1/*
2 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/modules/audio_processing/utility/delay_estimator.h"
12
13#include <assert.h>
14#include <stdlib.h>
15#include <string.h>
16
17// Number of right shifts for scaling is linearly depending on number of bits in
18// the far-end binary spectrum.
19static const int kShiftsAtZero = 13;  // Right shifts at zero binary spectrum.
20static const int kShiftsLinearSlope = 3;
21
22static const int32_t kProbabilityOffset = 1024;  // 2 in Q9.
23static const int32_t kProbabilityLowerLimit = 8704;  // 17 in Q9.
24static const int32_t kProbabilityMinSpread = 2816;  // 5.5 in Q9.
25
26// Robust validation settings
27static const float kHistogramMax = 3000.f;
28static const float kLastHistogramMax = 250.f;
29static const float kMinHistogramThreshold = 1.5f;
30static const int kMinRequiredHits = 10;
31static const int kMaxHitsWhenPossiblyNonCausal = 10;
32static const int kMaxHitsWhenPossiblyCausal = 1000;
33static const float kQ14Scaling = 1.f / (1 << 14);  // Scaling by 2^14 to get Q0.
34static const float kFractionSlope = 0.05f;
35static const float kMinFractionWhenPossiblyCausal = 0.5f;
36static const float kMinFractionWhenPossiblyNonCausal = 0.25f;
37
38// Counts and returns number of bits of a 32-bit word.
39static int BitCount(uint32_t u32) {
40  uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
41      ((u32 >> 2) & 011111111111);
42  tmp = ((tmp + (tmp >> 3)) & 030707070707);
43  tmp = (tmp + (tmp >> 6));
44  tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
45
46  return ((int) tmp);
47}
48
49// Compares the |binary_vector| with all rows of the |binary_matrix| and counts
50// per row the number of times they have the same value.
51//
52// Inputs:
53//      - binary_vector     : binary "vector" stored in a long
54//      - binary_matrix     : binary "matrix" stored as a vector of long
55//      - matrix_size       : size of binary "matrix"
56//
57// Output:
58//      - bit_counts        : "Vector" stored as a long, containing for each
59//                            row the number of times the matrix row and the
60//                            input vector have the same value
61//
62static void BitCountComparison(uint32_t binary_vector,
63                               const uint32_t* binary_matrix,
64                               int matrix_size,
65                               int32_t* bit_counts) {
66  int n = 0;
67
68  // Compare |binary_vector| with all rows of the |binary_matrix|
69  for (; n < matrix_size; n++) {
70    bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]);
71  }
72}
73
74// Collects necessary statistics for the HistogramBasedValidation().  This
75// function has to be called prior to calling HistogramBasedValidation().  The
76// statistics updated and used by the HistogramBasedValidation() are:
77//  1. the number of |candidate_hits|, which states for how long we have had the
78//     same |candidate_delay|
79//  2. the |histogram| of candidate delays over time.  This histogram is
80//     weighted with respect to a reliability measure and time-varying to cope
81//     with possible delay shifts.
82// For further description see commented code.
83//
84// Inputs:
85//  - candidate_delay   : The delay to validate.
86//  - valley_depth_q14  : The cost function has a valley/minimum at the
87//                        |candidate_delay| location.  |valley_depth_q14| is the
88//                        cost function difference between the minimum and
89//                        maximum locations.  The value is in the Q14 domain.
90//  - valley_level_q14  : Is the cost function value at the minimum, in Q14.
91static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self,
92                                             int candidate_delay,
93                                             int32_t valley_depth_q14,
94                                             int32_t valley_level_q14) {
95  const float valley_depth = valley_depth_q14 * kQ14Scaling;
96  float decrease_in_last_set = valley_depth;
97  const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ?
98      kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal;
99  int i = 0;
100
101  assert(self->history_size == self->farend->history_size);
102  // Reset |candidate_hits| if we have a new candidate.
103  if (candidate_delay != self->last_candidate_delay) {
104    self->candidate_hits = 0;
105    self->last_candidate_delay = candidate_delay;
106  }
107  self->candidate_hits++;
108
109  // The |histogram| is updated differently across the bins.
110  // 1. The |candidate_delay| histogram bin is increased with the
111  //    |valley_depth|, which is a simple measure of how reliable the
112  //    |candidate_delay| is.  The histogram is not increased above
113  //    |kHistogramMax|.
