1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_ARM
8
9#include "src/code-stubs.h"
10#include "src/cpu-profiler.h"
11#include "src/log.h"
12#include "src/macro-assembler.h"
13#include "src/regexp-macro-assembler.h"
14#include "src/regexp-stack.h"
15#include "src/unicode.h"
16
17#include "src/arm/regexp-macro-assembler-arm.h"
18
19namespace v8 {
20namespace internal {
21
22#ifndef V8_INTERPRETED_REGEXP
23/*
24 * This assembler uses the following register assignment convention
25 * - r4 : Temporarily stores the index of capture start after a matching pass
26 *        for a global regexp.
27 * - r5 : Pointer to current code object (Code*) including heap object tag.
28 * - r6 : Current position in input, as negative offset from end of string.
29 *        Please notice that this is the byte offset, not the character offset!
30 * - r7 : Currently loaded character. Must be loaded using
31 *        LoadCurrentCharacter before using any of the dispatch methods.
32 * - r8 : Points to tip of backtrack stack
33 * - r9 : Unused, might be used by C code and expected unchanged.
34 * - r10 : End of input (points to byte after last character in input).
35 * - r11 : Frame pointer. Used to access arguments, local variables and
36 *         RegExp registers.
37 * - r12 : IP register, used by assembler. Very volatile.
38 * - r13/sp : Points to tip of C stack.
39 *
40 * The remaining registers are free for computations.
41 * Each call to a public method should retain this convention.
42 *
43 * The stack will have the following structure:
44 *  - fp[56]  Isolate* isolate   (address of the current isolate)
45 *  - fp[52]  direct_call        (if 1, direct call from JavaScript code,
46 *                                if 0, call through the runtime system).
47 *  - fp[48]  stack_area_base    (high end of the memory area to use as
48 *                                backtracking stack).
49 *  - fp[44]  capture array size (may fit multiple sets of matches)
50 *  - fp[40]  int* capture_array (int[num_saved_registers_], for output).
51 *  - fp[36]  secondary link/return address used by native call.
52 *  --- sp when called ---
53 *  - fp[32]  return address     (lr).
54 *  - fp[28]  old frame pointer  (r11).
55 *  - fp[0..24]  backup of registers r4..r10.
56 *  --- frame pointer ----
57 *  - fp[-4]  end of input       (address of end of string).
58 *  - fp[-8]  start of input     (address of first character in string).
59 *  - fp[-12] start index        (character index of start).
60 *  - fp[-16] void* input_string (location of a handle containing the string).
61 *  - fp[-20] success counter    (only for global regexps to count matches).
62 *  - fp[-24] Offset of location before start of input (effectively character
63 *            position -1). Used to initialize capture registers to a
64 *            non-position.
65 *  - fp[-28] At start (if 1, we are starting at the start of the
66 *    string, otherwise 0)
67 *  - fp[-32] register 0         (Only positions must be stored in the first
68 *  -         register 1          num_saved_registers_ registers)
69 *  -         ...
70 *  -         register num_registers-1
71 *  --- sp ---
72 *
73 * The first num_saved_registers_ registers are initialized to point to
74 * "character -1" in the string (i.e., char_size() bytes before the first
75 * character of the string). The remaining registers start out as garbage.
76 *
77 * The data up to the return address must be placed there by the calling
78 * code and the remaining arguments are passed in registers, e.g. by calling the
79 * code entry as cast to a function with the signature:
80 * int (*match)(String* input_string,
81 *              int start_index,
82 *              Address start,
83 *              Address end,
84 *              Address secondary_return_address,  // Only used by native call.
85 *              int* capture_output_array,
86 *              byte* stack_area_base,
87 *              bool direct_call = false)
88 * The call is performed by NativeRegExpMacroAssembler::Execute()
89 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
90 * in arm/simulator-arm.h.
91 * When calling as a non-direct call (i.e., from C++ code), the return address
92 * area is overwritten with the LR register by the RegExp code. When doing a
93 * direct call from generated code, the return address is placed there by
94 * the calling code, as in a normal exit frame.
95 */
96
97#define __ ACCESS_MASM(masm_)
98
99RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(
100    Mode mode,
101    int registers_to_save,
102    Zone* zone)
103    : NativeRegExpMacroAssembler(zone),
104      masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
105      mode_(mode),
106      num_registers_(registers_to_save),
107      num_saved_registers_(registers_to_save),
108      entry_label_(),
109      start_label_(),
110      success_label_(),
111      backtrack_label_(),
112      exit_label_() {
113  DCHECK_EQ(0, registers_to_save % 2);
114  __ jmp(&entry_label_);   // We'll write the entry code later.
115  __ bind(&start_label_);  // And then continue from here.
116}
117
118
119RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
120  delete masm_;
121  // Unuse labels in case we throw away the assembler without calling GetCode.
122  entry_label_.Unuse();
123  start_label_.Unuse();
124  success_label_.Unuse();
125  backtrack_label_.Unuse();
126  exit_label_.Unuse();
127  check_preempt_label_.Unuse();
128  stack_overflow_label_.Unuse();
129}
130
131
132int RegExpMacroAssemblerARM::stack_limit_slack()  {
133  return RegExpStack::kStackLimitSlack;
134}
135
136
137void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
138  if (by != 0) {
139    __ add(current_input_offset(),
140           current_input_offset(), Operand(by * char_size()));
141  }
142}
143
144
145void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
146  DCHECK(reg >= 0);
147  DCHECK(reg < num_registers_);
148  if (by != 0) {
149    __ ldr(r0, register_location(reg));
150    __ add(r0, r0, Operand(by));
151    __ str(r0, register_location(reg));
152  }
153}
154
155
156void RegExpMacroAssemblerARM::Backtrack() {
157  CheckPreemption();
158  // Pop Code* offset from backtrack stack, add Code* and jump to location.
