID
3724#   define MAX_ROWID 0x7fffffff
3725#else
3726    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3727    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
3728    ** to provide the constant while making all compilers happy.
3729    */
3730#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3731#endif
3732
3733    if( !pC->useRandomRowid ){
3734      v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3735      if( v==0 ){
3736        rc = sqlite3BtreeLast(pC->pCursor, &res);
3737        if( rc!=SQLITE_OK ){
3738          goto abort_due_to_error;
3739        }
3740        if( res ){
3741          v = 1;   /* IMP: R-61914-48074 */
3742        }else{
3743          assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3744          rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3745          assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
3746          if( v==MAX_ROWID ){
3747            pC->useRandomRowid = 1;
3748          }else{
3749            v++;   /* IMP: R-29538-34987 */
3750          }
3751        }
3752      }
3753
3754#ifndef SQLITE_OMIT_AUTOINCREMENT
3755      if( pOp->p3 ){
3756        /* Assert that P3 is a valid memory cell. */
3757        assert( pOp->p3>0 );
3758        if( p->pFrame ){
3759          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3760          /* Assert that P3 is a valid memory cell. */
3761          assert( pOp->p3<=pFrame->nMem );
3762          pMem = &pFrame->aMem[pOp->p3];
3763        }else{
3764          /* Assert that P3 is a valid memory cell. */
3765          assert( pOp->p3<=p->nMem );
3766          pMem = &aMem[pOp->p3];
3767          memAboutToChange(p, pMem);
3768        }
3769        assert( memIsValid(pMem) );
3770
3771        REGISTER_TRACE(pOp->p3, pMem);
3772        sqlite3VdbeMemIntegerify(pMem);
3773        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
3774        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3775          rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
3776          goto abort_due_to_error;
3777        }
3778        if( v<pMem->u.i+1 ){
3779          v = pMem->u.i + 1;
3780        }
3781        pMem->u.i = v;
3782      }
3783#endif
3784
3785      sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
3786    }
3787    if( pC->useRandomRowid ){
3788      /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3789      ** largest possible integer (9223372036854775807) then the database
3790      ** engine starts picking positive candidate ROWIDs at random until
3791      ** it finds one that is not previously used. */
3792      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
3793                             ** an AUTOINCREMENT table. */
3794      /* on the first attempt, simply do one more than previous */
3795      v = db->lastRowid;
3796      v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3797      v++; /* ensure non-zero */
3798      cnt = 0;
3799      while(   ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3800                                                 0, &res))==SQLITE_OK)
3801            && (res==0)
3802            && (++cnt<100)){
3803        /* collision - try another random rowid */
3804        sqlite3_randomness(sizeof(v), &v);
3805        if( cnt<5 ){
3806          /* try "small" random rowids for the initial attempts */
3807          v &= 0xffffff;
3808        }else{
3809          v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3810        }
3811        v++; /* ensure non-zero */
3812      }
3813      if( rc==SQLITE_OK && res==0 ){
3814        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
3815        goto abort_due_to_error;
3816      }
3817      assert( v>0 );  /* EV: R-40812-03570 */
3818    }
3819    pC->rowidIsValid = 0;
3820    pC->deferredMoveto = 0;
3821    pC->cacheStatus = CACHE_STALE;
3822  }
3823  pOut->u.i = v;
3824  break;
3825}
3826
3827/* Opcode: Insert P1 P2 P3 P4 P5
3828**
3829** Write an entry into the table of cursor P1.  A new entry is
3830** created if it doesn't already exist or the data for an existing
3831** entry is overwritten.  The data is the value MEM_Blob stored in register
3832** number P2. The key is stored in register P3. The key must
3833** be a MEM_Int.
3834**
3835** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3836** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
3837** then rowid is stored for subsequent return by the
3838** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3839**
3840** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3841** the last seek operation (OP_NotExists) was a success, then this
3842** operation will not attempt to find the appropriate row before doing
3843** the insert but will instead overwrite the row that the cursor is
3844** currently pointing to.  Presumably, the prior OP_NotExists opcode
3845** has already positioned the cursor correctly.  This is an optimization
3846** that boosts performance by avoiding redundant seeks.
3847**
3848** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3849** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
3850** is part of an INSERT operation.  The difference is only important to
3851** the update hook.
3852**
3853** Parameter P4 may point to a string containing the table-name, or
3854** may be NULL. If it is not NULL, then the update-hook
3855** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3856**
3857** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3858** allocated, then ownership of P2 is transferred to the pseudo-cursor
3859** and register P2 becomes ephemeral.  If the cursor is changed, the
3860** value of register P2 will then change.  Make sure this does not
3861** cause any problems.)
3862**
3863** This instruction only works on tables.  The equivalent instruction
3864** for indices is OP_IdxInsert.
3865*/
3866/* Opcode: InsertInt P1 P2 P3 P4 P5
3867**
3868** This works exactly like OP_Insert except that the key is the
3869** integer value P3, not the value of the integer stored in register P3.
3870*/
3871case OP_Insert:
3872case OP_InsertInt: {
3873  Mem *pData;       /* MEM cell holding data for the record to be inserted */
3874  Mem *pKey;        /* MEM cell holding key  for the record */
3875  i64 iKey;         /* The integer ROWID or key for the record to be inserted */
3876  VdbeCursor *pC;   /* Cursor to table into which insert is written */
3877  int nZero;        /* Number of zero-bytes to append */
3878  int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
3879  const char *zDb;  /* database name - used by the update hook */
3880  const char *zTbl; /* Table name - used by the opdate hook */
3881  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
3882
3883  pData = &aMem[pOp->p2];
3884  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3885  assert( memIsValid(pData) );
3886  pC = p->apCsr[pOp->p1];
3887  assert( pC!=0 );
3888  assert( pC->pCursor!=0 );
3889  assert( pC->pseudoTableReg==0 );
3890  assert( pC->isTable );
3891  REGISTER_TRACE(pOp->p2, pData);
3892
3893  if( pOp->opcode==OP_Insert ){
3894    pKey = &aMem[pOp->p3];
3895    assert( pKey->flags & MEM_Int );
3896    assert( memIsValid(pKey) );
3897    REGISTER_TRACE(pOp->p3, pKey);
3898    iKey = pKey->u.i;
3899  }else{
3900    assert( pOp->opcode==OP_InsertInt );
3901    iKey = pOp->p3;
3902  }
3903
3904  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
3905  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey;
3906  if( pData->flags & MEM_Null ){
3907    pData->z = 0;
3908    pData->n = 0;
3909  }else{
3910    assert( pData->flags & (MEM_Blob|MEM_Str) );
3911  }
3912  seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
3913  if( pData->flags & MEM_Zero ){
3914    nZero = pData->u.nZero;
3915  }else{
3916    nZero = 0;
3917  }
3918  sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3919  rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3920                          pData->z, pData->n, nZero,
3921                          pOp->p5 & OPFLAG_APPEND, seekResult
3922  );
3923  pC->rowidIsValid = 0;
3924  pC->deferredMoveto = 0;
3925  pC->cacheStatus = CACHE_STALE;
3926
3927  /* Invoke the update-hook if required. */
3928  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3929    zDb = db->aDb[pC->iDb].zName;
3930    zTbl = pOp->p4.z;
3931    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
3932    assert( pC->isTable );
3933    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3934    assert( pC->iDb>=0 );
3935  }
3936  break;
3937}
3938
3939/* Opcode: Delete P1 P2 * P4 *
3940**
3941** Delete the record at which the P1 cursor is currently pointing.
3942**
3943** The cursor will be left pointing at either the next or the previous
3944** record in the table. If it is left pointing at the next record, then
3945** the next Next instruction will be a no-op.  Hence it is OK to delete
3946** a record from within an Next loop.
3947**
3948** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3949** incremented (otherwise not).
3950**
3951** P1 must not be pseudo-table.  It has to be a real table with
3952** multiple rows.
3953**
3954** If P4 is not NULL, then it is the name of the table that P1 is
3955** pointing to.  The update hook will be invoked, if it exists.
3956** If P4 is not NULL then the P1 cursor must have been positioned
3957** using OP_NotFound prior to invoking this opcode.
3958*/
3959case OP_Delete: {
3960  i64 iKey;
3961  VdbeCursor *pC;
3962
3963  iKey = 0;
3964  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3965  pC = p->apCsr[pOp->p1];
3966  assert( pC!=0 );
3967  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
3968
3969  /* If the update-hook will be invoked, set iKey to the rowid of the
3970  ** row being deleted.
3971  */
3972  if( db->xUpdateCallback && pOp->p4.z ){
3973    assert( pC->isTable );
3974    assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
3975    iKey = pC->lastRowid;
3976  }
3977
3978  /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
3979  ** OP_Column on the same table without any intervening operations that
3980  ** might move or invalidate the cursor.  Hence cursor pC is always pointing
3981  ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
3982  ** below is always a no-op and cannot fail.  We will run it anyhow, though,
3983  ** to guard against future changes to the code generator.
3984  **/
3985  assert( pC->deferredMoveto==0 );
3986  rc = sqlite3VdbeCursorMoveto(pC);
3987  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3988
3989  sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3990  rc = sqlite3BtreeDelete(pC->pCursor);
3991  pC->cacheStatus = CACHE_STALE;
3992
3993  /* Invoke the update-hook if required. */
3994  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3995    const char *zDb = db->aDb[pC->iDb].zName;
3996    const char *zTbl = pOp->p4.z;
3997    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3998    assert( pC->iDb>=0 );
3999  }
4000  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4001  break;
4002}
4003/* Opcode: ResetCount * * * * *
4004**
4005** The value of the change counter is copied to the database handle
4006** change counter (returned by subsequent calls to sqlite3_changes()).
4007** Then the VMs internal change counter resets to 0.
4008** This is used by trigger programs.
4009*/
4010case OP_ResetCount: {
4011  sqlite3VdbeSetChanges(db, p->nChange);
4012  p->nChange = 0;
4013  break;
4014}
4015
4016/* Opcode: RowData P1 P2 * * *
4017**
4018** Write into register P2 the complete row data for cursor P1.
