icon_util.cc revision 5821806d5e7f356e8fa4b058a389a808ea183019
1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "ui/gfx/icon_util.h"
6
7#include "base/file_util.h"
8#include "base/logging.h"
9#include "base/memory/scoped_ptr.h"
10#include "base/win/scoped_handle.h"
11#include "skia/ext/image_operations.h"
12#include "third_party/skia/include/core/SkBitmap.h"
13#include "ui/gfx/size.h"
14
15namespace {
16struct ScopedICONINFO : ICONINFO {
17  ScopedICONINFO() {
18    hbmColor = NULL;
19    hbmMask = NULL;
20  }
21
22  ~ScopedICONINFO() {
23    if (hbmColor)
24      ::DeleteObject(hbmColor);
25    if (hbmMask)
26      ::DeleteObject(hbmMask);
27  }
28};
29}
30
31// Defining the dimensions for the icon images. We store only one value because
32// we always resize to a square image; that is, the value 48 means that we are
33// going to resize the given bitmap to a 48 by 48 pixels bitmap.
34//
35// The icon images appear in the icon file in same order in which their
36// corresponding dimensions appear in the |icon_dimensions_| array, so it is
37// important to keep this array sorted. Also note that the maximum icon image
38// size we can handle is 255 by 255.
39const int IconUtil::icon_dimensions_[] = {
40  8,    // Recommended by the MSDN as a nice to have icon size.
41  10,   // Used by the Shell (e.g. for shortcuts).
42  14,   // Recommended by the MSDN as a nice to have icon size.
43  16,   // Toolbar, Application and Shell icon sizes.
44  22,   // Recommended by the MSDN as a nice to have icon size.
45  24,   // Used by the Shell (e.g. for shortcuts).
46  32,   // Toolbar, Dialog and Wizard icon size.
47  40,   // Quick Launch.
48  48,   // Alt+Tab icon size.
49  64,   // Recommended by the MSDN as a nice to have icon size.
50  96,   // Recommended by the MSDN as a nice to have icon size.
51  128   // Used by the Shell (e.g. for shortcuts).
52};
53
54HICON IconUtil::CreateHICONFromSkBitmap(const SkBitmap& bitmap) {
55  // Only 32 bit ARGB bitmaps are supported. We also try to perform as many
56  // validations as we can on the bitmap.
57  SkAutoLockPixels bitmap_lock(bitmap);
58  if ((bitmap.config() != SkBitmap::kARGB_8888_Config) ||
59      (bitmap.width() <= 0) || (bitmap.height() <= 0) ||
60      (bitmap.getPixels() == NULL))
61    return NULL;
62
63  // We start by creating a DIB which we'll use later on in order to create
64  // the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert
65  // may contain an alpha channel and the V5 header allows us to specify the
66  // alpha mask for the DIB.
67  BITMAPV5HEADER bitmap_header;
68  InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height());
69  void* bits;
70  HDC hdc = ::GetDC(NULL);
71  HBITMAP dib;
72  dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&bitmap_header),
73                           DIB_RGB_COLORS, &bits, NULL, 0);
74  DCHECK(dib);
75  ::ReleaseDC(NULL, hdc);
76  memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4);
77
78  // Icons are generally created using an AND and XOR masks where the AND
79  // specifies boolean transparency (the pixel is either opaque or
80  // transparent) and the XOR mask contains the actual image pixels. If the XOR
81  // mask bitmap has an alpha channel, the AND monochrome bitmap won't
82  // actually be used for computing the pixel transparency. Even though all our
83  // bitmap has an alpha channel, Windows might not agree when all alpha values
84  // are zero. So the monochrome bitmap is created with all pixels transparent
85  // for this case. Otherwise, it is created with all pixels opaque.
86  bool bitmap_has_alpha_channel = PixelsHaveAlpha(
87      static_cast<const uint32*>(bitmap.getPixels()),
88      bitmap.width() * bitmap.height());
89
90  scoped_array<uint8> mask_bits;
91  if (!bitmap_has_alpha_channel) {
92    // Bytes per line with paddings to make it word alignment.
93    size_t bytes_per_line = (bitmap.width() + 0xF) / 16 * 2;
94    size_t mask_bits_size = bytes_per_line * bitmap.height();
95
96    mask_bits.reset(new uint8[mask_bits_size]);
97    DCHECK(mask_bits.get());
98
99    // Make all pixels transparent.