159  Pop(r0);
160  __ add(pc, r0, Operand(code_pointer()));
161}
162
163
164void RegExpMacroAssemblerARM::Bind(Label* label) {
165  __ bind(label);
166}
167
168
169void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
170  __ cmp(current_character(), Operand(c));
171  BranchOrBacktrack(eq, on_equal);
172}
173
174
175void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
176  __ cmp(current_character(), Operand(limit));
177  BranchOrBacktrack(gt, on_greater);
178}
179
180
181void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) {
182  Label not_at_start;
183  // Did we start the match at the start of the string at all?
184  __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
185  __ cmp(r0, Operand::Zero());
186  BranchOrBacktrack(ne, &not_at_start);
187
188  // If we did, are we still at the start of the input?
189  __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
190  __ add(r0, end_of_input_address(), Operand(current_input_offset()));
191  __ cmp(r0, r1);
192  BranchOrBacktrack(eq, on_at_start);
193  __ bind(&not_at_start);
194}
195
196
197void RegExpMacroAssemblerARM::CheckNotAtStart(Label* on_not_at_start) {
198  // Did we start the match at the start of the string at all?
199  __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
200  __ cmp(r0, Operand::Zero());
201  BranchOrBacktrack(ne, on_not_at_start);
202  // If we did, are we still at the start of the input?
203  __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
204  __ add(r0, end_of_input_address(), Operand(current_input_offset()));
205  __ cmp(r0, r1);
206  BranchOrBacktrack(ne, on_not_at_start);
207}
208
209
210void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
211  __ cmp(current_character(), Operand(limit));
212  BranchOrBacktrack(lt, on_less);
213}
214
215
216void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
217  __ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
218  __ cmp(current_input_offset(), r0);
219  __ add(backtrack_stackpointer(),
220         backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
221  BranchOrBacktrack(eq, on_equal);
222}
223
224
225void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
226    int start_reg,
227    Label* on_no_match) {
228  Label fallthrough;
229  __ ldr(r0, register_location(start_reg));  // Index of start of capture
230  __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
231  __ sub(r1, r1, r0, SetCC);  // Length of capture.
232
233  // If length is zero, either the capture is empty or it is not participating.
234  // In either case succeed immediately.
235  __ b(eq, &fallthrough);
236
237  // Check that there are enough characters left in the input.
238  __ cmn(r1, Operand(current_input_offset()));
239  BranchOrBacktrack(gt, on_no_match);
240
241  if (mode_ == LATIN1) {
242    Label success;
243    Label fail;
244    Label loop_check;
245
246    // r0 - offset of start of capture
247    // r1 - length of capture
248    __ add(r0, r0, Operand(end_of_input_address()));
249    __ add(r2, end_of_input_address(), Operand(current_input_offset()));
250    __ add(r1, r0, Operand(r1));
251
252    // r0 - Address of start of capture.
253    // r1 - Address of end of capture
254    // r2 - Address of current input position.
255
256    Label loop;
257    __ bind(&loop);
258    __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
259    __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
260    __ cmp(r4, r3);
261    __ b(eq, &loop_check);
262
263    // Mismatch, try case-insensitive match (converting letters to lower-case).
264    __ orr(r3, r3, Operand(0x20));  // Convert capture character to lower-case.
265    __ orr(r4, r4, Operand(0x20));  // Also convert input character.
266    __ cmp(r4, r3);
267    __ b(ne, &fail);
268    __ sub(r3, r3, Operand('a'));
269    __ cmp(r3, Operand('z' - 'a'));  // Is r3 a lowercase letter?
270    __ b(ls, &loop_check);  // In range 'a'-'z'.
271    // Latin-1: Check for values in range [224,254] but not 247.
272    __ sub(r3, r3, Operand(224 - 'a'));
273    __ cmp(r3, Operand(254 - 224));
274    __ b(hi, &fail);  // Weren't Latin-1 letters.
275    __ cmp(r3, Operand(247 - 224));  // Check for 247.
276    __ b(eq, &fail);
277
278    __ bind(&loop_check);
279    __ cmp(r0, r1);
280    __ b(lt, &loop);
281    __ jmp(&success);
282
283    __ bind(&fail);
284    BranchOrBacktrack(al, on_no_match);
285
286    __ bind(&success);
287    // Compute new value of character position after the matched part.
288    __ sub(current_input_offset(), r2, end_of_input_address());
289  } else {
290    DCHECK(mode_ == UC16);
291    int argument_count = 4;
292    __ PrepareCallCFunction(argument_count, r2);
293
294    // r0 - offset of start of capture
295    // r1 - length of capture
296
297    // Put arguments into arguments registers.
298    // Parameters are
299    //   r0: Address byte_offset1 - Address captured substring's start.
300    //   r1: Address byte_offset2 - Address of current character position.
301    //   r2: size_t byte_length - length of capture in bytes(!)
