1/*
2 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11
12/*
13 * This file contains the function WebRtcSpl_LevinsonDurbin().
14 * The description header can be found in signal_processing_library.h
15 *
16 */
17
18#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
19
20#define SPL_LEVINSON_MAXORDER 20
21
22int16_t WebRtcSpl_LevinsonDurbin(int32_t *R, int16_t *A, int16_t *K,
23                                 int16_t order)
24{
25    int16_t i, j;
26    // Auto-correlation coefficients in high precision
27    int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1];
28    // LPC coefficients in high precision
29    int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1];
30    // LPC coefficients for next iteration
31    int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1];
32    // Reflection coefficient in high precision
33    int16_t K_hi, K_low;
34    // Prediction gain Alpha in high precision and with scale factor
35    int16_t Alpha_hi, Alpha_low, Alpha_exp;
36    int16_t tmp_hi, tmp_low;
37    int32_t temp1W32, temp2W32, temp3W32;
38    int16_t norm;
39
40    // Normalize the autocorrelation R[0]...R[order+1]
41
42    norm = WebRtcSpl_NormW32(R[0]);
43
44    for (i = order; i >= 0; i--)
45    {
46        temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm);
47        // Put R in hi and low format
48        R_hi[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
49        R_low[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
50                - WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16)), 1);
51    }
52
53    // K = A[1] = -R[1] / R[0]
54
55    temp2W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[1],16)
56            + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[1],1); // R[1] in Q31
57    temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1]
58    temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31
59    // Put back the sign on R[1]
60    if (temp2W32 > 0)
61    {
62        temp1W32 = -temp1W32;
63    }
64
65    // Put K in hi and low format
66    K_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
67    K_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
68            - WEBRTC_SPL_LSHIFT_W32((int32_t)K_hi, 16)), 1);
69
70    // Store first reflection coefficient
71    K[0] = K_hi;
72
73    temp1W32 = WEBRTC_SPL_RSHIFT_W32(temp1W32, 4); // A[1] in Q27
74
75    // Put A[1] in hi and low format
76    A_hi[1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
77    A_low[1] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
78            - WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[1], 16)), 1);
79
80    // Alpha = R[0] * (1-K^2)
81
82    temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14) + WEBRTC_SPL_MUL_16_16(K_hi, K_hi))
83            << 1); // temp1W32 = k^2 in Q31
84
85    temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
86    temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31
87
88    // Store temp1W32 = 1 - K[0]*K[0] on hi and low format
89    tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
90    tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
91            - WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
92
93    // Calculate Alpha in Q31
94    temp1W32 = ((WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_hi)
95            + (WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_low) >> 15)
96            + (WEBRTC_SPL_MUL_16_16(R_low[0], tmp_hi) >> 15)) << 1);
97
98    // Normalize Alpha and put it in hi and low format
99
100    Alpha_exp = WebRtcSpl_NormW32(temp1W32);
101    temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp);
102    Alpha_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
103    Alpha_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
104            - WEBRTC_SPL_LSHIFT_W32((int32_t)Alpha_hi, 16)), 1);
105
106    // Perform the iterative calculations in the Levinson-Durbin algorithm
107
108    for (i = 2; i <= order; i++)
109    {
110        /*                    ----
111         temp1W32 =  R[i] + > R[j]*A[i-j]
112         /
113         ----
114         j=1..i-1
115         */
116
117        temp1W32 = 0;
118
119        for (j = 1; j < i; j++)
120        {
121            // temp1W32 is in Q31
122            temp1W32 += ((WEBRTC_SPL_MUL_16_16(R_hi[j], A_hi[i-j]) << 1)
123                    + (((WEBRTC_SPL_MUL_16_16(R_hi[j], A_low[i-j]) >> 15)
124                            + (WEBRTC_SPL_MUL_16_16(R_low[j], A_hi[i-j]) >> 15)) << 1));
125        }
126
127        temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4);
128        temp1W32 += (WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16)
129                + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1));
130
131        // K = -temp1W32 / Alpha
132        temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32)
133        temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
134
135        // Put the sign of temp1W32 back again
136        if (temp1W32 > 0)
137        {
138            temp3W32 = -temp3W32;
139        }
140
141        // Use the Alpha shifts from earlier to de-normalize
142        norm = WebRtcSpl_NormW32(temp3W32);
143        if ((Alpha_exp <= norm) || (temp3W32 == 0))
144        {
145            temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp);
146        } else
147        {
148            if (temp3W32 > 0)
149            {
150                temp3W32 = (int32_t)0x7fffffffL;
151            } else
152            {
153                temp3W32 = (int32_t)0x80000000L;
154            }
155        }
156
157        // Put K on hi and low format
158        K_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
159        K_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp3W32
160                - WEBRTC_SPL_LSHIFT_W32((int32_t)K_hi, 16)), 1);
161
162        // Store Reflection coefficient in Q15
163        K[i - 1] = K_hi;
164
165        // Test for unstable filter.