4019** There is no interpretation of the data.
4020** It is just copied onto the P2 register exactly as
4021** it is found in the database file.
4022**
4023** If the P1 cursor must be pointing to a valid row (not a NULL row)
4024** of a real table, not a pseudo-table.
4025*/
4026/* Opcode: RowKey P1 P2 * * *
4027**
4028** Write into register P2 the complete row key for cursor P1.
4029** There is no interpretation of the data.
4030** The key is copied onto the P3 register exactly as
4031** it is found in the database file.
4032**
4033** If the P1 cursor must be pointing to a valid row (not a NULL row)
4034** of a real table, not a pseudo-table.
4035*/
4036case OP_RowKey:
4037case OP_RowData: {
4038  VdbeCursor *pC;
4039  BtCursor *pCrsr;
4040  u32 n;
4041  i64 n64;
4042
4043  pOut = &aMem[pOp->p2];
4044  memAboutToChange(p, pOut);
4045
4046  /* Note that RowKey and RowData are really exactly the same instruction */
4047  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4048  pC = p->apCsr[pOp->p1];
4049  assert( pC->isTable || pOp->opcode==OP_RowKey );
4050  assert( pC->isIndex || pOp->opcode==OP_RowData );
4051  assert( pC!=0 );
4052  assert( pC->nullRow==0 );
4053  assert( pC->pseudoTableReg==0 );
4054  assert( pC->pCursor!=0 );
4055  pCrsr = pC->pCursor;
4056  assert( sqlite3BtreeCursorIsValid(pCrsr) );
4057
4058  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4059  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4060  ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
4061  ** a no-op and can never fail.  But we leave it in place as a safety.
4062  */
4063  assert( pC->deferredMoveto==0 );
4064  rc = sqlite3VdbeCursorMoveto(pC);
4065  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4066
4067  if( pC->isIndex ){
4068    assert( !pC->isTable );
4069    rc = sqlite3BtreeKeySize(pCrsr, &n64);
4070    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
4071    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4072      goto too_big;
4073    }
4074    n = (u32)n64;
4075  }else{
4076    rc = sqlite3BtreeDataSize(pCrsr, &n);
4077    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
4078    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4079      goto too_big;
4080    }
4081  }
4082  if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4083    goto no_mem;
4084  }
4085  pOut->n = n;
4086  MemSetTypeFlag(pOut, MEM_Blob);
4087  if( pC->isIndex ){
4088    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4089  }else{
4090    rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4091  }
4092  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4093  UPDATE_MAX_BLOBSIZE(pOut);
4094  break;
4095}
4096
4097/* Opcode: Rowid P1 P2 * * *
4098**
4099** Store in register P2 an integer which is the key of the table entry that
4100** P1 is currently point to.
4101**
4102** P1 can be either an ordinary table or a virtual table.  There used to
4103** be a separate OP_VRowid opcode for use with virtual tables, but this
4104** one opcode now works for both table types.
4105*/
4106case OP_Rowid: {                 /* out2-prerelease */
4107  VdbeCursor *pC;
4108  i64 v;
4109  sqlite3_vtab *pVtab;
4110  const sqlite3_module *pModule;
4111
4112  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4113  pC = p->apCsr[pOp->p1];
4114  assert( pC!=0 );
4115  assert( pC->pseudoTableReg==0 );
4116  if( pC->nullRow ){
4117    pOut->flags = MEM_Null;
4118    break;
4119  }else if( pC->deferredMoveto ){
4120    v = pC->movetoTarget;
4121#ifndef SQLITE_OMIT_VIRTUALTABLE
4122  }else if( pC->pVtabCursor ){
4123    pVtab = pC->pVtabCursor->pVtab;
4124    pModule = pVtab->pModule;
4125    assert( pModule->xRowid );
4126    rc = pModule->xRowid(pC->pVtabCursor, &v);
4127    importVtabErrMsg(p, pVtab);
4128#endif /* SQLITE_OMIT_VIRTUALTABLE */
4129  }else{
4130    assert( pC->pCursor!=0 );
4131    rc = sqlite3VdbeCursorMoveto(pC);
4132    if( rc ) goto abort_due_to_error;
4133    if( pC->rowidIsValid ){
4134      v = pC->lastRowid;
4135    }else{
4136      rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4137      assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
4138    }
4139  }
4140  pOut->u.i = v;
4141  break;
4142}
4143
4144/* Opcode: NullRow P1 * * * *
4145**
4146** Move the cursor P1 to a null row.  Any OP_Column operations
4147** that occur while the cursor is on the null row will always
4148** write a NULL.
4149*/
4150case OP_NullRow: {
4151  VdbeCursor *pC;
4152
4153  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4154  pC = p->apCsr[pOp->p1];
4155  assert( pC!=0 );
4156  pC->nullRow = 1;
4157  pC->rowidIsValid = 0;
4158  if( pC->pCursor ){
4159    sqlite3BtreeClearCursor(pC->pCursor);
4160  }
4161  break;
4162}
4163
4164/* Opcode: Last P1 P2 * * *
4165**
4166** The next use of the Rowid or Column or Next instruction for P1
4167** will refer to the last entry in the database table or index.
4168** If the table or index is empty and P2>0, then jump immediately to P2.
4169** If P2 is 0 or if the table or index is not empty, fall through
4170** to the following instruction.
4171*/
4172case OP_Last: {        /* jump */
4173  VdbeCursor *pC;
4174  BtCursor *pCrsr;
4175  int res;
4176
4177  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4178  pC = p->apCsr[pOp->p1];
4179  assert( pC!=0 );
4180  pCrsr = pC->pCursor;
4181  if( pCrsr==0 ){
4182    res = 1;
4183  }else{
4184    rc = sqlite3BtreeLast(pCrsr, &res);
4185  }
4186  pC->nullRow = (u8)res;
4187  pC->deferredMoveto = 0;
4188  pC->rowidIsValid = 0;
4189  pC->cacheStatus = CACHE_STALE;
4190  if( pOp->p2>0 && res ){
4191    pc = pOp->p2 - 1;
4192  }
4193  break;
4194}
4195
4196
4197/* Opcode: Sort P1 P2 * * *
4198**
4199** This opcode does exactly the same thing as OP_Rewind except that
4200** it increments an undocumented global variable used for testing.
4201**
4202** Sorting is accomplished by writing records into a sorting index,
4203** then rewinding that index and playing it back from beginning to
4204** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4205** rewinding so that the global variable will be incremented and
4206** regression tests can determine whether or not the optimizer is
4207** correctly optimizing out sorts.
4208*/
4209case OP_Sort: {        /* jump */
4210#ifdef SQLITE_TEST
4211  sqlite3_sort_count++;
4212  sqlite3_search_count--;
4213#endif
4214  p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
4215  /* Fall through into OP_Rewind */
4216}
4217/* Opcode: Rewind P1 P2 * * *
4218**
4219** The next use of the Rowid or Column or Next instruction for P1
4220** will refer to the first entry in the database table or index.
4221** If the table or index is empty and P2>0, then jump immediately to P2.
4222** If P2 is 0 or if the table or index is not empty, fall through
4223** to the following instruction.
4224*/
4225case OP_Rewind: {        /* jump */
4226  VdbeCursor *pC;
4227  BtCursor *pCrsr;
4228  int res;
4229
4230  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4231  pC = p->apCsr[pOp->p1];
4232  assert( pC!=0 );
4233  res = 1;
4234  if( (pCrsr = pC->pCursor)!=0 ){
4235    rc = sqlite3BtreeFirst(pCrsr, &res);
4236    pC->atFirst = res==0 ?1:0;
4237    pC->deferredMoveto = 0;
4238    pC->cacheStatus = CACHE_STALE;
4239    pC->rowidIsValid = 0;
4240  }
4241  pC->nullRow = (u8)res;
4242  assert( pOp->p2>0 && pOp->p2<p->nOp );
4243  if( res ){
4244    pc = pOp->p2 - 1;
4245  }
4246  break;
4247}
4248
4249/* Opcode: Next P1 P2 * * P5
4250**
4251** Advance cursor P1 so that it points to the next key/data pair in its
4252** table or index.  If there are no more key/value pairs then fall through
4253** to the following instruction.  But if the cursor advance was successful,
4254** jump immediately to P2.
4255**
4256** The P1 cursor must be for a real table, not a pseudo-table.
4257**
4258** If P5 is positive and the jump is taken, then event counter
4259** number P5-1 in the prepared statement is incremented.
4260**
4261** See also: Prev
4262*/
4263/* Opcode: Prev P1 P2 * * P5
4264**
4265** Back up cursor P1 so that it points to the previous key/data pair in its
4266** table or index.  If there is no previous key/value pairs then fall through
4267** to the following instruction.  But if the cursor backup was successful,
4268** jump immediately to P2.
4269**
4270** The P1 cursor must be for a real table, not a pseudo-table.
4271**
4272** If P5 is positive and the jump is taken, then event counter
4273** number P5-1 in the prepared statement is incremented.
4274*/
4275case OP_Prev:          /* jump */
4276case OP_Next: {        /* jump */
4277  VdbeCursor *pC;
4278  BtCursor *pCrsr;
4279  int res;
4280
4281  CHECK_FOR_INTERRUPT;
4282  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4283  assert( pOp->p5<=ArraySize(p->aCounter) );
4284  pC = p->apCsr[pOp->p1];
4285  if( pC==0 ){
4286    break;  /* See ticket #2273 */
4287  }
4288  pCrsr = pC->pCursor;
4289  if( pCrsr==0 ){
4290    pC->nullRow = 1;
4291    break;
4292  }
4293  res = 1;
4294  assert( pC->deferredMoveto==0 );
4295  rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
4296                              sqlite3BtreePrevious(pCrsr, &res);
4297  pC->nullRow = (u8)res;
4298  pC->cacheStatus = CACHE_STALE;
4299  if( res==0 ){
4300    pc = pOp->p2 - 1;
4301    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
4302#ifdef SQLITE_TEST
4303    sqlite3_search_count++;
4304#endif
4305  }
4306  pC->rowidIsValid = 0;
4307  break;
4308}
4309
4310/* Opcode: IdxInsert P1 P2 P3 * P5
4311**
4312** Register P2 holds a SQL index key made using the
4313** MakeRecord instructions.  This opcode writes that key
4314** into the index P1.  Data for the entry is nil.
