1/*
2 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/modules/audio_coding/neteq/neteq_impl.h"
12
13#include <assert.h>
14#include <memory.h>  // memset
15
16#include <algorithm>
17
18#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
19#include "webrtc/modules/audio_coding/neteq/accelerate.h"
20#include "webrtc/modules/audio_coding/neteq/background_noise.h"
21#include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h"
22#include "webrtc/modules/audio_coding/neteq/comfort_noise.h"
23#include "webrtc/modules/audio_coding/neteq/decision_logic.h"
24#include "webrtc/modules/audio_coding/neteq/decoder_database.h"
25#include "webrtc/modules/audio_coding/neteq/defines.h"
26#include "webrtc/modules/audio_coding/neteq/delay_manager.h"
27#include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
28#include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h"
29#include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h"
30#include "webrtc/modules/audio_coding/neteq/expand.h"
31#include "webrtc/modules/audio_coding/neteq/interface/audio_decoder.h"
32#include "webrtc/modules/audio_coding/neteq/merge.h"
33#include "webrtc/modules/audio_coding/neteq/normal.h"
34#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
35#include "webrtc/modules/audio_coding/neteq/packet.h"
36#include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
37#include "webrtc/modules/audio_coding/neteq/post_decode_vad.h"
38#include "webrtc/modules/audio_coding/neteq/preemptive_expand.h"
39#include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
40#include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h"
41#include "webrtc/modules/interface/module_common_types.h"
42#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
43#include "webrtc/system_wrappers/interface/logging.h"
44
45// Modify the code to obtain backwards bit-exactness. Once bit-exactness is no
46// longer required, this #define should be removed (and the code that it
47// enables).
48#define LEGACY_BITEXACT
49
50namespace webrtc {
51
52NetEqImpl::NetEqImpl(const NetEq::Config& config,
53                     BufferLevelFilter* buffer_level_filter,
54                     DecoderDatabase* decoder_database,
55                     DelayManager* delay_manager,
56                     DelayPeakDetector* delay_peak_detector,
57                     DtmfBuffer* dtmf_buffer,
58                     DtmfToneGenerator* dtmf_tone_generator,
59                     PacketBuffer* packet_buffer,
60                     PayloadSplitter* payload_splitter,
61                     TimestampScaler* timestamp_scaler,
62                     AccelerateFactory* accelerate_factory,
63                     ExpandFactory* expand_factory,
64                     PreemptiveExpandFactory* preemptive_expand_factory,
65                     bool create_components)
66    : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
67      buffer_level_filter_(buffer_level_filter),
68      decoder_database_(decoder_database),
69      delay_manager_(delay_manager),
70      delay_peak_detector_(delay_peak_detector),
71      dtmf_buffer_(dtmf_buffer),
72      dtmf_tone_generator_(dtmf_tone_generator),
73      packet_buffer_(packet_buffer),
74      payload_splitter_(payload_splitter),
75      timestamp_scaler_(timestamp_scaler),
76      vad_(new PostDecodeVad()),
77      expand_factory_(expand_factory),
78      accelerate_factory_(accelerate_factory),
79      preemptive_expand_factory_(preemptive_expand_factory),
80      last_mode_(kModeNormal),
81      decoded_buffer_length_(kMaxFrameSize),
82      decoded_buffer_(new int16_t[decoded_buffer_length_]),
83      playout_timestamp_(0),
84      new_codec_(false),
85      timestamp_(0),
86      reset_decoder_(false),
87      current_rtp_payload_type_(0xFF),  // Invalid RTP payload type.
88      current_cng_rtp_payload_type_(0xFF),  // Invalid RTP payload type.
89      ssrc_(0),
90      first_packet_(true),
91      error_code_(0),
92      decoder_error_code_(0),
93      background_noise_mode_(config.background_noise_mode),
94      decoded_packet_sequence_number_(-1),
95      decoded_packet_timestamp_(0) {
96  int fs = config.sample_rate_hz;
97  if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
98    LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " <<
99        "Changing to 8000 Hz.";
100    fs = 8000;
101  }
102  LOG(LS_VERBOSE) << "Create NetEqImpl object with fs = " << fs << ".";
103  fs_hz_ = fs;
104  fs_mult_ = fs / 8000;
105  output_size_samples_ = kOutputSizeMs * 8 * fs_mult_;
106  decoder_frame_length_ = 3 * output_size_samples_;
107  WebRtcSpl_Init();
108  if (create_components) {
109    SetSampleRateAndChannels(fs, 1);  // Default is 1 channel.
110  }
111}
112
113NetEqImpl::~NetEqImpl() {
114  LOG(LS_INFO) << "Deleting NetEqImpl object.";
115}
116
117int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
118                            const uint8_t* payload,
119                            int length_bytes,
120                            uint32_t receive_timestamp) {
121  CriticalSectionScoped lock(crit_sect_.get());
122  LOG(LS_VERBOSE) << "InsertPacket: ts=" << rtp_header.header.timestamp <<
123      ", sn=" << rtp_header.header.sequenceNumber <<
124      ", pt=" << static_cast<int>(rtp_header.header.payloadType) <<
125      ", ssrc=" << rtp_header.header.ssrc <<
126      ", len=" << length_bytes;
127  int error = InsertPacketInternal(rtp_header, payload, length_bytes,
128                                   receive_timestamp, false);
129  if (error != 0) {
130    LOG_FERR1(LS_WARNING, InsertPacketInternal, error);
131    error_code_ = error;
132    return kFail;
133  }
134  return kOK;
135}
136
137int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
138                                uint32_t receive_timestamp) {
139  CriticalSectionScoped lock(crit_sect_.get());
140  LOG(LS_VERBOSE) << "InsertPacket-Sync: ts="
141      << rtp_header.header.timestamp <<
142      ", sn=" << rtp_header.header.sequenceNumber <<
143      ", pt=" << static_cast<int>(rtp_header.header.payloadType) <<
144      ", ssrc=" << rtp_header.header.ssrc;
145
146  const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' };
147  int error = InsertPacketInternal(
148      rtp_header, kSyncPayload, sizeof(kSyncPayload), receive_timestamp, true);
149
150  if (error != 0) {
151    LOG_FERR1(LS_WARNING, InsertPacketInternal, error);
152    error_code_ = error;
153    return kFail;
154  }
155  return kOK;
156}
157
158int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio,
159                        int* samples_per_channel, int* num_channels,
160                        NetEqOutputType* type) {
161  CriticalSectionScoped lock(crit_sect_.get());
162  LOG(LS_VERBOSE) << "GetAudio";
163  int error = GetAudioInternal(max_length, output_audio, samples_per_channel,
164                               num_channels);
165  LOG(LS_VERBOSE) << "Produced " << *samples_per_channel <<
166      " samples/channel for " << *num_channels << " channel(s)";
167  if (error != 0) {
168    LOG_FERR1(LS_WARNING, GetAudioInternal, error);
169    error_code_ = error;
170    return kFail;
171  }
172  if (type) {
173    *type = LastOutputType();
174  }
175  return kOK;
176}
177
178int NetEqImpl::RegisterPayloadType(enum NetEqDecoder codec,
179                                   uint8_t rtp_payload_type) {
180  CriticalSectionScoped lock(crit_sect_.get());
181  LOG_API2(static_cast<int>(rtp_payload_type), codec);
182  int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec);
183  if (ret != DecoderDatabase::kOK) {
184    LOG_FERR2(LS_WARNING, RegisterPayload, rtp_payload_type, codec);
185    switch (ret) {
186      case DecoderDatabase::kInvalidRtpPayloadType:
187        error_code_ = kInvalidRtpPayloadType;
188        break;
189      case DecoderDatabase::kCodecNotSupported:
190        error_code_ = kCodecNotSupported;
191        break;
192      case DecoderDatabase::kDecoderExists:
193        error_code_ = kDecoderExists;
194        break;
195      default:
196        error_code_ = kOtherError;
197    }
198    return kFail;
199  }
200  return kOK;
201}
202
203int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder,
204                                       enum NetEqDecoder codec,
205                                       uint8_t rtp_payload_type) {
206  CriticalSectionScoped lock(crit_sect_.get());
207  LOG_API2(static_cast<int>(rtp_payload_type), codec);
208  if (!decoder) {
209    LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer";
210    assert(false);
211    return kFail;
212  }
213  const int sample_rate_hz = AudioDecoder::CodecSampleRateHz(codec);
214  int ret = decoder_database_->InsertExternal(rtp_payload_type, codec,
215                                              sample_rate_hz, decoder);
216  if (ret != DecoderDatabase::kOK) {
217    LOG_FERR2(LS_WARNING, InsertExternal, rtp_payload_type, codec);
218    switch (ret) {
219      case DecoderDatabase::kInvalidRtpPayloadType:
220        error_code_ = kInvalidRtpPayloadType;
221        break;
222      case DecoderDatabase::kCodecNotSupported:
223        error_code_ = kCodecNotSupported;
224        break;
225      case DecoderDatabase::kDecoderExists:
226        error_code_ = kDecoderExists;
227        break;
228      case DecoderDatabase::kInvalidSampleRate:
229        error_code_ = kInvalidSampleRate;
230        break;
231      case DecoderDatabase::kInvalidPointer:
232        error_code_ = kInvalidPointer;
233        break;
234      default:
235        error_code_ = kOtherError;
236    }
237    return kFail;
238  }
239  return kOK;
240}
241
242int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) {
243  CriticalSectionScoped lock(crit_sect_.get());
244  LOG_API1(static_cast<int>(rtp_payload_type));
245  int ret = decoder_database_->Remove(rtp_payload_type);
246  if (ret == DecoderDatabase::kOK) {
247    return kOK;
248  } else if (ret == DecoderDatabase::kDecoderNotFound) {
249    error_code_ = kDecoderNotFound;
250  } else {
251    error_code_ = kOtherError;
252  }
253  LOG_FERR1(LS_WARNING, Remove, rtp_payload_type);
254  return kFail;
255}
256
257bool NetEqImpl::SetMinimumDelay(int delay_ms) {
258  CriticalSectionScoped lock(crit_sect_.get());
259  if (delay_ms >= 0 && delay_ms < 10000) {
260    assert(delay_manager_.get());
261    return delay_manager_->SetMinimumDelay(delay_ms);
262  }
263  return false;
264}
265
266bool NetEqImpl::SetMaximumDelay(int delay_ms) {
267  CriticalSectionScoped lock(crit_sect_.get());
268  if (delay_ms >= 0 && delay_ms < 10000) {
269    assert(delay_manager_.get());
270    return delay_manager_->SetMaximumDelay(delay_ms);
271  }
272  return false;
273}
274
275int NetEqImpl::LeastRequiredDelayMs() const {
276  CriticalSectionScoped lock(crit_sect_.get());
277  assert(delay_manager_.get());
278  return delay_manager_->least_required_delay_ms();
279}
280
281void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) {
282  CriticalSectionScoped lock(crit_sect_.get());
283  if (!decision_logic_.get() || mode != decision_logic_->playout_mode()) {
284    // The reset() method calls delete for the old object.