302    //   r3: Isolate* isolate
303
304    // Address of start of capture.
305    __ add(r0, r0, Operand(end_of_input_address()));
306    // Length of capture.
307    __ mov(r2, Operand(r1));
308    // Save length in callee-save register for use on return.
309    __ mov(r4, Operand(r1));
310    // Address of current input position.
311    __ add(r1, current_input_offset(), Operand(end_of_input_address()));
312    // Isolate.
313    __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
314
315    {
316      AllowExternalCallThatCantCauseGC scope(masm_);
317      ExternalReference function =
318          ExternalReference::re_case_insensitive_compare_uc16(isolate());
319      __ CallCFunction(function, argument_count);
320    }
321
322    // Check if function returned non-zero for success or zero for failure.
323    __ cmp(r0, Operand::Zero());
324    BranchOrBacktrack(eq, on_no_match);
325    // On success, increment position by length of capture.
326    __ add(current_input_offset(), current_input_offset(), Operand(r4));
327  }
328
329  __ bind(&fallthrough);
330}
331
332
333void RegExpMacroAssemblerARM::CheckNotBackReference(
334    int start_reg,
335    Label* on_no_match) {
336  Label fallthrough;
337  Label success;
338
339  // Find length of back-referenced capture.
340  __ ldr(r0, register_location(start_reg));
341  __ ldr(r1, register_location(start_reg + 1));
342  __ sub(r1, r1, r0, SetCC);  // Length to check.
343  // Succeed on empty capture (including no capture).
344  __ b(eq, &fallthrough);
345
346  // Check that there are enough characters left in the input.
347  __ cmn(r1, Operand(current_input_offset()));
348  BranchOrBacktrack(gt, on_no_match);
349
350  // Compute pointers to match string and capture string
351  __ add(r0, r0, Operand(end_of_input_address()));
352  __ add(r2, end_of_input_address(), Operand(current_input_offset()));
353  __ add(r1, r1, Operand(r0));
354
355  Label loop;
356  __ bind(&loop);
357  if (mode_ == LATIN1) {
358    __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
359    __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
360  } else {
361    DCHECK(mode_ == UC16);
362    __ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
363    __ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
364  }
365  __ cmp(r3, r4);
366  BranchOrBacktrack(ne, on_no_match);
367  __ cmp(r0, r1);
368  __ b(lt, &loop);
369
370  // Move current character position to position after match.
371  __ sub(current_input_offset(), r2, end_of_input_address());
372  __ bind(&fallthrough);
373}
374
375
376void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
377                                                Label* on_not_equal) {
378  __ cmp(current_character(), Operand(c));
379  BranchOrBacktrack(ne, on_not_equal);
380}
381
382
383void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
384                                                     uint32_t mask,
385                                                     Label* on_equal) {
386  if (c == 0) {
387    __ tst(current_character(), Operand(mask));
388  } else {
389    __ and_(r0, current_character(), Operand(mask));
390    __ cmp(r0, Operand(c));
391  }
392  BranchOrBacktrack(eq, on_equal);
393}
394
395
396void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
397                                                        unsigned mask,
398                                                        Label* on_not_equal) {
399  if (c == 0) {
400    __ tst(current_character(), Operand(mask));
401  } else {
402    __ and_(r0, current_character(), Operand(mask));
403    __ cmp(r0, Operand(c));
404  }
405  BranchOrBacktrack(ne, on_not_equal);
406}
407
408
409void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
410    uc16 c,
411    uc16 minus,
412    uc16 mask,
413    Label* on_not_equal) {
414  DCHECK(minus < String::kMaxUtf16CodeUnit);
415  __ sub(r0, current_character(), Operand(minus));
416  __ and_(r0, r0, Operand(mask));
417  __ cmp(r0, Operand(c));
418  BranchOrBacktrack(ne, on_not_equal);
419}
420
421
422void RegExpMacroAssemblerARM::CheckCharacterInRange(
423    uc16 from,
424    uc16 to,
425    Label* on_in_range) {
426  __ sub(r0, current_character(), Operand(from));
427  __ cmp(r0, Operand(to - from));
428  BranchOrBacktrack(ls, on_in_range);  // Unsigned lower-or-same condition.
429}
430
431
432void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
433    uc16 from,
434    uc16 to,
435    Label* on_not_in_range) {
436  __ sub(r0, current_character(), Operand(from));
437  __ cmp(r0, Operand(to - from));
438  BranchOrBacktrack(hi, on_not_in_range);  // Unsigned higher condition.
439}
440
441
442void RegExpMacroAssemblerARM::CheckBitInTable(
443    Handle<ByteArray> table,
444    Label* on_bit_set) {
445  __ mov(r0, Operand(table));
446  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
447    __ and_(r1, current_character(), Operand(kTableSize - 1));
448    __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
449  } else {
450    __ add(r1,
451           current_character(),
452           Operand(ByteArray::kHeaderSize - kHeapObjectTag));
453  }
454  __ ldrb(r0, MemOperand(r0, r1));
455  __ cmp(r0, Operand::Zero());
456  BranchOrBacktrack(ne, on_bit_set);
457}
458
459
460bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
461                                                         Label* on_no_match) {
462  // Range checks (c in min..max) are generally implemented by an unsigned
463  // (c - min) <= (max - min) check
464  switch (type) {
465  case 's':
466    // Match space-characters
467    if (mode_ == LATIN1) {
468      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
469      Label success;
470      __ cmp(current_character(), Operand(' '));
471      __ b(eq, &success);
472      // Check range 0x09..0x0d
473      __ sub(r0, current_character(), Operand('\t'));
474      __ cmp(r0, Operand('\r' - '\t'));
475      __ b(ls, &success);
476      // \u00a0 (NBSP).
