1/*
2 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11// Borrowed from Chromium's src/base/memory/scoped_ptr.h.
12
13// Scopers help you manage ownership of a pointer, helping you easily manage the
14// a pointer within a scope, and automatically destroying the pointer at the
15// end of a scope.  There are two main classes you will use, which correspond
16// to the operators new/delete and new[]/delete[].
17//
18// Example usage (scoped_ptr<T>):
19//   {
20//     scoped_ptr<Foo> foo(new Foo("wee"));
21//   }  // foo goes out of scope, releasing the pointer with it.
22//
23//   {
24//     scoped_ptr<Foo> foo;          // No pointer managed.
25//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
26//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
27//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
28//     foo->Method();                // Foo::Method() called.
29//     foo.get()->Method();          // Foo::Method() called.
30//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
31//                                   // manages a pointer.
32//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
33//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
34//                                   // manages a pointer.
35//   }  // foo wasn't managing a pointer, so nothing was destroyed.
36//
37// Example usage (scoped_ptr<T[]>):
38//   {
39//     scoped_ptr<Foo[]> foo(new Foo[100]);
40//     foo.get()->Method();  // Foo::Method on the 0th element.
41//     foo[10].Method();     // Foo::Method on the 10th element.
42//   }
43//
44// These scopers also implement part of the functionality of C++11 unique_ptr
45// in that they are "movable but not copyable."  You can use the scopers in
46// the parameter and return types of functions to signify ownership transfer
47// in to and out of a function.  When calling a function that has a scoper
48// as the argument type, it must be called with the result of an analogous
49// scoper's Pass() function or another function that generates a temporary;
50// passing by copy will NOT work.  Here is an example using scoped_ptr:
51//
52//   void TakesOwnership(scoped_ptr<Foo> arg) {
53//     // Do something with arg
54//   }
55//   scoped_ptr<Foo> CreateFoo() {
56//     // No need for calling Pass() because we are constructing a temporary
57//     // for the return value.
58//     return scoped_ptr<Foo>(new Foo("new"));
59//   }
60//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
61//     return arg.Pass();
62//   }
63//
64//   {
65//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
66//     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
67//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
68//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
69//         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
70//   }
71//
72// Notice that if you do not call Pass() when returning from PassThru(), or
73// when invoking TakesOwnership(), the code will not compile because scopers
74// are not copyable; they only implement move semantics which require calling
75// the Pass() function to signify a destructive transfer of state. CreateFoo()
76// is different though because we are constructing a temporary on the return
77// line and thus can avoid needing to call Pass().
78//
79// Pass() properly handles upcast in initialization, i.e. you can use a
80// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
81//
82//   scoped_ptr<Foo> foo(new Foo());
83//   scoped_ptr<FooParent> parent(foo.Pass());
84//
85// PassAs<>() should be used to upcast return value in return statement:
86//
87//   scoped_ptr<Foo> CreateFoo() {
88//     scoped_ptr<FooChild> result(new FooChild());
89//     return result.PassAs<Foo>();
90//   }
91//
92// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
93// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
94
95#ifndef WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
96#define WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
97
98// This is an implementation designed to match the anticipated future TR2
99// implementation of the scoped_ptr class.
100
101#include <assert.h>
102#include <stddef.h>
103#include <stdlib.h>
104
105#include <algorithm>  // For std::swap().
106
107#include "webrtc/base/constructormagic.h"
108#include "webrtc/system_wrappers/interface/compile_assert.h"
109#include "webrtc/system_wrappers/interface/template_util.h"
110#include "webrtc/system_wrappers/source/move.h"
111#include "webrtc/typedefs.h"
112
113namespace webrtc {
114
115// Function object which deletes its parameter, which must be a pointer.
116// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
117// invokes 'delete'. The default deleter for scoped_ptr<T>.
118template <class T>
119struct DefaultDeleter {
120  DefaultDeleter() {}
121  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
122    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
123    // if U* is implicitly convertible to T* and U is not an array type.
124    //
125    // Correct implementation should use SFINAE to disable this
126    // constructor. However, since there are no other 1-argument constructors,
127    // using a COMPILE_ASSERT() based on is_convertible<> and requiring
128    // complete types is simpler and will cause compile failures for equivalent
129    // misuses.
130    //
131    // Note, the is_convertible<U*, T*> check also ensures that U is not an
132    // array. T is guaranteed to be a non-array, so any U* where U is an array
133    // cannot convert to T*.
134    enum { T_must_be_complete = sizeof(T) };
135    enum { U_must_be_complete = sizeof(U) };
136    COMPILE_ASSERT((webrtc::is_convertible<U*, T*>::value),
137                   U_ptr_must_implicitly_convert_to_T_ptr);
138  }
139  inline void operator()(T* ptr) const {
140    enum { type_must_be_complete = sizeof(T) };
141    delete ptr;
142  }
143};
144
145// Specialization of DefaultDeleter for array types.