285    CreateDecisionLogic(mode);
286  }
287}
288
289NetEqPlayoutMode NetEqImpl::PlayoutMode() const {
290  CriticalSectionScoped lock(crit_sect_.get());
291  assert(decision_logic_.get());
292  return decision_logic_->playout_mode();
293}
294
295int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
296  CriticalSectionScoped lock(crit_sect_.get());
297  assert(decoder_database_.get());
298  const int total_samples_in_buffers = packet_buffer_->NumSamplesInBuffer(
299      decoder_database_.get(), decoder_frame_length_) +
300          static_cast<int>(sync_buffer_->FutureLength());
301  assert(delay_manager_.get());
302  assert(decision_logic_.get());
303  stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
304                              decoder_frame_length_, *delay_manager_.get(),
305                              *decision_logic_.get(), stats);
306  return 0;
307}
308
309void NetEqImpl::WaitingTimes(std::vector<int>* waiting_times) {
310  CriticalSectionScoped lock(crit_sect_.get());
311  stats_.WaitingTimes(waiting_times);
312}
313
314void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) {
315  CriticalSectionScoped lock(crit_sect_.get());
316  if (stats) {
317    rtcp_.GetStatistics(false, stats);
318  }
319}
320
321void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) {
322  CriticalSectionScoped lock(crit_sect_.get());
323  if (stats) {
324    rtcp_.GetStatistics(true, stats);
325  }
326}
327
328void NetEqImpl::EnableVad() {
329  CriticalSectionScoped lock(crit_sect_.get());
330  assert(vad_.get());
331  vad_->Enable();
332}
333
334void NetEqImpl::DisableVad() {
335  CriticalSectionScoped lock(crit_sect_.get());
336  assert(vad_.get());
337  vad_->Disable();
338}
339
340bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) {
341  CriticalSectionScoped lock(crit_sect_.get());
342  if (first_packet_) {
343    // We don't have a valid RTP timestamp until we have decoded our first
344    // RTP packet.
345    return false;
346  }
347  *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_);
348  return true;
349}
350
351int NetEqImpl::LastError() {
352  CriticalSectionScoped lock(crit_sect_.get());
353  return error_code_;
354}
355
356int NetEqImpl::LastDecoderError() {
357  CriticalSectionScoped lock(crit_sect_.get());
358  return decoder_error_code_;
359}
360
361void NetEqImpl::FlushBuffers() {
362  CriticalSectionScoped lock(crit_sect_.get());
363  LOG_API0();
364  packet_buffer_->Flush();
365  assert(sync_buffer_.get());
366  assert(expand_.get());
367  sync_buffer_->Flush();
368  sync_buffer_->set_next_index(sync_buffer_->next_index() -
369                               expand_->overlap_length());
370  // Set to wait for new codec.
371  first_packet_ = true;
372}
373
374void NetEqImpl::PacketBufferStatistics(int* current_num_packets,
375                                       int* max_num_packets) const {
376  CriticalSectionScoped lock(crit_sect_.get());
377  packet_buffer_->BufferStat(current_num_packets, max_num_packets);
378}
379
380int NetEqImpl::DecodedRtpInfo(int* sequence_number, uint32_t* timestamp) const {
381  CriticalSectionScoped lock(crit_sect_.get());
382  if (decoded_packet_sequence_number_ < 0)
383    return -1;
384  *sequence_number = decoded_packet_sequence_number_;
385  *timestamp = decoded_packet_timestamp_;
386  return 0;
387}
388
389const SyncBuffer* NetEqImpl::sync_buffer_for_test() const {
390  CriticalSectionScoped lock(crit_sect_.get());
391  return sync_buffer_.get();
392}
393
394// Methods below this line are private.
395
396int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
397                                    const uint8_t* payload,
398                                    int length_bytes,
399                                    uint32_t receive_timestamp,
400                                    bool is_sync_packet) {
401  if (!payload) {
402    LOG_F(LS_ERROR) << "payload == NULL";
403    return kInvalidPointer;
404  }
405  // Sanity checks for sync-packets.
406  if (is_sync_packet) {
407    if (decoder_database_->IsDtmf(rtp_header.header.payloadType) ||
408        decoder_database_->IsRed(rtp_header.header.payloadType) ||
409        decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) {
410      LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type "
411          << rtp_header.header.payloadType;
412      return kSyncPacketNotAccepted;
413    }
414    if (first_packet_ ||
415        rtp_header.header.payloadType != current_rtp_payload_type_ ||
416        rtp_header.header.ssrc != ssrc_) {
417      // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't
418      // accepted.
419      LOG_F(LS_ERROR) << "Changing codec, SSRC or first packet "
420          "with sync-packet.";
421      return kSyncPacketNotAccepted;
422    }
423  }
424  PacketList packet_list;
425  RTPHeader main_header;
426  {
427    // Convert to Packet.
428    // Create |packet| within this separate scope, since it should not be used
429    // directly once it's been inserted in the packet list. This way, |packet|
430    // is not defined outside of this block.
431    Packet* packet = new Packet;
432    packet->header.markerBit = false;
433    packet->header.payloadType = rtp_header.header.payloadType;
434    packet->header.sequenceNumber = rtp_header.header.sequenceNumber;
435    packet->header.timestamp = rtp_header.header.timestamp;
436    packet->header.ssrc = rtp_header.header.ssrc;
437    packet->header.numCSRCs = 0;
438    packet->payload_length = length_bytes;
439    packet->primary = true;
440    packet->waiting_time = 0;
441    packet->payload = new uint8_t[packet->payload_length];
442    packet->sync_packet = is_sync_packet;
443    if (!packet->payload) {
444      LOG_F(LS_ERROR) << "Payload pointer is NULL.";
445    }
446    assert(payload);  // Already checked above.
447    memcpy(packet->payload, payload, packet->payload_length);
448    // Insert packet in a packet list.
449    packet_list.push_back(packet);
450    // Save main payloads header for later.
451    memcpy(&main_header, &packet->header, sizeof(main_header));
452  }
453
454  bool update_sample_rate_and_channels = false;
455  // Reinitialize NetEq if it's needed (changed SSRC or first call).
456  if ((main_header.ssrc != ssrc_) || first_packet_) {
457    rtcp_.Init(main_header.sequenceNumber);
458    first_packet_ = false;
459
460    // Flush the packet buffer and DTMF buffer.
461    packet_buffer_->Flush();
462    dtmf_buffer_->Flush();
463
464    // Store new SSRC.
465    ssrc_ = main_header.ssrc;
466
467    // Update audio buffer timestamp.
468    sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_);
469
470    // Update codecs.
471    timestamp_ = main_header.timestamp;
472    current_rtp_payload_type_ = main_header.payloadType;
473
474    // Set MCU to update codec on next SignalMCU call.
475    new_codec_ = true;
476
477    // Reset timestamp scaling.
478    timestamp_scaler_->Reset();
479
480    // Triger an update of sampling rate and the number of channels.
481    update_sample_rate_and_channels = true;
482  }
483
484  // Update RTCP statistics, only for regular packets.
485  if (!is_sync_packet)
486    rtcp_.Update(main_header, receive_timestamp);
487
488  // Check for RED payload type, and separate payloads into several packets.
489  if (decoder_database_->IsRed(main_header.payloadType)) {
490    assert(!is_sync_packet);  // We had a sanity check for this.
491    if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) {
492      LOG_FERR1(LS_WARNING, SplitRed, packet_list.size());
493      PacketBuffer::DeleteAllPackets(&packet_list);
494      return kRedundancySplitError;
495    }
496    // Only accept a few RED payloads of the same type as the main data,
497    // DTMF events and CNG.
498    payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_);
499    // Update the stored main payload header since the main payload has now
500    // changed.
501    memcpy(&main_header, &packet_list.front()->header, sizeof(main_header));
502  }
503
504  // Check payload types.
505  if (decoder_database_->CheckPayloadTypes(packet_list) ==
506      DecoderDatabase::kDecoderNotFound) {
507    LOG_FERR1(LS_WARNING, CheckPayloadTypes, packet_list.size());
508    PacketBuffer::DeleteAllPackets(&packet_list);
509    return kUnknownRtpPayloadType;
510  }
511
512  // Scale timestamp to internal domain (only for some codecs).