4315**
4316** P3 is a flag that provides a hint to the b-tree layer that this
4317** insert is likely to be an append.
4318**
4319** This instruction only works for indices.  The equivalent instruction
4320** for tables is OP_Insert.
4321*/
4322case OP_IdxInsert: {        /* in2 */
4323  VdbeCursor *pC;
4324  BtCursor *pCrsr;
4325  int nKey;
4326  const char *zKey;
4327
4328  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4329  pC = p->apCsr[pOp->p1];
4330  assert( pC!=0 );
4331  pIn2 = &aMem[pOp->p2];
4332  assert( pIn2->flags & MEM_Blob );
4333  pCrsr = pC->pCursor;
4334  if( ALWAYS(pCrsr!=0) ){
4335    assert( pC->isTable==0 );
4336    rc = ExpandBlob(pIn2);
4337    if( rc==SQLITE_OK ){
4338      nKey = pIn2->n;
4339      zKey = pIn2->z;
4340      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4341          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4342      );
4343      assert( pC->deferredMoveto==0 );
4344      pC->cacheStatus = CACHE_STALE;
4345    }
4346  }
4347  break;
4348}
4349
4350/* Opcode: IdxDelete P1 P2 P3 * *
4351**
4352** The content of P3 registers starting at register P2 form
4353** an unpacked index key. This opcode removes that entry from the
4354** index opened by cursor P1.
4355*/
4356case OP_IdxDelete: {
4357  VdbeCursor *pC;
4358  BtCursor *pCrsr;
4359  int res;
4360  UnpackedRecord r;
4361
4362  assert( pOp->p3>0 );
4363  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
4364  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4365  pC = p->apCsr[pOp->p1];
4366  assert( pC!=0 );
4367  pCrsr = pC->pCursor;
4368  if( ALWAYS(pCrsr!=0) ){
4369    r.pKeyInfo = pC->pKeyInfo;
4370    r.nField = (u16)pOp->p3;
4371    r.flags = 0;
4372    r.aMem = &aMem[pOp->p2];
4373#ifdef SQLITE_DEBUG
4374    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4375#endif
4376    rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4377    if( rc==SQLITE_OK && res==0 ){
4378      rc = sqlite3BtreeDelete(pCrsr);
4379    }
4380    assert( pC->deferredMoveto==0 );
4381    pC->cacheStatus = CACHE_STALE;
4382  }
4383  break;
4384}
4385
4386/* Opcode: IdxRowid P1 P2 * * *
4387**
4388** Write into register P2 an integer which is the last entry in the record at
4389** the end of the index key pointed to by cursor P1.  This integer should be
4390** the rowid of the table entry to which this index entry points.
4391**
4392** See also: Rowid, MakeRecord.
4393*/
4394case OP_IdxRowid: {              /* out2-prerelease */
4395  BtCursor *pCrsr;
4396  VdbeCursor *pC;
4397  i64 rowid;
4398
4399  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4400  pC = p->apCsr[pOp->p1];
4401  assert( pC!=0 );
4402  pCrsr = pC->pCursor;
4403  pOut->flags = MEM_Null;
4404  if( ALWAYS(pCrsr!=0) ){
4405    rc = sqlite3VdbeCursorMoveto(pC);
4406    if( NEVER(rc) ) goto abort_due_to_error;
4407    assert( pC->deferredMoveto==0 );
4408    assert( pC->isTable==0 );
4409    if( !pC->nullRow ){
4410      rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4411      if( rc!=SQLITE_OK ){
4412        goto abort_due_to_error;
4413      }
4414      pOut->u.i = rowid;
4415      pOut->flags = MEM_Int;
4416    }
4417  }
4418  break;
4419}
4420
4421/* Opcode: IdxGE P1 P2 P3 P4 P5
4422**
4423** The P4 register values beginning with P3 form an unpacked index
4424** key that omits the ROWID.  Compare this key value against the index
4425** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4426**
4427** If the P1 index entry is greater than or equal to the key value
4428** then jump to P2.  Otherwise fall through to the next instruction.
4429**
4430** If P5 is non-zero then the key value is increased by an epsilon
4431** prior to the comparison.  This make the opcode work like IdxGT except
4432** that if the key from register P3 is a prefix of the key in the cursor,
4433** the result is false whereas it would be true with IdxGT.
4434*/
4435/* Opcode: IdxLT P1 P2 P3 P4 P5
4436**
4437** The P4 register values beginning with P3 form an unpacked index
4438** key that omits the ROWID.  Compare this key value against the index
4439** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4440**
4441** If the P1 index entry is less than the key value then jump to P2.
4442** Otherwise fall through to the next instruction.
4443**
4444** If P5 is non-zero then the key value is increased by an epsilon prior
4445** to the comparison.  This makes the opcode work like IdxLE.
4446*/
4447case OP_IdxLT:          /* jump */
4448case OP_IdxGE: {        /* jump */
4449  VdbeCursor *pC;
4450  int res;
4451  UnpackedRecord r;
4452
4453  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4454  pC = p->apCsr[pOp->p1];
4455  assert( pC!=0 );
4456  assert( pC->isOrdered );
4457  if( ALWAYS(pC->pCursor!=0) ){
4458    assert( pC->deferredMoveto==0 );
4459    assert( pOp->p5==0 || pOp->p5==1 );
4460    assert( pOp->p4type==P4_INT32 );
4461    r.pKeyInfo = pC->pKeyInfo;
4462    r.nField = (u16)pOp->p4.i;
4463    if( pOp->p5 ){
4464      r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4465    }else{
4466      r.flags = UNPACKED_IGNORE_ROWID;
4467    }
4468    r.aMem = &aMem[pOp->p3];
4469#ifdef SQLITE_DEBUG
4470    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4471#endif
4472    rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4473    if( pOp->opcode==OP_IdxLT ){
4474      res = -res;
4475    }else{
4476      assert( pOp->opcode==OP_IdxGE );
4477      res++;
4478    }
4479    if( res>0 ){
4480      pc = pOp->p2 - 1 ;
4481    }
4482  }
4483  break;
4484}
4485
4486/* Opcode: Destroy P1 P2 P3 * *
4487**
4488** Delete an entire database table or index whose root page in the database
4489** file is given by P1.
4490**
4491** The table being destroyed is in the main database file if P3==0.  If
4492** P3==1 then the table to be clear is in the auxiliary database file
4493** that is used to store tables create using CREATE TEMPORARY TABLE.
4494**
4495** If AUTOVACUUM is enabled then it is possible that another root page
4496** might be moved into the newly deleted root page in order to keep all
4497** root pages contiguous at the beginning of the database.  The former
4498** value of the root page that moved - its value before the move occurred -
4499** is stored in register P2.  If no page
4500** movement was required (because the table being dropped was already
4501** the last one in the database) then a zero is stored in register P2.
4502** If AUTOVACUUM is disabled then a zero is stored in register P2.
4503**
4504** See also: Clear
4505*/
4506case OP_Destroy: {     /* out2-prerelease */
4507  int iMoved;
4508  int iCnt;
4509  Vdbe *pVdbe;
4510  int iDb;
4511#ifndef SQLITE_OMIT_VIRTUALTABLE
4512  iCnt = 0;
4513  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4514    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4515      iCnt++;
4516    }
4517  }
4518#else
4519  iCnt = db->activeVdbeCnt;
4520#endif
4521  pOut->flags = MEM_Null;
4522  if( iCnt>1 ){
4523    rc = SQLITE_LOCKED;
4524    p->errorAction = OE_Abort;
4525  }else{
4526    iDb = pOp->p3;
4527    assert( iCnt==1 );
4528    assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
4529    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4530    pOut->flags = MEM_Int;
4531    pOut->u.i = iMoved;
4532#ifndef SQLITE_OMIT_AUTOVACUUM
4533    if( rc==SQLITE_OK && iMoved!=0 ){
4534      sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4535      /* All OP_Destroy operations occur on the same btree */
4536      assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4537      resetSchemaOnFault = iDb+1;
4538    }
4539#endif
4540  }
4541  break;
4542}
4543
4544/* Opcode: Clear P1 P2 P3
4545**
4546** Delete all contents of the database table or index whose root page
4547** in the database file is given by P1.  But, unlike Destroy, do not
4548** remove the table or index from the database file.
4549**
4550** The table being clear is in the main database file if P2==0.  If
4551** P2==1 then the table to be clear is in the auxiliary database file
4552** that is used to store tables create using CREATE TEMPORARY TABLE.
4553**
4554** If the P3 value is non-zero, then the table referred to must be an
4555** intkey table (an SQL table, not an index). In this case the row change
4556** count is incremented by the number of rows in the table being cleared.
4557** If P3 is greater than zero, then the value stored in register P3 is
4558** also incremented by the number of rows in the table being cleared.
4559**
4560** See also: Destroy
4561*/
4562case OP_Clear: {
4563  int nChange;
4564
4565  nChange = 0;
4566  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
4567  rc = sqlite3BtreeClearTable(
4568      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4569  );
4570  if( pOp->p3 ){
4571    p->nChange += nChange;
4572    if( pOp->p3>0 ){
4573      assert( memIsValid(&aMem[pOp->p3]) );
4574      memAboutToChange(p, &aMem[pOp->p3]);
4575      aMem[pOp->p3].u.i += nChange;
4576    }
4577  }
4578  break;
4579}
4580
4581/* Opcode: CreateTable P1 P2 * * *
4582**
4583** Allocate a new table in the main database file if P1==0 or in the
4584** auxiliary database file if P1==1 or in an attached database if
4585** P1>1.  Write the root page number of the new table into
4586** register P2
4587**
4588** The difference between a table and an index is this:  A table must
4589** have a 4-byte integer key and can have arbitrary data.  An index
4590** has an arbitrary key but no data.