146template <class T>
147struct DefaultDeleter<T[]> {
148  inline void operator()(T* ptr) const {
149    enum { type_must_be_complete = sizeof(T) };
150    delete[] ptr;
151  }
152
153 private:
154  // Disable this operator for any U != T because it is undefined to execute
155  // an array delete when the static type of the array mismatches the dynamic
156  // type.
157  //
158  // References:
159  //   C++98 [expr.delete]p3
160  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
161  template <typename U> void operator()(U* array) const;
162};
163
164template <class T, int n>
165struct DefaultDeleter<T[n]> {
166  // Never allow someone to declare something like scoped_ptr<int[10]>.
167  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
168};
169
170// Function object which invokes 'free' on its parameter, which must be
171// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
172//
173// scoped_ptr<int, webrtc::FreeDeleter> foo_ptr(
174//     static_cast<int*>(malloc(sizeof(int))));
175struct FreeDeleter {
176  inline void operator()(void* ptr) const {
177    free(ptr);
178  }
179};
180
181namespace internal {
182
183// Minimal implementation of the core logic of scoped_ptr, suitable for
184// reuse in both scoped_ptr and its specializations.
185template <class T, class D>
186class scoped_ptr_impl {
187 public:
188  explicit scoped_ptr_impl(T* p) : data_(p) { }
189
190  // Initializer for deleters that have data parameters.
191  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
192
193  // Templated constructor that destructively takes the value from another
194  // scoped_ptr_impl.
195  template <typename U, typename V>
196  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
197      : data_(other->release(), other->get_deleter()) {
198    // We do not support move-only deleters.  We could modify our move
199    // emulation to have webrtc::subtle::move() and webrtc::subtle::forward()
200    // functions that are imperfect emulations of their C++11 equivalents,
201    // but until there's a requirement, just assume deleters are copyable.
202  }
203
204  template <typename U, typename V>
205  void TakeState(scoped_ptr_impl<U, V>* other) {
206    // See comment in templated constructor above regarding lack of support
207    // for move-only deleters.
208    reset(other->release());
209    get_deleter() = other->get_deleter();
210  }
211
212  ~scoped_ptr_impl() {
213    if (data_.ptr != NULL) {
214      // Not using get_deleter() saves one function call in non-optimized
215      // builds.
216      static_cast<D&>(data_)(data_.ptr);
217    }
218  }
219
220  void reset(T* p) {
221    // This is a self-reset, which is no longer allowed: http://crbug.com/162971
222    if (p != NULL && p == data_.ptr)
223      abort();
224
225    // Note that running data_.ptr = p can lead to undefined behavior if
226    // get_deleter()(get()) deletes this. In order to pevent this, reset()
227    // should update the stored pointer before deleting its old value.
228    //
229    // However, changing reset() to use that behavior may cause current code to
230    // break in unexpected ways. If the destruction of the owned object
231    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
232    // then it will incorrectly dispatch calls to |p| rather than the original
233    // value of |data_.ptr|.
234    //
235    // During the transition period, set the stored pointer to NULL while
236    // deleting the object. Eventually, this safety check will be removed to
237    // prevent the scenario initially described from occuring and
238    // http://crbug.com/176091 can be closed.
239    T* old = data_.ptr;
240    data_.ptr = NULL;
241    if (old != NULL)
242      static_cast<D&>(data_)(old);
243    data_.ptr = p;
244  }
245
246  T* get() const { return data_.ptr; }
247
248  D& get_deleter() { return data_; }
249  const D& get_deleter() const { return data_; }
250
251  void swap(scoped_ptr_impl& p2) {
252    // Standard swap idiom: 'using std::swap' ensures that std::swap is
253    // present in the overload set, but we call swap unqualified so that
254    // any more-specific overloads can be used, if available.
255    using std::swap;
256    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
257    swap(data_.ptr, p2.data_.ptr);
258  }
259
260  T* release() {
261    T* old_ptr = data_.ptr;
262    data_.ptr = NULL;
263    return old_ptr;
264  }
265
266 private:
267  // Needed to allow type-converting constructor.
268  template <typename U, typename V> friend class scoped_ptr_impl;
269
270  // Use the empty base class optimization to allow us to have a D
271  // member, while avoiding any space overhead for it when D is an
272  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
273  // discussion of this technique.
274  struct Data : public D {
275    explicit Data(T* ptr_in) : ptr(ptr_in) {}
276    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
277    T* ptr;
278  };
279
280  Data data_;
281
282  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
283};
284
285}  // namespace internal
286
287// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
288// automatically deletes the pointer it holds (if any).
