1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <stdarg.h>
6#include <stdlib.h>
7#include <cmath>
8
9#include "src/v8.h"
10
11#if V8_TARGET_ARCH_ARM
12
13#include "src/arm/constants-arm.h"
14#include "src/arm/simulator-arm.h"
15#include "src/assembler.h"
16#include "src/codegen.h"
17#include "src/disasm.h"
18
19#if defined(USE_SIMULATOR)
20
21// Only build the simulator if not compiling for real ARM hardware.
22namespace v8 {
23namespace internal {
24
25// This macro provides a platform independent use of sscanf. The reason for
26// SScanF not being implemented in a platform independent way through
27// ::v8::internal::OS in the same way as SNPrintF is that the
28// Windows C Run-Time Library does not provide vsscanf.
29#define SScanF sscanf  // NOLINT
30
31// The ArmDebugger class is used by the simulator while debugging simulated ARM
32// code.
33class ArmDebugger {
34 public:
35  explicit ArmDebugger(Simulator* sim) : sim_(sim) { }
36  ~ArmDebugger();
37
38  void Stop(Instruction* instr);
39  void Debug();
40
41 private:
42  static const Instr kBreakpointInstr =
43      (al | (7*B25) | (1*B24) | kBreakpoint);
44  static const Instr kNopInstr = (al | (13*B21));
45
46  Simulator* sim_;
47
48  int32_t GetRegisterValue(int regnum);
49  double GetRegisterPairDoubleValue(int regnum);
50  double GetVFPDoubleRegisterValue(int regnum);
51  bool GetValue(const char* desc, int32_t* value);
52  bool GetVFPSingleValue(const char* desc, float* value);
53  bool GetVFPDoubleValue(const char* desc, double* value);
54
55  // Set or delete a breakpoint. Returns true if successful.
56  bool SetBreakpoint(Instruction* breakpc);
57  bool DeleteBreakpoint(Instruction* breakpc);
58
59  // Undo and redo all breakpoints. This is needed to bracket disassembly and
60  // execution to skip past breakpoints when run from the debugger.
61  void UndoBreakpoints();
62  void RedoBreakpoints();
63};
64
65
66ArmDebugger::~ArmDebugger() {
67}
68
69
70
71#ifdef GENERATED_CODE_COVERAGE
72static FILE* coverage_log = NULL;
73
74
75static void InitializeCoverage() {
76  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
77  if (file_name != NULL) {
78    coverage_log = fopen(file_name, "aw+");
79  }
80}
81
82
83void ArmDebugger::Stop(Instruction* instr) {
84  // Get the stop code.
85  uint32_t code = instr->SvcValue() & kStopCodeMask;
86  // Retrieve the encoded address, which comes just after this stop.
87  char** msg_address =
88    reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
89  char* msg = *msg_address;
90  DCHECK(msg != NULL);
91
92  // Update this stop description.
93  if (isWatchedStop(code) && !watched_stops_[code].desc) {
94    watched_stops_[code].desc = msg;
95  }
96
97  if (strlen(msg) > 0) {
98    if (coverage_log != NULL) {
99      fprintf(coverage_log, "%s\n", msg);
100      fflush(coverage_log);
101    }
102    // Overwrite the instruction and address with nops.
103    instr->SetInstructionBits(kNopInstr);
104    reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
105  }
106  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
107}
108
109#else  // ndef GENERATED_CODE_COVERAGE
110
111static void InitializeCoverage() {
112}
113
114
115void ArmDebugger::Stop(Instruction* instr) {
116  // Get the stop code.
117  uint32_t code = instr->SvcValue() & kStopCodeMask;
118  // Retrieve the encoded address, which comes just after this stop.
119  char* msg = *reinterpret_cast<char**>(sim_->get_pc()
120                                        + Instruction::kInstrSize);
121  // Update this stop description.
122  if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
123    sim_->watched_stops_[code].desc = msg;
124  }
125  // Print the stop message and code if it is not the default code.
126  if (code != kMaxStopCode) {
127    PrintF("Simulator hit stop %u: %s\n", code, msg);
128  } else {
129    PrintF("Simulator hit %s\n", msg);
130  }
131  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
132  Debug();
133}
134#endif
135
136
137int32_t ArmDebugger::GetRegisterValue(int regnum) {
138  if (regnum == kPCRegister) {
139    return sim_->get_pc();
140  } else {
141    return sim_->get_register(regnum);
142  }
143}
144
145
146double ArmDebugger::GetRegisterPairDoubleValue(int regnum) {
147  return sim_->get_double_from_register_pair(regnum);
148}
149
150
151double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) {
152  return sim_->get_double_from_d_register(regnum);
153}
154
155
156bool ArmDebugger::GetValue(const char* desc, int32_t* value) {
157  int regnum = Registers::Number(desc);
158  if (regnum != kNoRegister) {
159    *value = GetRegisterValue(regnum);
160    return true;
161  } else {
162    if (strncmp(desc, "0x", 2) == 0) {
163      return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
164    } else {
165      return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
166    }
167  }
168  return false;
169}
170
171
172bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) {
173  bool is_double;
174  int regnum = VFPRegisters::Number(desc, &is_double);
175  if (regnum != kNoRegister && !is_double) {
176    *value = sim_->get_float_from_s_register(regnum);
177    return true;
178  }
179  return false;
180}
181
182
183bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) {
184  bool is_double;
185  int regnum = VFPRegisters::Number(desc, &is_double);
186  if (regnum != kNoRegister && is_double) {
187    *value = sim_->get_double_from_d_register(regnum);
188    return true;
189  }
190  return false;
191}
192
193
194bool ArmDebugger::SetBreakpoint(Instruction* breakpc) {
195  // Check if a breakpoint can be set. If not return without any side-effects.
196  if (sim_->break_pc_ != NULL) {
197    return false;
198  }
199
200  // Set the breakpoint.
201  sim_->break_pc_ = breakpc;
202  sim_->break_instr_ = breakpc->InstructionBits();
203  // Not setting the breakpoint instruction in the code itself. It will be set
204  // when the debugger shell continues.
205  return true;
206}
207
208
209bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) {
210  if (sim_->break_pc_ != NULL) {
211    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
212  }
213
214  sim_->break_pc_ = NULL;
215  sim_->break_instr_ = 0;
216  return true;
217}
218
219
220void ArmDebugger::UndoBreakpoints() {
221  if (sim_->break_pc_ != NULL) {
222    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
223  }
224}
225
226
227void ArmDebugger::RedoBreakpoints() {
228  if (sim_->break_pc_ != NULL) {
229    sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
230  }
231}
232
233
234void ArmDebugger::Debug() {
235  intptr_t last_pc = -1;
236  bool done = false;
237
238#define COMMAND_SIZE 63
239#define ARG_SIZE 255
240
241#define STR(a) #a
242#define XSTR(a) STR(a)
243
244  char cmd[COMMAND_SIZE + 1];
245  char arg1[ARG_SIZE + 1];
246  char arg2[ARG_SIZE + 1];
247  char* argv[3] = { cmd, arg1, arg2 };
248
249  // make sure to have a proper terminating character if reaching the limit
250  cmd[COMMAND_SIZE] = 0;
251  arg1[ARG_SIZE] = 0;
252  arg2[ARG_SIZE] = 0;
253
254  // Undo all set breakpoints while running in the debugger shell. This will
255  // make them invisible to all commands.
256  UndoBreakpoints();
257
258  while (!done && !sim_->has_bad_pc()) {
259    if (last_pc != sim_->get_pc()) {
260      disasm::NameConverter converter;
261      disasm::Disassembler dasm(converter);
262      // use a reasonably large buffer
263      v8::internal::EmbeddedVector<char, 256> buffer;
264      dasm.InstructionDecode(buffer,
265                             reinterpret_cast<byte*>(sim_->get_pc()));
266      PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.start());
267      last_pc = sim_->get_pc();
268    }
269    char* line = ReadLine("sim> ");
270    if (line == NULL) {
271      break;
272    } else {
273      char* last_input = sim_->last_debugger_input();
274      if (strcmp(line, "\n") == 0 && last_input != NULL) {
275        line = last_input;
276      } else {
277        // Ownership is transferred to sim_;
278        sim_->set_last_debugger_input(line);
279      }
280      // Use sscanf to parse the individual parts of the command line. At the
281      // moment no command expects more than two parameters.
282      int argc = SScanF(line,
283                        "%" XSTR(COMMAND_SIZE) "s "
284                        "%" XSTR(ARG_SIZE) "s "
285                        "%" XSTR(ARG_SIZE) "s",
286                        cmd, arg1, arg2);
287      if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
288        sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
289      } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
290        // Execute the one instruction we broke at with breakpoints disabled.
291        sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
292        // Leave the debugger shell.
293        done = true;
294      } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
295        if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
296          int32_t value;
297          float svalue;
298          double dvalue;
299          if (strcmp(arg1, "all") == 0) {
300            for (int i = 0; i < kNumRegisters; i++) {
301              value = GetRegisterValue(i);
302              PrintF("%3s: 0x%08x %10d", Registers::Name(i), value, value);
303              if ((argc == 3 && strcmp(arg2, "fp") == 0) &&
304                  i < 8 &&
305                  (i % 2) == 0) {
306                dvalue = GetRegisterPairDoubleValue(i);
307                PrintF(" (%f)\n", dvalue);
308              } else {
309                PrintF("\n");
310              }
311            }
312            for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) {
313              dvalue = GetVFPDoubleRegisterValue(i);
314              uint64_t as_words = bit_cast<uint64_t>(dvalue);
315              PrintF("%3s: %f 0x%08x %08x\n",
316                     VFPRegisters::Name(i, true),
317                     dvalue,
318                     static_cast<uint32_t>(as_words >> 32),
319                     static_cast<uint32_t>(as_words & 0xffffffff));
320            }
321          } else {
322            if (GetValue(arg1, &value)) {
323              PrintF("%s: 0x%08x %d \n", arg1, value, value);
324            } else if (GetVFPSingleValue(arg1, &svalue)) {
325              uint32_t as_word = bit_cast<uint32_t>(svalue);
326              PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word);
327            } else if (GetVFPDoubleValue(arg1, &dvalue)) {
328              uint64_t as_words = bit_cast<uint64_t>(dvalue);
329              PrintF("%s: %f 0x%08x %08x\n",
330                     arg1,
331                     dvalue,
332                     static_cast<uint32_t>(as_words >> 32),
333                     static_cast<uint32_t>(as_words & 0xffffffff));
334            } else {
335              PrintF("%s unrecognized\n", arg1);
336            }
337          }
338        } else {
339          PrintF("print <register>\n");
340        }
341      } else if ((strcmp(cmd, "po") == 0)
342                 || (strcmp(cmd, "printobject") == 0)) {
343        if (argc == 2) {
344          int32_t value;
345          OFStream os(stdout);
346          if (GetValue(arg1, &value)) {
347            Object* obj = reinterpret_cast<Object*>(value);
348            os << arg1 << ": \n";
349#ifdef DEBUG
350            obj->Print(os);
351            os << "\n";
352#else
353            os << Brief(obj) << "\n";
354#endif
355          } else {
356            os << arg1 << " unrecognized\n";
357          }
358        } else {
359          PrintF("printobject <value>\n");
360        }
361      } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
362        int32_t* cur = NULL;
363        int32_t* end = NULL;
364        int next_arg = 1;
365
366        if (strcmp(cmd, "stack") == 0) {
367          cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
368        } else {  // "mem"
369          int32_t value;
370          if (!GetValue(arg1, &value)) {
371            PrintF("%s unrecognized\n", arg1);
372            continue;
373          }
374          cur = reinterpret_cast<int32_t*>(value);
375          next_arg++;
376        }
377
378        int32_t words;
379        if (argc == next_arg) {
380          words = 10;
381        } else {
382          if (!GetValue(argv[next_arg], &words)) {
383            words = 10;
384          }
385        }
386        end = cur + words;
387
388        while (cur < end) {
389          PrintF("  0x%08x:  0x%08x %10d",
390                 reinterpret_cast<intptr_t>(cur), *cur, *cur);
391          HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
392          int value = *cur;
393          Heap* current_heap = v8::internal::Isolate::Current()->heap();
394          if (((value & 1) == 0) || current_heap->Contains(obj)) {
395            PrintF(" (");
396            if ((value & 1) == 0) {
397              PrintF("smi %d", value / 2);
398            } else {
399              obj->ShortPrint();
400            }
401            PrintF(")");
402          }
403          PrintF("\n");
404          cur++;
405        }
406      } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
407        disasm::NameConverter converter;
408        disasm::Disassembler dasm(converter);
409        // use a reasonably large buffer
410        v8::internal::EmbeddedVector<char, 256> buffer;
411
412        byte* prev = NULL;
413        byte* cur = NULL;
414        byte* end = NULL;
415
416        if (argc == 1) {
417          cur = reinterpret_cast<byte*>(sim_->get_pc());
418          end = cur + (10 * Instruction::kInstrSize);
419        } else if (argc == 2) {
420          int regnum = Registers::Number(arg1);
421          if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
422            // The argument is an address or a register name.