4591**
4592** See also: CreateIndex
4593*/
4594/* Opcode: CreateIndex P1 P2 * * *
4595**
4596** Allocate a new index in the main database file if P1==0 or in the
4597** auxiliary database file if P1==1 or in an attached database if
4598** P1>1.  Write the root page number of the new table into
4599** register P2.
4600**
4601** See documentation on OP_CreateTable for additional information.
4602*/
4603case OP_CreateIndex:            /* out2-prerelease */
4604case OP_CreateTable: {          /* out2-prerelease */
4605  int pgno;
4606  int flags;
4607  Db *pDb;
4608
4609  pgno = 0;
4610  assert( pOp->p1>=0 && pOp->p1<db->nDb );
4611  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
4612  pDb = &db->aDb[pOp->p1];
4613  assert( pDb->pBt!=0 );
4614  if( pOp->opcode==OP_CreateTable ){
4615    /* flags = BTREE_INTKEY; */
4616    flags = BTREE_INTKEY;
4617  }else{
4618    flags = BTREE_BLOBKEY;
4619  }
4620  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4621  pOut->u.i = pgno;
4622  break;
4623}
4624
4625/* Opcode: ParseSchema P1 * * P4 *
4626**
4627** Read and parse all entries from the SQLITE_MASTER table of database P1
4628** that match the WHERE clause P4.
4629**
4630** This opcode invokes the parser to create a new virtual machine,
4631** then runs the new virtual machine.  It is thus a re-entrant opcode.
4632*/
4633case OP_ParseSchema: {
4634  int iDb;
4635  const char *zMaster;
4636  char *zSql;
4637  InitData initData;
4638
4639  /* Any prepared statement that invokes this opcode will hold mutexes
4640  ** on every btree.  This is a prerequisite for invoking
4641  ** sqlite3InitCallback().
4642  */
4643#ifdef SQLITE_DEBUG
4644  for(iDb=0; iDb<db->nDb; iDb++){
4645    assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4646  }
4647#endif
4648
4649  iDb = pOp->p1;
4650  assert( iDb>=0 && iDb<db->nDb );
4651  assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
4652  /* Used to be a conditional */ {
4653    zMaster = SCHEMA_TABLE(iDb);
4654    initData.db = db;
4655    initData.iDb = pOp->p1;
4656    initData.pzErrMsg = &p->zErrMsg;
4657    zSql = sqlite3MPrintf(db,
4658       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4659       db->aDb[iDb].zName, zMaster, pOp->p4.z);
4660    if( zSql==0 ){
4661      rc = SQLITE_NOMEM;
4662    }else{
4663      assert( db->init.busy==0 );
4664      db->init.busy = 1;
4665      initData.rc = SQLITE_OK;
4666      assert( !db->mallocFailed );
4667      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4668      if( rc==SQLITE_OK ) rc = initData.rc;
4669      sqlite3DbFree(db, zSql);
4670      db->init.busy = 0;
4671    }
4672  }
4673  if( rc==SQLITE_NOMEM ){
4674    goto no_mem;
4675  }
4676  break;
4677}
4678
4679#if !defined(SQLITE_OMIT_ANALYZE)
4680/* Opcode: LoadAnalysis P1 * * * *
4681**
4682** Read the sqlite_stat1 table for database P1 and load the content
4683** of that table into the internal index hash table.  This will cause
4684** the analysis to be used when preparing all subsequent queries.
4685*/
4686case OP_LoadAnalysis: {
4687  assert( pOp->p1>=0 && pOp->p1<db->nDb );
4688  rc = sqlite3AnalysisLoad(db, pOp->p1);
4689  break;
4690}
4691#endif /* !defined(SQLITE_OMIT_ANALYZE) */
4692
4693/* Opcode: DropTable P1 * * P4 *
4694**
4695** Remove the internal (in-memory) data structures that describe
4696** the table named P4 in database P1.  This is called after a table
4697** is dropped in order to keep the internal representation of the
4698** schema consistent with what is on disk.
4699*/
4700case OP_DropTable: {
4701  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4702  break;
4703}
4704
4705/* Opcode: DropIndex P1 * * P4 *
4706**
4707** Remove the internal (in-memory) data structures that describe
4708** the index named P4 in database P1.  This is called after an index
4709** is dropped in order to keep the internal representation of the
4710** schema consistent with what is on disk.
4711*/
4712case OP_DropIndex: {
4713  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4714  break;
4715}
4716
4717/* Opcode: DropTrigger P1 * * P4 *
4718**
4719** Remove the internal (in-memory) data structures that describe
4720** the trigger named P4 in database P1.  This is called after a trigger
4721** is dropped in order to keep the internal representation of the
4722** schema consistent with what is on disk.
4723*/
4724case OP_DropTrigger: {
4725  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4726  break;
4727}
4728
4729
4730#ifndef SQLITE_OMIT_INTEGRITY_CHECK
4731/* Opcode: IntegrityCk P1 P2 P3 * P5
4732**
4733** Do an analysis of the currently open database.  Store in
4734** register P1 the text of an error message describing any problems.
4735** If no problems are found, store a NULL in register P1.
4736**
4737** The register P3 contains the maximum number of allowed errors.
4738** At most reg(P3) errors will be reported.
4739** In other words, the analysis stops as soon as reg(P1) errors are
4740** seen.  Reg(P1) is updated with the number of errors remaining.
4741**
4742** The root page numbers of all tables in the database are integer
4743** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
4744** total.
4745**
4746** If P5 is not zero, the check is done on the auxiliary database
4747** file, not the main database file.
4748**
4749** This opcode is used to implement the integrity_check pragma.
4750*/
4751case OP_IntegrityCk: {
4752  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
4753  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
4754  int j;          /* Loop counter */
4755  int nErr;       /* Number of errors reported */
4756  char *z;        /* Text of the error report */
4757  Mem *pnErr;     /* Register keeping track of errors remaining */
4758
4759  nRoot = pOp->p2;
4760  assert( nRoot>0 );
4761  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
4762  if( aRoot==0 ) goto no_mem;
4763  assert( pOp->p3>0 && pOp->p3<=p->nMem );
4764  pnErr = &aMem[pOp->p3];
4765  assert( (pnErr->flags & MEM_Int)!=0 );
4766  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
4767  pIn1 = &aMem[pOp->p1];
4768  for(j=0; j<nRoot; j++){
4769    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
4770  }
4771  aRoot[j] = 0;
4772  assert( pOp->p5<db->nDb );
4773  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
4774  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
4775                                 (int)pnErr->u.i, &nErr);
4776  sqlite3DbFree(db, aRoot);
4777  pnErr->u.i -= nErr;
4778  sqlite3VdbeMemSetNull(pIn1);
4779  if( nErr==0 ){
4780    assert( z==0 );
4781  }else if( z==0 ){
4782    goto no_mem;
4783  }else{
4784    sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
4785  }
4786  UPDATE_MAX_BLOBSIZE(pIn1);
4787  sqlite3VdbeChangeEncoding(pIn1, encoding);
4788  break;
4789}
4790#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4791
4792/* Opcode: RowSetAdd P1 P2 * * *
4793**
4794** Insert the integer value held by register P2 into a boolean index
4795** held in register P1.
4796**
4797** An assertion fails if P2 is not an integer.
4798*/
4799case OP_RowSetAdd: {       /* in1, in2 */
4800  pIn1 = &aMem[pOp->p1];
4801  pIn2 = &aMem[pOp->p2];
4802  assert( (pIn2->flags & MEM_Int)!=0 );
4803  if( (pIn1->flags & MEM_RowSet)==0 ){
4804    sqlite3VdbeMemSetRowSet(pIn1);
4805    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
4806  }
4807  sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
4808  break;
4809}
4810
4811/* Opcode: RowSetRead P1 P2 P3 * *
4812**
4813** Extract the smallest value from boolean index P1 and put that value into
4814** register P3.  Or, if boolean index P1 is initially empty, leave P3
4815** unchanged and jump to instruction P2.
4816*/
4817case OP_RowSetRead: {       /* jump, in1, out3 */
4818  i64 val;
4819  CHECK_FOR_INTERRUPT;
4820  pIn1 = &aMem[pOp->p1];
4821  if( (pIn1->flags & MEM_RowSet)==0
4822   || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
4823  ){
4824    /* The boolean index is empty */
4825    sqlite3VdbeMemSetNull(pIn1);
4826    pc = pOp->p2 - 1;
4827  }else{
4828    /* A value was pulled from the index */
4829    sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
4830  }
4831  break;
4832}
4833
4834/* Opcode: RowSetTest P1 P2 P3 P4
4835**
4836** Register P3 is assumed to hold a 64-bit integer value. If register P1
4837** contains a RowSet object and that RowSet object contains
4838** the value held in P3, jump to register P2. Otherwise, insert the
4839** integer in P3 into the RowSet and continue on to the
4840** next opcode.
4841**
4842** The RowSet object is optimized for the case where successive sets
4843** of integers, where each set contains no duplicates. Each set
4844** of values is identified by a unique P4 value. The first set
4845** must have P4==0, the final set P4=-1.  P4 must be either -1 or
4846** non-negative.  For non-negative values of P4 only the lower 4
4847** bits are significant.
4848**
4849** This allows optimizations: (a) when P4==0 there is no need to test
4850** the rowset object for P3, as it is guaranteed not to contain it,
4851** (b) when P4==-1 there is no need to insert the value, as it will
4852** never be tested for, and (c) when a value that is part of set X is
4853** inserted, there is no need to search to see if the same value was
4854** previously inserted as part of set X (only if it was previously
4855** inserted as part of some other set).
