1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_UTIL_H_
6#define V8_UTIL_H_
7
8#include "v8.h"
9#include <map>
10#include <vector>
11
12/**
13 * Support for Persistent containers.
14 *
15 * C++11 embedders can use STL containers with UniquePersistent values,
16 * but pre-C++11 does not support the required move semantic and hence
17 * may want these container classes.
18 */
19namespace v8 {
20
21typedef uintptr_t PersistentContainerValue;
22static const uintptr_t kPersistentContainerNotFound = 0;
23enum PersistentContainerCallbackType {
24  kNotWeak,
25  kWeak
26};
27
28
29/**
30 * A default trait implemenation for PersistentValueMap which uses std::map
31 * as a backing map.
32 *
33 * Users will have to implement their own weak callbacks & dispose traits.
34 */
35template<typename K, typename V>
36class StdMapTraits {
37 public:
38  // STL map & related:
39  typedef std::map<K, PersistentContainerValue> Impl;
40  typedef typename Impl::iterator Iterator;
41
42  static bool Empty(Impl* impl) { return impl->empty(); }
43  static size_t Size(Impl* impl) { return impl->size(); }
44  static void Swap(Impl& a, Impl& b) { std::swap(a, b); }  // NOLINT
45  static Iterator Begin(Impl* impl) { return impl->begin(); }
46  static Iterator End(Impl* impl) { return impl->end(); }
47  static K Key(Iterator it) { return it->first; }
48  static PersistentContainerValue Value(Iterator it) { return it->second; }
49  static PersistentContainerValue Set(Impl* impl, K key,
50      PersistentContainerValue value) {
51    std::pair<Iterator, bool> res = impl->insert(std::make_pair(key, value));
52    PersistentContainerValue old_value = kPersistentContainerNotFound;
53    if (!res.second) {
54      old_value = res.first->second;
55      res.first->second = value;
56    }
57    return old_value;
58  }
59  static PersistentContainerValue Get(Impl* impl, K key) {
60    Iterator it = impl->find(key);
61    if (it == impl->end()) return kPersistentContainerNotFound;
62    return it->second;
63  }
64  static PersistentContainerValue Remove(Impl* impl, K key) {
65    Iterator it = impl->find(key);
66    if (it == impl->end()) return kPersistentContainerNotFound;
67    PersistentContainerValue value = it->second;
68    impl->erase(it);
69    return value;
70  }
71};
72
73
74/**
75 * A default trait implementation for PersistentValueMap, which inherits
76 * a std:map backing map from StdMapTraits and holds non-weak persistent
77 * objects and has no special Dispose handling.
78 *
79 * You should not derive from this class, since MapType depends on the
80 * surrounding class, and hence a subclass cannot simply inherit the methods.
81 */
82template<typename K, typename V>
83class DefaultPersistentValueMapTraits : public StdMapTraits<K, V> {
84 public:
85  // Weak callback & friends:
86  static const PersistentContainerCallbackType kCallbackType = kNotWeak;
87  typedef PersistentValueMap<K, V, DefaultPersistentValueMapTraits<K, V> >
88      MapType;
89  typedef void WeakCallbackDataType;
90
91  static WeakCallbackDataType* WeakCallbackParameter(
92      MapType* map, const K& key, Local<V> value) {
93    return NULL;
94  }
95  static MapType* MapFromWeakCallbackData(
96          const WeakCallbackData<V, WeakCallbackDataType>& data) {
97    return NULL;
98  }
99  static K KeyFromWeakCallbackData(
100      const WeakCallbackData<V, WeakCallbackDataType>& data) {
101    return K();
102  }
103  static void DisposeCallbackData(WeakCallbackDataType* data) { }
104  static void Dispose(Isolate* isolate, UniquePersistent<V> value, K key) { }
105};
106
107
108/**
109 * A map wrapper that allows using UniquePersistent as a mapped value.
110 * C++11 embedders don't need this class, as they can use UniquePersistent
111 * directly in std containers.
112 *
113 * The map relies on a backing map, whose type and accessors are described
114 * by the Traits class. The backing map will handle values of type
115 * PersistentContainerValue, with all conversion into and out of V8
116 * handles being transparently handled by this class.