423            int32_t value;
424            if (GetValue(arg1, &value)) {
425              cur = reinterpret_cast<byte*>(value);
426              // Disassemble 10 instructions at <arg1>.
427              end = cur + (10 * Instruction::kInstrSize);
428            }
429          } else {
430            // The argument is the number of instructions.
431            int32_t value;
432            if (GetValue(arg1, &value)) {
433              cur = reinterpret_cast<byte*>(sim_->get_pc());
434              // Disassemble <arg1> instructions.
435              end = cur + (value * Instruction::kInstrSize);
436            }
437          }
438        } else {
439          int32_t value1;
440          int32_t value2;
441          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
442            cur = reinterpret_cast<byte*>(value1);
443            end = cur + (value2 * Instruction::kInstrSize);
444          }
445        }
446
447        while (cur < end) {
448          prev = cur;
449          cur += dasm.InstructionDecode(buffer, cur);
450          PrintF("  0x%08x  %s\n",
451                 reinterpret_cast<intptr_t>(prev), buffer.start());
452        }
453      } else if (strcmp(cmd, "gdb") == 0) {
454        PrintF("relinquishing control to gdb\n");
455        v8::base::OS::DebugBreak();
456        PrintF("regaining control from gdb\n");
457      } else if (strcmp(cmd, "break") == 0) {
458        if (argc == 2) {
459          int32_t value;
460          if (GetValue(arg1, &value)) {
461            if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
462              PrintF("setting breakpoint failed\n");
463            }
464          } else {
465            PrintF("%s unrecognized\n", arg1);
466          }
467        } else {
468          PrintF("break <address>\n");
469        }
470      } else if (strcmp(cmd, "del") == 0) {
471        if (!DeleteBreakpoint(NULL)) {
472          PrintF("deleting breakpoint failed\n");
473        }
474      } else if (strcmp(cmd, "flags") == 0) {
475        PrintF("N flag: %d; ", sim_->n_flag_);
476        PrintF("Z flag: %d; ", sim_->z_flag_);
477        PrintF("C flag: %d; ", sim_->c_flag_);
478        PrintF("V flag: %d\n", sim_->v_flag_);
479        PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
480        PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
481        PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
482        PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
483        PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
484      } else if (strcmp(cmd, "stop") == 0) {
485        int32_t value;
486        intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize;
487        Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
488        Instruction* msg_address =
489          reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
490        if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
491          // Remove the current stop.
492          if (sim_->isStopInstruction(stop_instr)) {
493            stop_instr->SetInstructionBits(kNopInstr);
494            msg_address->SetInstructionBits(kNopInstr);
495          } else {
496            PrintF("Not at debugger stop.\n");
497          }
498        } else if (argc == 3) {
499          // Print information about all/the specified breakpoint(s).
500          if (strcmp(arg1, "info") == 0) {
501            if (strcmp(arg2, "all") == 0) {
502              PrintF("Stop information:\n");
503              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
504                sim_->PrintStopInfo(i);
505              }
506            } else if (GetValue(arg2, &value)) {
507              sim_->PrintStopInfo(value);
508            } else {
509              PrintF("Unrecognized argument.\n");
510            }
511          } else if (strcmp(arg1, "enable") == 0) {
512            // Enable all/the specified breakpoint(s).
513            if (strcmp(arg2, "all") == 0) {
514              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
515                sim_->EnableStop(i);
516              }
517            } else if (GetValue(arg2, &value)) {
518              sim_->EnableStop(value);
519            } else {
520              PrintF("Unrecognized argument.\n");
521            }
522          } else if (strcmp(arg1, "disable") == 0) {
523            // Disable all/the specified breakpoint(s).
524            if (strcmp(arg2, "all") == 0) {
525              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
526                sim_->DisableStop(i);
527              }
528            } else if (GetValue(arg2, &value)) {
529              sim_->DisableStop(value);
530            } else {
531              PrintF("Unrecognized argument.\n");
532            }
533          }
534        } else {
535          PrintF("Wrong usage. Use help command for more information.\n");
536        }
537      } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
538        ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
539        PrintF("Trace of executed instructions is %s\n",
540               ::v8::internal::FLAG_trace_sim ? "on" : "off");
541      } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
542        PrintF("cont\n");
543        PrintF("  continue execution (alias 'c')\n");
544        PrintF("stepi\n");
545        PrintF("  step one instruction (alias 'si')\n");
546        PrintF("print <register>\n");
547        PrintF("  print register content (alias 'p')\n");
548        PrintF("  use register name 'all' to print all registers\n");
549        PrintF("  add argument 'fp' to print register pair double values\n");
550        PrintF("printobject <register>\n");
551        PrintF("  print an object from a register (alias 'po')\n");
552        PrintF("flags\n");
553        PrintF("  print flags\n");
554        PrintF("stack [<words>]\n");
555        PrintF("  dump stack content, default dump 10 words)\n");
556        PrintF("mem <address> [<words>]\n");
557        PrintF("  dump memory content, default dump 10 words)\n");
558        PrintF("disasm [<instructions>]\n");
559        PrintF("disasm [<address/register>]\n");
560        PrintF("disasm [[<address/register>] <instructions>]\n");
561        PrintF("  disassemble code, default is 10 instructions\n");
562        PrintF("  from pc (alias 'di')\n");
563        PrintF("gdb\n");
564        PrintF("  enter gdb\n");
565        PrintF("break <address>\n");
566        PrintF("  set a break point on the address\n");
567        PrintF("del\n");
568        PrintF("  delete the breakpoint\n");
569        PrintF("trace (alias 't')\n");
570        PrintF("  toogle the tracing of all executed statements\n");
571        PrintF("stop feature:\n");
572        PrintF("  Description:\n");
573        PrintF("    Stops are debug instructions inserted by\n");
574        PrintF("    the Assembler::stop() function.\n");
575        PrintF("    When hitting a stop, the Simulator will\n");
576        PrintF("    stop and and give control to the ArmDebugger.\n");
577        PrintF("    The first %d stop codes are watched:\n",
578               Simulator::kNumOfWatchedStops);
579        PrintF("    - They can be enabled / disabled: the Simulator\n");
580        PrintF("      will / won't stop when hitting them.\n");
581        PrintF("    - The Simulator keeps track of how many times they \n");
582        PrintF("      are met. (See the info command.) Going over a\n");
583        PrintF("      disabled stop still increases its counter. \n");
584        PrintF("  Commands:\n");
585        PrintF("    stop info all/<code> : print infos about number <code>\n");
586        PrintF("      or all stop(s).\n");
587        PrintF("    stop enable/disable all/<code> : enables / disables\n");
588        PrintF("      all or number <code> stop(s)\n");
589        PrintF("    stop unstop\n");
590        PrintF("      ignore the stop instruction at the current location\n");
591        PrintF("      from now on\n");
592      } else {
593        PrintF("Unknown command: %s\n", cmd);
594      }
595    }
596  }
597
598  // Add all the breakpoints back to stop execution and enter the debugger
599  // shell when hit.
600  RedoBreakpoints();
601
602#undef COMMAND_SIZE
603#undef ARG_SIZE
604
605#undef STR
606#undef XSTR
607}
608
609
610static bool ICacheMatch(void* one, void* two) {
611  DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
612  DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
613  return one == two;
614}
615
616
617static uint32_t ICacheHash(void* key) {
618  return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
619}
620
621
622static bool AllOnOnePage(uintptr_t start, int size) {
623  intptr_t start_page = (start & ~CachePage::kPageMask);
624  intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
625  return start_page == end_page;
626}
627
628
629void Simulator::set_last_debugger_input(char* input) {
630  DeleteArray(last_debugger_input_);
631  last_debugger_input_ = input;
632}
633
634
635void Simulator::FlushICache(v8::internal::HashMap* i_cache,
636                            void* start_addr,
637                            size_t size) {
638  intptr_t start = reinterpret_cast<intptr_t>(start_addr);
639  int intra_line = (start & CachePage::kLineMask);
640  start -= intra_line;
641  size += intra_line;
642  size = ((size - 1) | CachePage::kLineMask) + 1;
643  int offset = (start & CachePage::kPageMask);
644  while (!AllOnOnePage(start, size - 1)) {
645    int bytes_to_flush = CachePage::kPageSize - offset;
646    FlushOnePage(i_cache, start, bytes_to_flush);
647    start += bytes_to_flush;
648    size -= bytes_to_flush;
649    DCHECK_EQ(0, start & CachePage::kPageMask);
650    offset = 0;
651  }
652  if (size != 0) {
653    FlushOnePage(i_cache, start, size);
654  }
655}
656
657
658CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
659  v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
660                                                        ICacheHash(page),
661                                                        true);
662  if (entry->value == NULL) {
663    CachePage* new_page = new CachePage();
664    entry->value = new_page;
665  }
666  return reinterpret_cast<CachePage*>(entry->value);
667}
668
669
670// Flush from start up to and not including start + size.
671void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
672                             intptr_t start,
673                             int size) {
674  DCHECK(size <= CachePage::kPageSize);
675  DCHECK(AllOnOnePage(start, size - 1));
676  DCHECK((start & CachePage::kLineMask) == 0);
677  DCHECK((size & CachePage::kLineMask) == 0);
678  void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
679  int offset = (start & CachePage::kPageMask);
680  CachePage* cache_page = GetCachePage(i_cache, page);
681  char* valid_bytemap = cache_page->ValidityByte(offset);
682  memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
683}
684
685
686void Simulator::CheckICache(v8::internal::HashMap* i_cache,
687                            Instruction* instr) {
688  intptr_t address = reinterpret_cast<intptr_t>(instr);
689  void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
690  void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
691  int offset = (address & CachePage::kPageMask);
692  CachePage* cache_page = GetCachePage(i_cache, page);
693  char* cache_valid_byte = cache_page->ValidityByte(offset);
694  bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
695  char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
696  if (cache_hit) {
697    // Check that the data in memory matches the contents of the I-cache.
698    CHECK_EQ(0,
699             memcmp(reinterpret_cast<void*>(instr),
700                    cache_page->CachedData(offset), Instruction::kInstrSize));
701  } else {
702    // Cache miss.  Load memory into the cache.
703    memcpy(cached_line, line, CachePage::kLineLength);
704    *cache_valid_byte = CachePage::LINE_VALID;
705  }
706}
707
708
709void Simulator::Initialize(Isolate* isolate) {
710  if (isolate->simulator_initialized()) return;
711  isolate->set_simulator_initialized(true);
712  ::v8::internal::ExternalReference::set_redirector(isolate,
713                                                    &RedirectExternalReference);
714}
715
716
717Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
718  i_cache_ = isolate_->simulator_i_cache();
719  if (i_cache_ == NULL) {
720    i_cache_ = new v8::internal::HashMap(&ICacheMatch);
721    isolate_->set_simulator_i_cache(i_cache_);
722  }
723  Initialize(isolate);
724  // Set up simulator support first. Some of this information is needed to
725  // setup the architecture state.
726  size_t stack_size = 1 * 1024*1024;  // allocate 1MB for stack
727  stack_ = reinterpret_cast<char*>(malloc(stack_size));
728  pc_modified_ = false;
729  icount_ = 0;
730  break_pc_ = NULL;
731  break_instr_ = 0;
732
733  // Set up architecture state.
734  // All registers are initialized to zero to start with.
735  for (int i = 0; i < num_registers; i++) {
736    registers_[i] = 0;
737  }
738  n_flag_ = false;
739  z_flag_ = false;
740  c_flag_ = false;
741  v_flag_ = false;
742
743  // Initializing VFP registers.
744  // All registers are initialized to zero to start with
745  // even though s_registers_ & d_registers_ share the same
746  // physical registers in the target.
747  for (int i = 0; i < num_d_registers * 2; i++) {
748    vfp_registers_[i] = 0;
749  }
750  n_flag_FPSCR_ = false;
751  z_flag_FPSCR_ = false;
752  c_flag_FPSCR_ = false;
753  v_flag_FPSCR_ = false;
754  FPSCR_rounding_mode_ = RN;
755  FPSCR_default_NaN_mode_ = false;
756
757  inv_op_vfp_flag_ = false;
758  div_zero_vfp_flag_ = false;
759  overflow_vfp_flag_ = false;
760  underflow_vfp_flag_ = false;
761  inexact_vfp_flag_ = false;
762
763  // The sp is initialized to point to the bottom (high address) of the
764  // allocated stack area. To be safe in potential stack underflows we leave
765  // some buffer below.