4856*/
4857case OP_RowSetTest: {                     /* jump, in1, in3 */
4858  int iSet;
4859  int exists;
4860
4861  pIn1 = &aMem[pOp->p1];
4862  pIn3 = &aMem[pOp->p3];
4863  iSet = pOp->p4.i;
4864  assert( pIn3->flags&MEM_Int );
4865
4866  /* If there is anything other than a rowset object in memory cell P1,
4867  ** delete it now and initialize P1 with an empty rowset
4868  */
4869  if( (pIn1->flags & MEM_RowSet)==0 ){
4870    sqlite3VdbeMemSetRowSet(pIn1);
4871    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
4872  }
4873
4874  assert( pOp->p4type==P4_INT32 );
4875  assert( iSet==-1 || iSet>=0 );
4876  if( iSet ){
4877    exists = sqlite3RowSetTest(pIn1->u.pRowSet,
4878                               (u8)(iSet>=0 ? iSet & 0xf : 0xff),
4879                               pIn3->u.i);
4880    if( exists ){
4881      pc = pOp->p2 - 1;
4882      break;
4883    }
4884  }
4885  if( iSet>=0 ){
4886    sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
4887  }
4888  break;
4889}
4890
4891
4892#ifndef SQLITE_OMIT_TRIGGER
4893
4894/* Opcode: Program P1 P2 P3 P4 *
4895**
4896** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
4897**
4898** P1 contains the address of the memory cell that contains the first memory
4899** cell in an array of values used as arguments to the sub-program. P2
4900** contains the address to jump to if the sub-program throws an IGNORE
4901** exception using the RAISE() function. Register P3 contains the address
4902** of a memory cell in this (the parent) VM that is used to allocate the
4903** memory required by the sub-vdbe at runtime.
4904**
4905** P4 is a pointer to the VM containing the trigger program.
4906*/
4907case OP_Program: {        /* jump */
4908  int nMem;               /* Number of memory registers for sub-program */
4909  int nByte;              /* Bytes of runtime space required for sub-program */
4910  Mem *pRt;               /* Register to allocate runtime space */
4911  Mem *pMem;              /* Used to iterate through memory cells */
4912  Mem *pEnd;              /* Last memory cell in new array */
4913  VdbeFrame *pFrame;      /* New vdbe frame to execute in */
4914  SubProgram *pProgram;   /* Sub-program to execute */
4915  void *t;                /* Token identifying trigger */
4916
4917  pProgram = pOp->p4.pProgram;
4918  pRt = &aMem[pOp->p3];
4919  assert( memIsValid(pRt) );
4920  assert( pProgram->nOp>0 );
4921
4922  /* If the p5 flag is clear, then recursive invocation of triggers is
4923  ** disabled for backwards compatibility (p5 is set if this sub-program
4924  ** is really a trigger, not a foreign key action, and the flag set
4925  ** and cleared by the "PRAGMA recursive_triggers" command is clear).
4926  **
4927  ** It is recursive invocation of triggers, at the SQL level, that is
4928  ** disabled. In some cases a single trigger may generate more than one
4929  ** SubProgram (if the trigger may be executed with more than one different
4930  ** ON CONFLICT algorithm). SubProgram structures associated with a
4931  ** single trigger all have the same value for the SubProgram.token
4932  ** variable.  */
4933  if( pOp->p5 ){
4934    t = pProgram->token;
4935    for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
4936    if( pFrame ) break;
4937  }
4938
4939  if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
4940    rc = SQLITE_ERROR;
4941    sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
4942    break;
4943  }
4944
4945  /* Register pRt is used to store the memory required to save the state
4946  ** of the current program, and the memory required at runtime to execute
4947  ** the trigger program. If this trigger has been fired before, then pRt
4948  ** is already allocated. Otherwise, it must be initialized.  */
4949  if( (pRt->flags&MEM_Frame)==0 ){
4950    /* SubProgram.nMem is set to the number of memory cells used by the
4951    ** program stored in SubProgram.aOp. As well as these, one memory
4952    ** cell is required for each cursor used by the program. Set local
4953    ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4954    */
4955    nMem = pProgram->nMem + pProgram->nCsr;
4956    nByte = ROUND8(sizeof(VdbeFrame))
4957              + nMem * sizeof(Mem)
4958              + pProgram->nCsr * sizeof(VdbeCursor *);
4959    pFrame = sqlite3DbMallocZero(db, nByte);
4960    if( !pFrame ){
4961      goto no_mem;
4962    }
4963    sqlite3VdbeMemRelease(pRt);
4964    pRt->flags = MEM_Frame;
4965    pRt->u.pFrame = pFrame;
4966
4967    pFrame->v = p;
4968    pFrame->nChildMem = nMem;
4969    pFrame->nChildCsr = pProgram->nCsr;
4970    pFrame->pc = pc;
4971    pFrame->aMem = p->aMem;
4972    pFrame->nMem = p->nMem;
4973    pFrame->apCsr = p->apCsr;
4974    pFrame->nCursor = p->nCursor;
4975    pFrame->aOp = p->aOp;
4976    pFrame->nOp = p->nOp;
4977    pFrame->token = pProgram->token;
4978
4979    pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
4980    for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
4981      pMem->flags = MEM_Null;
4982      pMem->db = db;
4983    }
4984  }else{
4985    pFrame = pRt->u.pFrame;
4986    assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
4987    assert( pProgram->nCsr==pFrame->nChildCsr );
4988    assert( pc==pFrame->pc );
4989  }
4990
4991  p->nFrame++;
4992  pFrame->pParent = p->pFrame;
4993  pFrame->lastRowid = db->lastRowid;
4994  pFrame->nChange = p->nChange;
4995  p->nChange = 0;
4996  p->pFrame = pFrame;
4997  p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
4998  p->nMem = pFrame->nChildMem;
4999  p->nCursor = (u16)pFrame->nChildCsr;
5000  p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5001  p->aOp = aOp = pProgram->aOp;
5002  p->nOp = pProgram->nOp;
5003  pc = -1;
5004
5005  break;
5006}
5007
5008/* Opcode: Param P1 P2 * * *
5009**
5010** This opcode is only ever present in sub-programs called via the
5011** OP_Program instruction. Copy a value currently stored in a memory
5012** cell of the calling (parent) frame to cell P2 in the current frames
5013** address space. This is used by trigger programs to access the new.*
5014** and old.* values.
5015**
5016** The address of the cell in the parent frame is determined by adding
5017** the value of the P1 argument to the value of the P1 argument to the
5018** calling OP_Program instruction.
5019*/
5020case OP_Param: {           /* out2-prerelease */
5021  VdbeFrame *pFrame;
5022  Mem *pIn;
5023  pFrame = p->pFrame;
5024  pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5025  sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5026  break;
5027}
5028
5029#endif /* #ifndef SQLITE_OMIT_TRIGGER */
5030
5031#ifndef SQLITE_OMIT_FOREIGN_KEY
5032/* Opcode: FkCounter P1 P2 * * *
5033**
5034** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5035** If P1 is non-zero, the database constraint counter is incremented
5036** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5037** statement counter is incremented (immediate foreign key constraints).
5038*/
5039case OP_FkCounter: {
5040  if( pOp->p1 ){
5041    db->nDeferredCons += pOp->p2;
5042  }else{
5043    p->nFkConstraint += pOp->p2;
5044  }
5045  break;
5046}
5047
5048/* Opcode: FkIfZero P1 P2 * * *
5049**
5050** This opcode tests if a foreign key constraint-counter is currently zero.
5051** If so, jump to instruction P2. Otherwise, fall through to the next
5052** instruction.
5053**
5054** If P1 is non-zero, then the jump is taken if the database constraint-counter
5055** is zero (the one that counts deferred constraint violations). If P1 is
5056** zero, the jump is taken if the statement constraint-counter is zero
5057** (immediate foreign key constraint violations).
5058*/
5059case OP_FkIfZero: {         /* jump */
5060  if( pOp->p1 ){
5061    if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5062  }else{
5063    if( p->nFkConstraint==0 ) pc = pOp->p2-1;
5064  }
5065  break;
5066}
5067#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5068
5069#ifndef SQLITE_OMIT_AUTOINCREMENT
5070/* Opcode: MemMax P1 P2 * * *
5071**
5072** P1 is a register in the root frame of this VM (the root frame is
5073** different from the current frame if this instruction is being executed
5074** within a sub-program). Set the value of register P1 to the maximum of
5075** its current value and the value in register P2.
5076**
5077** This instruction throws an error if the memory cell is not initially
5078** an integer.
5079*/
5080case OP_MemMax: {        /* in2 */
5081  Mem *pIn1;
5082  VdbeFrame *pFrame;
5083  if( p->pFrame ){
5084    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5085    pIn1 = &pFrame->aMem[pOp->p1];
5086  }else{
5087    pIn1 = &aMem[pOp->p1];
5088  }
5089  assert( memIsValid(pIn1) );
5090  sqlite3VdbeMemIntegerify(pIn1);
5091  pIn2 = &aMem[pOp->p2];
5092  sqlite3VdbeMemIntegerify(pIn2);
5093  if( pIn1->u.i<pIn2->u.i){
5094    pIn1->u.i = pIn2->u.i;
5095  }
5096  break;
5097}
5098#endif /* SQLITE_OMIT_AUTOINCREMENT */
5099
5100/* Opcode: IfPos P1 P2 * * *
5101**
5102** If the value of register P1 is 1 or greater, jump to P2.
5103**
5104** It is illegal to use this instruction on a register that does
5105** not contain an integer.  An assertion fault will result if you try.
5106*/
5107case OP_IfPos: {        /* jump, in1 */
5108  pIn1 = &aMem[pOp->p1];
5109  assert( pIn1->flags&MEM_Int );
5110  if( pIn1->u.i>0 ){
5111     pc = pOp->p2 - 1;
5112  }
5113  break;
5114}
5115
5116/* Opcode: IfNeg P1 P2 * * *
5117**
5118** If the value of register P1 is less than zero, jump to P2.
5119**
5120** It is illegal to use this instruction on a register that does
5121** not contain an integer.  An assertion fault will result if you try.
5122*/
5123case OP_IfNeg: {        /* jump, in1 */
5124  pIn1 = &aMem[pOp->p1];
5125  assert( pIn1->flags&MEM_Int );
5126  if( pIn1->u.i<0 ){
5127     pc = pOp->p2 - 1;
5128  }
5129  break;
5130}
5131
5132/* Opcode: IfZero P1 P2 P3 * *
5133**
5134** The register P1 must contain an integer.  Add literal P3 to the
5135** value in register P1.  If the result is exactly 0, jump to P2.