117 */
118template<typename K, typename V, typename Traits>
119class PersistentValueMap {
120 public:
121  explicit PersistentValueMap(Isolate* isolate) : isolate_(isolate) {}
122
123  ~PersistentValueMap() { Clear(); }
124
125  Isolate* GetIsolate() { return isolate_; }
126
127  /**
128   * Return size of the map.
129   */
130  size_t Size() { return Traits::Size(&impl_); }
131
132  /**
133   * Return whether the map holds weak persistents.
134   */
135  bool IsWeak() { return Traits::kCallbackType != kNotWeak; }
136
137  /**
138   * Get value stored in map.
139   */
140  Local<V> Get(const K& key) {
141    return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, key)));
142  }
143
144  /**
145   * Check whether a value is contained in the map.
146   */
147  bool Contains(const K& key) {
148    return Traits::Get(&impl_, key) != kPersistentContainerNotFound;
149  }
150
151  /**
152   * Get value stored in map and set it in returnValue.
153   * Return true if a value was found.
154   */
155  bool SetReturnValue(const K& key,
156      ReturnValue<Value> returnValue) {
157    return SetReturnValueFromVal(&returnValue, Traits::Get(&impl_, key));
158  }
159
160  /**
161   * Call Isolate::SetReference with the given parent and the map value.
162   */
163  void SetReference(const K& key,
164      const Persistent<Object>& parent) {
165    GetIsolate()->SetReference(
166      reinterpret_cast<internal::Object**>(parent.val_),
167      reinterpret_cast<internal::Object**>(FromVal(Traits::Get(&impl_, key))));
168  }
169
170  /**
171   * Put value into map. Depending on Traits::kIsWeak, the value will be held
172   * by the map strongly or weakly.
173   * Returns old value as UniquePersistent.
174   */
175  UniquePersistent<V> Set(const K& key, Local<V> value) {
176    UniquePersistent<V> persistent(isolate_, value);
177    return SetUnique(key, &persistent);
178  }
179
180  /**
181   * Put value into map, like Set(const K&, Local<V>).
182   */
183  UniquePersistent<V> Set(const K& key, UniquePersistent<V> value) {
184    return SetUnique(key, &value);
185  }
186
187  /**
188   * Return value for key and remove it from the map.
189   */
190  UniquePersistent<V> Remove(const K& key) {
191    return Release(Traits::Remove(&impl_, key)).Pass();
192  }
193
194  /**
195  * Traverses the map repeatedly,
196  * in case side effects of disposal cause insertions.
197  **/
198  void Clear() {
199    typedef typename Traits::Iterator It;
200    HandleScope handle_scope(isolate_);
201    // TODO(dcarney): figure out if this swap and loop is necessary.
202    while (!Traits::Empty(&impl_)) {
203      typename Traits::Impl impl;
204      Traits::Swap(impl_, impl);
205      for (It i = Traits::Begin(&impl); i != Traits::End(&impl); ++i) {
206        Traits::Dispose(isolate_, Release(Traits::Value(i)).Pass(),
207                        Traits::Key(i));
208      }
209    }
210  }
211
212  /**
213   * Helper class for GetReference/SetWithReference. Do not use outside
214   * that context.
215   */
216  class PersistentValueReference {
217   public:
218    PersistentValueReference() : value_(kPersistentContainerNotFound) { }
219    PersistentValueReference(const PersistentValueReference& other)
220        : value_(other.value_) { }
221
222    Local<V> NewLocal(Isolate* isolate) const {
223      return Local<V>::New(isolate, FromVal(value_));
224    }
225    bool IsEmpty() const {
226      return value_ == kPersistentContainerNotFound;
227    }
228    template<typename T>
229    bool SetReturnValue(ReturnValue<T> returnValue) {
230      return SetReturnValueFromVal(&returnValue, value_);
231    }
232    void Reset() {
233      value_ = kPersistentContainerNotFound;
234    }
235    void operator=(const PersistentValueReference& other) {
236      value_ = other.value_;
237    }
238
239   private:
240    friend class PersistentValueMap;
241
242    explicit PersistentValueReference(PersistentContainerValue value)
243        : value_(value) { }
244
245    void operator=(PersistentContainerValue value) {
246      value_ = value;
247    }
248
249    PersistentContainerValue value_;
250  };
251
252  /**
253   * Get a reference to a map value. This enables fast, repeated access
254   * to a value stored in the map while the map remains unchanged.