766  registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
767  // The lr and pc are initialized to a known bad value that will cause an
768  // access violation if the simulator ever tries to execute it.
769  registers_[pc] = bad_lr;
770  registers_[lr] = bad_lr;
771  InitializeCoverage();
772
773  last_debugger_input_ = NULL;
774}
775
776
777Simulator::~Simulator() {
778}
779
780
781// When the generated code calls an external reference we need to catch that in
782// the simulator.  The external reference will be a function compiled for the
783// host architecture.  We need to call that function instead of trying to
784// execute it with the simulator.  We do that by redirecting the external
785// reference to a svc (Supervisor Call) instruction that is handled by
786// the simulator.  We write the original destination of the jump just at a known
787// offset from the svc instruction so the simulator knows what to call.
788class Redirection {
789 public:
790  Redirection(void* external_function, ExternalReference::Type type)
791      : external_function_(external_function),
792        swi_instruction_(al | (0xf*B24) | kCallRtRedirected),
793        type_(type),
794        next_(NULL) {
795    Isolate* isolate = Isolate::Current();
796    next_ = isolate->simulator_redirection();
797    Simulator::current(isolate)->
798        FlushICache(isolate->simulator_i_cache(),
799                    reinterpret_cast<void*>(&swi_instruction_),
800                    Instruction::kInstrSize);
801    isolate->set_simulator_redirection(this);
802  }
803
804  void* address_of_swi_instruction() {
805    return reinterpret_cast<void*>(&swi_instruction_);
806  }
807
808  void* external_function() { return external_function_; }
809  ExternalReference::Type type() { return type_; }
810
811  static Redirection* Get(void* external_function,
812                          ExternalReference::Type type) {
813    Isolate* isolate = Isolate::Current();
814    Redirection* current = isolate->simulator_redirection();
815    for (; current != NULL; current = current->next_) {
816      if (current->external_function_ == external_function) {
817        DCHECK_EQ(current->type(), type);
818        return current;
819      }
820    }
821    return new Redirection(external_function, type);
822  }
823
824  static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
825    char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
826    char* addr_of_redirection =
827        addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
828    return reinterpret_cast<Redirection*>(addr_of_redirection);
829  }
830
831  static void* ReverseRedirection(int32_t reg) {
832    Redirection* redirection = FromSwiInstruction(
833        reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
834    return redirection->external_function();
835  }
836
837 private:
838  void* external_function_;
839  uint32_t swi_instruction_;
840  ExternalReference::Type type_;
841  Redirection* next_;
842};
843
844
845void* Simulator::RedirectExternalReference(void* external_function,
846                                           ExternalReference::Type type) {
847  Redirection* redirection = Redirection::Get(external_function, type);
848  return redirection->address_of_swi_instruction();
849}
850
851
852// Get the active Simulator for the current thread.
853Simulator* Simulator::current(Isolate* isolate) {
854  v8::internal::Isolate::PerIsolateThreadData* isolate_data =
855      isolate->FindOrAllocatePerThreadDataForThisThread();
856  DCHECK(isolate_data != NULL);
857
858  Simulator* sim = isolate_data->simulator();
859  if (sim == NULL) {
860    // TODO(146): delete the simulator object when a thread/isolate goes away.
861    sim = new Simulator(isolate);
862    isolate_data->set_simulator(sim);
863  }
864  return sim;
865}
866
867
868// Sets the register in the architecture state. It will also deal with updating
869// Simulator internal state for special registers such as PC.
870void Simulator::set_register(int reg, int32_t value) {
871  DCHECK((reg >= 0) && (reg < num_registers));
872  if (reg == pc) {
873    pc_modified_ = true;
874  }
875  registers_[reg] = value;
876}
877
878
879// Get the register from the architecture state. This function does handle
880// the special case of accessing the PC register.
881int32_t Simulator::get_register(int reg) const {
882  DCHECK((reg >= 0) && (reg < num_registers));
883  // Stupid code added to avoid bug in GCC.
884  // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
885  if (reg >= num_registers) return 0;
886  // End stupid code.
887  return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
888}
889
890
891double Simulator::get_double_from_register_pair(int reg) {
892  DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
893
894  double dm_val = 0.0;
895  // Read the bits from the unsigned integer register_[] array
896  // into the double precision floating point value and return it.
897  char buffer[2 * sizeof(vfp_registers_[0])];
898  memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
899  memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
900  return(dm_val);
901}
902
903
904void Simulator::set_register_pair_from_double(int reg, double* value) {
905  DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
906  memcpy(registers_ + reg, value, sizeof(*value));
907}
908
909
910void Simulator::set_dw_register(int dreg, const int* dbl) {
911  DCHECK((dreg >= 0) && (dreg < num_d_registers));
912  registers_[dreg] = dbl[0];
913  registers_[dreg + 1] = dbl[1];
914}
915
916
917void Simulator::get_d_register(int dreg, uint64_t* value) {
918  DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
919  memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
920}
921
922
923void Simulator::set_d_register(int dreg, const uint64_t* value) {
924  DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
925  memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
926}
927
928
929void Simulator::get_d_register(int dreg, uint32_t* value) {
930  DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
931  memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
932}
933
934
935void Simulator::set_d_register(int dreg, const uint32_t* value) {
936  DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
937  memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
938}
939
940
941void Simulator::get_q_register(int qreg, uint64_t* value) {
942  DCHECK((qreg >= 0) && (qreg < num_q_registers));
943  memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2);
944}
945
946
947void Simulator::set_q_register(int qreg, const uint64_t* value) {
948  DCHECK((qreg >= 0) && (qreg < num_q_registers));
949  memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2);
950}
951
952
953void Simulator::get_q_register(int qreg, uint32_t* value) {
954  DCHECK((qreg >= 0) && (qreg < num_q_registers));
955  memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4);
956}
957
958
959void Simulator::set_q_register(int qreg, const uint32_t* value) {
960  DCHECK((qreg >= 0) && (qreg < num_q_registers));
961  memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4);
962}
963
964
965// Raw access to the PC register.
966void Simulator::set_pc(int32_t value) {
967  pc_modified_ = true;
968  registers_[pc] = value;
969}
970
971
972bool Simulator::has_bad_pc() const {
973  return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc));
974}
975
976
977// Raw access to the PC register without the special adjustment when reading.
978int32_t Simulator::get_pc() const {
979  return registers_[pc];
980}
981
982
983// Getting from and setting into VFP registers.
984void Simulator::set_s_register(int sreg, unsigned int value) {
985  DCHECK((sreg >= 0) && (sreg < num_s_registers));
986  vfp_registers_[sreg] = value;
987}
988
989
990unsigned int Simulator::get_s_register(int sreg) const {
991  DCHECK((sreg >= 0) && (sreg < num_s_registers));
992  return vfp_registers_[sreg];
993}
994
995
996template<class InputType, int register_size>
997void Simulator::SetVFPRegister(int reg_index, const InputType& value) {
998  DCHECK(reg_index >= 0);
999  if (register_size == 1) DCHECK(reg_index < num_s_registers);
1000  if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
1001
1002  char buffer[register_size * sizeof(vfp_registers_[0])];
1003  memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0]));
1004  memcpy(&vfp_registers_[reg_index * register_size], buffer,
1005         register_size * sizeof(vfp_registers_[0]));
1006}
1007
1008
1009template<class ReturnType, int register_size>
1010ReturnType Simulator::GetFromVFPRegister(int reg_index) {
1011  DCHECK(reg_index >= 0);
1012  if (register_size == 1) DCHECK(reg_index < num_s_registers);
1013  if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
1014
1015  ReturnType value = 0;
1016  char buffer[register_size * sizeof(vfp_registers_[0])];
1017  memcpy(buffer, &vfp_registers_[register_size * reg_index],
1018         register_size * sizeof(vfp_registers_[0]));
1019  memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0]));
1020  return value;
1021}
1022
1023
1024// Runtime FP routines take:
1025// - two double arguments
1026// - one double argument and zero or one integer arguments.
1027// All are consructed here from r0-r3 or d0, d1 and r0.
1028void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
1029  if (use_eabi_hardfloat()) {
1030    *x = get_double_from_d_register(0);
1031    *y = get_double_from_d_register(1);
1032    *z = get_register(0);
1033  } else {
1034    // Registers 0 and 1 -> x.
1035    *x = get_double_from_register_pair(0);
1036    // Register 2 and 3 -> y.
1037    *y = get_double_from_register_pair(2);
1038    // Register 2 -> z
1039    *z = get_register(2);
1040  }
1041}
1042
1043
1044// The return value is either in r0/r1 or d0.
1045void Simulator::SetFpResult(const double& result) {
1046  if (use_eabi_hardfloat()) {
1047    char buffer[2 * sizeof(vfp_registers_[0])];
1048    memcpy(buffer, &result, sizeof(buffer));
1049    // Copy result to d0.
1050    memcpy(vfp_registers_, buffer, sizeof(buffer));
1051  } else {
1052    char buffer[2 * sizeof(registers_[0])];
1053    memcpy(buffer, &result, sizeof(buffer));
1054    // Copy result to r0 and r1.
1055    memcpy(registers_, buffer, sizeof(buffer));
1056  }
1057}
1058
1059
1060void Simulator::TrashCallerSaveRegisters() {
1061  // We don't trash the registers with the return value.
1062  registers_[2] = 0x50Bad4U;
1063  registers_[3] = 0x50Bad4U;
1064  registers_[12] = 0x50Bad4U;
1065}
1066
1067
1068// Some Operating Systems allow unaligned access on ARMv7 targets. We
1069// assume that unaligned accesses are not allowed unless the v8 build system
1070// defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero.
1071// The following statements below describes the behavior of the ARM CPUs
1072// that don't support unaligned access.
1073// Some ARM platforms raise an interrupt on detecting unaligned access.
1074// On others it does a funky rotation thing.  For now we
1075// simply disallow unaligned reads.  Note that simulator runs have the runtime
1076// system running directly on the host system and only generated code is
1077// executed in the simulator.  Since the host is typically IA32 we will not
1078// get the correct ARM-like behaviour on unaligned accesses for those ARM
1079// targets that don't support unaligned loads and stores.
1080
1081
1082int Simulator::ReadW(int32_t addr, Instruction* instr) {
1083  if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1084    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1085    return *ptr;
1086  } else {
1087    PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1088           addr,
1089           reinterpret_cast<intptr_t>(instr));
1090    UNIMPLEMENTED();
1091    return 0;
1092  }
1093}
1094
1095
1096void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
1097  if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1098    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1099    *ptr = value;
1100  } else {
1101    PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1102           addr,
1103           reinterpret_cast<intptr_t>(instr));
1104    UNIMPLEMENTED();
1105  }
1106}
1107
1108
1109uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
1110  if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1111    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1112    return *ptr;
1113  } else {
1114    PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08"
1115           V8PRIxPTR "\n",
1116           addr,
1117           reinterpret_cast<intptr_t>(instr));
1118    UNIMPLEMENTED();
1119    return 0;
1120  }
1121}
1122
1123
1124int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
1125  if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1126    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1127    return *ptr;
1128  } else {
1129    PrintF("Unaligned signed halfword read at 0x%08x\n", addr);
1130    UNIMPLEMENTED();
1131    return 0;
1132  }
1133}
1134
1135
1136void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
1137  if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1138    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1139    *ptr = value;
1140  } else {
1141    PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08"
1142           V8PRIxPTR "\n",
1143           addr,
1144           reinterpret_cast<intptr_t>(instr));
1145    UNIMPLEMENTED();
1146  }
1147}
1148
1149
1150void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
1151  if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1152    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1153    *ptr = value;
1154  } else {
1155    PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1156           addr,
1157           reinterpret_cast<intptr_t>(instr));
1158    UNIMPLEMENTED();
1159  }
1160}
1161
1162
1163uint8_t Simulator::ReadBU(int32_t addr) {
1164  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1165  return *ptr;
1166}
1167
1168
1169int8_t Simulator::ReadB(int32_t addr) {
1170  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1171  return *ptr;
1172}
1173
1174
1175void Simulator::WriteB(int32_t addr, uint8_t value) {
1176  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1177  *ptr = value;
1178}
1179
1180
1181void Simulator::WriteB(int32_t addr, int8_t value) {
1182  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1183  *ptr = value;
1184}
1185
1186
1187int32_t* Simulator::ReadDW(int32_t addr) {
1188  if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1189    int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1190    return ptr;
1191  } else {
1192    PrintF("Unaligned read at 0x%08x\n", addr);
1193    UNIMPLEMENTED();
1194    return 0;
1195  }
1196}
1197
1198
1199void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
1200  if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1201    int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1202    *ptr++ = value1;
1203    *ptr = value2;
1204  } else {
1205    PrintF("Unaligned write at 0x%08x\n", addr);
1206    UNIMPLEMENTED();
1207  }
1208}
1209
1210
1211// Returns the limit of the stack area to enable checking for stack overflows.