513  timestamp_scaler_->ToInternal(&packet_list);
514
515  // Process DTMF payloads. Cycle through the list of packets, and pick out any
516  // DTMF payloads found.
517  PacketList::iterator it = packet_list.begin();
518  while (it != packet_list.end()) {
519    Packet* current_packet = (*it);
520    assert(current_packet);
521    assert(current_packet->payload);
522    if (decoder_database_->IsDtmf(current_packet->header.payloadType)) {
523      assert(!current_packet->sync_packet);  // We had a sanity check for this.
524      DtmfEvent event;
525      int ret = DtmfBuffer::ParseEvent(
526          current_packet->header.timestamp,
527          current_packet->payload,
528          current_packet->payload_length,
529          &event);
530      if (ret != DtmfBuffer::kOK) {
531        LOG_FERR2(LS_WARNING, ParseEvent, ret,
532                  current_packet->payload_length);
533        PacketBuffer::DeleteAllPackets(&packet_list);
534        return kDtmfParsingError;
535      }
536      if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) {
537        LOG_FERR0(LS_WARNING, InsertEvent);
538        PacketBuffer::DeleteAllPackets(&packet_list);
539        return kDtmfInsertError;
540      }
541      // TODO(hlundin): Let the destructor of Packet handle the payload.
542      delete [] current_packet->payload;
543      delete current_packet;
544      it = packet_list.erase(it);
545    } else {
546      ++it;
547    }
548  }
549
550  // Check for FEC in packets, and separate payloads into several packets.
551  int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get());
552  if (ret != PayloadSplitter::kOK) {
553    LOG_FERR1(LS_WARNING, SplitFec, packet_list.size());
554    PacketBuffer::DeleteAllPackets(&packet_list);
555    switch (ret) {
556      case PayloadSplitter::kUnknownPayloadType:
557        return kUnknownRtpPayloadType;
558      default:
559        return kOtherError;
560    }
561  }
562
563  // Split payloads into smaller chunks. This also verifies that all payloads
564  // are of a known payload type. SplitAudio() method is protected against
565  // sync-packets.
566  ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
567  if (ret != PayloadSplitter::kOK) {
568    LOG_FERR1(LS_WARNING, SplitAudio, packet_list.size());
569    PacketBuffer::DeleteAllPackets(&packet_list);
570    switch (ret) {
571      case PayloadSplitter::kUnknownPayloadType:
572        return kUnknownRtpPayloadType;
573      case PayloadSplitter::kFrameSplitError:
574        return kFrameSplitError;
575      default:
576        return kOtherError;
577    }
578  }
579
580  // Update bandwidth estimate, if the packet is not sync-packet.
581  if (!packet_list.empty() && !packet_list.front()->sync_packet) {
582    // The list can be empty here if we got nothing but DTMF payloads.
583    AudioDecoder* decoder =
584        decoder_database_->GetDecoder(main_header.payloadType);
585    assert(decoder);  // Should always get a valid object, since we have
586                      // already checked that the payload types are known.
587    decoder->IncomingPacket(packet_list.front()->payload,
588                            packet_list.front()->payload_length,
589                            packet_list.front()->header.sequenceNumber,
590                            packet_list.front()->header.timestamp,
591                            receive_timestamp);
592  }
593
594  // Insert packets in buffer.
595  int temp_bufsize = packet_buffer_->NumPacketsInBuffer();
596  ret = packet_buffer_->InsertPacketList(
597      &packet_list,
598      *decoder_database_,
599      &current_rtp_payload_type_,
600      &current_cng_rtp_payload_type_);
601  if (ret == PacketBuffer::kFlushed) {
602    // Reset DSP timestamp etc. if packet buffer flushed.
603    new_codec_ = true;
604    update_sample_rate_and_channels = true;
605    LOG_F(LS_WARNING) << "Packet buffer flushed";
606  } else if (ret != PacketBuffer::kOK) {
607    LOG_FERR1(LS_WARNING, InsertPacketList, packet_list.size());
608    PacketBuffer::DeleteAllPackets(&packet_list);
609    return kOtherError;
610  }
611  if (current_rtp_payload_type_ != 0xFF) {
612    const DecoderDatabase::DecoderInfo* dec_info =
613        decoder_database_->GetDecoderInfo(current_rtp_payload_type_);
614    if (!dec_info) {
615      assert(false);  // Already checked that the payload type is known.
616    }
617  }
618
619  if (update_sample_rate_and_channels && !packet_buffer_->Empty()) {
620    // We do not use |current_rtp_payload_type_| to |set payload_type|, but
621    // get the next RTP header from |packet_buffer_| to obtain the payload type.
622    // The reason for it is the following corner case. If NetEq receives a
623    // CNG packet with a sample rate different than the current CNG then it
624    // flushes its buffer, assuming send codec must have been changed. However,
625    // payload type of the hypothetically new send codec is not known.
626    const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader();
627    assert(rtp_header);
628    int payload_type = rtp_header->payloadType;
629    AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type);
630    assert(decoder);  // Payloads are already checked to be valid.
631    const DecoderDatabase::DecoderInfo* decoder_info =
632        decoder_database_->GetDecoderInfo(payload_type);
633    assert(decoder_info);
634    if (decoder_info->fs_hz != fs_hz_ ||
635        decoder->channels() != algorithm_buffer_->Channels())
636      SetSampleRateAndChannels(decoder_info->fs_hz, decoder->channels());
637  }
638
639  // TODO(hlundin): Move this code to DelayManager class.
640  const DecoderDatabase::DecoderInfo* dec_info =
641          decoder_database_->GetDecoderInfo(main_header.payloadType);
642  assert(dec_info);  // Already checked that the payload type is known.
643  delay_manager_->LastDecoderType(dec_info->codec_type);
644  if (delay_manager_->last_pack_cng_or_dtmf() == 0) {
645    // Calculate the total speech length carried in each packet.
646    temp_bufsize = packet_buffer_->NumPacketsInBuffer() - temp_bufsize;
647    temp_bufsize *= decoder_frame_length_;
648
649    if ((temp_bufsize > 0) &&
650        (temp_bufsize != decision_logic_->packet_length_samples())) {
651      decision_logic_->set_packet_length_samples(temp_bufsize);
652      delay_manager_->SetPacketAudioLength((1000 * temp_bufsize) / fs_hz_);
653    }
654
655    // Update statistics.
656    if ((int32_t) (main_header.timestamp - timestamp_) >= 0 &&
657        !new_codec_) {
658      // Only update statistics if incoming packet is not older than last played
659      // out packet, and if new codec flag is not set.
660      delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp,
661                             fs_hz_);
662    }
663  } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) {
664    // This is first "normal" packet after CNG or DTMF.
665    // Reset packet time counter and measure time until next packet,
666    // but don't update statistics.
667    delay_manager_->set_last_pack_cng_or_dtmf(0);
668    delay_manager_->ResetPacketIatCount();
669  }
670  return 0;
671}
672
673int NetEqImpl::GetAudioInternal(size_t max_length, int16_t* output,
674                                int* samples_per_channel, int* num_channels) {
675  PacketList packet_list;
676  DtmfEvent dtmf_event;
677  Operations operation;
678  bool play_dtmf;
679  int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
680                                 &play_dtmf);
681  if (return_value != 0) {
682    LOG_FERR1(LS_WARNING, GetDecision, return_value);
683    assert(false);
684    last_mode_ = kModeError;
685    return return_value;
686  }
687  LOG(LS_VERBOSE) << "GetDecision returned operation=" << operation <<
688      " and " << packet_list.size() << " packet(s)";
689
690  AudioDecoder::SpeechType speech_type;
691  int length = 0;
692  int decode_return_value = Decode(&packet_list, &operation,
693                                   &length, &speech_type);
694
695  assert(vad_.get());
696  bool sid_frame_available =
697      (operation == kRfc3389Cng && !packet_list.empty());
698  vad_->Update(decoded_buffer_.get(), length, speech_type,
699               sid_frame_available, fs_hz_);
700
701  algorithm_buffer_->Clear();
702  switch (operation) {
703    case kNormal: {
704      DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
705      break;
706    }
707    case kMerge: {
708      DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
709      break;
710    }
711    case kExpand: {
712      return_value = DoExpand(play_dtmf);
713      break;
714    }
715    case kAccelerate: {
716      return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type,
717                                  play_dtmf);
718      break;
719    }
720    case kPreemptiveExpand: {
721      return_value = DoPreemptiveExpand(decoded_buffer_.get(), length,
722                                        speech_type, play_dtmf);
723      break;
724    }
725    case kRfc3389Cng:
726    case kRfc3389CngNoPacket: {
727      return_value = DoRfc3389Cng(&packet_list, play_dtmf);
728      break;
729    }
730    case kCodecInternalCng: {
731      // This handles the case when there is no transmission and the decoder
732      // should produce internal comfort noise.
733      // TODO(hlundin): Write test for codec-internal CNG.
734      DoCodecInternalCng();
735      break;
736    }
737    case kDtmf: {
738      // TODO(hlundin): Write test for this.
739      return_value = DoDtmf(dtmf_event, &play_dtmf);
740      break;
741    }
742    case kAlternativePlc: {
743      // TODO(hlundin): Write test for this.
744      DoAlternativePlc(false);
745      break;
746    }
747    case kAlternativePlcIncreaseTimestamp: {
748      // TODO(hlundin): Write test for this.