100    memset(mask_bits.get(), 0xFF, mask_bits_size);
101  }
102
103  HBITMAP mono_bitmap = ::CreateBitmap(bitmap.width(), bitmap.height(), 1, 1,
104      reinterpret_cast<LPVOID>(mask_bits.get()));
105  DCHECK(mono_bitmap);
106
107  ICONINFO icon_info;
108  icon_info.fIcon = TRUE;
109  icon_info.xHotspot = 0;
110  icon_info.yHotspot = 0;
111  icon_info.hbmMask = mono_bitmap;
112  icon_info.hbmColor = dib;
113  HICON icon = ::CreateIconIndirect(&icon_info);
114  ::DeleteObject(dib);
115  ::DeleteObject(mono_bitmap);
116  return icon;
117}
118
119SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) {
120  // We start with validating parameters.
121  if (!icon || s.IsEmpty())
122    return NULL;
123  ScopedICONINFO icon_info;
124  if (!::GetIconInfo(icon, &icon_info))
125    return NULL;
126  if (!icon_info.fIcon)
127    return NULL;
128  return new SkBitmap(CreateSkBitmapFromHICONHelper(icon, s));
129}
130
131SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon) {
132  // We start with validating parameters.
133  if (!icon)
134    return NULL;
135
136  ScopedICONINFO icon_info;
137  BITMAP bitmap_info = { 0 };
138
139  if (!::GetIconInfo(icon, &icon_info))
140    return NULL;
141
142  if (!::GetObject(icon_info.hbmMask, sizeof(bitmap_info), &bitmap_info))
143    return NULL;
144
145  gfx::Size icon_size(bitmap_info.bmWidth, bitmap_info.bmHeight);
146  return new SkBitmap(CreateSkBitmapFromHICONHelper(icon, icon_size));
147}
148
149SkBitmap IconUtil::CreateSkBitmapFromHICONHelper(HICON icon,
150                                                 const gfx::Size& s) {
151  DCHECK(icon);
152  DCHECK(!s.IsEmpty());
153
154  // Allocating memory for the SkBitmap object. We are going to create an ARGB
155  // bitmap so we should set the configuration appropriately.
156  SkBitmap bitmap;
157  bitmap.setConfig(SkBitmap::kARGB_8888_Config, s.width(), s.height());
158  bitmap.allocPixels();
159  bitmap.eraseARGB(0, 0, 0, 0);
160  SkAutoLockPixels bitmap_lock(bitmap);
161
162  // Now we should create a DIB so that we can use ::DrawIconEx in order to
163  // obtain the icon's image.
164  BITMAPV5HEADER h;
165  InitializeBitmapHeader(&h, s.width(), s.height());
166  HDC hdc = ::GetDC(NULL);
167  uint32* bits;
168  HBITMAP dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&h),
169      DIB_RGB_COLORS, reinterpret_cast<void**>(&bits), NULL, 0);
170  DCHECK(dib);
171  HDC dib_dc = CreateCompatibleDC(hdc);
172  ::ReleaseDC(NULL, hdc);
173  DCHECK(dib_dc);
174  HGDIOBJ old_obj = ::SelectObject(dib_dc, dib);
175
176  // Windows icons are defined using two different masks. The XOR mask, which
177  // represents the icon image and an AND mask which is a monochrome bitmap
178  // which indicates the transparency of each pixel.
179  //
180  // To make things more complex, the icon image itself can be an ARGB bitmap
181  // and therefore contain an alpha channel which specifies the transparency
182  // for each pixel. Unfortunately, there is no easy way to determine whether
183  // or not a bitmap has an alpha channel and therefore constructing the bitmap
184  // for the icon is nothing but straightforward.
185  //
186  // The idea is to read the AND mask but use it only if we know for sure that
187  // the icon image does not have an alpha channel. The only way to tell if the
188  // bitmap has an alpha channel is by looking through the pixels and checking
189  // whether there are non-zero alpha bytes.
190  //
191  // We start by drawing the AND mask into our DIB.
192  size_t num_pixels = s.GetArea();
193  memset(bits, 0, num_pixels * 4);
194  ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_MASK);
195
196  // Capture boolean opacity. We may not use it if we find out the bitmap has
197  // an alpha channel.
198  scoped_array<bool> opaque(new bool[num_pixels]);
199  for (size_t i = 0; i < num_pixels; ++i)
200    opaque[i] = !bits[i];
201
202  // Then draw the image itself which is really the XOR mask.