1212uintptr_t Simulator::StackLimit() const {
1213  // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
1214  // pushing values.
1215  return reinterpret_cast<uintptr_t>(stack_) + 1024;
1216}
1217
1218
1219// Unsupported instructions use Format to print an error and stop execution.
1220void Simulator::Format(Instruction* instr, const char* format) {
1221  PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
1222         reinterpret_cast<intptr_t>(instr), format);
1223  UNIMPLEMENTED();
1224}
1225
1226
1227// Checks if the current instruction should be executed based on its
1228// condition bits.
1229bool Simulator::ConditionallyExecute(Instruction* instr) {
1230  switch (instr->ConditionField()) {
1231    case eq: return z_flag_;
1232    case ne: return !z_flag_;
1233    case cs: return c_flag_;
1234    case cc: return !c_flag_;
1235    case mi: return n_flag_;
1236    case pl: return !n_flag_;
1237    case vs: return v_flag_;
1238    case vc: return !v_flag_;
1239    case hi: return c_flag_ && !z_flag_;
1240    case ls: return !c_flag_ || z_flag_;
1241    case ge: return n_flag_ == v_flag_;
1242    case lt: return n_flag_ != v_flag_;
1243    case gt: return !z_flag_ && (n_flag_ == v_flag_);
1244    case le: return z_flag_ || (n_flag_ != v_flag_);
1245    case al: return true;
1246    default: UNREACHABLE();
1247  }
1248  return false;
1249}
1250
1251
1252// Calculate and set the Negative and Zero flags.
1253void Simulator::SetNZFlags(int32_t val) {
1254  n_flag_ = (val < 0);
1255  z_flag_ = (val == 0);
1256}
1257
1258
1259// Set the Carry flag.
1260void Simulator::SetCFlag(bool val) {
1261  c_flag_ = val;
1262}
1263
1264
1265// Set the oVerflow flag.
1266void Simulator::SetVFlag(bool val) {
1267  v_flag_ = val;
1268}
1269
1270
1271// Calculate C flag value for additions.
1272bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1273  uint32_t uleft = static_cast<uint32_t>(left);
1274  uint32_t uright = static_cast<uint32_t>(right);
1275  uint32_t urest  = 0xffffffffU - uleft;
1276
1277  return (uright > urest) ||
1278         (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1279}
1280
1281
1282// Calculate C flag value for subtractions.
1283bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1284  uint32_t uleft = static_cast<uint32_t>(left);
1285  uint32_t uright = static_cast<uint32_t>(right);
1286
1287  return (uright > uleft);
1288}
1289
1290
1291// Calculate V flag value for additions and subtractions.
1292bool Simulator::OverflowFrom(int32_t alu_out,
1293                             int32_t left, int32_t right, bool addition) {
1294  bool overflow;
1295  if (addition) {
1296               // operands have the same sign
1297    overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1298               // and operands and result have different sign
1299               && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1300  } else {
1301               // operands have different signs
1302    overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1303               // and first operand and result have different signs
1304               && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1305  }
1306  return overflow;
1307}
1308
1309
1310// Support for VFP comparisons.
1311void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
1312  if (std::isnan(val1) || std::isnan(val2)) {
1313    n_flag_FPSCR_ = false;
1314    z_flag_FPSCR_ = false;
1315    c_flag_FPSCR_ = true;
1316    v_flag_FPSCR_ = true;
1317  // All non-NaN cases.
1318  } else if (val1 == val2) {
1319    n_flag_FPSCR_ = false;
1320    z_flag_FPSCR_ = true;
1321    c_flag_FPSCR_ = true;
1322    v_flag_FPSCR_ = false;
1323  } else if (val1 < val2) {
1324    n_flag_FPSCR_ = true;
1325    z_flag_FPSCR_ = false;
1326    c_flag_FPSCR_ = false;
1327    v_flag_FPSCR_ = false;
1328  } else {
1329    // Case when (val1 > val2).
1330    n_flag_FPSCR_ = false;
1331    z_flag_FPSCR_ = false;
1332    c_flag_FPSCR_ = true;
1333    v_flag_FPSCR_ = false;
1334  }
1335}
1336
1337
1338void Simulator::Copy_FPSCR_to_APSR() {
1339  n_flag_ = n_flag_FPSCR_;
1340  z_flag_ = z_flag_FPSCR_;
1341  c_flag_ = c_flag_FPSCR_;
1342  v_flag_ = v_flag_FPSCR_;
1343}
1344
1345
1346// Addressing Mode 1 - Data-processing operands:
1347// Get the value based on the shifter_operand with register.
1348int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) {
1349  ShiftOp shift = instr->ShiftField();
1350  int shift_amount = instr->ShiftAmountValue();
1351  int32_t result = get_register(instr->RmValue());
1352  if (instr->Bit(4) == 0) {
1353    // by immediate
1354    if ((shift == ROR) && (shift_amount == 0)) {
1355      UNIMPLEMENTED();
1356      return result;
1357    } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
1358      shift_amount = 32;
1359    }
1360    switch (shift) {
1361      case ASR: {
1362        if (shift_amount == 0) {
1363          if (result < 0) {
1364            result = 0xffffffff;
1365            *carry_out = true;
1366          } else {
1367            result = 0;
1368            *carry_out = false;
1369          }
1370        } else {
1371          result >>= (shift_amount - 1);
1372          *carry_out = (result & 1) == 1;
1373          result >>= 1;
1374        }
1375        break;
1376      }
1377
1378      case LSL: {
1379        if (shift_amount == 0) {
1380          *carry_out = c_flag_;
1381        } else {
1382          result <<= (shift_amount - 1);
1383          *carry_out = (result < 0);
1384          result <<= 1;
1385        }
1386        break;
1387      }
1388
1389      case LSR: {
1390        if (shift_amount == 0) {
1391          result = 0;
1392          *carry_out = c_flag_;
1393        } else {
1394          uint32_t uresult = static_cast<uint32_t>(result);
1395          uresult >>= (shift_amount - 1);
1396          *carry_out = (uresult & 1) == 1;
1397          uresult >>= 1;
1398          result = static_cast<int32_t>(uresult);
1399        }
1400        break;
1401      }
1402
1403      case ROR: {
1404        if (shift_amount == 0) {
1405          *carry_out = c_flag_;
1406        } else {
1407          uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
1408          uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
1409          result = right | left;
1410          *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
1411        }
1412        break;
1413      }
1414
1415      default: {
1416        UNREACHABLE();
1417        break;
1418      }
1419    }
1420  } else {
1421    // by register
1422    int rs = instr->RsValue();
1423    shift_amount = get_register(rs) &0xff;
1424    switch (shift) {
1425      case ASR: {
1426        if (shift_amount == 0) {
1427          *carry_out = c_flag_;
1428        } else if (shift_amount < 32) {
1429          result >>= (shift_amount - 1);
1430          *carry_out = (result & 1) == 1;
1431          result >>= 1;
1432        } else {
1433          DCHECK(shift_amount >= 32);
1434          if (result < 0) {
1435            *carry_out = true;
1436            result = 0xffffffff;
1437          } else {
1438            *carry_out = false;
1439            result = 0;
1440          }
1441        }
1442        break;
1443      }
1444
1445      case LSL: {
1446        if (shift_amount == 0) {
1447          *carry_out = c_flag_;
1448        } else if (shift_amount < 32) {
1449          result <<= (shift_amount - 1);
1450          *carry_out = (result < 0);
1451          result <<= 1;
1452        } else if (shift_amount == 32) {
1453          *carry_out = (result & 1) == 1;
1454          result = 0;
1455        } else {
1456          DCHECK(shift_amount > 32);
1457          *carry_out = false;
1458          result = 0;
1459        }
1460        break;
1461      }
1462
1463      case LSR: {
1464        if (shift_amount == 0) {
1465          *carry_out = c_flag_;
1466        } else if (shift_amount < 32) {
1467          uint32_t uresult = static_cast<uint32_t>(result);
1468          uresult >>= (shift_amount - 1);
1469          *carry_out = (uresult & 1) == 1;
1470          uresult >>= 1;
1471          result = static_cast<int32_t>(uresult);
1472        } else if (shift_amount == 32) {
1473          *carry_out = (result < 0);
1474          result = 0;
1475        } else {
1476          *carry_out = false;
1477          result = 0;
1478        }
1479        break;
1480      }
1481
1482      case ROR: {
1483        if (shift_amount == 0) {
1484          *carry_out = c_flag_;
1485        } else {
1486          uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
1487          uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
1488          result = right | left;
1489          *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
1490        }
1491        break;
1492      }
1493
1494      default: {
1495        UNREACHABLE();
1496        break;
1497      }
1498    }
1499  }
1500  return result;
1501}
1502
1503
1504// Addressing Mode 1 - Data-processing operands:
1505// Get the value based on the shifter_operand with immediate.
1506int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) {
1507  int rotate = instr->RotateValue() * 2;
1508  int immed8 = instr->Immed8Value();
1509  int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
1510  *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
1511  return imm;
1512}
1513
1514
1515static int count_bits(int bit_vector) {
1516  int count = 0;
1517  while (bit_vector != 0) {
1518    if ((bit_vector & 1) != 0) {
1519      count++;
1520    }
1521    bit_vector >>= 1;
1522  }
1523  return count;
1524}
1525
1526
1527int32_t Simulator::ProcessPU(Instruction* instr,
1528                             int num_regs,
1529                             int reg_size,
1530                             intptr_t* start_address,
1531                             intptr_t* end_address) {
1532  int rn = instr->RnValue();
1533  int32_t rn_val = get_register(rn);
1534  switch (instr->PUField()) {
1535    case da_x: {
1536      UNIMPLEMENTED();
1537      break;
1538    }
1539    case ia_x: {
1540      *start_address = rn_val;
1541      *end_address = rn_val + (num_regs * reg_size) - reg_size;
1542      rn_val = rn_val + (num_regs * reg_size);
1543      break;
1544    }
1545    case db_x: {
1546      *start_address = rn_val - (num_regs * reg_size);
1547      *end_address = rn_val - reg_size;
1548      rn_val = *start_address;
1549      break;
1550    }
1551    case ib_x: {
1552      *start_address = rn_val + reg_size;
1553      *end_address = rn_val + (num_regs * reg_size);
1554      rn_val = *end_address;
1555      break;
1556    }
1557    default: {
1558      UNREACHABLE();
1559      break;
1560    }
1561  }
1562  return rn_val;
1563}
1564
1565
1566// Addressing Mode 4 - Load and Store Multiple
1567void Simulator::HandleRList(Instruction* instr, bool load) {
1568  int rlist = instr->RlistValue();
1569  int num_regs = count_bits(rlist);
1570
1571  intptr_t start_address = 0;
1572  intptr_t end_address = 0;
1573  int32_t rn_val =
1574      ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address);
1575
1576  intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1577  // Catch null pointers a little earlier.