5136**
5137** It is illegal to use this instruction on a register that does
5138** not contain an integer.  An assertion fault will result if you try.
5139*/
5140case OP_IfZero: {        /* jump, in1 */
5141  pIn1 = &aMem[pOp->p1];
5142  assert( pIn1->flags&MEM_Int );
5143  pIn1->u.i += pOp->p3;
5144  if( pIn1->u.i==0 ){
5145     pc = pOp->p2 - 1;
5146  }
5147  break;
5148}
5149
5150/* Opcode: AggStep * P2 P3 P4 P5
5151**
5152** Execute the step function for an aggregate.  The
5153** function has P5 arguments.   P4 is a pointer to the FuncDef
5154** structure that specifies the function.  Use register
5155** P3 as the accumulator.
5156**
5157** The P5 arguments are taken from register P2 and its
5158** successors.
5159*/
5160case OP_AggStep: {
5161  int n;
5162  int i;
5163  Mem *pMem;
5164  Mem *pRec;
5165  sqlite3_context ctx;
5166  sqlite3_value **apVal;
5167
5168  n = pOp->p5;
5169  assert( n>=0 );
5170  pRec = &aMem[pOp->p2];
5171  apVal = p->apArg;
5172  assert( apVal || n==0 );
5173  for(i=0; i<n; i++, pRec++){
5174    assert( memIsValid(pRec) );
5175    apVal[i] = pRec;
5176    memAboutToChange(p, pRec);
5177    sqlite3VdbeMemStoreType(pRec);
5178  }
5179  ctx.pFunc = pOp->p4.pFunc;
5180  assert( pOp->p3>0 && pOp->p3<=p->nMem );
5181  ctx.pMem = pMem = &aMem[pOp->p3];
5182  pMem->n++;
5183  ctx.s.flags = MEM_Null;
5184  ctx.s.z = 0;
5185  ctx.s.zMalloc = 0;
5186  ctx.s.xDel = 0;
5187  ctx.s.db = db;
5188  ctx.isError = 0;
5189  ctx.pColl = 0;
5190  if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
5191    assert( pOp>p->aOp );
5192    assert( pOp[-1].p4type==P4_COLLSEQ );
5193    assert( pOp[-1].opcode==OP_CollSeq );
5194    ctx.pColl = pOp[-1].p4.pColl;
5195  }
5196  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
5197  if( ctx.isError ){
5198    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
5199    rc = ctx.isError;
5200  }
5201
5202  sqlite3VdbeMemRelease(&ctx.s);
5203
5204  break;
5205}
5206
5207/* Opcode: AggFinal P1 P2 * P4 *
5208**
5209** Execute the finalizer function for an aggregate.  P1 is
5210** the memory location that is the accumulator for the aggregate.
5211**
5212** P2 is the number of arguments that the step function takes and
5213** P4 is a pointer to the FuncDef for this function.  The P2
5214** argument is not used by this opcode.  It is only there to disambiguate
5215** functions that can take varying numbers of arguments.  The
5216** P4 argument is only needed for the degenerate case where
5217** the step function was not previously called.
5218*/
5219case OP_AggFinal: {
5220  Mem *pMem;
5221  assert( pOp->p1>0 && pOp->p1<=p->nMem );
5222  pMem = &aMem[pOp->p1];
5223  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5224  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5225  if( rc ){
5226    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5227  }
5228  sqlite3VdbeChangeEncoding(pMem, encoding);
5229  UPDATE_MAX_BLOBSIZE(pMem);
5230  if( sqlite3VdbeMemTooBig(pMem) ){
5231    goto too_big;
5232  }
5233  break;
5234}
5235
5236#ifndef SQLITE_OMIT_WAL
5237/* Opcode: Checkpoint P1 P2 P3 * *
5238**
5239** Checkpoint database P1. This is a no-op if P1 is not currently in
5240** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5241** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
5242** SQLITE_BUSY or not, respectively.  Write the number of pages in the
5243** WAL after the checkpoint into mem[P3+1] and the number of pages
5244** in the WAL that have been checkpointed after the checkpoint
5245** completes into mem[P3+2].  However on an error, mem[P3+1] and
5246** mem[P3+2] are initialized to -1.
5247*/
5248case OP_Checkpoint: {
5249  int i;                          /* Loop counter */
5250  int aRes[3];                    /* Results */
5251  Mem *pMem;                      /* Write results here */
5252
5253  aRes[0] = 0;
5254  aRes[1] = aRes[2] = -1;
5255  assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5256       || pOp->p2==SQLITE_CHECKPOINT_FULL
5257       || pOp->p2==SQLITE_CHECKPOINT_RESTART
5258  );
5259  rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5260  if( rc==SQLITE_BUSY ){
5261    rc = SQLITE_OK;
5262    aRes[0] = 1;
5263  }
5264  for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5265    sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5266  }
5267  break;
5268};
5269#endif
5270
5271#ifndef SQLITE_OMIT_PRAGMA
5272/* Opcode: JournalMode P1 P2 P3 * P5
5273**
5274** Change the journal mode of database P1 to P3. P3 must be one of the
5275** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5276** modes (delete, truncate, persist, off and memory), this is a simple
5277** operation. No IO is required.
5278**
5279** If changing into or out of WAL mode the procedure is more complicated.
5280**
5281** Write a string containing the final journal-mode to register P2.
5282*/
5283case OP_JournalMode: {    /* out2-prerelease */
5284  Btree *pBt;                     /* Btree to change journal mode of */
5285  Pager *pPager;                  /* Pager associated with pBt */
5286  int eNew;                       /* New journal mode */
5287  int eOld;                       /* The old journal mode */
5288  const char *zFilename;          /* Name of database file for pPager */
5289
5290  eNew = pOp->p3;
5291  assert( eNew==PAGER_JOURNALMODE_DELETE
5292       || eNew==PAGER_JOURNALMODE_TRUNCATE
5293       || eNew==PAGER_JOURNALMODE_PERSIST
5294       || eNew==PAGER_JOURNALMODE_OFF
5295       || eNew==PAGER_JOURNALMODE_MEMORY
5296       || eNew==PAGER_JOURNALMODE_WAL
5297       || eNew==PAGER_JOURNALMODE_QUERY
5298  );
5299  assert( pOp->p1>=0 && pOp->p1<db->nDb );
5300
5301  pBt = db->aDb[pOp->p1].pBt;
5302  pPager = sqlite3BtreePager(pBt);
5303  eOld = sqlite3PagerGetJournalMode(pPager);
5304  if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5305  if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5306
5307#ifndef SQLITE_OMIT_WAL
5308  zFilename = sqlite3PagerFilename(pPager);
5309
5310  /* Do not allow a transition to journal_mode=WAL for a database
5311  ** in temporary storage or if the VFS does not support shared memory
5312  */
5313  if( eNew==PAGER_JOURNALMODE_WAL
5314   && (zFilename[0]==0                         /* Temp file */
5315       || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
5316  ){
5317    eNew = eOld;
5318  }
5319
5320  if( (eNew!=eOld)
5321   && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5322  ){
5323    if( !db->autoCommit || db->activeVdbeCnt>1 ){
5324      rc = SQLITE_ERROR;
5325      sqlite3SetString(&p->zErrMsg, db,
5326          "cannot change %s wal mode from within a transaction",
5327          (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5328      );
5329      break;
5330    }else{
5331
5332      if( eOld==PAGER_JOURNALMODE_WAL ){
5333        /* If leaving WAL mode, close the log file. If successful, the call
5334        ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5335        ** file. An EXCLUSIVE lock may still be held on the database file
5336        ** after a successful return.
5337        */
5338        rc = sqlite3PagerCloseWal(pPager);
5339        if( rc==SQLITE_OK ){
5340          sqlite3PagerSetJournalMode(pPager, eNew);
5341        }
5342      }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5343        /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
5344        ** as an intermediate */
5345        sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5346      }
5347
5348      /* Open a transaction on the database file. Regardless of the journal
5349      ** mode, this transaction always uses a rollback journal.
5350      */
5351      assert( sqlite3BtreeIsInTrans(pBt)==0 );
5352      if( rc==SQLITE_OK ){
5353        rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5354      }
5355    }
5356  }
5357#endif /* ifndef SQLITE_OMIT_WAL */
5358
5359  if( rc ){
5360    eNew = eOld;
5361  }
5362  eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5363
5364  pOut = &aMem[pOp->p2];
5365  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5366  pOut->z = (char *)sqlite3JournalModename(eNew);
5367  pOut->n = sqlite3Strlen30(pOut->z);
5368  pOut->enc = SQLITE_UTF8;
5369  sqlite3VdbeChangeEncoding(pOut, encoding);
5370  break;
5371};
5372#endif /* SQLITE_OMIT_PRAGMA */
5373
5374#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5375/* Opcode: Vacuum * * * * *
5376**
5377** Vacuum the entire database.  This opcode will cause other virtual
5378** machines to be created and run.  It may not be called from within
5379** a transaction.
5380*/
5381case OP_Vacuum: {
5382  rc = sqlite3RunVacuum(&p->zErrMsg, db);
5383  break;
5384}
5385#endif
5386
5387#if !defined(SQLITE_OMIT_AUTOVACUUM)
5388/* Opcode: IncrVacuum P1 P2 * * *
5389**
5390** Perform a single step of the incremental vacuum procedure on
5391** the P1 database. If the vacuum has finished, jump to instruction
5392** P2. Otherwise, fall through to the next instruction.
5393*/
5394case OP_IncrVacuum: {        /* jump */
5395  Btree *pBt;
5396
5397  assert( pOp->p1>=0 && pOp->p1<db->nDb );
5398  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
5399  pBt = db->aDb[pOp->p1].pBt;
5400  rc = sqlite3BtreeIncrVacuum(pBt);
5401  if( rc==SQLITE_DONE ){
5402    pc = pOp->p2 - 1;
5403    rc = SQLITE_OK;
5404  }
5405  break;
5406}
5407#endif
5408
5409/* Opcode: Expire P1 * * * *
5410**
5411** Cause precompiled statements to become expired. An expired statement
5412** fails with an error code of SQLITE_SCHEMA if it is ever executed
5413** (via sqlite3_step()).