749      DoAlternativePlc(true);
750      break;
751    }
752    case kAudioRepetitionIncreaseTimestamp: {
753      // TODO(hlundin): Write test for this.
754      sync_buffer_->IncreaseEndTimestamp(output_size_samples_);
755      // Skipping break on purpose. Execution should move on into the
756      // next case.
757    }
758    case kAudioRepetition: {
759      // TODO(hlundin): Write test for this.
760      // Copy last |output_size_samples_| from |sync_buffer_| to
761      // |algorithm_buffer|.
762      algorithm_buffer_->PushBackFromIndex(
763          *sync_buffer_, sync_buffer_->Size() - output_size_samples_);
764      expand_->Reset();
765      break;
766    }
767    case kUndefined: {
768      LOG_F(LS_ERROR) << "Invalid operation kUndefined.";
769      assert(false);  // This should not happen.
770      last_mode_ = kModeError;
771      return kInvalidOperation;
772    }
773  }  // End of switch.
774  if (return_value < 0) {
775    return return_value;
776  }
777
778  if (last_mode_ != kModeRfc3389Cng) {
779    comfort_noise_->Reset();
780  }
781
782  // Copy from |algorithm_buffer| to |sync_buffer_|.
783  sync_buffer_->PushBack(*algorithm_buffer_);
784
785  // Extract data from |sync_buffer_| to |output|.
786  size_t num_output_samples_per_channel = output_size_samples_;
787  size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
788  if (num_output_samples > max_length) {
789    LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " <<
790        output_size_samples_ << " * " << sync_buffer_->Channels();
791    num_output_samples = max_length;
792    num_output_samples_per_channel = static_cast<int>(
793        max_length / sync_buffer_->Channels());
794  }
795  int samples_from_sync = static_cast<int>(
796      sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
797                                            output));
798  *num_channels = static_cast<int>(sync_buffer_->Channels());
799  LOG(LS_VERBOSE) << "Sync buffer (" << *num_channels << " channel(s)):" <<
800      " insert " << algorithm_buffer_->Size() << " samples, extract " <<
801      samples_from_sync << " samples";
802  if (samples_from_sync != output_size_samples_) {
803    LOG_F(LS_ERROR) << "samples_from_sync != output_size_samples_";
804    // TODO(minyue): treatment of under-run, filling zeros
805    memset(output, 0, num_output_samples * sizeof(int16_t));
806    *samples_per_channel = output_size_samples_;
807    return kSampleUnderrun;
808  }
809  *samples_per_channel = output_size_samples_;
810
811  // Should always have overlap samples left in the |sync_buffer_|.
812  assert(sync_buffer_->FutureLength() >= expand_->overlap_length());
813
814  if (play_dtmf) {
815    return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output);
816  }
817
818  // Update the background noise parameters if last operation wrote data
819  // straight from the decoder to the |sync_buffer_|. That is, none of the
820  // operations that modify the signal can be followed by a parameter update.
821  if ((last_mode_ == kModeNormal) ||
822      (last_mode_ == kModeAccelerateFail) ||
823      (last_mode_ == kModePreemptiveExpandFail) ||
824      (last_mode_ == kModeRfc3389Cng) ||
825      (last_mode_ == kModeCodecInternalCng)) {
826    background_noise_->Update(*sync_buffer_, *vad_.get());
827  }
828
829  if (operation == kDtmf) {
830    // DTMF data was written the end of |sync_buffer_|.
831    // Update index to end of DTMF data in |sync_buffer_|.
832    sync_buffer_->set_dtmf_index(sync_buffer_->Size());
833  }
834
835  if (last_mode_ != kModeExpand) {
836    // If last operation was not expand, calculate the |playout_timestamp_| from
837    // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it
838    // would be moved "backwards".
839    uint32_t temp_timestamp = sync_buffer_->end_timestamp() -
840        static_cast<uint32_t>(sync_buffer_->FutureLength());
841    if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) {
842      playout_timestamp_ = temp_timestamp;
843    }
844  } else {
845    // Use dead reckoning to estimate the |playout_timestamp_|.
846    playout_timestamp_ += output_size_samples_;
847  }
848
849  if (decode_return_value) return decode_return_value;
850  return return_value;
851}
852
853int NetEqImpl::GetDecision(Operations* operation,
854                           PacketList* packet_list,
855                           DtmfEvent* dtmf_event,
856                           bool* play_dtmf) {
857  // Initialize output variables.
858  *play_dtmf = false;
859  *operation = kUndefined;
860
861  // Increment time counters.
862  packet_buffer_->IncrementWaitingTimes();
863  stats_.IncreaseCounter(output_size_samples_, fs_hz_);
864
865  assert(sync_buffer_.get());
866  uint32_t end_timestamp = sync_buffer_->end_timestamp();
867  const RTPHeader* header = packet_buffer_->NextRtpHeader();
868
869  if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) {
870    // Because of timestamp peculiarities, we have to "manually" disallow using
871    // a CNG packet with the same timestamp as the one that was last played.
872    // This can happen when using redundancy and will cause the timing to shift.
873    while (header && decoder_database_->IsComfortNoise(header->payloadType) &&
874           (end_timestamp >= header->timestamp ||
875            end_timestamp + decision_logic_->generated_noise_samples() >
876                header->timestamp)) {
877      // Don't use this packet, discard it.
878      if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) {
879        assert(false);  // Must be ok by design.
880      }
881      // Check buffer again.
882      if (!new_codec_) {
883        packet_buffer_->DiscardOldPackets(end_timestamp);
884      }
885      header = packet_buffer_->NextRtpHeader();
886    }
887  }
888
889  assert(expand_.get());
890  const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
891      expand_->overlap_length());
892  if (last_mode_ == kModeAccelerateSuccess ||
893      last_mode_ == kModeAccelerateLowEnergy ||
894      last_mode_ == kModePreemptiveExpandSuccess ||
895      last_mode_ == kModePreemptiveExpandLowEnergy) {
896    // Subtract (samples_left + output_size_samples_) from sampleMemory.
897    decision_logic_->AddSampleMemory(-(samples_left + output_size_samples_));
898  }
899
900  // Check if it is time to play a DTMF event.
901  if (dtmf_buffer_->GetEvent(end_timestamp +
902                             decision_logic_->generated_noise_samples(),
903                             dtmf_event)) {
904    *play_dtmf = true;
905  }
906
907  // Get instruction.
908  assert(sync_buffer_.get());
909  assert(expand_.get());
910  *operation = decision_logic_->GetDecision(*sync_buffer_,
911                                            *expand_,
912                                            decoder_frame_length_,
913                                            header,
914                                            last_mode_,
915                                            *play_dtmf,
916                                            &reset_decoder_);
917
918  // Check if we already have enough samples in the |sync_buffer_|. If so,
919  // change decision to normal, unless the decision was merge, accelerate, or
920  // preemptive expand.
921  if (samples_left >= output_size_samples_ &&
922      *operation != kMerge &&
923      *operation != kAccelerate &&
924      *operation != kPreemptiveExpand) {
925    *operation = kNormal;
926    return 0;
927  }
928
929  decision_logic_->ExpandDecision(*operation);
930
931  // Check conditions for reset.
932  if (new_codec_ || *operation == kUndefined) {
933    // The only valid reason to get kUndefined is that new_codec_ is set.
934    assert(new_codec_);
935    if (*play_dtmf && !header) {
936      timestamp_ = dtmf_event->timestamp;
937    } else {
938      assert(header);
939      if (!header) {
940        LOG_F(LS_ERROR) << "Packet missing where it shouldn't.";
941        return -1;
942      }
943      timestamp_ = header->timestamp;
944      if (*operation == kRfc3389CngNoPacket
945#ifndef LEGACY_BITEXACT
946          // Without this check, it can happen that a non-CNG packet is sent to
947          // the CNG decoder as if it was a SID frame. This is clearly a bug,
948          // but is kept for now to maintain bit-exactness with the test
949          // vectors.
950          && decoder_database_->IsComfortNoise(header->payloadType)
951#endif
952      ) {
953        // Change decision to CNG packet, since we do have a CNG packet, but it
954        // was considered too early to use. Now, use it anyway.
955        *operation = kRfc3389Cng;
956      } else if (*operation != kRfc3389Cng) {
957        *operation = kNormal;
958      }
959    }
960    // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the
961    // new value.
962    sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
963    end_timestamp = timestamp_;
964    new_codec_ = false;
965    decision_logic_->SoftReset();
966    buffer_level_filter_->Reset();
967    delay_manager_->Reset();
968    stats_.ResetMcu();
969  }
970
971  int required_samples = output_size_samples_;
972  const int samples_10_ms = 80 * fs_mult_;
973  const int samples_20_ms = 2 * samples_10_ms;
974  const int samples_30_ms = 3 * samples_10_ms;
975
976  switch (*operation) {
977    case kExpand: {
978      timestamp_ = end_timestamp;
979      return 0;
980    }
981    case kRfc3389CngNoPacket:
982    case kCodecInternalCng: {
983      return 0;
984    }
985    case kDtmf: {
986      // TODO(hlundin): Write test for this.
987      // Update timestamp.
988      timestamp_ = end_timestamp;
989      if (decision_logic_->generated_noise_samples() > 0 &&
990          last_mode_ != kModeDtmf) {
991        // Make a jump in timestamp due to the recently played comfort noise.
992        uint32_t timestamp_jump = decision_logic_->generated_noise_samples();
993        sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
994        timestamp_ += timestamp_jump;
995      }
996      decision_logic_->set_generated_noise_samples(0);
997      return 0;
998    }
999    case kAccelerate: {
1000      // In order to do a accelerate we need at least 30 ms of audio data.