166        // If unstable return 0 and let the user decide what to do in that case
167
168        if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750)
169        {
170            return 0; // Unstable filter
171        }
172
173        /*
174         Compute updated LPC coefficient: Anew[i]
175         Anew[j]= A[j] + K*A[i-j]   for j=1..i-1
176         Anew[i]= K
177         */
178
179        for (j = 1; j < i; j++)
180        {
181            // temp1W32 = A[j] in Q27
182            temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[j],16)
183                    + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1);
184
185            // temp1W32 += K*A[i-j] in Q27
186            temp1W32 += ((WEBRTC_SPL_MUL_16_16(K_hi, A_hi[i-j])
187                    + (WEBRTC_SPL_MUL_16_16(K_hi, A_low[i-j]) >> 15)
188                    + (WEBRTC_SPL_MUL_16_16(K_low, A_hi[i-j]) >> 15)) << 1);
189
190            // Put Anew in hi and low format
191            A_upd_hi[j] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
192            A_upd_low[j] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
193                    - WEBRTC_SPL_LSHIFT_W32((int32_t)A_upd_hi[j], 16)), 1);
194        }
195
196        // temp3W32 = K in Q27 (Convert from Q31 to Q27)
197        temp3W32 = WEBRTC_SPL_RSHIFT_W32(temp3W32, 4);
198
199        // Store Anew in hi and low format
200        A_upd_hi[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
201        A_upd_low[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp3W32
202                - WEBRTC_SPL_LSHIFT_W32((int32_t)A_upd_hi[i], 16)), 1);
203
204        // Alpha = Alpha * (1-K^2)
205
206        temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14)
207                + WEBRTC_SPL_MUL_16_16(K_hi, K_hi)) << 1); // K*K in Q31
208
209        temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
210        temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K  in Q31
211
212        // Convert 1- K^2 in hi and low format
213        tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
214        tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
215                - WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
216
217        // Calculate Alpha = Alpha * (1-K^2) in Q31
218        temp1W32 = ((WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_hi)
219                + (WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_low) >> 15)
220                + (WEBRTC_SPL_MUL_16_16(Alpha_low, tmp_hi) >> 15)) << 1);
221
222        // Normalize Alpha and store it on hi and low format
223
224        norm = WebRtcSpl_NormW32(temp1W32);
225        temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm);
226
227        Alpha_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
228        Alpha_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
229                - WEBRTC_SPL_LSHIFT_W32((int32_t)Alpha_hi, 16)), 1);
230
231        // Update the total normalization of Alpha
232        Alpha_exp = Alpha_exp + norm;
233
234        // Update A[]
235
236        for (j = 1; j <= i; j++)
237        {
238            A_hi[j] = A_upd_hi[j];
239            A_low[j] = A_upd_low[j];
240        }
241    }
242
243    /*
244     Set A[0] to 1.0 and store the A[i] i=1...order in Q12
245     (Convert from Q27 and use rounding)
246     */
247
248    A[0] = 4096;
249
250    for (i = 1; i <= order; i++)
251    {
252        // temp1W32 in Q27
253        temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[i], 16)
254                + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1);
255        // Round and store upper word
256        A[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32<<1)+(int32_t)32768, 16);
257    }
258    return 1; // Stable filters
259}
260