203  memset(bits, 0, num_pixels * 4);
204  ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_NORMAL);
205  memcpy(bitmap.getPixels(), static_cast<void*>(bits), num_pixels * 4);
206
207  // Finding out whether the bitmap has an alpha channel.
208  bool bitmap_has_alpha_channel = PixelsHaveAlpha(
209      static_cast<const uint32*>(bitmap.getPixels()), num_pixels);
210
211  // If the bitmap does not have an alpha channel, we need to build it using
212  // the previously captured AND mask. Otherwise, we are done.
213  if (!bitmap_has_alpha_channel) {
214    uint32* p = static_cast<uint32*>(bitmap.getPixels());
215    for (size_t i = 0; i < num_pixels; ++p, ++i) {
216      DCHECK_EQ((*p & 0xff000000), 0u);
217      if (opaque[i])
218        *p |= 0xff000000;
219      else
220        *p &= 0x00ffffff;
221    }
222  }
223
224  ::SelectObject(dib_dc, old_obj);
225  ::DeleteObject(dib);
226  ::DeleteDC(dib_dc);
227
228  return bitmap;
229}
230
231bool IconUtil::CreateIconFileFromSkBitmap(const SkBitmap& bitmap,
232                                          const FilePath& icon_path) {
233  // Only 32 bit ARGB bitmaps are supported. We also make sure the bitmap has
234  // been properly initialized.
235  SkAutoLockPixels bitmap_lock(bitmap);
236  if ((bitmap.config() != SkBitmap::kARGB_8888_Config) ||
237      (bitmap.height() <= 0) || (bitmap.width() <= 0) ||
238      (bitmap.getPixels() == NULL))
239    return false;
240
241  // We start by creating the file.
242  base::win::ScopedHandle icon_file(::CreateFile(icon_path.value().c_str(),
243       GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL));
244
245  if (!icon_file.IsValid())
246    return false;
247
248  // Creating a set of bitmaps corresponding to the icon images we'll end up
249  // storing in the icon file. Each bitmap is created by resizing the given
250  // bitmap to the desired size.
251  std::vector<SkBitmap> bitmaps;
252  CreateResizedBitmapSet(bitmap, &bitmaps);
253  DCHECK(!bitmaps.empty());
254  size_t bitmap_count = bitmaps.size();
255
256  // Computing the total size of the buffer we need in order to store the
257  // images in the desired icon format.
258  size_t buffer_size = ComputeIconFileBufferSize(bitmaps);
259  unsigned char* buffer = new unsigned char[buffer_size];
260  DCHECK(buffer != NULL);
261  memset(buffer, 0, buffer_size);
262
263  // Setting the information in the structures residing within the buffer.
264  // First, we set the information which doesn't require iterating through the
265  // bitmap set and then we set the bitmap specific structures. In the latter
266  // step we also copy the actual bits.
267  ICONDIR* icon_dir = reinterpret_cast<ICONDIR*>(buffer);
268  icon_dir->idType = kResourceTypeIcon;
269  icon_dir->idCount = bitmap_count;
270  size_t icon_dir_count = bitmap_count - 1;  // Note DCHECK(!bitmaps.empty())!
271  size_t offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count);
272  for (size_t i = 0; i < bitmap_count; i++) {
273    ICONIMAGE* image = reinterpret_cast<ICONIMAGE*>(buffer + offset);
274    DCHECK_LT(offset, buffer_size);
275    size_t icon_image_size = 0;
276    SetSingleIconImageInformation(bitmaps[i], i, icon_dir, image, offset,
277                                  &icon_image_size);
278    DCHECK_GT(icon_image_size, 0U);
279    offset += icon_image_size;
280  }
281  DCHECK_EQ(offset, buffer_size);
282
283  // Finally, writing the data info the file.
284  DWORD bytes_written;
285  bool delete_file = false;
286  if (!WriteFile(icon_file.Get(), buffer, buffer_size, &bytes_written, NULL) ||
287      bytes_written != buffer_size)
288    delete_file = true;
289
290  ::CloseHandle(icon_file.Take());
291  delete [] buffer;
292  if (delete_file) {
293    bool success = file_util::Delete(icon_path, false);
294    DCHECK(success);
295  }
296
297  return !delete_file;
298}
299
300bool IconUtil::PixelsHaveAlpha(const uint32* pixels, size_t num_pixels) {
301  for (const uint32* end = pixels + num_pixels; pixels != end; ++pixels) {
302    if ((*pixels & 0xff000000) != 0)
303      return true;
304  }
305
306  return false;
307}
308
309void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width,
310                                      int height) {
311  DCHECK(header);
312  memset(header, 0, sizeof(BITMAPV5HEADER));
313  header->bV5Size = sizeof(BITMAPV5HEADER);
314
315  // Note that icons are created using top-down DIBs so we must negate the
316  // value used for the icon's height.