114  self->histogram[candidate_delay] += valley_depth;
115  if (self->histogram[candidate_delay] > kHistogramMax) {
116    self->histogram[candidate_delay] = kHistogramMax;
117  }
118  // 2. The histogram bins in the neighborhood of |candidate_delay| are
119  //    unaffected.  The neighborhood is defined as x + {-2, -1, 0, 1}.
120  // 3. The histogram bins in the neighborhood of |last_delay| are decreased
121  //    with |decrease_in_last_set|.  This value equals the difference between
122  //    the cost function values at the locations |candidate_delay| and
123  //    |last_delay| until we reach |max_hits_for_slow_change| consecutive hits
124  //    at the |candidate_delay|.  If we exceed this amount of hits the
125  //    |candidate_delay| is a "potential" candidate and we start decreasing
126  //    these histogram bins more rapidly with |valley_depth|.
127  if (self->candidate_hits < max_hits_for_slow_change) {
128    decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] -
129        valley_level_q14) * kQ14Scaling;
130  }
131  // 4. All other bins are decreased with |valley_depth|.
132  // TODO(bjornv): Investigate how to make this loop more efficient.  Split up
133  // the loop?  Remove parts that doesn't add too much.
134  for (i = 0; i < self->history_size; ++i) {
135    int is_in_last_set = (i >= self->last_delay - 2) &&
136        (i <= self->last_delay + 1) && (i != candidate_delay);
137    int is_in_candidate_set = (i >= candidate_delay - 2) &&
138        (i <= candidate_delay + 1);
139    self->histogram[i] -= decrease_in_last_set * is_in_last_set +
140        valley_depth * (!is_in_last_set && !is_in_candidate_set);
141    // 5. No histogram bin can go below 0.
142    if (self->histogram[i] < 0) {
143      self->histogram[i] = 0;
144    }
145  }
146}
147
148// Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(),
149// based on a mix of counting concurring hits with a modified histogram
150// of recent delay estimates.  In brief a candidate is valid (returns 1) if it
151// is the most likely according to the histogram.  There are a couple of
152// exceptions that are worth mentioning:
153//  1. If the |candidate_delay| < |last_delay| it can be that we are in a
154//     non-causal state, breaking a possible echo control algorithm.  Hence, we
155//     open up for a quicker change by allowing the change even if the
156//     |candidate_delay| is not the most likely one according to the histogram.
157//  2. There's a minimum number of hits (kMinRequiredHits) and the histogram
158//     value has to reached a minimum (kMinHistogramThreshold) to be valid.
159//  3. The action is also depending on the filter length used for echo control.
160//     If the delay difference is larger than what the filter can capture, we
161//     also move quicker towards a change.
162// For further description see commented code.
163//
164// Input:
165//  - candidate_delay     : The delay to validate.
166//
167// Return value:
168//  - is_histogram_valid  : 1 - The |candidate_delay| is valid.
169//                          0 - Otherwise.
170static int HistogramBasedValidation(const BinaryDelayEstimator* self,
171                                    int candidate_delay) {
172  float fraction = 1.f;
173  float histogram_threshold = self->histogram[self->compare_delay];
174  const int delay_difference = candidate_delay - self->last_delay;
175  int is_histogram_valid = 0;
176
177  // The histogram based validation of |candidate_delay| is done by comparing
178  // the |histogram| at bin |candidate_delay| with a |histogram_threshold|.
179  // This |histogram_threshold| equals a |fraction| of the |histogram| at bin
180  // |last_delay|.  The |fraction| is a piecewise linear function of the
181  // |delay_difference| between the |candidate_delay| and the |last_delay|
182  // allowing for a quicker move if
183  //  i) a potential echo control filter can not handle these large differences.
184  // ii) keeping |last_delay| instead of updating to |candidate_delay| could
185  //     force an echo control into a non-causal state.
186  // We further require the histogram to have reached a minimum value of
187  // |kMinHistogramThreshold|.  In addition, we also require the number of
188  // |candidate_hits| to be more than |kMinRequiredHits| to remove spurious
189  // values.
190
191  // Calculate a comparison histogram value (|histogram_threshold|) that is
192  // depending on the distance between the |candidate_delay| and |last_delay|.
193  // TODO(bjornv): How much can we gain by turning the fraction calculation
194  // into tables?
195  if (delay_difference > self->allowed_offset) {
196    fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset);
197    fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction :
198        kMinFractionWhenPossiblyCausal);
199  } else if (delay_difference < 0) {
200    fraction = kMinFractionWhenPossiblyNonCausal -
201        kFractionSlope * delay_difference;
202    fraction = (fraction > 1.f ? 1.f : fraction);
203  }
204  histogram_threshold *= fraction;
205  histogram_threshold = (histogram_threshold > kMinHistogramThreshold ?