1001      if (samples_left >= samples_30_ms) {
1002        // Already have enough data, so we do not need to extract any more.
1003        decision_logic_->set_sample_memory(samples_left);
1004        decision_logic_->set_prev_time_scale(true);
1005        return 0;
1006      } else if (samples_left >= samples_10_ms &&
1007          decoder_frame_length_ >= samples_30_ms) {
1008        // Avoid decoding more data as it might overflow the playout buffer.
1009        *operation = kNormal;
1010        return 0;
1011      } else if (samples_left < samples_20_ms &&
1012          decoder_frame_length_ < samples_30_ms) {
1013        // Build up decoded data by decoding at least 20 ms of audio data. Do
1014        // not perform accelerate yet, but wait until we only need to do one
1015        // decoding.
1016        required_samples = 2 * output_size_samples_;
1017        *operation = kNormal;
1018      }
1019      // If none of the above is true, we have one of two possible situations:
1020      // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
1021      // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
1022      // In either case, we move on with the accelerate decision, and decode one
1023      // frame now.
1024      break;
1025    }
1026    case kPreemptiveExpand: {
1027      // In order to do a preemptive expand we need at least 30 ms of decoded
1028      // audio data.
1029      if ((samples_left >= samples_30_ms) ||
1030          (samples_left >= samples_10_ms &&
1031              decoder_frame_length_ >= samples_30_ms)) {
1032        // Already have enough data, so we do not need to extract any more.
1033        // Or, avoid decoding more data as it might overflow the playout buffer.
1034        // Still try preemptive expand, though.
1035        decision_logic_->set_sample_memory(samples_left);
1036        decision_logic_->set_prev_time_scale(true);
1037        return 0;
1038      }
1039      if (samples_left < samples_20_ms &&
1040          decoder_frame_length_ < samples_30_ms) {
1041        // Build up decoded data by decoding at least 20 ms of audio data.
1042        // Still try to perform preemptive expand.
1043        required_samples = 2 * output_size_samples_;
1044      }
1045      // Move on with the preemptive expand decision.
1046      break;
1047    }
1048    case kMerge: {
1049      required_samples =
1050          std::max(merge_->RequiredFutureSamples(), required_samples);
1051      break;
1052    }
1053    default: {
1054      // Do nothing.
1055    }
1056  }
1057
1058  // Get packets from buffer.
1059  int extracted_samples = 0;
1060  if (header &&
1061      *operation != kAlternativePlc &&
1062      *operation != kAlternativePlcIncreaseTimestamp &&
1063      *operation != kAudioRepetition &&
1064      *operation != kAudioRepetitionIncreaseTimestamp) {
1065    sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp);
1066    if (decision_logic_->CngOff()) {
1067      // Adjustment of timestamp only corresponds to an actual packet loss
1068      // if comfort noise is not played. If comfort noise was just played,
1069      // this adjustment of timestamp is only done to get back in sync with the
1070      // stream timestamp; no loss to report.
1071      stats_.LostSamples(header->timestamp - end_timestamp);
1072    }
1073
1074    if (*operation != kRfc3389Cng) {
1075      // We are about to decode and use a non-CNG packet.
1076      decision_logic_->SetCngOff();
1077    }
1078    // Reset CNG timestamp as a new packet will be delivered.
1079    // (Also if this is a CNG packet, since playedOutTS is updated.)
1080    decision_logic_->set_generated_noise_samples(0);
1081
1082    extracted_samples = ExtractPackets(required_samples, packet_list);
1083    if (extracted_samples < 0) {
1084      LOG_F(LS_WARNING) << "Failed to extract packets from buffer.";
1085      return kPacketBufferCorruption;
1086    }
1087  }
1088
1089  if (*operation == kAccelerate ||
1090      *operation == kPreemptiveExpand) {
1091    decision_logic_->set_sample_memory(samples_left + extracted_samples);
1092    decision_logic_->set_prev_time_scale(true);
1093  }
1094
1095  if (*operation == kAccelerate) {
1096    // Check that we have enough data (30ms) to do accelerate.
1097    if (extracted_samples + samples_left < samples_30_ms) {
1098      // TODO(hlundin): Write test for this.
1099      // Not enough, do normal operation instead.
1100      *operation = kNormal;
1101    }
1102  }
1103
1104  timestamp_ = end_timestamp;
1105  return 0;
1106}
1107
1108int NetEqImpl::Decode(PacketList* packet_list, Operations* operation,
1109                      int* decoded_length,
1110                      AudioDecoder::SpeechType* speech_type) {
1111  *speech_type = AudioDecoder::kSpeech;
1112  AudioDecoder* decoder = NULL;
1113  if (!packet_list->empty()) {
1114    const Packet* packet = packet_list->front();
1115    int payload_type = packet->header.payloadType;
1116    if (!decoder_database_->IsComfortNoise(payload_type)) {
1117      decoder = decoder_database_->GetDecoder(payload_type);
1118      assert(decoder);
1119      if (!decoder) {
1120        LOG_FERR1(LS_WARNING, GetDecoder, payload_type);
1121        PacketBuffer::DeleteAllPackets(packet_list);
1122        return kDecoderNotFound;
1123      }
1124      bool decoder_changed;
1125      decoder_database_->SetActiveDecoder(payload_type, &decoder_changed);
1126      if (decoder_changed) {
1127        // We have a new decoder. Re-init some values.
1128        const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_
1129            ->GetDecoderInfo(payload_type);
1130        assert(decoder_info);
1131        if (!decoder_info) {
1132          LOG_FERR1(LS_WARNING, GetDecoderInfo, payload_type);
1133          PacketBuffer::DeleteAllPackets(packet_list);
1134          return kDecoderNotFound;
1135        }
1136        // If sampling rate or number of channels has changed, we need to make
1137        // a reset.
1138        if (decoder_info->fs_hz != fs_hz_ ||
1139            decoder->channels() != algorithm_buffer_->Channels()) {
1140          // TODO(tlegrand): Add unittest to cover this event.
1141          SetSampleRateAndChannels(decoder_info->fs_hz, decoder->channels());
1142        }
1143        sync_buffer_->set_end_timestamp(timestamp_);
1144        playout_timestamp_ = timestamp_;
1145      }
1146    }
1147  }
1148
1149  if (reset_decoder_) {
1150    // TODO(hlundin): Write test for this.
1151    // Reset decoder.
1152    if (decoder) {
1153      decoder->Init();
1154    }
1155    // Reset comfort noise decoder.
1156    AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1157    if (cng_decoder) {
1158      cng_decoder->Init();
1159    }
1160    reset_decoder_ = false;
1161  }
1162
1163#ifdef LEGACY_BITEXACT
1164  // Due to a bug in old SignalMCU, it could happen that CNG operation was
1165  // decided, but a speech packet was provided. The speech packet will be used
1166  // to update the comfort noise decoder, as if it was a SID frame, which is
1167  // clearly wrong.
1168  if (*operation == kRfc3389Cng) {
1169    return 0;
1170  }
1171#endif
1172
1173  *decoded_length = 0;
1174  // Update codec-internal PLC state.
1175  if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) {
1176    decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]);
1177  }
1178
1179  int return_value = DecodeLoop(packet_list, operation, decoder,
1180                                decoded_length, speech_type);
1181
1182  if (*decoded_length < 0) {
1183    // Error returned from the decoder.
1184    *decoded_length = 0;
1185    sync_buffer_->IncreaseEndTimestamp(decoder_frame_length_);
1186    int error_code = 0;
1187    if (decoder)
1188      error_code = decoder->ErrorCode();
1189    if (error_code != 0) {
1190      // Got some error code from the decoder.
1191      decoder_error_code_ = error_code;
1192      return_value = kDecoderErrorCode;
1193    } else {
1194      // Decoder does not implement error codes. Return generic error.
1195      return_value = kOtherDecoderError;
1196    }
1197    LOG_FERR2(LS_WARNING, DecodeLoop, error_code, packet_list->size());
1198    *operation = kExpand;  // Do expansion to get data instead.
1199  }
1200  if (*speech_type != AudioDecoder::kComfortNoise) {
1201    // Don't increment timestamp if codec returned CNG speech type
1202    // since in this case, the we will increment the CNGplayedTS counter.
1203    // Increase with number of samples per channel.
1204    assert(*decoded_length == 0 ||
1205           (decoder && decoder->channels() == sync_buffer_->Channels()));
1206    sync_buffer_->IncreaseEndTimestamp(
1207        *decoded_length / static_cast<int>(sync_buffer_->Channels()));
1208  }
1209  return return_value;
1210}
1211
1212int NetEqImpl::DecodeLoop(PacketList* packet_list, Operations* operation,
1213                          AudioDecoder* decoder, int* decoded_length,
1214                          AudioDecoder::SpeechType* speech_type) {
1215  Packet* packet = NULL;
1216  if (!packet_list->empty()) {
1217    packet = packet_list->front();
1218  }
1219  // Do decoding.
1220  while (packet &&
1221      !decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1222    assert(decoder);  // At this point, we must have a decoder object.
1223    // The number of channels in the |sync_buffer_| should be the same as the
1224    // number decoder channels.
1225    assert(sync_buffer_->Channels() == decoder->channels());
1226    assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->channels());
1227    assert(*operation == kNormal || *operation == kAccelerate ||
1228           *operation == kMerge || *operation == kPreemptiveExpand);
1229    packet_list->pop_front();
1230    int payload_length = packet->payload_length;
1231    int16_t decode_length;
1232    if (packet->sync_packet) {
1233      // Decode to silence with the same frame size as the last decode.