317  header->bV5Width = width;
318  header->bV5Height = -height;
319  header->bV5Planes = 1;
320  header->bV5Compression = BI_RGB;
321
322  // Initializing the bitmap format to 32 bit ARGB.
323  header->bV5BitCount = 32;
324  header->bV5RedMask = 0x00FF0000;
325  header->bV5GreenMask = 0x0000FF00;
326  header->bV5BlueMask = 0x000000FF;
327  header->bV5AlphaMask = 0xFF000000;
328
329  // Use the system color space.  The default value is LCS_CALIBRATED_RGB, which
330  // causes us to crash if we don't specify the approprite gammas, etc.  See
331  // <http://msdn.microsoft.com/en-us/library/ms536531(VS.85).aspx> and
332  // <http://b/1283121>.
333  header->bV5CSType = LCS_WINDOWS_COLOR_SPACE;
334
335  // Use a valid value for bV5Intent as 0 is not a valid one.
336  // <http://msdn.microsoft.com/en-us/library/dd183381(VS.85).aspx>
337  header->bV5Intent = LCS_GM_IMAGES;
338}
339
340void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap,
341                                             size_t index,
342                                             ICONDIR* icon_dir,
343                                             ICONIMAGE* icon_image,
344                                             size_t image_offset,
345                                             size_t* image_byte_count) {
346  DCHECK(icon_dir != NULL);
347  DCHECK(icon_image != NULL);
348  DCHECK_GT(image_offset, 0U);
349  DCHECK(image_byte_count != NULL);
350
351  // We start by computing certain image values we'll use later on.
352  size_t xor_mask_size, bytes_in_resource;
353  ComputeBitmapSizeComponents(bitmap,
354                              &xor_mask_size,
355                              &bytes_in_resource);
356
357  icon_dir->idEntries[index].bWidth = static_cast<BYTE>(bitmap.width());
358  icon_dir->idEntries[index].bHeight = static_cast<BYTE>(bitmap.height());
359  icon_dir->idEntries[index].wPlanes = 1;
360  icon_dir->idEntries[index].wBitCount = 32;
361  icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource;
362  icon_dir->idEntries[index].dwImageOffset = image_offset;
363  icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER);
364
365  // The width field in the BITMAPINFOHEADER structure accounts for the height
366  // of both the AND mask and the XOR mask so we need to multiply the bitmap's
367  // height by 2. The same does NOT apply to the width field.
368  icon_image->icHeader.biHeight = bitmap.height() * 2;
369  icon_image->icHeader.biWidth = bitmap.width();
370  icon_image->icHeader.biPlanes = 1;
371  icon_image->icHeader.biBitCount = 32;
372
373  // We use a helper function for copying to actual bits from the SkBitmap
374  // object into the appropriate space in the buffer. We use a helper function
375  // (rather than just copying the bits) because there is no way to specify the
376  // orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file.
377  // Thus, if we just copy the bits, we'll end up with a bottom up bitmap in
378  // the .ico file which will result in the icon being displayed upside down.
379  // The helper function copies the image into the buffer one scanline at a
380  // time.
381  //
382  // Note that we don't need to initialize the AND mask since the memory
383  // allocated for the icon data buffer was initialized to zero. The icon we
384  // create will therefore use an AND mask containing only zeros, which is OK
385  // because the underlying image has an alpha channel. An AND mask containing
386  // only zeros essentially means we'll initially treat all the pixels as
387  // opaque.