477      __ cmp(r0, Operand(0x00a0 - '\t'));
478      BranchOrBacktrack(ne, on_no_match);
479      __ bind(&success);
480      return true;
481    }
482    return false;
483  case 'S':
484    // The emitted code for generic character classes is good enough.
485    return false;
486  case 'd':
487    // Match ASCII digits ('0'..'9')
488    __ sub(r0, current_character(), Operand('0'));
489    __ cmp(r0, Operand('9' - '0'));
490    BranchOrBacktrack(hi, on_no_match);
491    return true;
492  case 'D':
493    // Match non ASCII-digits
494    __ sub(r0, current_character(), Operand('0'));
495    __ cmp(r0, Operand('9' - '0'));
496    BranchOrBacktrack(ls, on_no_match);
497    return true;
498  case '.': {
499    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
500    __ eor(r0, current_character(), Operand(0x01));
501    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
502    __ sub(r0, r0, Operand(0x0b));
503    __ cmp(r0, Operand(0x0c - 0x0b));
504    BranchOrBacktrack(ls, on_no_match);
505    if (mode_ == UC16) {
506      // Compare original value to 0x2028 and 0x2029, using the already
507      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
508      // 0x201d (0x2028 - 0x0b) or 0x201e.
509      __ sub(r0, r0, Operand(0x2028 - 0x0b));
510      __ cmp(r0, Operand(1));
511      BranchOrBacktrack(ls, on_no_match);
512    }
513    return true;
514  }
515  case 'n': {
516    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
517    __ eor(r0, current_character(), Operand(0x01));
518    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
519    __ sub(r0, r0, Operand(0x0b));
520    __ cmp(r0, Operand(0x0c - 0x0b));
521    if (mode_ == LATIN1) {
522      BranchOrBacktrack(hi, on_no_match);
523    } else {
524      Label done;
525      __ b(ls, &done);
526      // Compare original value to 0x2028 and 0x2029, using the already
527      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
528      // 0x201d (0x2028 - 0x0b) or 0x201e.
529      __ sub(r0, r0, Operand(0x2028 - 0x0b));
530      __ cmp(r0, Operand(1));
531      BranchOrBacktrack(hi, on_no_match);
532      __ bind(&done);
533    }
534    return true;
535  }
536  case 'w': {
537    if (mode_ != LATIN1) {
538      // Table is 256 entries, so all Latin1 characters can be tested.
539      __ cmp(current_character(), Operand('z'));
540      BranchOrBacktrack(hi, on_no_match);
541    }
542    ExternalReference map = ExternalReference::re_word_character_map();
543    __ mov(r0, Operand(map));
544    __ ldrb(r0, MemOperand(r0, current_character()));
545    __ cmp(r0, Operand::Zero());
546    BranchOrBacktrack(eq, on_no_match);
547    return true;
548  }
549  case 'W': {
550    Label done;
551    if (mode_ != LATIN1) {
552      // Table is 256 entries, so all Latin1 characters can be tested.
553      __ cmp(current_character(), Operand('z'));
554      __ b(hi, &done);
555    }
556    ExternalReference map = ExternalReference::re_word_character_map();
557    __ mov(r0, Operand(map));
558    __ ldrb(r0, MemOperand(r0, current_character()));
559    __ cmp(r0, Operand::Zero());
560    BranchOrBacktrack(ne, on_no_match);
561    if (mode_ != LATIN1) {
562      __ bind(&done);
563    }
564    return true;
565  }
566  case '*':
567    // Match any character.
568    return true;
569  // No custom implementation (yet): s(UC16), S(UC16).
570  default:
571    return false;
572  }
573}
574
575
576void RegExpMacroAssemblerARM::Fail() {
577  __ mov(r0, Operand(FAILURE));
578  __ jmp(&exit_label_);
579}
580
581
582Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
583  Label return_r0;
584  // Finalize code - write the entry point code now we know how many
585  // registers we need.
586
587  // Entry code:
588  __ bind(&entry_label_);
589
590  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
591  // is generated.
592  FrameScope scope(masm_, StackFrame::MANUAL);
593
594  // Actually emit code to start a new stack frame.
595  // Push arguments
596  // Save callee-save registers.
597  // Start new stack frame.
598  // Store link register in existing stack-cell.
599  // Order here should correspond to order of offset constants in header file.
600  RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
601      r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
602  RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
603  __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
604  // Set frame pointer in space for it if this is not a direct call
605  // from generated code.
606  __ add(frame_pointer(), sp, Operand(4 * kPointerSize));
607  __ mov(r0, Operand::Zero());
608  __ push(r0);  // Make room for success counter and initialize it to 0.
609  __ push(r0);  // Make room for "position - 1" constant (value is irrelevant).
610  // Check if we have space on the stack for registers.