206      histogram_threshold : kMinHistogramThreshold);
207
208  is_histogram_valid =
209      (self->histogram[candidate_delay] >= histogram_threshold) &&
210      (self->candidate_hits > kMinRequiredHits);
211
212  return is_histogram_valid;
213}
214
215// Performs a robust validation of the |candidate_delay| estimated in
216// WebRtc_ProcessBinarySpectrum().  The algorithm takes the
217// |is_instantaneous_valid| and the |is_histogram_valid| and combines them
218// into a robust validation.  The HistogramBasedValidation() has to be called
219// prior to this call.
220// For further description on how the combination is done, see commented code.
221//
222// Inputs:
223//  - candidate_delay         : The delay to validate.
224//  - is_instantaneous_valid  : The instantaneous validation performed in
225//                              WebRtc_ProcessBinarySpectrum().
226//  - is_histogram_valid      : The histogram based validation.
227//
228// Return value:
229//  - is_robust               : 1 - The candidate_delay is valid according to a
230//                                  combination of the two inputs.
231//                            : 0 - Otherwise.
232static int RobustValidation(const BinaryDelayEstimator* self,
233                            int candidate_delay,
234                            int is_instantaneous_valid,
235                            int is_histogram_valid) {
236  int is_robust = 0;
237
238  // The final robust validation is based on the two algorithms; 1) the
239  // |is_instantaneous_valid| and 2) the histogram based with result stored in
240  // |is_histogram_valid|.
241  //   i) Before we actually have a valid estimate (|last_delay| == -2), we say
242  //      a candidate is valid if either algorithm states so
243  //      (|is_instantaneous_valid| OR |is_histogram_valid|).
244  is_robust = (self->last_delay < 0) &&
245      (is_instantaneous_valid || is_histogram_valid);
246  //  ii) Otherwise, we need both algorithms to be certain
247  //      (|is_instantaneous_valid| AND |is_histogram_valid|)
248  is_robust |= is_instantaneous_valid && is_histogram_valid;
249  // iii) With one exception, i.e., the histogram based algorithm can overrule
250  //      the instantaneous one if |is_histogram_valid| = 1 and the histogram
251  //      is significantly strong.
252  is_robust |= is_histogram_valid &&
253      (self->histogram[candidate_delay] > self->last_delay_histogram);
254
255  return is_robust;
256}
257
258void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
259
260  if (self == NULL) {
261    return;
262  }
263
264  free(self->binary_far_history);
265  self->binary_far_history = NULL;
266
267  free(self->far_bit_counts);
268  self->far_bit_counts = NULL;
269
270  free(self);
271}
272
273BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
274    int history_size) {
275  BinaryDelayEstimatorFarend* self = NULL;
276
277  if (history_size > 1) {
278    // Sanity conditions fulfilled.
279    self = malloc(sizeof(BinaryDelayEstimatorFarend));
280  }
281  if (self == NULL) {
282    return NULL;
283  }
284
285  self->history_size = 0;
286  self->binary_far_history = NULL;
287  self->far_bit_counts = NULL;
288  if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) {
289    WebRtc_FreeBinaryDelayEstimatorFarend(self);
290    self = NULL;
291  }
292  return self;
293}
294
295int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self,
296                                      int history_size) {
297  assert(self != NULL);
298  // (Re-)Allocate memory for history buffers.
299  self->binary_far_history =
300      realloc(self->binary_far_history,
301              history_size * sizeof(*self->binary_far_history));
302  self->far_bit_counts = realloc(self->far_bit_counts,
303                                 history_size * sizeof(*self->far_bit_counts));
304  if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) {
305    history_size = 0;
306  }
307  // Fill with zeros if we have expanded the buffers.