255   *
256   * Careful: This is potentially unsafe, so please use with care.
257   * The value will become invalid if the value for this key changes
258   * in the underlying map, as a result of Set or Remove for the same
259   * key; as a result of the weak callback for the same key; or as a
260   * result of calling Clear() or destruction of the map.
261   */
262  PersistentValueReference GetReference(const K& key) {
263    return PersistentValueReference(Traits::Get(&impl_, key));
264  }
265
266  /**
267   * Put a value into the map and update the reference.
268   * Restrictions of GetReference apply here as well.
269   */
270  UniquePersistent<V> Set(const K& key, UniquePersistent<V> value,
271                          PersistentValueReference* reference) {
272    *reference = Leak(&value);
273    return SetUnique(key, &value);
274  }
275
276 private:
277  PersistentValueMap(PersistentValueMap&);
278  void operator=(PersistentValueMap&);
279
280  /**
281   * Put the value into the map, and set the 'weak' callback when demanded
282   * by the Traits class.
283   */
284  UniquePersistent<V> SetUnique(const K& key, UniquePersistent<V>* persistent) {
285    if (Traits::kCallbackType != kNotWeak) {
286      Local<V> value(Local<V>::New(isolate_, *persistent));
287      persistent->template SetWeak<typename Traits::WeakCallbackDataType>(
288        Traits::WeakCallbackParameter(this, key, value), WeakCallback);
289    }
290    PersistentContainerValue old_value =
291        Traits::Set(&impl_, key, ClearAndLeak(persistent));
292    return Release(old_value).Pass();
293  }
294
295  static void WeakCallback(
296      const WeakCallbackData<V, typename Traits::WeakCallbackDataType>& data) {
297    if (Traits::kCallbackType != kNotWeak) {
298      PersistentValueMap<K, V, Traits>* persistentValueMap =
299          Traits::MapFromWeakCallbackData(data);
300      K key = Traits::KeyFromWeakCallbackData(data);
301      Traits::Dispose(data.GetIsolate(),
302                      persistentValueMap->Remove(key).Pass(), key);
303      Traits::DisposeCallbackData(data.GetParameter());
304    }
305  }
306
307  static V* FromVal(PersistentContainerValue v) {
308    return reinterpret_cast<V*>(v);
309  }
310
311  static bool SetReturnValueFromVal(
312      ReturnValue<Value>* returnValue, PersistentContainerValue value) {
313    bool hasValue = value != kPersistentContainerNotFound;
314    if (hasValue) {
315      returnValue->SetInternal(
316          *reinterpret_cast<internal::Object**>(FromVal(value)));
317    }
318    return hasValue;
319  }
320
321  static PersistentContainerValue ClearAndLeak(
322      UniquePersistent<V>* persistent) {
323    V* v = persistent->val_;
324    persistent->val_ = 0;
325    return reinterpret_cast<PersistentContainerValue>(v);
326  }
327
328  static PersistentContainerValue Leak(
329      UniquePersistent<V>* persistent) {
330    return reinterpret_cast<PersistentContainerValue>(persistent->val_);
331  }
332
333  /**
334   * Return a container value as UniquePersistent and make sure the weak
335   * callback is properly disposed of. All remove functionality should go
336   * through this.
337   */
338  static UniquePersistent<V> Release(PersistentContainerValue v) {
339    UniquePersistent<V> p;
340    p.val_ = FromVal(v);
341    if (Traits::kCallbackType != kNotWeak && p.IsWeak()) {
342      Traits::DisposeCallbackData(
343          p.template ClearWeak<typename Traits::WeakCallbackDataType>());
344    }
345    return p.Pass();
346  }
347
348  Isolate* isolate_;
349  typename Traits::Impl impl_;
350};
351
352
353/**
354 * A map that uses UniquePersistent as value and std::map as the backing
355 * implementation. Persistents are held non-weak.