611  Label stack_limit_hit;
612  Label stack_ok;
613
614  ExternalReference stack_limit =
615      ExternalReference::address_of_stack_limit(isolate());
616  __ mov(r0, Operand(stack_limit));
617  __ ldr(r0, MemOperand(r0));
618  __ sub(r0, sp, r0, SetCC);
619  // Handle it if the stack pointer is already below the stack limit.
620  __ b(ls, &stack_limit_hit);
621  // Check if there is room for the variable number of registers above
622  // the stack limit.
623  __ cmp(r0, Operand(num_registers_ * kPointerSize));
624  __ b(hs, &stack_ok);
625  // Exit with OutOfMemory exception. There is not enough space on the stack
626  // for our working registers.
627  __ mov(r0, Operand(EXCEPTION));
628  __ jmp(&return_r0);
629
630  __ bind(&stack_limit_hit);
631  CallCheckStackGuardState(r0);
632  __ cmp(r0, Operand::Zero());
633  // If returned value is non-zero, we exit with the returned value as result.
634  __ b(ne, &return_r0);
635
636  __ bind(&stack_ok);
637
638  // Allocate space on stack for registers.
639  __ sub(sp, sp, Operand(num_registers_ * kPointerSize));
640  // Load string end.
641  __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
642  // Load input start.
643  __ ldr(r0, MemOperand(frame_pointer(), kInputStart));
644  // Find negative length (offset of start relative to end).
645  __ sub(current_input_offset(), r0, end_of_input_address());
646  // Set r0 to address of char before start of the input string
647  // (effectively string position -1).
648  __ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
649  __ sub(r0, current_input_offset(), Operand(char_size()));
650  __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
651  // Store this value in a local variable, for use when clearing
652  // position registers.
653  __ str(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
654
655  // Initialize code pointer register
656  __ mov(code_pointer(), Operand(masm_->CodeObject()));
657
658  Label load_char_start_regexp, start_regexp;
659  // Load newline if index is at start, previous character otherwise.
660  __ cmp(r1, Operand::Zero());
661  __ b(ne, &load_char_start_regexp);
662  __ mov(current_character(), Operand('\n'), LeaveCC, eq);
663  __ jmp(&start_regexp);
664
665  // Global regexp restarts matching here.
666  __ bind(&load_char_start_regexp);
667  // Load previous char as initial value of current character register.
668  LoadCurrentCharacterUnchecked(-1, 1);
669  __ bind(&start_regexp);
670
671  // Initialize on-stack registers.
672  if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
673    // Fill saved registers with initial value = start offset - 1
674    if (num_saved_registers_ > 8) {
675      // Address of register 0.
676      __ add(r1, frame_pointer(), Operand(kRegisterZero));
677      __ mov(r2, Operand(num_saved_registers_));
678      Label init_loop;
679      __ bind(&init_loop);
680      __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
681      __ sub(r2, r2, Operand(1), SetCC);
682      __ b(ne, &init_loop);
683    } else {
684      for (int i = 0; i < num_saved_registers_; i++) {
685        __ str(r0, register_location(i));
686      }
687    }
688  }
689
690  // Initialize backtrack stack pointer.
691  __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
692
693  __ jmp(&start_label_);
694
695  // Exit code:
696  if (success_label_.is_linked()) {
697    // Save captures when successful.
698    __ bind(&success_label_);
699    if (num_saved_registers_ > 0) {
700      // copy captures to output
701      __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
702      __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
703      __ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
704      __ sub(r1, end_of_input_address(), r1);
705      // r1 is length of input in bytes.
706      if (mode_ == UC16) {
707        __ mov(r1, Operand(r1, LSR, 1));
708      }
709      // r1 is length of input in characters.
710      __ add(r1, r1, Operand(r2));
711      // r1 is length of string in characters.
712
713      DCHECK_EQ(0, num_saved_registers_ % 2);
714      // Always an even number of capture registers. This allows us to
715      // unroll the loop once to add an operation between a load of a register
716      // and the following use of that register.
717      for (int i = 0; i < num_saved_registers_; i += 2) {
718        __ ldr(r2, register_location(i));
719        __ ldr(r3, register_location(i + 1));
720        if (i == 0 && global_with_zero_length_check()) {
721          // Keep capture start in r4 for the zero-length check later.
722          __ mov(r4, r2);
723        }
724        if (mode_ == UC16) {
725          __ add(r2, r1, Operand(r2, ASR, 1));
726          __ add(r3, r1, Operand(r3, ASR, 1));
727        } else {
728          __ add(r2, r1, Operand(r2));
729          __ add(r3, r1, Operand(r3));
730        }
731        __ str(r2, MemOperand(r0, kPointerSize, PostIndex));
732        __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
733      }
734    }
735
736    if (global()) {
737      // Restart matching if the regular expression is flagged as global.
738      __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
739      __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
740      __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
741      // Increment success counter.
742      __ add(r0, r0, Operand(1));
743      __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
744      // Capture results have been stored, so the number of remaining global
745      // output registers is reduced by the number of stored captures.
746      __ sub(r1, r1, Operand(num_saved_registers_));
747      // Check whether we have enough room for another set of capture results.
748      __ cmp(r1, Operand(num_saved_registers_));
749      __ b(lt, &return_r0);
750
751      __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
752      // Advance the location for output.
753      __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
754      __ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
755
756      // Prepare r0 to initialize registers with its value in the next run.
757      __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
758
759      if (global_with_zero_length_check()) {
760        // Special case for zero-length matches.