1234      LOG(LS_VERBOSE) << "Decoding sync-packet: " <<
1235          " ts=" << packet->header.timestamp <<
1236          ", sn=" << packet->header.sequenceNumber <<
1237          ", pt=" << static_cast<int>(packet->header.payloadType) <<
1238          ", ssrc=" << packet->header.ssrc <<
1239          ", len=" << packet->payload_length;
1240      memset(&decoded_buffer_[*decoded_length], 0, decoder_frame_length_ *
1241             decoder->channels() * sizeof(decoded_buffer_[0]));
1242      decode_length = decoder_frame_length_;
1243    } else if (!packet->primary) {
1244      // This is a redundant payload; call the special decoder method.
1245      LOG(LS_VERBOSE) << "Decoding packet (redundant):" <<
1246          " ts=" << packet->header.timestamp <<
1247          ", sn=" << packet->header.sequenceNumber <<
1248          ", pt=" << static_cast<int>(packet->header.payloadType) <<
1249          ", ssrc=" << packet->header.ssrc <<
1250          ", len=" << packet->payload_length;
1251      decode_length = decoder->DecodeRedundant(
1252          packet->payload, packet->payload_length,
1253          &decoded_buffer_[*decoded_length], speech_type);
1254    } else {
1255      LOG(LS_VERBOSE) << "Decoding packet: ts=" << packet->header.timestamp <<
1256          ", sn=" << packet->header.sequenceNumber <<
1257          ", pt=" << static_cast<int>(packet->header.payloadType) <<
1258          ", ssrc=" << packet->header.ssrc <<
1259          ", len=" << packet->payload_length;
1260      decode_length = decoder->Decode(packet->payload,
1261                                      packet->payload_length,
1262                                      &decoded_buffer_[*decoded_length],
1263                                      speech_type);
1264    }
1265
1266    delete[] packet->payload;
1267    delete packet;
1268    packet = NULL;
1269    if (decode_length > 0) {
1270      *decoded_length += decode_length;
1271      // Update |decoder_frame_length_| with number of samples per channel.
1272      decoder_frame_length_ = decode_length /
1273          static_cast<int>(decoder->channels());
1274      LOG(LS_VERBOSE) << "Decoded " << decode_length << " samples (" <<
1275          decoder->channels() << " channel(s) -> " << decoder_frame_length_ <<
1276          " samples per channel)";
1277    } else if (decode_length < 0) {
1278      // Error.
1279      LOG_FERR2(LS_WARNING, Decode, decode_length, payload_length);
1280      *decoded_length = -1;
1281      PacketBuffer::DeleteAllPackets(packet_list);
1282      break;
1283    }
1284    if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1285      // Guard against overflow.
1286      LOG_F(LS_WARNING) << "Decoded too much.";
1287      PacketBuffer::DeleteAllPackets(packet_list);
1288      return kDecodedTooMuch;
1289    }
1290    if (!packet_list->empty()) {
1291      packet = packet_list->front();
1292    } else {
1293      packet = NULL;
1294    }
1295  }  // End of decode loop.
1296
1297  // If the list is not empty at this point, either a decoding error terminated
1298  // the while-loop, or list must hold exactly one CNG packet.
1299  assert(packet_list->empty() || *decoded_length < 0 ||
1300         (packet_list->size() == 1 && packet &&
1301             decoder_database_->IsComfortNoise(packet->header.payloadType)));
1302  return 0;
1303}
1304
1305void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length,
1306                         AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1307  assert(normal_.get());
1308  assert(mute_factor_array_.get());
1309  normal_->Process(decoded_buffer, decoded_length, last_mode_,
1310                   mute_factor_array_.get(), algorithm_buffer_.get());
1311  if (decoded_length != 0) {
1312    last_mode_ = kModeNormal;
1313  }
1314
1315  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1316  if ((speech_type == AudioDecoder::kComfortNoise)
1317      || ((last_mode_ == kModeCodecInternalCng)
1318          && (decoded_length == 0))) {
1319    // TODO(hlundin): Remove second part of || statement above.
1320    last_mode_ = kModeCodecInternalCng;
1321  }
1322
1323  if (!play_dtmf) {
1324    dtmf_tone_generator_->Reset();
1325  }
1326}
1327
1328void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length,
1329                        AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1330  assert(mute_factor_array_.get());
1331  assert(merge_.get());
1332  int new_length = merge_->Process(decoded_buffer, decoded_length,
1333                                   mute_factor_array_.get(),
1334                                   algorithm_buffer_.get());
1335
1336  // Update in-call and post-call statistics.
1337  if (expand_->MuteFactor(0) == 0) {
1338    // Expand generates only noise.
1339    stats_.ExpandedNoiseSamples(new_length - static_cast<int>(decoded_length));
1340  } else {
1341    // Expansion generates more than only noise.
1342    stats_.ExpandedVoiceSamples(new_length - static_cast<int>(decoded_length));
1343  }
1344
1345  last_mode_ = kModeMerge;
1346  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1347  if (speech_type == AudioDecoder::kComfortNoise) {
1348    last_mode_ = kModeCodecInternalCng;
1349  }
1350  expand_->Reset();
1351  if (!play_dtmf) {
1352    dtmf_tone_generator_->Reset();
1353  }
1354}
1355
1356int NetEqImpl::DoExpand(bool play_dtmf) {
1357  while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
1358      static_cast<size_t>(output_size_samples_)) {
1359    algorithm_buffer_->Clear();
1360    int return_value = expand_->Process(algorithm_buffer_.get());
1361    int length = static_cast<int>(algorithm_buffer_->Size());
1362
1363    // Update in-call and post-call statistics.
1364    if (expand_->MuteFactor(0) == 0) {
1365      // Expand operation generates only noise.
1366      stats_.ExpandedNoiseSamples(length);
1367    } else {
1368      // Expand operation generates more than only noise.
1369      stats_.ExpandedVoiceSamples(length);
1370    }
1371
1372    last_mode_ = kModeExpand;
1373
1374    if (return_value < 0) {
1375      return return_value;
1376    }
1377
1378    sync_buffer_->PushBack(*algorithm_buffer_);
1379    algorithm_buffer_->Clear();
1380  }
1381  if (!play_dtmf) {
1382    dtmf_tone_generator_->Reset();
1383  }
1384  return 0;
1385}
1386
1387int NetEqImpl::DoAccelerate(int16_t* decoded_buffer, size_t decoded_length,
1388                            AudioDecoder::SpeechType speech_type,
1389                            bool play_dtmf) {
1390  const size_t required_samples = 240 * fs_mult_;  // Must have 30 ms.
1391  size_t borrowed_samples_per_channel = 0;
1392  size_t num_channels = algorithm_buffer_->Channels();
1393  size_t decoded_length_per_channel = decoded_length / num_channels;
1394  if (decoded_length_per_channel < required_samples) {
1395    // Must move data from the |sync_buffer_| in order to get 30 ms.
1396    borrowed_samples_per_channel = static_cast<int>(required_samples -
1397        decoded_length_per_channel);
1398    memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1399            decoded_buffer,
1400            sizeof(int16_t) * decoded_length);
1401    sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1402                                         decoded_buffer);
1403    decoded_length = required_samples * num_channels;
1404  }
1405
1406  int16_t samples_removed;
1407  Accelerate::ReturnCodes return_code = accelerate_->Process(
1408      decoded_buffer, decoded_length, algorithm_buffer_.get(),
1409      &samples_removed);
1410  stats_.AcceleratedSamples(samples_removed);
1411  switch (return_code) {
1412    case Accelerate::kSuccess:
1413      last_mode_ = kModeAccelerateSuccess;
1414      break;
1415    case Accelerate::kSuccessLowEnergy:
1416      last_mode_ = kModeAccelerateLowEnergy;
1417      break;
1418    case Accelerate::kNoStretch:
1419      last_mode_ = kModeAccelerateFail;
1420      break;
1421    case Accelerate::kError:
1422      // TODO(hlundin): Map to kModeError instead?
1423      last_mode_ = kModeAccelerateFail;
1424      return kAccelerateError;
1425  }
1426
1427  if (borrowed_samples_per_channel > 0) {
1428    // Copy borrowed samples back to the |sync_buffer_|.
1429    size_t length = algorithm_buffer_->Size();
1430    if (length < borrowed_samples_per_channel) {
1431      // This destroys the beginning of the buffer, but will not cause any
1432      // problems.
1433      sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1434                                   sync_buffer_->Size() -
1435                                   borrowed_samples_per_channel);
1436      sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length);
1437      algorithm_buffer_->PopFront(length);
1438      assert(algorithm_buffer_->Empty());
1439    } else {
1440      sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1441                                   borrowed_samples_per_channel,
1442                                   sync_buffer_->Size() -
1443                                   borrowed_samples_per_channel);
1444      algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1445    }
1446  }
1447
1448  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1449  if (speech_type == AudioDecoder::kComfortNoise) {
1450    last_mode_ = kModeCodecInternalCng;
1451  }
1452  if (!play_dtmf) {
1453    dtmf_tone_generator_->Reset();
1454  }
1455  expand_->Reset();
1456  return 0;
1457}
1458
1459int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
1460                                  size_t decoded_length,
1461                                  AudioDecoder::SpeechType speech_type,
1462                                  bool play_dtmf) {
1463  const size_t required_samples = 240 * fs_mult_;  // Must have 30 ms.
