1/*
2 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <math.h>
12#include <stdio.h>
13#include <stdlib.h>
14
15#include "testing/gtest/include/gtest/gtest.h"
16
17#include "webrtc/modules/video_coding/main/interface/video_coding.h"
18#include "webrtc/modules/video_coding/main/source/internal_defines.h"
19#include "webrtc/modules/video_coding/main/source/timing.h"
20#include "webrtc/modules/video_coding/main/test/receiver_tests.h"
21#include "webrtc/modules/video_coding/main/test/test_util.h"
22#include "webrtc/system_wrappers/interface/trace.h"
23#include "webrtc/test/testsupport/fileutils.h"
24
25namespace webrtc {
26
27TEST(ReceiverTiming, Tests) {
28  SimulatedClock clock(0);
29  VCMTiming timing(&clock);
30  uint32_t waitTime = 0;
31  uint32_t jitterDelayMs = 0;
32  uint32_t maxDecodeTimeMs = 0;
33  uint32_t timeStamp = 0;
34
35  timing.Reset();
36
37  timing.UpdateCurrentDelay(timeStamp);
38
39  timing.Reset();
40
41  timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
42  jitterDelayMs = 20;
43  timing.SetJitterDelay(jitterDelayMs);
44  timing.UpdateCurrentDelay(timeStamp);
45  timing.set_render_delay(0);
46  waitTime = timing.MaxWaitingTime(
47      timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
48      clock.TimeInMilliseconds());
49  // First update initializes the render time. Since we have no decode delay
50  // we get waitTime = renderTime - now - renderDelay = jitter.
51  EXPECT_EQ(jitterDelayMs, waitTime);
52
53  jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
54  timeStamp += 90000;
55  clock.AdvanceTimeMilliseconds(1000);
56  timing.SetJitterDelay(jitterDelayMs);
57  timing.UpdateCurrentDelay(timeStamp);
58  waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(
59      timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds());
60  // Since we gradually increase the delay we only get 100 ms every second.
61  EXPECT_EQ(jitterDelayMs - 10, waitTime);
62
63  timeStamp += 90000;
64  clock.AdvanceTimeMilliseconds(1000);
65  timing.UpdateCurrentDelay(timeStamp);
66  waitTime = timing.MaxWaitingTime(
67      timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
68      clock.TimeInMilliseconds());
69  EXPECT_EQ(waitTime, jitterDelayMs);
70
71  // 300 incoming frames without jitter, verify that this gives the exact wait
72  // time.
73  for (int i = 0; i < 300; i++) {
74    clock.AdvanceTimeMilliseconds(1000 / 25);
75    timeStamp += 90000 / 25;
76    timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
77  }
78  timing.UpdateCurrentDelay(timeStamp);
79  waitTime = timing.MaxWaitingTime(
80      timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
81      clock.TimeInMilliseconds());
82  EXPECT_EQ(waitTime, jitterDelayMs);
83
84  // Add decode time estimates.
85  for (int i = 0; i < 10; i++) {
86    int64_t startTimeMs = clock.TimeInMilliseconds();
87    clock.AdvanceTimeMilliseconds(10);
88    timing.StopDecodeTimer(timeStamp, startTimeMs,
89                           clock.TimeInMilliseconds());
90    timeStamp += 90000 / 25;
91    clock.AdvanceTimeMilliseconds(1000 / 25 - 10);
92    timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
93  }
94  maxDecodeTimeMs = 10;
95  timing.SetJitterDelay(jitterDelayMs);
96  clock.AdvanceTimeMilliseconds(1000);
97  timeStamp += 90000;
98  timing.UpdateCurrentDelay(timeStamp);
99  waitTime = timing.MaxWaitingTime(
100      timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
101      clock.TimeInMilliseconds());
102  EXPECT_EQ(waitTime, jitterDelayMs);
103
104  uint32_t minTotalDelayMs = 200;
105  timing.set_min_playout_delay(minTotalDelayMs);
106  clock.AdvanceTimeMilliseconds(5000);
107  timeStamp += 5*90000;
108  timing.UpdateCurrentDelay(timeStamp);
109  const int kRenderDelayMs = 10;
110  timing.set_render_delay(kRenderDelayMs);
111  waitTime = timing.MaxWaitingTime(
112      timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
113      clock.TimeInMilliseconds());
114  // We should at least have minTotalDelayMs - decodeTime (10) - renderTime
115  // (10) to wait.
116  EXPECT_EQ(waitTime, minTotalDelayMs - maxDecodeTimeMs - kRenderDelayMs);
117  // The total video delay should be equal to the min total delay.
118  EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay());
119
120  // Reset playout delay.
121  timing.set_min_playout_delay(0);
122  clock.AdvanceTimeMilliseconds(5000);
123  timeStamp += 5*90000;
124  timing.UpdateCurrentDelay(timeStamp);
125}
126
127TEST(ReceiverTiming, WrapAround) {
128  const int kFramerate = 25;
129  SimulatedClock clock(0);
130  VCMTiming timing(&clock);
131  // Provoke a wrap-around. The forth frame will have wrapped at 25 fps.
132  uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate;
133  for (int i = 0; i < 4; ++i) {
134    timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
135    clock.AdvanceTimeMilliseconds(1000 / kFramerate);
136    timestamp += 90000 / kFramerate;
137    int64_t render_time = timing.RenderTimeMs(0xFFFFFFFFu,
138                                              clock.TimeInMilliseconds());
139    EXPECT_EQ(3 * 1000 / kFramerate, render_time);
140    render_time = timing.RenderTimeMs(89u,  // One second later in 90 kHz.
141                                      clock.TimeInMilliseconds());
142    EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time);
143  }
144}
145
146}  // namespace webrtc
147