1578  DCHECK(start_address > 8191 || start_address < 0);
1579  int reg = 0;
1580  while (rlist != 0) {
1581    if ((rlist & 1) != 0) {
1582      if (load) {
1583        set_register(reg, *address);
1584      } else {
1585        *address = get_register(reg);
1586      }
1587      address += 1;
1588    }
1589    reg++;
1590    rlist >>= 1;
1591  }
1592  DCHECK(end_address == ((intptr_t)address) - 4);
1593  if (instr->HasW()) {
1594    set_register(instr->RnValue(), rn_val);
1595  }
1596}
1597
1598
1599// Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
1600void Simulator::HandleVList(Instruction* instr) {
1601  VFPRegPrecision precision =
1602      (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision;
1603  int operand_size = (precision == kSinglePrecision) ? 4 : 8;
1604
1605  bool load = (instr->VLValue() == 0x1);
1606
1607  int vd;
1608  int num_regs;
1609  vd = instr->VFPDRegValue(precision);
1610  if (precision == kSinglePrecision) {
1611    num_regs = instr->Immed8Value();
1612  } else {
1613    num_regs = instr->Immed8Value() / 2;
1614  }
1615
1616  intptr_t start_address = 0;
1617  intptr_t end_address = 0;
1618  int32_t rn_val =
1619      ProcessPU(instr, num_regs, operand_size, &start_address, &end_address);
1620
1621  intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1622  for (int reg = vd; reg < vd + num_regs; reg++) {
1623    if (precision == kSinglePrecision) {
1624      if (load) {
1625        set_s_register_from_sinteger(
1626            reg, ReadW(reinterpret_cast<int32_t>(address), instr));
1627      } else {
1628        WriteW(reinterpret_cast<int32_t>(address),
1629               get_sinteger_from_s_register(reg), instr);
1630      }
1631      address += 1;
1632    } else {
1633      if (load) {
1634        int32_t data[] = {
1635          ReadW(reinterpret_cast<int32_t>(address), instr),
1636          ReadW(reinterpret_cast<int32_t>(address + 1), instr)
1637        };
1638        double d;
1639        memcpy(&d, data, 8);
1640        set_d_register_from_double(reg, d);
1641      } else {
1642        int32_t data[2];
1643        double d = get_double_from_d_register(reg);
1644        memcpy(data, &d, 8);
1645        WriteW(reinterpret_cast<int32_t>(address), data[0], instr);
1646        WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr);
1647      }
1648      address += 2;
1649    }
1650  }
1651  DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
1652  if (instr->HasW()) {
1653    set_register(instr->RnValue(), rn_val);
1654  }
1655}
1656
1657
1658// Calls into the V8 runtime are based on this very simple interface.
1659// Note: To be able to return two values from some calls the code in runtime.cc
1660// uses the ObjectPair which is essentially two 32-bit values stuffed into a
1661// 64-bit value. With the code below we assume that all runtime calls return
1662// 64 bits of result. If they don't, the r1 result register contains a bogus
1663// value, which is fine because it is caller-saved.
1664typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
1665                                        int32_t arg1,
1666                                        int32_t arg2,
1667                                        int32_t arg3,
1668                                        int32_t arg4,
1669                                        int32_t arg5);
1670
1671// These prototypes handle the four types of FP calls.
1672typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1673typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1674typedef double (*SimulatorRuntimeFPCall)(double darg0);
1675typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
1676
1677// This signature supports direct call in to API function native callback
1678// (refer to InvocationCallback in v8.h).
1679typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
1680typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1);
1681
1682// This signature supports direct call to accessor getter callback.
1683typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1);
1684typedef void (*SimulatorRuntimeProfilingGetterCall)(
1685    int32_t arg0, int32_t arg1, void* arg2);
1686
1687// Software interrupt instructions are used by the simulator to call into the
1688// C-based V8 runtime.
1689void Simulator::SoftwareInterrupt(Instruction* instr) {
1690  int svc = instr->SvcValue();
1691  switch (svc) {
1692    case kCallRtRedirected: {
1693      // Check if stack is aligned. Error if not aligned is reported below to
1694      // include information on the function called.
1695      bool stack_aligned =
1696          (get_register(sp)
1697           & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
1698      Redirection* redirection = Redirection::FromSwiInstruction(instr);
1699      int32_t arg0 = get_register(r0);
1700      int32_t arg1 = get_register(r1);
1701      int32_t arg2 = get_register(r2);
1702      int32_t arg3 = get_register(r3);
1703      int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
1704      int32_t arg4 = stack_pointer[0];
1705      int32_t arg5 = stack_pointer[1];
1706      bool fp_call =
1707         (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1708         (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1709         (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1710         (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1711      // This is dodgy but it works because the C entry stubs are never moved.
1712      // See comment in codegen-arm.cc and bug 1242173.
1713      int32_t saved_lr = get_register(lr);
1714      intptr_t external =
1715          reinterpret_cast<intptr_t>(redirection->external_function());
1716      if (fp_call) {
1717        double dval0, dval1;  // one or two double parameters
1718        int32_t ival;         // zero or one integer parameters
1719        int64_t iresult = 0;  // integer return value
1720        double dresult = 0;   // double return value
1721        GetFpArgs(&dval0, &dval1, &ival);
1722        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1723          SimulatorRuntimeCall generic_target =
1724            reinterpret_cast<SimulatorRuntimeCall>(external);
1725          switch (redirection->type()) {
1726          case ExternalReference::BUILTIN_FP_FP_CALL:
1727          case ExternalReference::BUILTIN_COMPARE_CALL:
1728            PrintF("Call to host function at %p with args %f, %f",
1729                   FUNCTION_ADDR(generic_target), dval0, dval1);
1730            break;
1731          case ExternalReference::BUILTIN_FP_CALL:
1732            PrintF("Call to host function at %p with arg %f",
1733                FUNCTION_ADDR(generic_target), dval0);
1734            break;
1735          case ExternalReference::BUILTIN_FP_INT_CALL:
1736            PrintF("Call to host function at %p with args %f, %d",
1737                   FUNCTION_ADDR(generic_target), dval0, ival);
1738            break;
1739          default:
1740            UNREACHABLE();
1741            break;
1742          }
1743          if (!stack_aligned) {
1744            PrintF(" with unaligned stack %08x\n", get_register(sp));
1745          }
1746          PrintF("\n");
1747        }
1748        CHECK(stack_aligned);
1749        switch (redirection->type()) {
1750        case ExternalReference::BUILTIN_COMPARE_CALL: {
1751          SimulatorRuntimeCompareCall target =
1752            reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1753          iresult = target(dval0, dval1);
1754          set_register(r0, static_cast<int32_t>(iresult));
1755          set_register(r1, static_cast<int32_t>(iresult >> 32));
1756          break;
1757        }
1758        case ExternalReference::BUILTIN_FP_FP_CALL: {
1759          SimulatorRuntimeFPFPCall target =
1760            reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1761          dresult = target(dval0, dval1);
1762          SetFpResult(dresult);
1763          break;
1764        }
1765        case ExternalReference::BUILTIN_FP_CALL: {
1766          SimulatorRuntimeFPCall target =
1767            reinterpret_cast<SimulatorRuntimeFPCall>(external);
1768          dresult = target(dval0);
1769          SetFpResult(dresult);
1770          break;
1771        }
1772        case ExternalReference::BUILTIN_FP_INT_CALL: {
1773          SimulatorRuntimeFPIntCall target =
1774            reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1775          dresult = target(dval0, ival);
1776          SetFpResult(dresult);
1777          break;
1778        }
1779        default:
1780          UNREACHABLE();
1781          break;
1782        }
1783        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1784          switch (redirection->type()) {
1785          case ExternalReference::BUILTIN_COMPARE_CALL:
1786            PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
1787            break;
1788          case ExternalReference::BUILTIN_FP_FP_CALL:
1789          case ExternalReference::BUILTIN_FP_CALL:
1790          case ExternalReference::BUILTIN_FP_INT_CALL:
1791            PrintF("Returned %f\n", dresult);
1792            break;
1793          default:
1794            UNREACHABLE();
1795            break;
1796          }
1797        }
1798      } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1799        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1800          PrintF("Call to host function at %p args %08x",
1801              reinterpret_cast<void*>(external), arg0);
1802          if (!stack_aligned) {
1803            PrintF(" with unaligned stack %08x\n", get_register(sp));
1804          }
1805          PrintF("\n");
1806        }
1807        CHECK(stack_aligned);
1808        SimulatorRuntimeDirectApiCall target =
1809            reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1810        target(arg0);
1811      } else if (
1812          redirection->type() == ExternalReference::PROFILING_API_CALL) {
1813        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1814          PrintF("Call to host function at %p args %08x %08x",
1815              reinterpret_cast<void*>(external), arg0, arg1);
1816          if (!stack_aligned) {
1817            PrintF(" with unaligned stack %08x\n", get_register(sp));
1818          }
1819          PrintF("\n");
1820        }
1821        CHECK(stack_aligned);
1822        SimulatorRuntimeProfilingApiCall target =
1823            reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1824        target(arg0, Redirection::ReverseRedirection(arg1));
1825      } else if (
1826          redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1827        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1828          PrintF("Call to host function at %p args %08x %08x",
1829              reinterpret_cast<void*>(external), arg0, arg1);
1830          if (!stack_aligned) {
1831            PrintF(" with unaligned stack %08x\n", get_register(sp));
1832          }
1833          PrintF("\n");
1834        }
1835        CHECK(stack_aligned);
1836        SimulatorRuntimeDirectGetterCall target =
1837            reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1838        target(arg0, arg1);
1839      } else if (
1840          redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
1841        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1842          PrintF("Call to host function at %p args %08x %08x %08x",
1843              reinterpret_cast<void*>(external), arg0, arg1, arg2);
1844          if (!stack_aligned) {
1845            PrintF(" with unaligned stack %08x\n", get_register(sp));
1846          }
1847          PrintF("\n");
1848        }
1849        CHECK(stack_aligned);
1850        SimulatorRuntimeProfilingGetterCall target =
1851            reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
1852                external);
1853        target(arg0, arg1, Redirection::ReverseRedirection(arg2));
1854      } else {
1855        // builtin call.
1856        DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1857        SimulatorRuntimeCall target =
1858            reinterpret_cast<SimulatorRuntimeCall>(external);
1859        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1860          PrintF(
1861              "Call to host function at %p "
1862              "args %08x, %08x, %08x, %08x, %08x, %08x",
1863              FUNCTION_ADDR(target),
1864              arg0,
1865              arg1,
1866              arg2,
1867              arg3,
1868              arg4,
1869              arg5);
1870          if (!stack_aligned) {
1871            PrintF(" with unaligned stack %08x\n", get_register(sp));
1872          }
1873          PrintF("\n");
1874        }
1875        CHECK(stack_aligned);
1876        int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
1877        int32_t lo_res = static_cast<int32_t>(result);
1878        int32_t hi_res = static_cast<int32_t>(result >> 32);
1879        if (::v8::internal::FLAG_trace_sim) {
1880          PrintF("Returned %08x\n", lo_res);
1881        }
1882        set_register(r0, lo_res);
1883        set_register(r1, hi_res);
1884      }
1885      set_register(lr, saved_lr);
1886      set_pc(get_register(lr));
1887      break;
1888    }
1889    case kBreakpoint: {
1890      ArmDebugger dbg(this);
1891      dbg.Debug();
1892      break;
1893    }
1894    // stop uses all codes greater than 1 << 23.
1895    default: {
1896      if (svc >= (1 << 23)) {
1897        uint32_t code = svc & kStopCodeMask;
1898        if (isWatchedStop(code)) {
1899          IncreaseStopCounter(code);
1900        }
1901        // Stop if it is enabled, otherwise go on jumping over the stop
1902        // and the message address.
1903        if (isEnabledStop(code)) {
1904          ArmDebugger dbg(this);
1905          dbg.Stop(instr);
1906        } else {
1907          set_pc(get_pc() + 2 * Instruction::kInstrSize);
1908        }
1909      } else {
1910        // This is not a valid svc code.
1911        UNREACHABLE();
1912        break;
1913      }
1914    }
1915  }
1916}
1917
1918
1919double Simulator::canonicalizeNaN(double value) {
1920  return (FPSCR_default_NaN_mode_ && std::isnan(value)) ?
1921    FixedDoubleArray::canonical_not_the_hole_nan_as_double() : value;
1922}
1923
1924
1925// Stop helper functions.
1926bool Simulator::isStopInstruction(Instruction* instr) {
1927  return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1928}
1929
1930
1931bool Simulator::isWatchedStop(uint32_t code) {
1932  DCHECK(code <= kMaxStopCode);
1933  return code < kNumOfWatchedStops;
1934}
1935
1936
1937bool Simulator::isEnabledStop(uint32_t code) {
1938  DCHECK(code <= kMaxStopCode);
1939  // Unwatched stops are always enabled.
1940  return !isWatchedStop(code) ||
1941    !(watched_stops_[code].count & kStopDisabledBit);
1942}
1943
1944
1945void Simulator::EnableStop(uint32_t code) {
1946  DCHECK(isWatchedStop(code));
1947  if (!isEnabledStop(code)) {
1948    watched_stops_[code].count &= ~kStopDisabledBit;
1949  }
1950}
1951
1952
1953void Simulator::DisableStop(uint32_t code) {
1954  DCHECK(isWatchedStop(code));
1955  if (isEnabledStop(code)) {
1956    watched_stops_[code].count |= kStopDisabledBit;
1957  }
1958}
1959
1960
1961void Simulator::IncreaseStopCounter(uint32_t code) {
1962  DCHECK(code <= kMaxStopCode);
1963  DCHECK(isWatchedStop(code));
1964  if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1965    PrintF("Stop counter for code %i has overflowed.\n"
1966           "Enabling this code and reseting the counter to 0.\n", code);
1967    watched_stops_[code].count = 0;
1968    EnableStop(code);
1969  } else {
1970    watched_stops_[code].count++;
1971  }
1972}
1973
1974
1975// Print a stop status.