761        // r4: capture start index
762        __ cmp(current_input_offset(), r4);
763        // Not a zero-length match, restart.
764        __ b(ne, &load_char_start_regexp);
765        // Offset from the end is zero if we already reached the end.
766        __ cmp(current_input_offset(), Operand::Zero());
767        __ b(eq, &exit_label_);
768        // Advance current position after a zero-length match.
769        __ add(current_input_offset(),
770               current_input_offset(),
771               Operand((mode_ == UC16) ? 2 : 1));
772      }
773
774      __ b(&load_char_start_regexp);
775    } else {
776      __ mov(r0, Operand(SUCCESS));
777    }
778  }
779
780  // Exit and return r0
781  __ bind(&exit_label_);
782  if (global()) {
783    __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
784  }
785
786  __ bind(&return_r0);
787  // Skip sp past regexp registers and local variables..
788  __ mov(sp, frame_pointer());
789  // Restore registers r4..r11 and return (restoring lr to pc).
790  __ ldm(ia_w, sp, registers_to_retain | pc.bit());
791
792  // Backtrack code (branch target for conditional backtracks).
793  if (backtrack_label_.is_linked()) {
794    __ bind(&backtrack_label_);
795    Backtrack();
796  }
797
798  Label exit_with_exception;
799
800  // Preempt-code
801  if (check_preempt_label_.is_linked()) {
802    SafeCallTarget(&check_preempt_label_);
803
804    CallCheckStackGuardState(r0);
805    __ cmp(r0, Operand::Zero());
806    // If returning non-zero, we should end execution with the given
807    // result as return value.
808    __ b(ne, &return_r0);
809
810    // String might have moved: Reload end of string from frame.
811    __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
812    SafeReturn();
813  }
814
815  // Backtrack stack overflow code.
816  if (stack_overflow_label_.is_linked()) {
817    SafeCallTarget(&stack_overflow_label_);
818    // Reached if the backtrack-stack limit has been hit.
819    Label grow_failed;
820
821    // Call GrowStack(backtrack_stackpointer(), &stack_base)
822    static const int num_arguments = 3;
823    __ PrepareCallCFunction(num_arguments, r0);
824    __ mov(r0, backtrack_stackpointer());
825    __ add(r1, frame_pointer(), Operand(kStackHighEnd));
826    __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
827    ExternalReference grow_stack =
828        ExternalReference::re_grow_stack(isolate());
829    __ CallCFunction(grow_stack, num_arguments);
830    // If return NULL, we have failed to grow the stack, and
831    // must exit with a stack-overflow exception.
832    __ cmp(r0, Operand::Zero());
833    __ b(eq, &exit_with_exception);
834    // Otherwise use return value as new stack pointer.
835    __ mov(backtrack_stackpointer(), r0);
836    // Restore saved registers and continue.
837    SafeReturn();
838  }
839
840  if (exit_with_exception.is_linked()) {
841    // If any of the code above needed to exit with an exception.
842    __ bind(&exit_with_exception);
843    // Exit with Result EXCEPTION(-1) to signal thrown exception.
844    __ mov(r0, Operand(EXCEPTION));
845    __ jmp(&return_r0);
846  }
847
848  CodeDesc code_desc;
849  masm_->GetCode(&code_desc);
850  Handle<Code> code = isolate()->factory()->NewCode(
851      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
852  PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
853  return Handle<HeapObject>::cast(code);
854}
855
856
857void RegExpMacroAssemblerARM::GoTo(Label* to) {
858  BranchOrBacktrack(al, to);
859}
860
861
862void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
863                                           int comparand,
864                                           Label* if_ge) {
865  __ ldr(r0, register_location(reg));
866  __ cmp(r0, Operand(comparand));
867  BranchOrBacktrack(ge, if_ge);
868}
869
870
871void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
872                                           int comparand,
873                                           Label* if_lt) {
874  __ ldr(r0, register_location(reg));
875  __ cmp(r0, Operand(comparand));
876  BranchOrBacktrack(lt, if_lt);
877}
878
879
880void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
881                                              Label* if_eq) {
882  __ ldr(r0, register_location(reg));
883  __ cmp(r0, Operand(current_input_offset()));
884  BranchOrBacktrack(eq, if_eq);
885}
886
887
888RegExpMacroAssembler::IrregexpImplementation
889    RegExpMacroAssemblerARM::Implementation() {
890  return kARMImplementation;