308  if (history_size > self->history_size) {
309    int size_diff = history_size - self->history_size;
310    memset(&self->binary_far_history[self->history_size],
311           0,
312           sizeof(*self->binary_far_history) * size_diff);
313    memset(&self->far_bit_counts[self->history_size],
314           0,
315           sizeof(*self->far_bit_counts) * size_diff);
316  }
317  self->history_size = history_size;
318
319  return self->history_size;
320}
321
322void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
323  assert(self != NULL);
324  memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size);
325  memset(self->far_bit_counts, 0, sizeof(int) * self->history_size);
326}
327
328void WebRtc_SoftResetBinaryDelayEstimatorFarend(
329    BinaryDelayEstimatorFarend* self, int delay_shift) {
330  int abs_shift = abs(delay_shift);
331  int shift_size = 0;
332  int dest_index = 0;
333  int src_index = 0;
334  int padding_index = 0;
335
336  assert(self != NULL);
337  shift_size = self->history_size - abs_shift;
338  assert(shift_size > 0);
339  if (delay_shift == 0) {
340    return;
341  } else if (delay_shift > 0) {
342    dest_index = abs_shift;
343  } else if (delay_shift < 0) {
344    src_index = abs_shift;
345    padding_index = shift_size;
346  }
347
348  // Shift and zero pad buffers.
349  memmove(&self->binary_far_history[dest_index],
350          &self->binary_far_history[src_index],
351          sizeof(*self->binary_far_history) * shift_size);
352  memset(&self->binary_far_history[padding_index], 0,
353         sizeof(*self->binary_far_history) * abs_shift);
354  memmove(&self->far_bit_counts[dest_index],
355          &self->far_bit_counts[src_index],
356          sizeof(*self->far_bit_counts) * shift_size);
357  memset(&self->far_bit_counts[padding_index], 0,
358         sizeof(*self->far_bit_counts) * abs_shift);
359}
360
361void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle,
362                                 uint32_t binary_far_spectrum) {
363  assert(handle != NULL);
364  // Shift binary spectrum history and insert current |binary_far_spectrum|.
365  memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
366          (handle->history_size - 1) * sizeof(uint32_t));
367  handle->binary_far_history[0] = binary_far_spectrum;
368
369  // Shift history of far-end binary spectrum bit counts and insert bit count
370  // of current |binary_far_spectrum|.
371  memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
372          (handle->history_size - 1) * sizeof(int));
373  handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
374}
375
376void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) {
377
378  if (self == NULL) {
379    return;
380  }
381
382  free(self->mean_bit_counts);
383  self->mean_bit_counts = NULL;
384
385  free(self->bit_counts);
386  self->bit_counts = NULL;
387
388  free(self->binary_near_history);
389  self->binary_near_history = NULL;
390
391  free(self->histogram);
392  self->histogram = NULL;
393
394  // BinaryDelayEstimator does not have ownership of |farend|, hence we do not
395  // free the memory here. That should be handled separately by the user.
396  self->farend = NULL;
397
398  free(self);
399}
400
401BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
402    BinaryDelayEstimatorFarend* farend, int max_lookahead) {
403  BinaryDelayEstimator* self = NULL;
404
405  if ((farend != NULL) && (max_lookahead >= 0)) {
406    // Sanity conditions fulfilled.
407    self = malloc(sizeof(BinaryDelayEstimator));
408  }
409  if (self == NULL) {
410    return NULL;
411  }
412
413  self->farend = farend;
414  self->near_history_size = max_lookahead + 1;
415  self->history_size = 0;
416  self->robust_validation_enabled = 0;  // Disabled by default.
417  self->allowed_offset = 0;
418
419  self->lookahead = max_lookahead;
420
421  // Allocate memory for spectrum and history buffers.
422  self->mean_bit_counts = NULL;
423  self->bit_counts = NULL;
424  self->histogram = NULL;
425  self->binary_near_history =
426      malloc((max_lookahead + 1) * sizeof(*self->binary_near_history));
427  if (self->binary_near_history == NULL ||
428      WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) {
429    WebRtc_FreeBinaryDelayEstimator(self);
430    self = NULL;
431  }
432
433  return self;
434}
435
436int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self,
437                                       int history_size) {
438  BinaryDelayEstimatorFarend* far = self->farend;
439  // (Re-)Allocate memory for spectrum and history buffers.
440  if (history_size != far->history_size) {
441    // Only update far-end buffers if we need.
442    history_size = WebRtc_AllocateFarendBufferMemory(far, history_size);
443  }
444  // The extra array element in |mean_bit_counts| and |histogram| is a dummy
445  // element only used while |last_delay| == -2, i.e., before we have a valid
446  // estimate.
447  self->mean_bit_counts =
448      realloc(self->mean_bit_counts,
449              (history_size + 1) * sizeof(*self->mean_bit_counts));
450  self->bit_counts =
451      realloc(self->bit_counts, history_size * sizeof(*self->bit_counts));
452  self->histogram =
453      realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram));
454
455  if ((self->mean_bit_counts == NULL) ||
456      (self->bit_counts == NULL) ||
457      (self->histogram == NULL)) {
458    history_size = 0;
459  }
460  // Fill with zeros if we have expanded the buffers.