1464  size_t num_channels = algorithm_buffer_->Channels();
1465  int borrowed_samples_per_channel = 0;
1466  int old_borrowed_samples_per_channel = 0;
1467  size_t decoded_length_per_channel = decoded_length / num_channels;
1468  if (decoded_length_per_channel < required_samples) {
1469    // Must move data from the |sync_buffer_| in order to get 30 ms.
1470    borrowed_samples_per_channel = static_cast<int>(required_samples -
1471        decoded_length_per_channel);
1472    // Calculate how many of these were already played out.
1473    old_borrowed_samples_per_channel = static_cast<int>(
1474        borrowed_samples_per_channel - sync_buffer_->FutureLength());
1475    old_borrowed_samples_per_channel = std::max(
1476        0, old_borrowed_samples_per_channel);
1477    memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1478            decoded_buffer,
1479            sizeof(int16_t) * decoded_length);
1480    sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1481                                         decoded_buffer);
1482    decoded_length = required_samples * num_channels;
1483  }
1484
1485  int16_t samples_added;
1486  PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
1487      decoded_buffer, static_cast<int>(decoded_length),
1488      old_borrowed_samples_per_channel,
1489      algorithm_buffer_.get(), &samples_added);
1490  stats_.PreemptiveExpandedSamples(samples_added);
1491  switch (return_code) {
1492    case PreemptiveExpand::kSuccess:
1493      last_mode_ = kModePreemptiveExpandSuccess;
1494      break;
1495    case PreemptiveExpand::kSuccessLowEnergy:
1496      last_mode_ = kModePreemptiveExpandLowEnergy;
1497      break;
1498    case PreemptiveExpand::kNoStretch:
1499      last_mode_ = kModePreemptiveExpandFail;
1500      break;
1501    case PreemptiveExpand::kError:
1502      // TODO(hlundin): Map to kModeError instead?
1503      last_mode_ = kModePreemptiveExpandFail;
1504      return kPreemptiveExpandError;
1505  }
1506
1507  if (borrowed_samples_per_channel > 0) {
1508    // Copy borrowed samples back to the |sync_buffer_|.
1509    sync_buffer_->ReplaceAtIndex(
1510        *algorithm_buffer_, borrowed_samples_per_channel,
1511        sync_buffer_->Size() - borrowed_samples_per_channel);
1512    algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1513  }
1514
1515  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1516  if (speech_type == AudioDecoder::kComfortNoise) {
1517    last_mode_ = kModeCodecInternalCng;
1518  }
1519  if (!play_dtmf) {
1520    dtmf_tone_generator_->Reset();
1521  }
1522  expand_->Reset();
1523  return 0;
1524}
1525
1526int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) {
1527  if (!packet_list->empty()) {
1528    // Must have exactly one SID frame at this point.
1529    assert(packet_list->size() == 1);
1530    Packet* packet = packet_list->front();
1531    packet_list->pop_front();
1532    if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1533#ifdef LEGACY_BITEXACT
1534      // This can happen due to a bug in GetDecision. Change the payload type
1535      // to a CNG type, and move on. Note that this means that we are in fact
1536      // sending a non-CNG payload to the comfort noise decoder for decoding.
1537      // Clearly wrong, but will maintain bit-exactness with legacy.
1538      if (fs_hz_ == 8000) {
1539        packet->header.payloadType =
1540            decoder_database_->GetRtpPayloadType(kDecoderCNGnb);
1541      } else if (fs_hz_ == 16000) {
1542        packet->header.payloadType =
1543            decoder_database_->GetRtpPayloadType(kDecoderCNGwb);
1544      } else if (fs_hz_ == 32000) {
1545        packet->header.payloadType =
1546            decoder_database_->GetRtpPayloadType(kDecoderCNGswb32kHz);
1547      } else if (fs_hz_ == 48000) {
1548        packet->header.payloadType =
1549            decoder_database_->GetRtpPayloadType(kDecoderCNGswb48kHz);
1550      }
1551      assert(decoder_database_->IsComfortNoise(packet->header.payloadType));
1552#else
1553      LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG.";
1554      return kOtherError;
1555#endif
1556    }
1557    // UpdateParameters() deletes |packet|.
1558    if (comfort_noise_->UpdateParameters(packet) ==
1559        ComfortNoise::kInternalError) {
1560      LOG_FERR0(LS_WARNING, UpdateParameters);
1561      algorithm_buffer_->Zeros(output_size_samples_);
1562      return -comfort_noise_->internal_error_code();
1563    }
1564  }
1565  int cn_return = comfort_noise_->Generate(output_size_samples_,
1566                                           algorithm_buffer_.get());
1567  expand_->Reset();
1568  last_mode_ = kModeRfc3389Cng;
1569  if (!play_dtmf) {
1570    dtmf_tone_generator_->Reset();
1571  }
1572  if (cn_return == ComfortNoise::kInternalError) {
1573    LOG_FERR1(LS_WARNING, comfort_noise_->Generate, cn_return);
1574    decoder_error_code_ = comfort_noise_->internal_error_code();
1575    return kComfortNoiseErrorCode;
1576  } else if (cn_return == ComfortNoise::kUnknownPayloadType) {
1577    LOG_FERR1(LS_WARNING, comfort_noise_->Generate, cn_return);
1578    return kUnknownRtpPayloadType;
1579  }
1580  return 0;
1581}
1582
1583void NetEqImpl::DoCodecInternalCng() {
1584  int length = 0;
1585  // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1586  int16_t decoded_buffer[kMaxFrameSize];
1587  AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1588  if (decoder) {
1589    const uint8_t* dummy_payload = NULL;
1590    AudioDecoder::SpeechType speech_type;
1591    length = decoder->Decode(dummy_payload, 0, decoded_buffer, &speech_type);
1592  }
1593  assert(mute_factor_array_.get());
1594  normal_->Process(decoded_buffer, length, last_mode_, mute_factor_array_.get(),
1595                   algorithm_buffer_.get());
1596  last_mode_ = kModeCodecInternalCng;
1597  expand_->Reset();
1598}
1599
1600int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) {
1601  // This block of the code and the block further down, handling |dtmf_switch|
1602  // are commented out. Otherwise playing out-of-band DTMF would fail in VoE
1603  // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is
1604  // equivalent to |dtmf_switch| always be false.
1605  //
1606  // See http://webrtc-codereview.appspot.com/1195004/ for discussion
1607  // On this issue. This change might cause some glitches at the point of
1608  // switch from audio to DTMF. Issue 1545 is filed to track this.
1609  //
1610  //  bool dtmf_switch = false;
1611  //  if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) {
1612  //    // Special case; see below.
1613  //    // We must catch this before calling Generate, since |initialized| is
1614  //    // modified in that call.
1615  //    dtmf_switch = true;
1616  //  }
1617
1618  int dtmf_return_value = 0;
1619  if (!dtmf_tone_generator_->initialized()) {
1620    // Initialize if not already done.
1621    dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1622                                                   dtmf_event.volume);
1623  }
1624
1625  if (dtmf_return_value == 0) {
1626    // Generate DTMF signal.
1627    dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_,
1628                                                       algorithm_buffer_.get());
1629  }
1630
1631  if (dtmf_return_value < 0) {
1632    algorithm_buffer_->Zeros(output_size_samples_);
1633    return dtmf_return_value;
1634  }
1635
1636  //  if (dtmf_switch) {
1637  //    // This is the special case where the previous operation was DTMF
1638  //    // overdub, but the current instruction is "regular" DTMF. We must make
1639  //    // sure that the DTMF does not have any discontinuities. The first DTMF
1640  //    // sample that we generate now must be played out immediately, therefore
1641  //    // it must be copied to the speech buffer.
1642  //    // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and
1643  //    // verify correct operation.
1644  //    assert(false);
1645  //    // Must generate enough data to replace all of the |sync_buffer_|
1646  //    // "future".
1647  //    int required_length = sync_buffer_->FutureLength();
1648  //    assert(dtmf_tone_generator_->initialized());
1649  //    dtmf_return_value = dtmf_tone_generator_->Generate(required_length,
1650  //                                                       algorithm_buffer_);
1651  //    assert((size_t) required_length == algorithm_buffer_->Size());
1652  //    if (dtmf_return_value < 0) {
1653  //      algorithm_buffer_->Zeros(output_size_samples_);
1654  //      return dtmf_return_value;
1655  //    }
1656  //
1657  //    // Overwrite the "future" part of the speech buffer with the new DTMF
1658  //    // data.
1659  //    // TODO(hlundin): It seems that this overwriting has gone lost.
1660  //    // Not adapted for multi-channel yet.
1661  //    assert(algorithm_buffer_->Channels() == 1);
1662  //    if (algorithm_buffer_->Channels() != 1) {
1663  //      LOG(LS_WARNING) << "DTMF not supported for more than one channel";
1664  //      return kStereoNotSupported;
1665  //    }
1666  //    // Shuffle the remaining data to the beginning of algorithm buffer.
1667  //    algorithm_buffer_->PopFront(sync_buffer_->FutureLength());
1668  //  }
1669
1670  sync_buffer_->IncreaseEndTimestamp(output_size_samples_);
1671  expand_->Reset();
1672  last_mode_ = kModeDtmf;
1673
1674  // Set to false because the DTMF is already in the algorithm buffer.
1675  *play_dtmf = false;
1676  return 0;
1677}
1678
1679void NetEqImpl::DoAlternativePlc(bool increase_timestamp) {
1680  AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1681  int length;
1682  if (decoder && decoder->HasDecodePlc()) {
1683    // Use the decoder's packet-loss concealment.