5414**
5415** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5416** then only the currently executing statement is affected.
5417*/
5418case OP_Expire: {
5419  if( !pOp->p1 ){
5420    sqlite3ExpirePreparedStatements(db);
5421  }else{
5422    p->expired = 1;
5423  }
5424  break;
5425}
5426
5427#ifndef SQLITE_OMIT_SHARED_CACHE
5428/* Opcode: TableLock P1 P2 P3 P4 *
5429**
5430** Obtain a lock on a particular table. This instruction is only used when
5431** the shared-cache feature is enabled.
5432**
5433** P1 is the index of the database in sqlite3.aDb[] of the database
5434** on which the lock is acquired.  A readlock is obtained if P3==0 or
5435** a write lock if P3==1.
5436**
5437** P2 contains the root-page of the table to lock.
5438**
5439** P4 contains a pointer to the name of the table being locked. This is only
5440** used to generate an error message if the lock cannot be obtained.
5441*/
5442case OP_TableLock: {
5443  u8 isWriteLock = (u8)pOp->p3;
5444  if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5445    int p1 = pOp->p1;
5446    assert( p1>=0 && p1<db->nDb );
5447    assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
5448    assert( isWriteLock==0 || isWriteLock==1 );
5449    rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5450    if( (rc&0xFF)==SQLITE_LOCKED ){
5451      const char *z = pOp->p4.z;
5452      sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5453    }
5454  }
5455  break;
5456}
5457#endif /* SQLITE_OMIT_SHARED_CACHE */
5458
5459#ifndef SQLITE_OMIT_VIRTUALTABLE
5460/* Opcode: VBegin * * * P4 *
5461**
5462** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5463** xBegin method for that table.
5464**
5465** Also, whether or not P4 is set, check that this is not being called from
5466** within a callback to a virtual table xSync() method. If it is, the error
5467** code will be set to SQLITE_LOCKED.
5468*/
5469case OP_VBegin: {
5470  VTable *pVTab;
5471  pVTab = pOp->p4.pVtab;
5472  rc = sqlite3VtabBegin(db, pVTab);
5473  if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
5474  break;
5475}
5476#endif /* SQLITE_OMIT_VIRTUALTABLE */
5477
5478#ifndef SQLITE_OMIT_VIRTUALTABLE
5479/* Opcode: VCreate P1 * * P4 *
5480**
5481** P4 is the name of a virtual table in database P1. Call the xCreate method
5482** for that table.
5483*/
5484case OP_VCreate: {
5485  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5486  break;
5487}
5488#endif /* SQLITE_OMIT_VIRTUALTABLE */
5489
5490#ifndef SQLITE_OMIT_VIRTUALTABLE
5491/* Opcode: VDestroy P1 * * P4 *
5492**
5493** P4 is the name of a virtual table in database P1.  Call the xDestroy method
5494** of that table.
5495*/
5496case OP_VDestroy: {
5497  p->inVtabMethod = 2;
5498  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5499  p->inVtabMethod = 0;
5500  break;
5501}
5502#endif /* SQLITE_OMIT_VIRTUALTABLE */
5503
5504#ifndef SQLITE_OMIT_VIRTUALTABLE
5505/* Opcode: VOpen P1 * * P4 *
5506**
5507** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5508** P1 is a cursor number.  This opcode opens a cursor to the virtual
5509** table and stores that cursor in P1.
5510*/
5511case OP_VOpen: {
5512  VdbeCursor *pCur;
5513  sqlite3_vtab_cursor *pVtabCursor;
5514  sqlite3_vtab *pVtab;
5515  sqlite3_module *pModule;
5516
5517  pCur = 0;
5518  pVtabCursor = 0;
5519  pVtab = pOp->p4.pVtab->pVtab;
5520  pModule = (sqlite3_module *)pVtab->pModule;
5521  assert(pVtab && pModule);
5522  rc = pModule->xOpen(pVtab, &pVtabCursor);
5523  importVtabErrMsg(p, pVtab);
5524  if( SQLITE_OK==rc ){
5525    /* Initialize sqlite3_vtab_cursor base class */
5526    pVtabCursor->pVtab = pVtab;
5527
5528    /* Initialise vdbe cursor object */
5529    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5530    if( pCur ){
5531      pCur->pVtabCursor = pVtabCursor;
5532      pCur->pModule = pVtabCursor->pVtab->pModule;
5533    }else{
5534      db->mallocFailed = 1;
5535      pModule->xClose(pVtabCursor);
5536    }
5537  }
5538  break;
5539}
5540#endif /* SQLITE_OMIT_VIRTUALTABLE */
5541
5542#ifndef SQLITE_OMIT_VIRTUALTABLE
5543/* Opcode: VFilter P1 P2 P3 P4 *
5544**
5545** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
5546** the filtered result set is empty.
5547**
5548** P4 is either NULL or a string that was generated by the xBestIndex
5549** method of the module.  The interpretation of the P4 string is left
5550** to the module implementation.
5551**
5552** This opcode invokes the xFilter method on the virtual table specified
5553** by P1.  The integer query plan parameter to xFilter is stored in register
5554** P3. Register P3+1 stores the argc parameter to be passed to the
5555** xFilter method. Registers P3+2..P3+1+argc are the argc
5556** additional parameters which are passed to
5557** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5558**
5559** A jump is made to P2 if the result set after filtering would be empty.
5560*/
5561case OP_VFilter: {   /* jump */
5562  int nArg;
5563  int iQuery;
5564  const sqlite3_module *pModule;
5565  Mem *pQuery;
5566  Mem *pArgc;
5567  sqlite3_vtab_cursor *pVtabCursor;
5568  sqlite3_vtab *pVtab;
5569  VdbeCursor *pCur;
5570  int res;
5571  int i;
5572  Mem **apArg;
5573
5574  pQuery = &aMem[pOp->p3];
5575  pArgc = &pQuery[1];
5576  pCur = p->apCsr[pOp->p1];
5577  assert( memIsValid(pQuery) );
5578  REGISTER_TRACE(pOp->p3, pQuery);
5579  assert( pCur->pVtabCursor );
5580  pVtabCursor = pCur->pVtabCursor;
5581  pVtab = pVtabCursor->pVtab;
5582  pModule = pVtab->pModule;
5583
5584  /* Grab the index number and argc parameters */
5585  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
5586  nArg = (int)pArgc->u.i;
5587  iQuery = (int)pQuery->u.i;
5588
5589  /* Invoke the xFilter method */
5590  {
5591    res = 0;
5592    apArg = p->apArg;
5593    for(i = 0; i<nArg; i++){
5594      apArg[i] = &pArgc[i+1];
5595      sqlite3VdbeMemStoreType(apArg[i]);
5596    }
5597
5598    p->inVtabMethod = 1;
5599    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
5600    p->inVtabMethod = 0;
5601    importVtabErrMsg(p, pVtab);
5602    if( rc==SQLITE_OK ){
5603      res = pModule->xEof(pVtabCursor);
5604    }
5605
5606    if( res ){
5607      pc = pOp->p2 - 1;
5608    }
5609  }
5610  pCur->nullRow = 0;
5611
5612  break;
5613}
5614#endif /* SQLITE_OMIT_VIRTUALTABLE */
5615
5616#ifndef SQLITE_OMIT_VIRTUALTABLE
5617/* Opcode: VColumn P1 P2 P3 * *
5618**
5619** Store the value of the P2-th column of
5620** the row of the virtual-table that the
5621** P1 cursor is pointing to into register P3.
5622*/
5623case OP_VColumn: {
5624  sqlite3_vtab *pVtab;
5625  const sqlite3_module *pModule;
5626  Mem *pDest;
5627  sqlite3_context sContext;
5628
5629  VdbeCursor *pCur = p->apCsr[pOp->p1];
5630  assert( pCur->pVtabCursor );
5631  assert( pOp->p3>0 && pOp->p3<=p->nMem );
5632  pDest = &aMem[pOp->p3];
5633  memAboutToChange(p, pDest);
5634  if( pCur->nullRow ){
5635    sqlite3VdbeMemSetNull(pDest);
5636    break;
5637  }
5638  pVtab = pCur->pVtabCursor->pVtab;
5639  pModule = pVtab->pModule;
5640  assert( pModule->xColumn );
5641  memset(&sContext, 0, sizeof(sContext));
5642
5643  /* The output cell may already have a buffer allocated. Move
5644  ** the current contents to sContext.s so in case the user-function
5645  ** can use the already allocated buffer instead of allocating a
5646  ** new one.
5647  */
5648  sqlite3VdbeMemMove(&sContext.s, pDest);
5649  MemSetTypeFlag(&sContext.s, MEM_Null);
5650
5651  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5652  importVtabErrMsg(p, pVtab);
5653  if( sContext.isError ){
5654    rc = sContext.isError;
5655  }
5656
5657  /* Copy the result of the function to the P3 register. We
5658  ** do this regardless of whether or not an error occurred to ensure any
5659  ** dynamic allocation in sContext.s (a Mem struct) is  released.
5660  */
5661  sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5662  sqlite3VdbeMemMove(pDest, &sContext.s);
5663  REGISTER_TRACE(pOp->p3, pDest);
5664  UPDATE_MAX_BLOBSIZE(pDest);
5665
5666  if( sqlite3VdbeMemTooBig(pDest) ){
5667    goto too_big;
5668  }
5669  break;
5670}
5671#endif /* SQLITE_OMIT_VIRTUALTABLE */
5672
5673#ifndef SQLITE_OMIT_VIRTUALTABLE
5674/* Opcode: VNext P1 P2 * * *
5675**
5676** Advance virtual table P1 to the next row in its result set and
5677** jump to instruction P2.  Or, if the virtual table has reached
5678** the end of its result set, then fall through to the next instruction.