461  if (history_size > self->history_size) {
462    int size_diff = history_size - self->history_size;
463    memset(&self->mean_bit_counts[self->history_size],
464           0,
465           sizeof(*self->mean_bit_counts) * size_diff);
466    memset(&self->bit_counts[self->history_size],
467           0,
468           sizeof(*self->bit_counts) * size_diff);
469    memset(&self->histogram[self->history_size],
470           0,
471           sizeof(*self->histogram) * size_diff);
472  }
473  self->history_size = history_size;
474
475  return self->history_size;
476}
477
478void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
479  int i = 0;
480  assert(self != NULL);
481
482  memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size);
483  memset(self->binary_near_history,
484         0,
485         sizeof(uint32_t) * self->near_history_size);
486  for (i = 0; i <= self->history_size; ++i) {
487    self->mean_bit_counts[i] = (20 << 9);  // 20 in Q9.
488    self->histogram[i] = 0.f;
489  }
490  self->minimum_probability = kMaxBitCountsQ9;  // 32 in Q9.
491  self->last_delay_probability = (int) kMaxBitCountsQ9;  // 32 in Q9.
492
493  // Default return value if we're unable to estimate. -1 is used for errors.
494  self->last_delay = -2;
495
496  self->last_candidate_delay = -2;
497  self->compare_delay = self->history_size;
498  self->candidate_hits = 0;
499  self->last_delay_histogram = 0.f;
500}
501
502int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
503                                         int delay_shift) {
504  int lookahead = 0;
505  assert(self != NULL);
506  lookahead = self->lookahead;
507  self->lookahead -= delay_shift;
508  if (self->lookahead < 0) {
509    self->lookahead = 0;
510  }
511  if (self->lookahead > self->near_history_size - 1) {
512    self->lookahead = self->near_history_size - 1;
513  }
514  return lookahead - self->lookahead;
515}
516
517int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
518                                 uint32_t binary_near_spectrum) {
519  int i = 0;
520  int candidate_delay = -1;
521  int valid_candidate = 0;
522
523  int32_t value_best_candidate = kMaxBitCountsQ9;
524  int32_t value_worst_candidate = 0;
525  int32_t valley_depth = 0;
526
527  assert(self != NULL);
528  if (self->farend->history_size != self->history_size) {
529    // Non matching history sizes.
530    return -1;
531  }
532  if (self->near_history_size > 1) {
533    // If we apply lookahead, shift near-end binary spectrum history. Insert
534    // current |binary_near_spectrum| and pull out the delayed one.
535    memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]),
536            (self->near_history_size - 1) * sizeof(uint32_t));
537    self->binary_near_history[0] = binary_near_spectrum;
538    binary_near_spectrum = self->binary_near_history[self->lookahead];
539  }
540
541  // Compare with delayed spectra and store the |bit_counts| for each delay.
542  BitCountComparison(binary_near_spectrum, self->farend->binary_far_history,
543                     self->history_size, self->bit_counts);
544
545  // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|.
546  for (i = 0; i < self->history_size; i++) {
547    // |bit_counts| is constrained to [0, 32], meaning we can smooth with a
548    // factor up to 2^26. We use Q9.
549    int32_t bit_count = (self->bit_counts[i] << 9);  // Q9.
550
551    // Update |mean_bit_counts| only when far-end signal has something to
552    // contribute. If |far_bit_counts| is zero the far-end signal is weak and
553    // we likely have a poor echo condition, hence don't update.
554    if (self->farend->far_bit_counts[i] > 0) {
555      // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|.
556      int shifts = kShiftsAtZero;
557      shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4;
558      WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i]));
559    }
560  }
561
562  // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate|
563  // of |mean_bit_counts|.
564  for (i = 0; i < self->history_size; i++) {
565    if (self->mean_bit_counts[i] < value_best_candidate) {
566      value_best_candidate = self->mean_bit_counts[i];
567      candidate_delay = i;
568    }
569    if (self->mean_bit_counts[i] > value_worst_candidate) {
570      value_worst_candidate = self->mean_bit_counts[i];
571    }
572  }
573  valley_depth = value_worst_candidate - value_best_candidate;
574
575  // The |value_best_candidate| is a good indicator on the probability of
576  // |candidate_delay| being an accurate delay (a small |value_best_candidate|
577  // means a good binary match). In the following sections we make a decision
578  // whether to update |last_delay| or not.