388  unsigned char* image_addr = reinterpret_cast<unsigned char*>(icon_image);
389  unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER);
390  CopySkBitmapBitsIntoIconBuffer(bitmap, xor_mask_addr, xor_mask_size);
391  *image_byte_count = bytes_in_resource;
392}
393
394void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap,
395                                              unsigned char* buffer,
396                                              size_t buffer_size) {
397  SkAutoLockPixels bitmap_lock(bitmap);
398  unsigned char* bitmap_ptr = static_cast<unsigned char*>(bitmap.getPixels());
399  size_t bitmap_size = bitmap.height() * bitmap.width() * 4;
400  DCHECK_EQ(buffer_size, bitmap_size);
401  for (size_t i = 0; i < bitmap_size; i += bitmap.width() * 4) {
402    memcpy(buffer + bitmap_size - bitmap.width() * 4 - i,
403           bitmap_ptr + i,
404           bitmap.width() * 4);
405  }
406}
407
408void IconUtil::CreateResizedBitmapSet(const SkBitmap& bitmap_to_resize,
409                                      std::vector<SkBitmap>* bitmaps) {
410  DCHECK(bitmaps != NULL);
411  DCHECK(bitmaps->empty());
412
413  bool inserted_original_bitmap = false;
414  for (size_t i = 0; i < arraysize(icon_dimensions_); i++) {
415    // If the dimensions of the bitmap we are resizing are the same as the
416    // current dimensions, then we should insert the bitmap and not a resized
417    // bitmap. If the bitmap's dimensions are smaller, we insert our bitmap
418    // first so that the bitmaps we return in the vector are sorted based on
419    // their dimensions.
420    if (!inserted_original_bitmap) {
421      if ((bitmap_to_resize.width() == icon_dimensions_[i]) &&
422          (bitmap_to_resize.height() == icon_dimensions_[i])) {
423        bitmaps->push_back(bitmap_to_resize);
424        inserted_original_bitmap = true;
425        continue;
426      }
427
428      if ((bitmap_to_resize.width() < icon_dimensions_[i]) &&
429          (bitmap_to_resize.height() < icon_dimensions_[i])) {
430        bitmaps->push_back(bitmap_to_resize);
431        inserted_original_bitmap = true;
432      }
433    }
434    bitmaps->push_back(skia::ImageOperations::Resize(
435        bitmap_to_resize, skia::ImageOperations::RESIZE_LANCZOS3,
436        icon_dimensions_[i], icon_dimensions_[i]));
437  }
438
439  if (!inserted_original_bitmap)
440    bitmaps->push_back(bitmap_to_resize);
441}
442
443size_t IconUtil::ComputeIconFileBufferSize(const std::vector<SkBitmap>& set) {
444  DCHECK(!set.empty());
445
446  // We start by counting the bytes for the structures that don't depend on the
447  // number of icon images. Note that sizeof(ICONDIR) already accounts for a
448  // single ICONDIRENTRY structure, which is why we subtract one from the
449  // number of bitmaps.
450  size_t total_buffer_size = sizeof(ICONDIR);
451  size_t bitmap_count = set.size();
452  total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1);
453  DCHECK_GE(bitmap_count, arraysize(icon_dimensions_));
454
455  // Add the bitmap specific structure sizes.
456  for (size_t i = 0; i < bitmap_count; i++) {
457    size_t xor_mask_size, bytes_in_resource;
458    ComputeBitmapSizeComponents(set[i],
459                                &xor_mask_size,
460                                &bytes_in_resource);
461    total_buffer_size += bytes_in_resource;
462  }
463  return total_buffer_size;
464}
465
466void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap,
467                                           size_t* xor_mask_size,
468                                           size_t* bytes_in_resource) {
469  // The XOR mask size is easy to calculate since we only deal with 32bpp
470  // images.
471  *xor_mask_size = bitmap.width() * bitmap.height() * 4;
472
473  // Computing the AND mask is a little trickier since it is a monochrome
474  // bitmap (regardless of the number of bits per pixels used in the XOR mask).
475  // There are two things we must make sure we do when computing the AND mask
476  // size:
477  //
478  // 1. Make sure the right number of bytes is allocated for each AND mask
479  //    scan line in case the number of pixels in the image is not divisible by
480  //    8. For example, in a 15X15 image, 15 / 8 is one byte short of
481  //    containing the number of bits we need in order to describe a single
482  //    image scan line so we need to add a byte. Thus, we need 2 bytes instead
483  //    of 1 for each scan line.
484  //
485  // 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the
486  //    total icon image has a 4 byte alignment). In the 15X15 image example
487  //    above, we can not use 2 bytes so we increase it to the next multiple of
488  //    4 which is 4.
489  //
490  // Once we compute the size for a singe AND mask scan line, we multiply that
491  // number by the image height in order to get the total number of bytes for
492  // the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes
493  // for the monochrome bitmap representing the AND mask.
494  size_t and_line_length = (bitmap.width() + 7) >> 3;
495  and_line_length = (and_line_length + 3) & ~3;
496  size_t and_mask_size = and_line_length * bitmap.height();
497  size_t masks_size = *xor_mask_size + and_mask_size;
498  *bytes_in_resource = masks_size + sizeof(BITMAPINFOHEADER);
499}
500