1976void Simulator::PrintStopInfo(uint32_t code) {
1977  DCHECK(code <= kMaxStopCode);
1978  if (!isWatchedStop(code)) {
1979    PrintF("Stop not watched.");
1980  } else {
1981    const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1982    int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1983    // Don't print the state of unused breakpoints.
1984    if (count != 0) {
1985      if (watched_stops_[code].desc) {
1986        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
1987               code, code, state, count, watched_stops_[code].desc);
1988      } else {
1989        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
1990               code, code, state, count);
1991      }
1992    }
1993  }
1994}
1995
1996
1997// Handle execution based on instruction types.
1998
1999// Instruction types 0 and 1 are both rolled into one function because they
2000// only differ in the handling of the shifter_operand.
2001void Simulator::DecodeType01(Instruction* instr) {
2002  int type = instr->TypeValue();
2003  if ((type == 0) && instr->IsSpecialType0()) {
2004    // multiply instruction or extra loads and stores
2005    if (instr->Bits(7, 4) == 9) {
2006      if (instr->Bit(24) == 0) {
2007        // Raw field decoding here. Multiply instructions have their Rd in
2008        // funny places.
2009        int rn = instr->RnValue();
2010        int rm = instr->RmValue();
2011        int rs = instr->RsValue();
2012        int32_t rs_val = get_register(rs);
2013        int32_t rm_val = get_register(rm);
2014        if (instr->Bit(23) == 0) {
2015          if (instr->Bit(21) == 0) {
2016            // The MUL instruction description (A 4.1.33) refers to Rd as being
2017            // the destination for the operation, but it confusingly uses the
2018            // Rn field to encode it.
2019            // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
2020            int rd = rn;  // Remap the rn field to the Rd register.
2021            int32_t alu_out = rm_val * rs_val;
2022            set_register(rd, alu_out);
2023            if (instr->HasS()) {
2024              SetNZFlags(alu_out);
2025            }
2026          } else {
2027            int rd = instr->RdValue();
2028            int32_t acc_value = get_register(rd);
2029            if (instr->Bit(22) == 0) {
2030              // The MLA instruction description (A 4.1.28) refers to the order
2031              // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
2032              // Rn field to encode the Rd register and the Rd field to encode
2033              // the Rn register.
2034              // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
2035              int32_t mul_out = rm_val * rs_val;
2036              int32_t result = acc_value + mul_out;
2037              set_register(rn, result);
2038            } else {
2039              // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
2040              int32_t mul_out = rm_val * rs_val;
2041              int32_t result = acc_value - mul_out;
2042              set_register(rn, result);
2043            }
2044          }
2045        } else {
2046          // The signed/long multiply instructions use the terms RdHi and RdLo
2047          // when referring to the target registers. They are mapped to the Rn
2048          // and Rd fields as follows:
2049          // RdLo == Rd
2050          // RdHi == Rn (This is confusingly stored in variable rd here
2051          //             because the mul instruction from above uses the
2052          //             Rn field to encode the Rd register. Good luck figuring
2053          //             this out without reading the ARM instruction manual
2054          //             at a very detailed level.)
2055          // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
2056          int rd_hi = rn;  // Remap the rn field to the RdHi register.
2057          int rd_lo = instr->RdValue();
2058          int32_t hi_res = 0;
2059          int32_t lo_res = 0;
2060          if (instr->Bit(22) == 1) {
2061            int64_t left_op  = static_cast<int32_t>(rm_val);
2062            int64_t right_op = static_cast<int32_t>(rs_val);
2063            uint64_t result = left_op * right_op;
2064            hi_res = static_cast<int32_t>(result >> 32);
2065            lo_res = static_cast<int32_t>(result & 0xffffffff);
2066          } else {
2067            // unsigned multiply
2068            uint64_t left_op  = static_cast<uint32_t>(rm_val);
2069            uint64_t right_op = static_cast<uint32_t>(rs_val);
2070            uint64_t result = left_op * right_op;
2071            hi_res = static_cast<int32_t>(result >> 32);
2072            lo_res = static_cast<int32_t>(result & 0xffffffff);
2073          }
2074          set_register(rd_lo, lo_res);
2075          set_register(rd_hi, hi_res);
2076          if (instr->HasS()) {
2077            UNIMPLEMENTED();
2078          }
2079        }
2080      } else {
2081        UNIMPLEMENTED();  // Not used by V8.
2082      }
2083    } else {
2084      // extra load/store instructions
2085      int rd = instr->RdValue();
2086      int rn = instr->RnValue();
2087      int32_t rn_val = get_register(rn);
2088      int32_t addr = 0;
2089      if (instr->Bit(22) == 0) {
2090        int rm = instr->RmValue();
2091        int32_t rm_val = get_register(rm);
2092        switch (instr->PUField()) {
2093          case da_x: {
2094            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
2095            DCHECK(!instr->HasW());
2096            addr = rn_val;
2097            rn_val -= rm_val;
2098            set_register(rn, rn_val);
2099            break;
2100          }
2101          case ia_x: {
2102            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
2103            DCHECK(!instr->HasW());
2104            addr = rn_val;
2105            rn_val += rm_val;
2106            set_register(rn, rn_val);
2107            break;
2108          }
2109          case db_x: {
2110            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
2111            rn_val -= rm_val;
2112            addr = rn_val;
2113            if (instr->HasW()) {
2114              set_register(rn, rn_val);
2115            }
2116            break;
2117          }
2118          case ib_x: {
2119            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
2120            rn_val += rm_val;
2121            addr = rn_val;
2122            if (instr->HasW()) {
2123              set_register(rn, rn_val);
2124            }
2125            break;
2126          }
2127          default: {
2128            // The PU field is a 2-bit field.
2129            UNREACHABLE();
2130            break;
2131          }
2132        }
2133      } else {
2134        int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
2135        switch (instr->PUField()) {
2136          case da_x: {
2137            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
2138            DCHECK(!instr->HasW());
2139            addr = rn_val;
2140            rn_val -= imm_val;
2141            set_register(rn, rn_val);
2142            break;
2143          }
2144          case ia_x: {
2145            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
2146            DCHECK(!instr->HasW());
2147            addr = rn_val;
2148            rn_val += imm_val;
2149            set_register(rn, rn_val);
2150            break;
2151          }
2152          case db_x: {
2153            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
2154            rn_val -= imm_val;
2155            addr = rn_val;
2156            if (instr->HasW()) {
2157              set_register(rn, rn_val);
2158            }
2159            break;
2160          }
2161          case ib_x: {
2162            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
2163            rn_val += imm_val;
2164            addr = rn_val;
2165            if (instr->HasW()) {
2166              set_register(rn, rn_val);
2167            }
2168            break;
2169          }
2170          default: {
2171            // The PU field is a 2-bit field.
2172            UNREACHABLE();
2173            break;
2174          }
2175        }
2176      }
2177      if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) {
2178        DCHECK((rd % 2) == 0);
2179        if (instr->HasH()) {
2180          // The strd instruction.
2181          int32_t value1 = get_register(rd);
2182          int32_t value2 = get_register(rd+1);
2183          WriteDW(addr, value1, value2);
2184        } else {
2185          // The ldrd instruction.
2186          int* rn_data = ReadDW(addr);
2187          set_dw_register(rd, rn_data);
2188        }
2189      } else if (instr->HasH()) {
2190        if (instr->HasSign()) {
2191          if (instr->HasL()) {
2192            int16_t val = ReadH(addr, instr);
2193            set_register(rd, val);
2194          } else {
2195            int16_t val = get_register(rd);
2196            WriteH(addr, val, instr);
2197          }
2198        } else {
2199          if (instr->HasL()) {
2200            uint16_t val = ReadHU(addr, instr);
2201            set_register(rd, val);
2202          } else {
2203            uint16_t val = get_register(rd);
2204            WriteH(addr, val, instr);
2205          }
2206        }
2207      } else {
2208        // signed byte loads
2209        DCHECK(instr->HasSign());
2210        DCHECK(instr->HasL());
2211        int8_t val = ReadB(addr);
2212        set_register(rd, val);
2213      }
2214      return;
2215    }
2216  } else if ((type == 0) && instr->IsMiscType0()) {
2217    if (instr->Bits(22, 21) == 1) {
2218      int rm = instr->RmValue();
2219      switch (instr->BitField(7, 4)) {
2220        case BX:
2221          set_pc(get_register(rm));
2222          break;
2223        case BLX: {
2224          uint32_t old_pc = get_pc();
2225          set_pc(get_register(rm));
2226          set_register(lr, old_pc + Instruction::kInstrSize);
2227          break;
2228        }
2229        case BKPT: {
2230          ArmDebugger dbg(this);
2231          PrintF("Simulator hit BKPT.\n");
2232          dbg.Debug();
2233          break;
2234        }
2235        default:
2236          UNIMPLEMENTED();
2237      }
2238    } else if (instr->Bits(22, 21) == 3) {
2239      int rm = instr->RmValue();
2240      int rd = instr->RdValue();
2241      switch (instr->BitField(7, 4)) {
2242        case CLZ: {
2243          uint32_t bits = get_register(rm);
2244          int leading_zeros = 0;
2245          if (bits == 0) {
2246            leading_zeros = 32;
2247          } else {
2248            while ((bits & 0x80000000u) == 0) {
2249              bits <<= 1;
2250              leading_zeros++;
2251            }
2252          }
2253          set_register(rd, leading_zeros);
2254          break;
2255        }
2256        default:
2257          UNIMPLEMENTED();
2258      }
2259    } else {
2260      PrintF("%08x\n", instr->InstructionBits());
2261      UNIMPLEMENTED();
2262    }
2263  } else if ((type == 1) && instr->IsNopType1()) {
2264    // NOP.
2265  } else {
2266    int rd = instr->RdValue();
2267    int rn = instr->RnValue();
2268    int32_t rn_val = get_register(rn);
2269    int32_t shifter_operand = 0;
2270    bool shifter_carry_out = 0;
2271    if (type == 0) {
2272      shifter_operand = GetShiftRm(instr, &shifter_carry_out);
2273    } else {
2274      DCHECK(instr->TypeValue() == 1);
2275      shifter_operand = GetImm(instr, &shifter_carry_out);
2276    }
2277    int32_t alu_out;
2278
2279    switch (instr->OpcodeField()) {
2280      case AND: {
2281        // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
2282        // Format(instr, "and'cond's 'rd, 'rn, 'imm");
2283        alu_out = rn_val & shifter_operand;
2284        set_register(rd, alu_out);
2285        if (instr->HasS()) {
2286          SetNZFlags(alu_out);
2287          SetCFlag(shifter_carry_out);
2288        }
2289        break;
2290      }
2291
2292      case EOR: {
2293        // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
2294        // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
2295        alu_out = rn_val ^ shifter_operand;
2296        set_register(rd, alu_out);
2297        if (instr->HasS()) {
2298          SetNZFlags(alu_out);
2299          SetCFlag(shifter_carry_out);
2300        }
2301        break;
2302      }
2303
2304      case SUB: {
2305        // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
2306        // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
2307        alu_out = rn_val - shifter_operand;
2308        set_register(rd, alu_out);
2309        if (instr->HasS()) {
2310          SetNZFlags(alu_out);
2311          SetCFlag(!BorrowFrom(rn_val, shifter_operand));
2312          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
2313        }
2314        break;
2315      }
2316
2317      case RSB: {
2318        // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
2319        // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
2320        alu_out = shifter_operand - rn_val;
2321        set_register(rd, alu_out);
2322        if (instr->HasS()) {
2323          SetNZFlags(alu_out);
2324          SetCFlag(!BorrowFrom(shifter_operand, rn_val));
2325          SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
2326        }
2327        break;
2328      }
2329
2330      case ADD: {
2331        // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
2332        // Format(instr, "add'cond's 'rd, 'rn, 'imm");
2333        alu_out = rn_val + shifter_operand;
2334        set_register(rd, alu_out);
2335        if (instr->HasS()) {
2336          SetNZFlags(alu_out);
2337          SetCFlag(CarryFrom(rn_val, shifter_operand));
2338          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2339        }
2340        break;
2341      }
2342
2343      case ADC: {
2344        // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
2345        // Format(instr, "adc'cond's 'rd, 'rn, 'imm");
2346        alu_out = rn_val + shifter_operand + GetCarry();
2347        set_register(rd, alu_out);
2348        if (instr->HasS()) {
2349          SetNZFlags(alu_out);
2350          SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry()));
2351          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2352        }
2353        break;
2354      }
2355
2356      case SBC: {
2357        Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
2358        Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
2359        break;
2360      }
2361
2362      case RSC: {
2363        Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
2364        Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
2365        break;
2366      }
2367
2368      case TST: {
2369        if (instr->HasS()) {
2370          // Format(instr, "tst'cond 'rn, 'shift_rm");
2371          // Format(instr, "tst'cond 'rn, 'imm");
2372          alu_out = rn_val & shifter_operand;
2373          SetNZFlags(alu_out);
2374          SetCFlag(shifter_carry_out);
2375        } else {
2376          // Format(instr, "movw'cond 'rd, 'imm").