579  // 1) If the difference bit counts between the best and the worst delay
580  //    candidates is too small we consider the situation to be unreliable and
581  //    don't update |last_delay|.
582  // 2) If the situation is reliable we update |last_delay| if the value of the
583  //    best candidate delay has a value less than
584  //     i) an adaptive threshold |minimum_probability|, or
585  //    ii) this corresponding value |last_delay_probability|, but updated at
586  //        this time instant.
587
588  // Update |minimum_probability|.
589  if ((self->minimum_probability > kProbabilityLowerLimit) &&
590      (valley_depth > kProbabilityMinSpread)) {
591    // The "hard" threshold can't be lower than 17 (in Q9).
592    // The valley in the curve also has to be distinct, i.e., the
593    // difference between |value_worst_candidate| and |value_best_candidate| has
594    // to be large enough.
595    int32_t threshold = value_best_candidate + kProbabilityOffset;
596    if (threshold < kProbabilityLowerLimit) {
597      threshold = kProbabilityLowerLimit;
598    }
599    if (self->minimum_probability > threshold) {
600      self->minimum_probability = threshold;
601    }
602  }
603  // Update |last_delay_probability|.
604  // We use a Markov type model, i.e., a slowly increasing level over time.
605  self->last_delay_probability++;
606  // Validate |candidate_delay|.  We have a reliable instantaneous delay
607  // estimate if
608  //  1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|)
609  // and
610  //  2) The depth of the valley is deep enough
611  //      (|value_best_candidate| < |minimum_probability|)
612  //     and deeper than the best estimate so far
613  //      (|value_best_candidate| < |last_delay_probability|)
614  valid_candidate = ((valley_depth > kProbabilityOffset) &&
615      ((value_best_candidate < self->minimum_probability) ||
616          (value_best_candidate < self->last_delay_probability)));
617
618  if (self->robust_validation_enabled) {
619    int is_histogram_valid = 0;
620    UpdateRobustValidationStatistics(self, candidate_delay, valley_depth,
621                                     value_best_candidate);
622    is_histogram_valid = HistogramBasedValidation(self, candidate_delay);
623    valid_candidate = RobustValidation(self, candidate_delay, valid_candidate,
624                                       is_histogram_valid);
625
626  }
627  if (valid_candidate) {
628    if (candidate_delay != self->last_delay) {
629      self->last_delay_histogram =
630          (self->histogram[candidate_delay] > kLastHistogramMax ?
631              kLastHistogramMax : self->histogram[candidate_delay]);
632      // Adjust the histogram if we made a change to |last_delay|, though it was
633      // not the most likely one according to the histogram.
634      if (self->histogram[candidate_delay] <
635          self->histogram[self->compare_delay]) {
636        self->histogram[self->compare_delay] = self->histogram[candidate_delay];
637      }
638    }
639    self->last_delay = candidate_delay;
640    if (value_best_candidate < self->last_delay_probability) {
641      self->last_delay_probability = value_best_candidate;
642    }
643    self->compare_delay = self->last_delay;
644  }
645
646  return self->last_delay;
647}
648
649int WebRtc_binary_last_delay(BinaryDelayEstimator* self) {
650  assert(self != NULL);
651  return self->last_delay;
652}
653
654float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) {
655  float quality = 0;
656  assert(self != NULL);
657
658  if (self->robust_validation_enabled) {
659    // Simply a linear function of the histogram height at delay estimate.
660    quality = self->histogram[self->compare_delay] / kHistogramMax;
661  } else {
662    // Note that |last_delay_probability| states how deep the minimum of the
663    // cost function is, so it is rather an error probability.
664    quality = (float) (kMaxBitCountsQ9 - self->last_delay_probability) /
665        kMaxBitCountsQ9;
666    if (quality < 0) {
667      quality = 0;
668    }
669  }
670  return quality;
671}
672
673void WebRtc_MeanEstimatorFix(int32_t new_value,
674                             int factor,
675                             int32_t* mean_value) {
676  int32_t diff = new_value - *mean_value;
677
678  // mean_new = mean_value + ((new_value - mean_value) >> factor);
679  if (diff < 0) {
680    diff = -((-diff) >> factor);
681  } else {
682    diff = (diff >> factor);
683  }
684  *mean_value += diff;
685}
686