891}
892
893
894void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset,
895                                                   Label* on_end_of_input,
896                                                   bool check_bounds,
897                                                   int characters) {
898  DCHECK(cp_offset >= -1);      // ^ and \b can look behind one character.
899  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
900  if (check_bounds) {
901    CheckPosition(cp_offset + characters - 1, on_end_of_input);
902  }
903  LoadCurrentCharacterUnchecked(cp_offset, characters);
904}
905
906
907void RegExpMacroAssemblerARM::PopCurrentPosition() {
908  Pop(current_input_offset());
909}
910
911
912void RegExpMacroAssemblerARM::PopRegister(int register_index) {
913  Pop(r0);
914  __ str(r0, register_location(register_index));
915}
916
917
918void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
919  __ mov_label_offset(r0, label);
920  Push(r0);
921  CheckStackLimit();
922}
923
924
925void RegExpMacroAssemblerARM::PushCurrentPosition() {
926  Push(current_input_offset());
927}
928
929
930void RegExpMacroAssemblerARM::PushRegister(int register_index,
931                                           StackCheckFlag check_stack_limit) {
932  __ ldr(r0, register_location(register_index));
933  Push(r0);
934  if (check_stack_limit) CheckStackLimit();
935}
936
937
938void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
939  __ ldr(current_input_offset(), register_location(reg));
940}
941
942
943void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
944  __ ldr(backtrack_stackpointer(), register_location(reg));
945  __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
946  __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
947}
948
949
950void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
951  Label after_position;
952  __ cmp(current_input_offset(), Operand(-by * char_size()));
953  __ b(ge, &after_position);
954  __ mov(current_input_offset(), Operand(-by * char_size()));
955  // On RegExp code entry (where this operation is used), the character before
956  // the current position is expected to be already loaded.
957  // We have advanced the position, so it's safe to read backwards.
958  LoadCurrentCharacterUnchecked(-1, 1);
959  __ bind(&after_position);
960}
961
962
963void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
964  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
965  __ mov(r0, Operand(to));
966  __ str(r0, register_location(register_index));
967}
968
969
970bool RegExpMacroAssemblerARM::Succeed() {
971  __ jmp(&success_label_);
972  return global();
973}
974
975
976void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
977                                                             int cp_offset) {
978  if (cp_offset == 0) {
979    __ str(current_input_offset(), register_location(reg));
980  } else {
981    __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
982    __ str(r0, register_location(reg));
983  }
984}
985
986
987void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
988  DCHECK(reg_from <= reg_to);
989  __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
990  for (int reg = reg_from; reg <= reg_to; reg++) {
991    __ str(r0, register_location(reg));
992  }
993}
994
995
996void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
997  __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
998  __ sub(r0, backtrack_stackpointer(), r1);
999  __ str(r0, register_location(reg));
1000}
1001
1002
1003// Private methods:
1004
1005void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) {
1006  __ PrepareCallCFunction(3, scratch);
1007
1008  // RegExp code frame pointer.
1009  __ mov(r2, frame_pointer());
1010  // Code* of self.
1011  __ mov(r1, Operand(masm_->CodeObject()));
1012
1013  // We need to make room for the return address on the stack.
1014  int stack_alignment = base::OS::ActivationFrameAlignment();
1015  DCHECK(IsAligned(stack_alignment, kPointerSize));
1016  __ sub(sp, sp, Operand(stack_alignment));
1017
1018  // r0 will point to the return address, placed by DirectCEntry.
1019  __ mov(r0, sp);
1020
1021  ExternalReference stack_guard_check =
1022      ExternalReference::re_check_stack_guard_state(isolate());
1023  __ mov(ip, Operand(stack_guard_check));
1024  DirectCEntryStub stub(isolate());
1025  stub.GenerateCall(masm_, ip);
1026
1027  // Drop the return address from the stack.
1028  __ add(sp, sp, Operand(stack_alignment));
1029
1030  DCHECK(stack_alignment != 0);
1031  __ ldr(sp, MemOperand(sp, 0));
1032
1033  __ mov(code_pointer(), Operand(masm_->CodeObject()));
1034}
1035
1036
1037// Helper function for reading a value out of a stack frame.
1038template <typename T>
1039static T& frame_entry(Address re_frame, int frame_offset) {
1040  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1041}
1042
1043
1044int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
1045                                                  Code* re_code,
1046                                                  Address re_frame) {
1047  Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1048  StackLimitCheck check(isolate);
1049  if (check.JsHasOverflowed()) {
1050    isolate->StackOverflow();
1051    return EXCEPTION;
1052  }
1053
1054  // If not real stack overflow the stack guard was used to interrupt
1055  // execution for another purpose.
1056
1057  // If this is a direct call from JavaScript retry the RegExp forcing the call
1058  // through the runtime system. Currently the direct call cannot handle a GC.
1059  if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1060    return RETRY;
1061  }
1062
1063  // Prepare for possible GC.
1064  HandleScope handles(isolate);
1065  Handle<Code> code_handle(re_code);
1066
1067  Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1068
1069  // Current string.
1070  bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
1071
1072  DCHECK(re_code->instruction_start() <= *return_address);
1073  DCHECK(*return_address <=
1074      re_code->instruction_start() + re_code->instruction_size());
1075
1076  Object* result = isolate->stack_guard()->HandleInterrupts();
1077
1078  if (*code_handle != re_code) {  // Return address no longer valid
1079    int delta = code_handle->address() - re_code->address();
1080    // Overwrite the return address on the stack.
1081    *return_address += delta;
1082  }
1083
1084  if (result->IsException()) {
1085    return EXCEPTION;
1086  }
1087
1088  Handle<String> subject_tmp = subject;
1089  int slice_offset = 0;
1090
1091  // Extract the underlying string and the slice offset.
1092  if (StringShape(*subject_tmp).IsCons()) {
1093    subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1094  } else if (StringShape(*subject_tmp).IsSliced()) {
1095    SlicedString* slice = SlicedString::cast(*subject_tmp);
1096    subject_tmp = Handle<String>(slice->parent());
1097    slice_offset = slice->offset();
1098  }
1099
1100  // String might have changed.
1101  if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
1102    // If we changed between an Latin1 and an UC16 string, the specialized
1103    // code cannot be used, and we need to restart regexp matching from
1104    // scratch (including, potentially, compiling a new version of the code).