2377          alu_out = instr->ImmedMovwMovtValue();
2378          set_register(rd, alu_out);
2379        }
2380        break;
2381      }
2382
2383      case TEQ: {
2384        if (instr->HasS()) {
2385          // Format(instr, "teq'cond 'rn, 'shift_rm");
2386          // Format(instr, "teq'cond 'rn, 'imm");
2387          alu_out = rn_val ^ shifter_operand;
2388          SetNZFlags(alu_out);
2389          SetCFlag(shifter_carry_out);
2390        } else {
2391          // Other instructions matching this pattern are handled in the
2392          // miscellaneous instructions part above.
2393          UNREACHABLE();
2394        }
2395        break;
2396      }
2397
2398      case CMP: {
2399        if (instr->HasS()) {
2400          // Format(instr, "cmp'cond 'rn, 'shift_rm");
2401          // Format(instr, "cmp'cond 'rn, 'imm");
2402          alu_out = rn_val - shifter_operand;
2403          SetNZFlags(alu_out);
2404          SetCFlag(!BorrowFrom(rn_val, shifter_operand));
2405          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
2406        } else {
2407          // Format(instr, "movt'cond 'rd, 'imm").
2408          alu_out = (get_register(rd) & 0xffff) |
2409              (instr->ImmedMovwMovtValue() << 16);
2410          set_register(rd, alu_out);
2411        }
2412        break;
2413      }
2414
2415      case CMN: {
2416        if (instr->HasS()) {
2417          // Format(instr, "cmn'cond 'rn, 'shift_rm");
2418          // Format(instr, "cmn'cond 'rn, 'imm");
2419          alu_out = rn_val + shifter_operand;
2420          SetNZFlags(alu_out);
2421          SetCFlag(CarryFrom(rn_val, shifter_operand));
2422          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2423        } else {
2424          // Other instructions matching this pattern are handled in the
2425          // miscellaneous instructions part above.
2426          UNREACHABLE();
2427        }
2428        break;
2429      }
2430
2431      case ORR: {
2432        // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
2433        // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
2434        alu_out = rn_val | shifter_operand;
2435        set_register(rd, alu_out);
2436        if (instr->HasS()) {
2437          SetNZFlags(alu_out);
2438          SetCFlag(shifter_carry_out);
2439        }
2440        break;
2441      }
2442
2443      case MOV: {
2444        // Format(instr, "mov'cond's 'rd, 'shift_rm");
2445        // Format(instr, "mov'cond's 'rd, 'imm");
2446        alu_out = shifter_operand;
2447        set_register(rd, alu_out);
2448        if (instr->HasS()) {
2449          SetNZFlags(alu_out);
2450          SetCFlag(shifter_carry_out);
2451        }
2452        break;
2453      }
2454
2455      case BIC: {
2456        // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
2457        // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
2458        alu_out = rn_val & ~shifter_operand;
2459        set_register(rd, alu_out);
2460        if (instr->HasS()) {
2461          SetNZFlags(alu_out);
2462          SetCFlag(shifter_carry_out);
2463        }
2464        break;
2465      }
2466
2467      case MVN: {
2468        // Format(instr, "mvn'cond's 'rd, 'shift_rm");
2469        // Format(instr, "mvn'cond's 'rd, 'imm");
2470        alu_out = ~shifter_operand;
2471        set_register(rd, alu_out);
2472        if (instr->HasS()) {
2473          SetNZFlags(alu_out);
2474          SetCFlag(shifter_carry_out);
2475        }
2476        break;
2477      }
2478
2479      default: {
2480        UNREACHABLE();
2481        break;
2482      }
2483    }
2484  }
2485}
2486
2487
2488void Simulator::DecodeType2(Instruction* instr) {
2489  int rd = instr->RdValue();
2490  int rn = instr->RnValue();
2491  int32_t rn_val = get_register(rn);
2492  int32_t im_val = instr->Offset12Value();
2493  int32_t addr = 0;
2494  switch (instr->PUField()) {
2495    case da_x: {
2496      // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
2497      DCHECK(!instr->HasW());
2498      addr = rn_val;
2499      rn_val -= im_val;
2500      set_register(rn, rn_val);
2501      break;
2502    }
2503    case ia_x: {
2504      // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
2505      DCHECK(!instr->HasW());
2506      addr = rn_val;
2507      rn_val += im_val;
2508      set_register(rn, rn_val);
2509      break;
2510    }
2511    case db_x: {
2512      // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
2513      rn_val -= im_val;
2514      addr = rn_val;
2515      if (instr->HasW()) {
2516        set_register(rn, rn_val);
2517      }
2518      break;
2519    }
2520    case ib_x: {
2521      // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
2522      rn_val += im_val;
2523      addr = rn_val;
2524      if (instr->HasW()) {
2525        set_register(rn, rn_val);
2526      }
2527      break;
2528    }
2529    default: {
2530      UNREACHABLE();
2531      break;
2532    }
2533  }
2534  if (instr->HasB()) {
2535    if (instr->HasL()) {
2536      byte val = ReadBU(addr);
2537      set_register(rd, val);
2538    } else {
2539      byte val = get_register(rd);
2540      WriteB(addr, val);
2541    }
2542  } else {
2543    if (instr->HasL()) {
2544      set_register(rd, ReadW(addr, instr));
2545    } else {
2546      WriteW(addr, get_register(rd), instr);
2547    }
2548  }
2549}
2550
2551
2552void Simulator::DecodeType3(Instruction* instr) {
2553  int rd = instr->RdValue();
2554  int rn = instr->RnValue();
2555  int32_t rn_val = get_register(rn);
2556  bool shifter_carry_out = 0;
2557  int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
2558  int32_t addr = 0;
2559  switch (instr->PUField()) {
2560    case da_x: {
2561      DCHECK(!instr->HasW());
2562      Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
2563      UNIMPLEMENTED();
2564      break;
2565    }
2566    case ia_x: {
2567      if (instr->Bit(4) == 0) {
2568        // Memop.
2569      } else {
2570        if (instr->Bit(5) == 0) {
2571          switch (instr->Bits(22, 21)) {
2572            case 0:
2573              if (instr->Bit(20) == 0) {
2574                if (instr->Bit(6) == 0) {
2575                  // Pkhbt.
2576                  uint32_t rn_val = get_register(rn);
2577                  uint32_t rm_val = get_register(instr->RmValue());
2578                  int32_t shift = instr->Bits(11, 7);
2579                  rm_val <<= shift;
2580                  set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
2581                } else {
2582                  // Pkhtb.
2583                  uint32_t rn_val = get_register(rn);
2584                  int32_t rm_val = get_register(instr->RmValue());
2585                  int32_t shift = instr->Bits(11, 7);
2586                  if (shift == 0) {
2587                    shift = 32;
2588                  }
2589                  rm_val >>= shift;
2590                  set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
2591                }
2592              } else {
2593                UNIMPLEMENTED();
2594              }
2595              break;
2596            case 1:
2597              UNIMPLEMENTED();
2598              break;
2599            case 2:
2600              UNIMPLEMENTED();
2601              break;
2602            case 3: {
2603              // Usat.
2604              int32_t sat_pos = instr->Bits(20, 16);
2605              int32_t sat_val = (1 << sat_pos) - 1;
2606              int32_t shift = instr->Bits(11, 7);
2607              int32_t shift_type = instr->Bit(6);
2608              int32_t rm_val = get_register(instr->RmValue());
2609              if (shift_type == 0) {  // LSL
2610                rm_val <<= shift;
2611              } else {  // ASR
2612                rm_val >>= shift;
2613              }
2614              // If saturation occurs, the Q flag should be set in the CPSR.
2615              // There is no Q flag yet, and no instruction (MRS) to read the
2616              // CPSR directly.
2617              if (rm_val > sat_val) {
2618                rm_val = sat_val;
2619              } else if (rm_val < 0) {
2620                rm_val = 0;
2621              }
2622              set_register(rd, rm_val);
2623              break;
2624            }
2625          }
2626        } else {
2627          switch (instr->Bits(22, 21)) {
2628            case 0:
2629              UNIMPLEMENTED();
2630              break;
2631            case 1:
2632              UNIMPLEMENTED();
2633              break;
2634            case 2:
2635              if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
2636                if (instr->Bits(19, 16) == 0xF) {
2637                  // Uxtb16.
2638                  uint32_t rm_val = get_register(instr->RmValue());
2639                  int32_t rotate = instr->Bits(11, 10);
2640                  switch (rotate) {
2641                    case 0:
2642                      break;
2643                    case 1:
2644                      rm_val = (rm_val >> 8) | (rm_val << 24);
2645                      break;
2646                    case 2:
2647                      rm_val = (rm_val >> 16) | (rm_val << 16);
2648                      break;
2649                    case 3:
2650                      rm_val = (rm_val >> 24) | (rm_val << 8);
2651                      break;
2652                  }
2653                  set_register(rd,
2654                               (rm_val & 0xFF) | (rm_val & 0xFF0000));
2655                } else {
2656                  UNIMPLEMENTED();
2657                }
2658              } else {
2659                UNIMPLEMENTED();
2660              }
2661              break;
2662            case 3:
2663              if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
2664                if (instr->Bits(19, 16) == 0xF) {
2665                  // Uxtb.
2666                  uint32_t rm_val = get_register(instr->RmValue());
2667                  int32_t rotate = instr->Bits(11, 10);
2668                  switch (rotate) {
2669                    case 0:
2670                      break;
2671                    case 1:
2672                      rm_val = (rm_val >> 8) | (rm_val << 24);
2673                      break;
2674                    case 2:
2675                      rm_val = (rm_val >> 16) | (rm_val << 16);
2676                      break;
2677                    case 3:
2678                      rm_val = (rm_val >> 24) | (rm_val << 8);
2679                      break;
2680                  }
2681                  set_register(rd, (rm_val & 0xFF));
2682                } else {
2683                  // Uxtab.
2684                  uint32_t rn_val = get_register(rn);
2685                  uint32_t rm_val = get_register(instr->RmValue());
2686                  int32_t rotate = instr->Bits(11, 10);
2687                  switch (rotate) {
2688                    case 0:
2689                      break;
2690                    case 1:
2691                      rm_val = (rm_val >> 8) | (rm_val << 24);
2692                      break;
2693                    case 2:
2694                      rm_val = (rm_val >> 16) | (rm_val << 16);
2695                      break;
2696                    case 3:
2697                      rm_val = (rm_val >> 24) | (rm_val << 8);
2698                      break;
2699                  }
2700                  set_register(rd, rn_val + (rm_val & 0xFF));
2701                }
2702              } else {
2703                UNIMPLEMENTED();
2704              }
2705              break;
2706          }
2707        }
2708        return;
2709      }
2710      break;
2711    }
2712    case db_x: {
2713      if (FLAG_enable_sudiv) {
2714        if (instr->Bits(5, 4) == 0x1) {
2715          if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
2716            // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs
2717            // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs);
2718            int rm = instr->RmValue();
2719            int32_t rm_val = get_register(rm);
2720            int rs = instr->RsValue();
2721            int32_t rs_val = get_register(rs);
2722            int32_t ret_val = 0;
2723            DCHECK(rs_val != 0);
2724            // udiv
2725            if (instr->Bit(21) == 0x1) {
2726              ret_val = static_cast<int32_t>(static_cast<uint32_t>(rm_val) /
2727                                             static_cast<uint32_t>(rs_val));
2728            } else if ((rm_val == kMinInt) && (rs_val == -1)) {
2729              ret_val = kMinInt;
2730            } else {
2731              ret_val = rm_val / rs_val;
2732            }
2733            set_register(rn, ret_val);
2734            return;
2735          }
2736        }
2737      }
2738      // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
2739      addr = rn_val - shifter_operand;
2740      if (instr->HasW()) {
2741        set_register(rn, addr);
2742      }
2743      break;
2744    }
2745    case ib_x: {
2746      if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
2747        uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
2748        uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
2749        uint32_t msbit = widthminus1 + lsbit;
2750        if (msbit <= 31) {
2751          if (instr->Bit(22)) {
2752            // ubfx - unsigned bitfield extract.