289// That is, scoped_ptr<T> owns the T object that it points to.
290// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
291// Also like T*, scoped_ptr<T> is thread-compatible, and once you
292// dereference it, you get the thread safety guarantees of T.
293//
294// The size of scoped_ptr is small. On most compilers, when using the
295// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
296// increase the size proportional to whatever state they need to have. See
297// comments inside scoped_ptr_impl<> for details.
298//
299// Current implementation targets having a strict subset of  C++11's
300// unique_ptr<> features. Known deficiencies include not supporting move-only
301// deleteres, function pointers as deleters, and deleters with reference
302// types.
303template <class T, class D = webrtc::DefaultDeleter<T> >
304class scoped_ptr {
305  WEBRTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
306
307 public:
308  // The element and deleter types.
309  typedef T element_type;
310  typedef D deleter_type;
311
312  // Constructor.  Defaults to initializing with NULL.
313  scoped_ptr() : impl_(NULL) { }
314
315  // Constructor.  Takes ownership of p.
316  explicit scoped_ptr(element_type* p) : impl_(p) { }
317
318  // Constructor.  Allows initialization of a stateful deleter.
319  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
320
321  // Constructor.  Allows construction from a scoped_ptr rvalue for a
322  // convertible type and deleter.
323  //
324  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
325  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
326  // has different post-conditions if D is a reference type. Since this
327  // implementation does not support deleters with reference type,
328  // we do not need a separate move constructor allowing us to avoid one
329  // use of SFINAE. You only need to care about this if you modify the
330  // implementation of scoped_ptr.
331  template <typename U, typename V>
332  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
333    COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
334  }
335
336  // Constructor.  Move constructor for C++03 move emulation of this type.
337  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
338
339  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
340  // type and deleter.
341  //
342  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
343  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
344  // form has different requirements on for move-only Deleters. Since this
345  // implementation does not support move-only Deleters, we do not need a
346  // separate move assignment operator allowing us to avoid one use of SFINAE.
347  // You only need to care about this if you modify the implementation of
348  // scoped_ptr.
349  template <typename U, typename V>
350  scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
351    COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
352    impl_.TakeState(&rhs.impl_);
353    return *this;
354  }
355
356  // Reset.  Deletes the currently owned object, if any.
357  // Then takes ownership of a new object, if given.
358  void reset(element_type* p = NULL) { impl_.reset(p); }
359
360  // Accessors to get the owned object.
361  // operator* and operator-> will assert() if there is no current object.
362  element_type& operator*() const {
363    assert(impl_.get() != NULL);
364    return *impl_.get();
365  }
366  element_type* operator->() const  {
367    assert(impl_.get() != NULL);
368    return impl_.get();
369  }
370  element_type* get() const { return impl_.get(); }
371
372  // Access to the deleter.
373  deleter_type& get_deleter() { return impl_.get_deleter(); }
374  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
375
376  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
377  // implicitly convertible to a real bool (which is dangerous).
378  //
379  // Note that this trick is only safe when the == and != operators
380  // are declared explicitly, as otherwise "scoped_ptr1 ==
381  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
382  // to Testable and then do the comparison).
383 private:
384  typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
385      scoped_ptr::*Testable;
386
387 public:
388  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
389
390  // Comparison operators.
391  // These return whether two scoped_ptr refer to the same object, not just to
392  // two different but equal objects.
393  bool operator==(const element_type* p) const { return impl_.get() == p; }
394  bool operator!=(const element_type* p) const { return impl_.get() != p; }
395
396  // Swap two scoped pointers.
397  void swap(scoped_ptr& p2) {
398    impl_.swap(p2.impl_);
399  }
400
401  // Release a pointer.
402  // The return value is the current pointer held by this object.
403  // If this object holds a NULL pointer, the return value is NULL.
404  // After this operation, this object will hold a NULL pointer,
405  // and will not own the object any more.
406  element_type* release() WARN_UNUSED_RESULT {
407    return impl_.release();
408  }
409
410  // C++98 doesn't support functions templates with default parameters which
411  // makes it hard to write a PassAs() that understands converting the deleter
412  // while preserving simple calling semantics.
413  //
414  // Until there is a use case for PassAs() with custom deleters, just ignore
415  // the custom deleter.
416  template <typename PassAsType>
417  scoped_ptr<PassAsType> PassAs() {
418    return scoped_ptr<PassAsType>(Pass());
419  }
420
421 private:
422  // Needed to reach into |impl_| in the constructor.
423  template <typename U, typename V> friend class scoped_ptr;
424  webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
425
426  // Forbidden for API compatibility with std::unique_ptr.