356 *
357 * C++11 embedders don't need this class, as they can use
358 * UniquePersistent directly in std containers.
359 */
360template<typename K, typename V,
361    typename Traits = DefaultPersistentValueMapTraits<K, V> >
362class StdPersistentValueMap : public PersistentValueMap<K, V, Traits> {
363 public:
364  explicit StdPersistentValueMap(Isolate* isolate)
365      : PersistentValueMap<K, V, Traits>(isolate) {}
366};
367
368
369class DefaultPersistentValueVectorTraits {
370 public:
371  typedef std::vector<PersistentContainerValue> Impl;
372
373  static void Append(Impl* impl, PersistentContainerValue value) {
374    impl->push_back(value);
375  }
376  static bool IsEmpty(const Impl* impl) {
377    return impl->empty();
378  }
379  static size_t Size(const Impl* impl) {
380    return impl->size();
381  }
382  static PersistentContainerValue Get(const Impl* impl, size_t i) {
383    return (i < impl->size()) ? impl->at(i) : kPersistentContainerNotFound;
384  }
385  static void ReserveCapacity(Impl* impl, size_t capacity) {
386    impl->reserve(capacity);
387  }
388  static void Clear(Impl* impl) {
389    impl->clear();
390  }
391};
392
393
394/**
395 * A vector wrapper that safely stores UniquePersistent values.
396 * C++11 embedders don't need this class, as they can use UniquePersistent
397 * directly in std containers.
398 *
399 * This class relies on a backing vector implementation, whose type and methods
400 * are described by the Traits class. The backing map will handle values of type
401 * PersistentContainerValue, with all conversion into and out of V8
402 * handles being transparently handled by this class.
403 */
404template<typename V, typename Traits = DefaultPersistentValueVectorTraits>
405class PersistentValueVector {
406 public:
407  explicit PersistentValueVector(Isolate* isolate) : isolate_(isolate) { }
408
409  ~PersistentValueVector() {
410    Clear();
411  }
412
413  /**
414   * Append a value to the vector.
415   */
416  void Append(Local<V> value) {
417    UniquePersistent<V> persistent(isolate_, value);
418    Traits::Append(&impl_, ClearAndLeak(&persistent));
419  }
420
421  /**
422   * Append a persistent's value to the vector.
423   */
424  void Append(UniquePersistent<V> persistent) {
425    Traits::Append(&impl_, ClearAndLeak(&persistent));
426  }
427
428  /**
429   * Are there any values in the vector?
430   */
431  bool IsEmpty() const {
432    return Traits::IsEmpty(&impl_);
433  }
434
435  /**
436   * How many elements are in the vector?
437   */
438  size_t Size() const {
439    return Traits::Size(&impl_);
440  }
441
442  /**
443   * Retrieve the i-th value in the vector.
444   */
445  Local<V> Get(size_t index) const {
446    return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, index)));
447  }
448
449  /**
450   * Remove all elements from the vector.
451   */
452  void Clear() {
453    size_t length = Traits::Size(&impl_);
454    for (size_t i = 0; i < length; i++) {
455      UniquePersistent<V> p;
456      p.val_ = FromVal(Traits::Get(&impl_, i));
457    }
458    Traits::Clear(&impl_);
459  }
460
461  /**
462   * Reserve capacity in the vector.
463   * (Efficiency gains depend on the backing implementation.)
464   */
465  void ReserveCapacity(size_t capacity) {
466    Traits::ReserveCapacity(&impl_, capacity);
467  }
468
469 private:
470  static PersistentContainerValue ClearAndLeak(
471      UniquePersistent<V>* persistent) {
472    V* v = persistent->val_;
473    persistent->val_ = 0;
474    return reinterpret_cast<PersistentContainerValue>(v);
475  }
476
477  static V* FromVal(PersistentContainerValue v) {
478    return reinterpret_cast<V*>(v);
479  }
480
481  Isolate* isolate_;
482  typename Traits::Impl impl_;
483};
484
485}  // namespace v8
486
487#endif  // V8_UTIL_H_
488