5679*/
5680case OP_VNext: {   /* jump */
5681  sqlite3_vtab *pVtab;
5682  const sqlite3_module *pModule;
5683  int res;
5684  VdbeCursor *pCur;
5685
5686  res = 0;
5687  pCur = p->apCsr[pOp->p1];
5688  assert( pCur->pVtabCursor );
5689  if( pCur->nullRow ){
5690    break;
5691  }
5692  pVtab = pCur->pVtabCursor->pVtab;
5693  pModule = pVtab->pModule;
5694  assert( pModule->xNext );
5695
5696  /* Invoke the xNext() method of the module. There is no way for the
5697  ** underlying implementation to return an error if one occurs during
5698  ** xNext(). Instead, if an error occurs, true is returned (indicating that
5699  ** data is available) and the error code returned when xColumn or
5700  ** some other method is next invoked on the save virtual table cursor.
5701  */
5702  p->inVtabMethod = 1;
5703  rc = pModule->xNext(pCur->pVtabCursor);
5704  p->inVtabMethod = 0;
5705  importVtabErrMsg(p, pVtab);
5706  if( rc==SQLITE_OK ){
5707    res = pModule->xEof(pCur->pVtabCursor);
5708  }
5709
5710  if( !res ){
5711    /* If there is data, jump to P2 */
5712    pc = pOp->p2 - 1;
5713  }
5714  break;
5715}
5716#endif /* SQLITE_OMIT_VIRTUALTABLE */
5717
5718#ifndef SQLITE_OMIT_VIRTUALTABLE
5719/* Opcode: VRename P1 * * P4 *
5720**
5721** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5722** This opcode invokes the corresponding xRename method. The value
5723** in register P1 is passed as the zName argument to the xRename method.
5724*/
5725case OP_VRename: {
5726  sqlite3_vtab *pVtab;
5727  Mem *pName;
5728
5729  pVtab = pOp->p4.pVtab->pVtab;
5730  pName = &aMem[pOp->p1];
5731  assert( pVtab->pModule->xRename );
5732  assert( memIsValid(pName) );
5733  REGISTER_TRACE(pOp->p1, pName);
5734  assert( pName->flags & MEM_Str );
5735  rc = pVtab->pModule->xRename(pVtab, pName->z);
5736  importVtabErrMsg(p, pVtab);
5737  p->expired = 0;
5738
5739  break;
5740}
5741#endif
5742
5743#ifndef SQLITE_OMIT_VIRTUALTABLE
5744/* Opcode: VUpdate P1 P2 P3 P4 *
5745**
5746** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5747** This opcode invokes the corresponding xUpdate method. P2 values
5748** are contiguous memory cells starting at P3 to pass to the xUpdate
5749** invocation. The value in register (P3+P2-1) corresponds to the
5750** p2th element of the argv array passed to xUpdate.
5751**
5752** The xUpdate method will do a DELETE or an INSERT or both.
5753** The argv[0] element (which corresponds to memory cell P3)
5754** is the rowid of a row to delete.  If argv[0] is NULL then no
5755** deletion occurs.  The argv[1] element is the rowid of the new
5756** row.  This can be NULL to have the virtual table select the new
5757** rowid for itself.  The subsequent elements in the array are
5758** the values of columns in the new row.
5759**
5760** If P2==1 then no insert is performed.  argv[0] is the rowid of
5761** a row to delete.
5762**
5763** P1 is a boolean flag. If it is set to true and the xUpdate call
5764** is successful, then the value returned by sqlite3_last_insert_rowid()
5765** is set to the value of the rowid for the row just inserted.
5766*/
5767case OP_VUpdate: {
5768  sqlite3_vtab *pVtab;
5769  sqlite3_module *pModule;
5770  int nArg;
5771  int i;
5772  sqlite_int64 rowid;
5773  Mem **apArg;
5774  Mem *pX;
5775
5776  pVtab = pOp->p4.pVtab->pVtab;
5777  pModule = (sqlite3_module *)pVtab->pModule;
5778  nArg = pOp->p2;
5779  assert( pOp->p4type==P4_VTAB );
5780  if( ALWAYS(pModule->xUpdate) ){
5781    apArg = p->apArg;
5782    pX = &aMem[pOp->p3];
5783    for(i=0; i<nArg; i++){
5784      assert( memIsValid(pX) );
5785      memAboutToChange(p, pX);
5786      sqlite3VdbeMemStoreType(pX);
5787      apArg[i] = pX;
5788      pX++;
5789    }
5790    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
5791    importVtabErrMsg(p, pVtab);
5792    if( rc==SQLITE_OK && pOp->p1 ){
5793      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
5794      db->lastRowid = rowid;
5795    }
5796    p->nChange++;
5797  }
5798  break;
5799}
5800#endif /* SQLITE_OMIT_VIRTUALTABLE */
5801
5802#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
5803/* Opcode: Pagecount P1 P2 * * *
5804**
5805** Write the current number of pages in database P1 to memory cell P2.
5806*/
5807case OP_Pagecount: {            /* out2-prerelease */
5808  pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
5809  break;
5810}
5811#endif
5812
5813
5814#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
5815/* Opcode: MaxPgcnt P1 P2 P3 * *
5816**
5817** Try to set the maximum page count for database P1 to the value in P3.
5818** Do not let the maximum page count fall below the current page count and
5819** do not change the maximum page count value if P3==0.
5820**
5821** Store the maximum page count after the change in register P2.
5822*/
5823case OP_MaxPgcnt: {            /* out2-prerelease */
5824  unsigned int newMax;
5825  Btree *pBt;
5826
5827  pBt = db->aDb[pOp->p1].pBt;
5828  newMax = 0;
5829  if( pOp->p3 ){
5830    newMax = sqlite3BtreeLastPage(pBt);
5831    if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
5832  }
5833  pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
5834  break;
5835}
5836#endif
5837
5838
5839#ifndef SQLITE_OMIT_TRACE
5840/* Opcode: Trace * * * P4 *
5841**
5842** If tracing is enabled (by the sqlite3_trace()) interface, then
5843** the UTF-8 string contained in P4 is emitted on the trace callback.
5844*/
5845case OP_Trace: {
5846  char *zTrace;
5847
5848  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
5849  if( zTrace ){
5850    if( db->xTrace ){
5851      char *z = sqlite3VdbeExpandSql(p, zTrace);
5852      db->xTrace(db->pTraceArg, z);
5853      sqlite3DbFree(db, z);
5854    }
5855#ifdef SQLITE_DEBUG
5856    if( (db->flags & SQLITE_SqlTrace)!=0 ){
5857      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
5858    }
5859#endif /* SQLITE_DEBUG */
5860  }
5861  break;
5862}
5863#endif
5864
5865
5866/* Opcode: Noop * * * * *
5867**
5868** Do nothing.  This instruction is often useful as a jump
5869** destination.
5870*/
5871/*
5872** The magic Explain opcode are only inserted when explain==2 (which
5873** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5874** This opcode records information from the optimizer.  It is the
5875** the same as a no-op.  This opcodesnever appears in a real VM program.
5876*/
5877default: {          /* This is really OP_Noop and OP_Explain */
5878  assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
5879  break;
5880}
5881
5882/*****************************************************************************
5883** The cases of the switch statement above this line should all be indented
5884** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
5885** readability.  From this point on down, the normal indentation rules are
5886** restored.
5887*****************************************************************************/
5888    }
5889
5890#ifdef VDBE_PROFILE
5891    {
5892      u64 elapsed = sqlite3Hwtime() - start;
5893      pOp->cycles += elapsed;
5894      pOp->cnt++;
5895#if 0
5896        fprintf(stdout, "%10llu ", elapsed);
5897        sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
5898#endif
5899    }
5900#endif
5901
5902    /* The following code adds nothing to the actual functionality
5903    ** of the program.  It is only here for testing and debugging.
5904    ** On the other hand, it does burn CPU cycles every time through
5905    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
5906    */
5907#ifndef NDEBUG
5908    assert( pc>=-1 && pc<p->nOp );
5909
5910#ifdef SQLITE_DEBUG
5911    if( p->trace ){
5912      if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
5913      if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
5914        registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
5915      }
5916      if( pOp->opflags & OPFLG_OUT3 ){
5917        registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
5918      }
5919    }
5920#endif  /* SQLITE_DEBUG */
5921#endif  /* NDEBUG */
5922  }  /* The end of the for(;;) loop the loops through opcodes */
5923
5924  /* If we reach this point, it means that execution is finished with
5925  ** an error of some kind.
5926  */
5927vdbe_error_halt:
5928  assert( rc );
5929  p->rc = rc;
5930  testcase( sqlite3GlobalConfig.xLog!=0 );
5931  sqlite3_log(rc, "statement aborts at %d: [%s] %s",
5932                   pc, p->zSql, p->zErrMsg);
5933  sqlite3VdbeHalt(p);
5934  if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5935  rc = SQLITE_ERROR;
5936  if( resetSchemaOnFault>0 ){
5937    sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
5938  }
5939
5940  /* This is the only way out of this procedure.  We have to
5941  ** release the mutexes on btrees that were acquired at the
5942  ** top. */
5943vdbe_return:
5944  sqlite3VdbeLeave(p);
5945  return rc;
5946
5947  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5948  ** is encountered.
5949  */
5950too_big:
5951  sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
5952  rc = SQLITE_TOOBIG;
5953  goto vdbe_error_halt;
5954
5955  /* Jump to here if a malloc() fails.
5956  */
5957no_mem:
5958  db->mallocFailed = 1;
5959  sqlite3SetString(&p->zErrMsg, db, "out of memory");
5960  rc = SQLITE_NOMEM;
5961  goto vdbe_error_halt;
5962
5963  /* Jump to here for any other kind of fatal error.  The "rc" variable
5964  ** should hold the error number.
5965  */
5966abort_due_to_error:
5967  assert( p->zErrMsg==0 );
5968  if( db->mallocFailed ) rc = SQLITE_NOMEM;
5969  if( rc!=SQLITE_IOERR_NOMEM ){
5970    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5971  }
5972  goto vdbe_error_halt;
5973
5974  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
5975  ** flag.
5976  */
5977abort_due_to_interrupt:
5978  assert( db->u1.isInterrupted );
5979  rc = SQLITE_INTERRUPT;
5980  p->rc = rc;
5981  sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5982  goto vdbe_error_halt;
5983}
5984