1105    return RETRY;
1106  }
1107
1108  // Otherwise, the content of the string might have moved. It must still
1109  // be a sequential or external string with the same content.
1110  // Update the start and end pointers in the stack frame to the current
1111  // location (whether it has actually moved or not).
1112  DCHECK(StringShape(*subject_tmp).IsSequential() ||
1113      StringShape(*subject_tmp).IsExternal());
1114
1115  // The original start address of the characters to match.
1116  const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1117
1118  // Find the current start address of the same character at the current string
1119  // position.
1120  int start_index = frame_entry<int>(re_frame, kStartIndex);
1121  const byte* new_address = StringCharacterPosition(*subject_tmp,
1122                                                    start_index + slice_offset);
1123
1124  if (start_address != new_address) {
1125    // If there is a difference, update the object pointer and start and end
1126    // addresses in the RegExp stack frame to match the new value.
1127    const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1128    int byte_length = static_cast<int>(end_address - start_address);
1129    frame_entry<const String*>(re_frame, kInputString) = *subject;
1130    frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1131    frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1132  } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1133    // Subject string might have been a ConsString that underwent
1134    // short-circuiting during GC. That will not change start_address but
1135    // will change pointer inside the subject handle.
1136    frame_entry<const String*>(re_frame, kInputString) = *subject;
1137  }
1138
1139  return 0;
1140}
1141
1142
1143MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
1144  DCHECK(register_index < (1<<30));
1145  if (num_registers_ <= register_index) {
1146    num_registers_ = register_index + 1;
1147  }
1148  return MemOperand(frame_pointer(),
1149                    kRegisterZero - register_index * kPointerSize);
1150}
1151
1152
1153void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
1154                                            Label* on_outside_input) {
1155  __ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
1156  BranchOrBacktrack(ge, on_outside_input);
1157}
1158
1159
1160void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
1161                                                Label* to) {
1162  if (condition == al) {  // Unconditional.
1163    if (to == NULL) {
1164      Backtrack();
1165      return;
1166    }
1167    __ jmp(to);
1168    return;
1169  }
1170  if (to == NULL) {
1171    __ b(condition, &backtrack_label_);
1172    return;
1173  }
1174  __ b(condition, to);
1175}
1176
1177
1178void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
1179  __ bl(to, cond);
1180}
1181
1182
1183void RegExpMacroAssemblerARM::SafeReturn() {
1184  __ pop(lr);
1185  __ add(pc, lr, Operand(masm_->CodeObject()));
1186}
1187
1188
1189void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
1190  __ bind(name);
1191  __ sub(lr, lr, Operand(masm_->CodeObject()));
1192  __ push(lr);
1193}
1194
1195
1196void RegExpMacroAssemblerARM::Push(Register source) {
1197  DCHECK(!source.is(backtrack_stackpointer()));
1198  __ str(source,
1199         MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
1200}
1201
1202
1203void RegExpMacroAssemblerARM::Pop(Register target) {
1204  DCHECK(!target.is(backtrack_stackpointer()));
1205  __ ldr(target,
1206         MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
1207}
1208
1209
1210void RegExpMacroAssemblerARM::CheckPreemption() {
1211  // Check for preemption.
1212  ExternalReference stack_limit =
1213      ExternalReference::address_of_stack_limit(isolate());
1214  __ mov(r0, Operand(stack_limit));
1215  __ ldr(r0, MemOperand(r0));
1216  __ cmp(sp, r0);
1217  SafeCall(&check_preempt_label_, ls);
1218}
1219
1220
1221void RegExpMacroAssemblerARM::CheckStackLimit() {
1222  ExternalReference stack_limit =
1223      ExternalReference::address_of_regexp_stack_limit(isolate());
1224  __ mov(r0, Operand(stack_limit));
1225  __ ldr(r0, MemOperand(r0));
1226  __ cmp(backtrack_stackpointer(), Operand(r0));
1227  SafeCall(&stack_overflow_label_, ls);
1228}
1229
1230
1231bool RegExpMacroAssemblerARM::CanReadUnaligned() {
1232  return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
1233}
1234
1235
1236void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
1237                                                            int characters) {
1238  Register offset = current_input_offset();
1239  if (cp_offset != 0) {
1240    // r4 is not being used to store the capture start index at this point.
1241    __ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
1242    offset = r4;
1243  }
1244  // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
1245  // and the operating system running on the target allow it.
1246  // If unaligned load/stores are not supported then this function must only
1247  // be used to load a single character at a time.
1248  if (!CanReadUnaligned()) {
1249    DCHECK(characters == 1);
1250  }
1251
1252  if (mode_ == LATIN1) {
1253    if (characters == 4) {
1254      __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1255    } else if (characters == 2) {
1256      __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1257    } else {
1258      DCHECK(characters == 1);
1259      __ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
1260    }
1261  } else {
1262    DCHECK(mode_ == UC16);
1263    if (characters == 2) {
1264      __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1265    } else {
1266      DCHECK(characters == 1);
1267      __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1268    }
1269  }
1270}
1271
1272
1273#undef __
1274
1275#endif  // V8_INTERPRETED_REGEXP
1276
1277}}  // namespace v8::internal
1278
1279#endif  // V8_TARGET_ARCH_ARM
1280