1684    // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1685    int16_t decoded_buffer[kMaxFrameSize];
1686    length = decoder->DecodePlc(1, decoded_buffer);
1687    if (length > 0) {
1688      algorithm_buffer_->PushBackInterleaved(decoded_buffer, length);
1689    } else {
1690      length = 0;
1691    }
1692  } else {
1693    // Do simple zero-stuffing.
1694    length = output_size_samples_;
1695    algorithm_buffer_->Zeros(length);
1696    // By not advancing the timestamp, NetEq inserts samples.
1697    stats_.AddZeros(length);
1698  }
1699  if (increase_timestamp) {
1700    sync_buffer_->IncreaseEndTimestamp(length);
1701  }
1702  expand_->Reset();
1703}
1704
1705int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels,
1706                           int16_t* output) const {
1707  size_t out_index = 0;
1708  int overdub_length = output_size_samples_;  // Default value.
1709
1710  if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
1711    // Special operation for transition from "DTMF only" to "DTMF overdub".
1712    out_index = std::min(
1713        sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
1714        static_cast<size_t>(output_size_samples_));
1715    overdub_length = output_size_samples_ - static_cast<int>(out_index);
1716  }
1717
1718  AudioMultiVector dtmf_output(num_channels);
1719  int dtmf_return_value = 0;
1720  if (!dtmf_tone_generator_->initialized()) {
1721    dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1722                                                   dtmf_event.volume);
1723  }
1724  if (dtmf_return_value == 0) {
1725    dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length,
1726                                                       &dtmf_output);
1727    assert((size_t) overdub_length == dtmf_output.Size());
1728  }
1729  dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
1730  return dtmf_return_value < 0 ? dtmf_return_value : 0;
1731}
1732
1733int NetEqImpl::ExtractPackets(int required_samples, PacketList* packet_list) {
1734  bool first_packet = true;
1735  uint8_t prev_payload_type = 0;
1736  uint32_t prev_timestamp = 0;
1737  uint16_t prev_sequence_number = 0;
1738  bool next_packet_available = false;
1739
1740  const RTPHeader* header = packet_buffer_->NextRtpHeader();
1741  assert(header);
1742  if (!header) {
1743    return -1;
1744  }
1745  uint32_t first_timestamp = header->timestamp;
1746  int extracted_samples = 0;
1747
1748  // Packet extraction loop.
1749  do {
1750    timestamp_ = header->timestamp;
1751    int discard_count = 0;
1752    Packet* packet = packet_buffer_->GetNextPacket(&discard_count);
1753    // |header| may be invalid after the |packet_buffer_| operation.
1754    header = NULL;
1755    if (!packet) {
1756      LOG_FERR1(LS_ERROR, GetNextPacket, discard_count) <<
1757          "Should always be able to extract a packet here";
1758      assert(false);  // Should always be able to extract a packet here.
1759      return -1;
1760    }
1761    stats_.PacketsDiscarded(discard_count);
1762    // Store waiting time in ms; packets->waiting_time is in "output blocks".
1763    stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs);
1764    assert(packet->payload_length > 0);
1765    packet_list->push_back(packet);  // Store packet in list.
1766
1767    if (first_packet) {
1768      first_packet = false;
1769      decoded_packet_sequence_number_ = prev_sequence_number =
1770          packet->header.sequenceNumber;
1771      decoded_packet_timestamp_ = prev_timestamp = packet->header.timestamp;
1772      prev_payload_type = packet->header.payloadType;
1773    }
1774
1775    // Store number of extracted samples.
1776    int packet_duration = 0;
1777    AudioDecoder* decoder = decoder_database_->GetDecoder(
1778        packet->header.payloadType);
1779    if (decoder) {
1780      if (packet->sync_packet) {
1781        packet_duration = decoder_frame_length_;
1782      } else {
1783        packet_duration = packet->primary ?
1784            decoder->PacketDuration(packet->payload, packet->payload_length) :
1785            decoder->PacketDurationRedundant(packet->payload,
1786                                             packet->payload_length);
1787      }
1788    } else {
1789      LOG_FERR1(LS_WARNING, GetDecoder, packet->header.payloadType) <<
1790          "Could not find a decoder for a packet about to be extracted.";
1791      assert(false);
1792    }
1793    if (packet_duration <= 0) {
1794      // Decoder did not return a packet duration. Assume that the packet
1795      // contains the same number of samples as the previous one.
1796      packet_duration = decoder_frame_length_;
1797    }
1798    extracted_samples = packet->header.timestamp - first_timestamp +
1799        packet_duration;
1800
1801    // Check what packet is available next.
1802    header = packet_buffer_->NextRtpHeader();
1803    next_packet_available = false;
1804    if (header && prev_payload_type == header->payloadType) {
1805      int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number;
1806      int32_t ts_diff = header->timestamp - prev_timestamp;
1807      if (seq_no_diff == 1 ||
1808          (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) {
1809        // The next sequence number is available, or the next part of a packet
1810        // that was split into pieces upon insertion.
1811        next_packet_available = true;
1812      }
1813      prev_sequence_number = header->sequenceNumber;
1814    }
1815  } while (extracted_samples < required_samples && next_packet_available);
1816
1817  if (extracted_samples > 0) {
1818    // Delete old packets only when we are going to decode something. Otherwise,
1819    // we could end up in the situation where we never decode anything, since
1820    // all incoming packets are considered too old but the buffer will also
1821    // never be flooded and flushed.
1822    packet_buffer_->DiscardOldPackets(timestamp_);
1823  }
1824
1825  return extracted_samples;
1826}
1827
1828void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
1829  // Delete objects and create new ones.
1830  expand_.reset(expand_factory_->Create(background_noise_.get(),
1831                                        sync_buffer_.get(), &random_vector_,
1832                                        fs_hz, channels));
1833  merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
1834}
1835
1836void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
1837  LOG_API2(fs_hz, channels);
1838  // TODO(hlundin): Change to an enumerator and skip assert.
1839  assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz ==  32000 || fs_hz == 48000);
1840  assert(channels > 0);
1841
1842  fs_hz_ = fs_hz;
1843  fs_mult_ = fs_hz / 8000;
1844  output_size_samples_ = kOutputSizeMs * 8 * fs_mult_;
1845  decoder_frame_length_ = 3 * output_size_samples_;  // Initialize to 30ms.
1846
1847  last_mode_ = kModeNormal;
1848
1849  // Create a new array of mute factors and set all to 1.
1850  mute_factor_array_.reset(new int16_t[channels]);
1851  for (size_t i = 0; i < channels; ++i) {
1852    mute_factor_array_[i] = 16384;  // 1.0 in Q14.
1853  }
1854
1855  // Reset comfort noise decoder, if there is one active.
1856  AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1857  if (cng_decoder) {
1858    cng_decoder->Init();
1859  }
1860
1861  // Reinit post-decode VAD with new sample rate.
1862  assert(vad_.get());  // Cannot be NULL here.
1863  vad_->Init();
1864
1865  // Delete algorithm buffer and create a new one.
1866  algorithm_buffer_.reset(new AudioMultiVector(channels));
1867
1868  // Delete sync buffer and create a new one.
1869  sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_));
1870
1871  // Delete BackgroundNoise object and create a new one.
1872  background_noise_.reset(new BackgroundNoise(channels));
1873  background_noise_->set_mode(background_noise_mode_);
1874
1875  // Reset random vector.
1876  random_vector_.Reset();
1877
1878  UpdatePlcComponents(fs_hz, channels);
1879
1880  // Move index so that we create a small set of future samples (all 0).
1881  sync_buffer_->set_next_index(sync_buffer_->next_index() -
1882      expand_->overlap_length());
1883
1884  normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
1885                           expand_.get()));
1886  accelerate_.reset(
1887      accelerate_factory_->Create(fs_hz, channels, *background_noise_));
1888  preemptive_expand_.reset(preemptive_expand_factory_->Create(
1889      fs_hz, channels,
1890      *background_noise_,
1891      static_cast<int>(expand_->overlap_length())));
1892
1893  // Delete ComfortNoise object and create a new one.
1894  comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(),
1895                                        sync_buffer_.get()));
1896
1897  // Verify that |decoded_buffer_| is long enough.
1898  if (decoded_buffer_length_ < kMaxFrameSize * channels) {
1899    // Reallocate to larger size.
1900    decoded_buffer_length_ = kMaxFrameSize * channels;
1901    decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
1902  }
1903
1904  // Create DecisionLogic if it is not created yet, then communicate new sample
1905  // rate and output size to DecisionLogic object.
1906  if (!decision_logic_.get()) {
1907    CreateDecisionLogic(kPlayoutOn);
1908  }
1909  decision_logic_->SetSampleRate(fs_hz_, output_size_samples_);
1910}
1911
1912NetEqOutputType NetEqImpl::LastOutputType() {
1913  assert(vad_.get());
1914  assert(expand_.get());
1915  if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) {
1916    return kOutputCNG;
1917  } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) {
1918    // Expand mode has faded down to background noise only (very long expand).
1919    return kOutputPLCtoCNG;
1920  } else if (last_mode_ == kModeExpand) {
1921    return kOutputPLC;
1922  } else if (vad_->running() && !vad_->active_speech()) {
1923    return kOutputVADPassive;
1924  } else {
1925    return kOutputNormal;
1926  }
1927}
1928
1929void NetEqImpl::CreateDecisionLogic(NetEqPlayoutMode mode) {
1930  decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_,
1931                                              mode,
1932                                              decoder_database_.get(),
1933                                              *packet_buffer_.get(),
1934                                              delay_manager_.get(),
1935                                              buffer_level_filter_.get()));
1936}
1937}  // namespace webrtc
1938