427  explicit scoped_ptr(int disallow_construction_from_null);
428
429  // Forbid comparison of scoped_ptr types.  If U != T, it totally
430  // doesn't make sense, and if U == T, it still doesn't make sense
431  // because you should never have the same object owned by two different
432  // scoped_ptrs.
433  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
434  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
435};
436
437template <class T, class D>
438class scoped_ptr<T[], D> {
439  WEBRTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
440
441 public:
442  // The element and deleter types.
443  typedef T element_type;
444  typedef D deleter_type;
445
446  // Constructor.  Defaults to initializing with NULL.
447  scoped_ptr() : impl_(NULL) { }
448
449  // Constructor. Stores the given array. Note that the argument's type
450  // must exactly match T*. In particular:
451  // - it cannot be a pointer to a type derived from T, because it is
452  //   inherently unsafe in the general case to access an array through a
453  //   pointer whose dynamic type does not match its static type (eg., if
454  //   T and the derived types had different sizes access would be
455  //   incorrectly calculated). Deletion is also always undefined
456  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
457  // - it cannot be NULL, because NULL is an integral expression, not a
458  //   pointer to T. Use the no-argument version instead of explicitly
459  //   passing NULL.
460  // - it cannot be const-qualified differently from T per unique_ptr spec
461  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
462  //   to work around this may use implicit_cast<const T*>().
463  //   However, because of the first bullet in this comment, users MUST
464  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
465  explicit scoped_ptr(element_type* array) : impl_(array) { }
466
467  // Constructor.  Move constructor for C++03 move emulation of this type.
468  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
469
470  // operator=.  Move operator= for C++03 move emulation of this type.
471  scoped_ptr& operator=(RValue rhs) {
472    impl_.TakeState(&rhs.object->impl_);
473    return *this;
474  }
475
476  // Reset.  Deletes the currently owned array, if any.
477  // Then takes ownership of a new object, if given.
478  void reset(element_type* array = NULL) { impl_.reset(array); }
479
480  // Accessors to get the owned array.
481  element_type& operator[](size_t i) const {
482    assert(impl_.get() != NULL);
483    return impl_.get()[i];
484  }
485  element_type* get() const { return impl_.get(); }
486
487  // Access to the deleter.
488  deleter_type& get_deleter() { return impl_.get_deleter(); }
489  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
490
491  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
492  // implicitly convertible to a real bool (which is dangerous).
493 private:
494  typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
495      scoped_ptr::*Testable;
496
497 public:
498  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
499
500  // Comparison operators.
501  // These return whether two scoped_ptr refer to the same object, not just to
502  // two different but equal objects.
503  bool operator==(element_type* array) const { return impl_.get() == array; }
504  bool operator!=(element_type* array) const { return impl_.get() != array; }
505
506  // Swap two scoped pointers.
507  void swap(scoped_ptr& p2) {
508    impl_.swap(p2.impl_);
509  }
510
511  // Release a pointer.
512  // The return value is the current pointer held by this object.
513  // If this object holds a NULL pointer, the return value is NULL.
514  // After this operation, this object will hold a NULL pointer,
515  // and will not own the object any more.
516  element_type* release() WARN_UNUSED_RESULT {
517    return impl_.release();
518  }
519
520 private:
521  // Force element_type to be a complete type.
522  enum { type_must_be_complete = sizeof(element_type) };
523
524  // Actually hold the data.
525  webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
526
527  // Disable initialization from any type other than element_type*, by
528  // providing a constructor that matches such an initialization, but is
529  // private and has no definition. This is disabled because it is not safe to
530  // call delete[] on an array whose static type does not match its dynamic
531  // type.
532  template <typename U> explicit scoped_ptr(U* array);
533  explicit scoped_ptr(int disallow_construction_from_null);
534
535  // Disable reset() from any type other than element_type*, for the same
536  // reasons as the constructor above.
537  template <typename U> void reset(U* array);
538  void reset(int disallow_reset_from_null);
539
540  // Forbid comparison of scoped_ptr types.  If U != T, it totally
541  // doesn't make sense, and if U == T, it still doesn't make sense
542  // because you should never have the same object owned by two different
543  // scoped_ptrs.
544  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
545  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
546};
547
548}  // namespace webrtc
549
550// Free functions
551template <class T, class D>
552void swap(webrtc::scoped_ptr<T, D>& p1, webrtc::scoped_ptr<T, D>& p2) {
553  p1.swap(p2);
554}
555
556template <class T, class D>
557bool operator==(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
558  return p1 == p2.get();
559}
560
561template <class T, class D>
562bool operator!=(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
563  return p1 != p2.get();
564}
565
566#endif  // WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
567