2753            uint32_t rm_val =
2754                static_cast<uint32_t>(get_register(instr->RmValue()));
2755            uint32_t extr_val = rm_val << (31 - msbit);
2756            extr_val = extr_val >> (31 - widthminus1);
2757            set_register(instr->RdValue(), extr_val);
2758          } else {
2759            // sbfx - signed bitfield extract.
2760            int32_t rm_val = get_register(instr->RmValue());
2761            int32_t extr_val = rm_val << (31 - msbit);
2762            extr_val = extr_val >> (31 - widthminus1);
2763            set_register(instr->RdValue(), extr_val);
2764          }
2765        } else {
2766          UNREACHABLE();
2767        }
2768        return;
2769      } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
2770        uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
2771        uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
2772        if (msbit >= lsbit) {
2773          // bfc or bfi - bitfield clear/insert.
2774          uint32_t rd_val =
2775              static_cast<uint32_t>(get_register(instr->RdValue()));
2776          uint32_t bitcount = msbit - lsbit + 1;
2777          uint32_t mask = 0xffffffffu >> (32 - bitcount);
2778          rd_val &= ~(mask << lsbit);
2779          if (instr->RmValue() != 15) {
2780            // bfi - bitfield insert.
2781            uint32_t rm_val =
2782                static_cast<uint32_t>(get_register(instr->RmValue()));
2783            rm_val &= mask;
2784            rd_val |= rm_val << lsbit;
2785          }
2786          set_register(instr->RdValue(), rd_val);
2787        } else {
2788          UNREACHABLE();
2789        }
2790        return;
2791      } else {
2792        // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
2793        addr = rn_val + shifter_operand;
2794        if (instr->HasW()) {
2795          set_register(rn, addr);
2796        }
2797      }
2798      break;
2799    }
2800    default: {
2801      UNREACHABLE();
2802      break;
2803    }
2804  }
2805  if (instr->HasB()) {
2806    if (instr->HasL()) {
2807      uint8_t byte = ReadB(addr);
2808      set_register(rd, byte);
2809    } else {
2810      uint8_t byte = get_register(rd);
2811      WriteB(addr, byte);
2812    }
2813  } else {
2814    if (instr->HasL()) {
2815      set_register(rd, ReadW(addr, instr));
2816    } else {
2817      WriteW(addr, get_register(rd), instr);
2818    }
2819  }
2820}
2821
2822
2823void Simulator::DecodeType4(Instruction* instr) {
2824  DCHECK(instr->Bit(22) == 0);  // only allowed to be set in privileged mode
2825  if (instr->HasL()) {
2826    // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
2827    HandleRList(instr, true);
2828  } else {
2829    // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
2830    HandleRList(instr, false);
2831  }
2832}
2833
2834
2835void Simulator::DecodeType5(Instruction* instr) {
2836  // Format(instr, "b'l'cond 'target");
2837  int off = (instr->SImmed24Value() << 2);
2838  intptr_t pc_address = get_pc();
2839  if (instr->HasLink()) {
2840    set_register(lr, pc_address + Instruction::kInstrSize);
2841  }
2842  int pc_reg = get_register(pc);
2843  set_pc(pc_reg + off);
2844}
2845
2846
2847void Simulator::DecodeType6(Instruction* instr) {
2848  DecodeType6CoprocessorIns(instr);
2849}
2850
2851
2852void Simulator::DecodeType7(Instruction* instr) {
2853  if (instr->Bit(24) == 1) {
2854    SoftwareInterrupt(instr);
2855  } else {
2856    DecodeTypeVFP(instr);
2857  }
2858}
2859
2860
2861// void Simulator::DecodeTypeVFP(Instruction* instr)
2862// The Following ARMv7 VFPv instructions are currently supported.
2863// vmov :Sn = Rt
2864// vmov :Rt = Sn
2865// vcvt: Dd = Sm
2866// vcvt: Sd = Dm
2867// vcvt.f64.s32 Dd, Dd, #<fbits>
2868// Dd = vabs(Dm)
2869// Dd = vneg(Dm)
2870// Dd = vadd(Dn, Dm)
2871// Dd = vsub(Dn, Dm)
2872// Dd = vmul(Dn, Dm)
2873// Dd = vdiv(Dn, Dm)
2874// vcmp(Dd, Dm)
2875// vmrs
2876// Dd = vsqrt(Dm)
2877void Simulator::DecodeTypeVFP(Instruction* instr) {
2878  DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
2879  DCHECK(instr->Bits(11, 9) == 0x5);
2880
2881  // Obtain double precision register codes.
2882  int vm = instr->VFPMRegValue(kDoublePrecision);
2883  int vd = instr->VFPDRegValue(kDoublePrecision);
2884  int vn = instr->VFPNRegValue(kDoublePrecision);
2885
2886  if (instr->Bit(4) == 0) {
2887    if (instr->Opc1Value() == 0x7) {
2888      // Other data processing instructions
2889      if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
2890        // vmov register to register.
2891        if (instr->SzValue() == 0x1) {
2892          int m = instr->VFPMRegValue(kDoublePrecision);
2893          int d = instr->VFPDRegValue(kDoublePrecision);
2894          set_d_register_from_double(d, get_double_from_d_register(m));
2895        } else {
2896          int m = instr->VFPMRegValue(kSinglePrecision);
2897          int d = instr->VFPDRegValue(kSinglePrecision);
2898          set_s_register_from_float(d, get_float_from_s_register(m));
2899        }
2900      } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
2901        // vabs
2902        double dm_value = get_double_from_d_register(vm);
2903        double dd_value = std::fabs(dm_value);
2904        dd_value = canonicalizeNaN(dd_value);
2905        set_d_register_from_double(vd, dd_value);
2906      } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
2907        // vneg
2908        double dm_value = get_double_from_d_register(vm);
2909        double dd_value = -dm_value;
2910        dd_value = canonicalizeNaN(dd_value);
2911        set_d_register_from_double(vd, dd_value);
2912      } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
2913        DecodeVCVTBetweenDoubleAndSingle(instr);
2914      } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
2915        DecodeVCVTBetweenFloatingPointAndInteger(instr);
2916      } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
2917                 (instr->Bit(8) == 1)) {
2918        // vcvt.f64.s32 Dd, Dd, #<fbits>
2919        int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
2920        int fixed_value = get_sinteger_from_s_register(vd * 2);
2921        double divide = 1 << fraction_bits;
2922        set_d_register_from_double(vd, fixed_value / divide);
2923      } else if (((instr->Opc2Value() >> 1) == 0x6) &&
2924                 (instr->Opc3Value() & 0x1)) {
2925        DecodeVCVTBetweenFloatingPointAndInteger(instr);
2926      } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
2927                 (instr->Opc3Value() & 0x1)) {
2928        DecodeVCMP(instr);
2929      } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
2930        // vsqrt
2931        double dm_value = get_double_from_d_register(vm);
2932        double dd_value = std::sqrt(dm_value);
2933        dd_value = canonicalizeNaN(dd_value);
2934        set_d_register_from_double(vd, dd_value);
2935      } else if (instr->Opc3Value() == 0x0) {
2936        // vmov immediate.
2937        if (instr->SzValue() == 0x1) {
2938          set_d_register_from_double(vd, instr->DoubleImmedVmov());
2939        } else {
2940          UNREACHABLE();  // Not used by v8.
2941        }
2942      } else {
2943        UNREACHABLE();  // Not used by V8.
2944      }
2945    } else if (instr->Opc1Value() == 0x3) {
2946      if (instr->SzValue() != 0x1) {
2947        UNREACHABLE();  // Not used by V8.
2948      }
2949
2950      if (instr->Opc3Value() & 0x1) {
2951        // vsub
2952        double dn_value = get_double_from_d_register(vn);
2953        double dm_value = get_double_from_d_register(vm);
2954        double dd_value = dn_value - dm_value;
2955        dd_value = canonicalizeNaN(dd_value);
2956        set_d_register_from_double(vd, dd_value);
2957      } else {
2958        // vadd
2959        double dn_value = get_double_from_d_register(vn);
2960        double dm_value = get_double_from_d_register(vm);
2961        double dd_value = dn_value + dm_value;
2962        dd_value = canonicalizeNaN(dd_value);
2963        set_d_register_from_double(vd, dd_value);
2964      }
2965    } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
2966      // vmul
2967      if (instr->SzValue() != 0x1) {
2968        UNREACHABLE();  // Not used by V8.
2969      }
2970
2971      double dn_value = get_double_from_d_register(vn);
2972      double dm_value = get_double_from_d_register(vm);
2973      double dd_value = dn_value * dm_value;
2974      dd_value = canonicalizeNaN(dd_value);
2975      set_d_register_from_double(vd, dd_value);
2976    } else if ((instr->Opc1Value() == 0x0)) {
2977      // vmla, vmls
2978      const bool is_vmls = (instr->Opc3Value() & 0x1);
2979
2980      if (instr->SzValue() != 0x1) {
2981        UNREACHABLE();  // Not used by V8.
2982      }
2983
2984      const double dd_val = get_double_from_d_register(vd);
2985      const double dn_val = get_double_from_d_register(vn);
2986      const double dm_val = get_double_from_d_register(vm);
2987
2988      // Note: we do the mul and add/sub in separate steps to avoid getting a
2989      // result with too high precision.
2990      set_d_register_from_double(vd, dn_val * dm_val);
2991      if (is_vmls) {
2992        set_d_register_from_double(
2993          vd,
2994          canonicalizeNaN(dd_val - get_double_from_d_register(vd)));
2995      } else {
2996        set_d_register_from_double(
2997          vd,
2998          canonicalizeNaN(dd_val + get_double_from_d_register(vd)));
2999      }
3000    } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
3001      // vdiv
3002      if (instr->SzValue() != 0x1) {
3003        UNREACHABLE();  // Not used by V8.
3004      }
3005
3006      double dn_value = get_double_from_d_register(vn);
3007      double dm_value = get_double_from_d_register(vm);
3008      double dd_value = dn_value / dm_value;
3009      div_zero_vfp_flag_ = (dm_value == 0);
3010      dd_value = canonicalizeNaN(dd_value);
3011      set_d_register_from_double(vd, dd_value);
3012    } else {
3013      UNIMPLEMENTED();  // Not used by V8.
3014    }
3015  } else {
3016    if ((instr->VCValue() == 0x0) &&
3017        (instr->VAValue() == 0x0)) {
3018      DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
3019    } else if ((instr->VLValue() == 0x0) &&
3020               (instr->VCValue() == 0x1) &&
3021               (instr->Bit(23) == 0x0)) {
3022      // vmov (ARM core register to scalar)
3023      int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4);
3024      double dd_value = get_double_from_d_register(vd);
3025      int32_t data[2];
3026      memcpy(data, &dd_value, 8);
3027      data[instr->Bit(21)] = get_register(instr->RtValue());
3028      memcpy(&dd_value, data, 8);
3029      set_d_register_from_double(vd, dd_value);
3030    } else if ((instr->VLValue() == 0x1) &&
3031               (instr->VCValue() == 0x1) &&
3032               (instr->Bit(23) == 0x0)) {
3033      // vmov (scalar to ARM core register)
3034      int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4);
3035      double dn_value = get_double_from_d_register(vn);
3036      int32_t data[2];
3037      memcpy(data, &dn_value, 8);
3038      set_register(instr->RtValue(), data[instr->Bit(21)]);
3039    } else if ((instr->VLValue() == 0x1) &&
3040               (instr->VCValue() == 0x0) &&
3041               (instr->VAValue() == 0x7) &&
3042               (instr->Bits(19, 16) == 0x1)) {
3043      // vmrs
3044      uint32_t rt = instr->RtValue();
3045      if (rt == 0xF) {
3046        Copy_FPSCR_to_APSR();
3047      } else {
3048        // Emulate FPSCR from the Simulator flags.
3049        uint32_t fpscr = (n_flag_FPSCR_ << 31) |
3050                         (z_flag_FPSCR_ << 30) |
3051                         (c_flag_FPSCR_ << 29) |
3052                         (v_flag_FPSCR_ << 28) |
3053                         (FPSCR_default_NaN_mode_ << 25) |
3054                         (inexact_vfp_flag_ << 4) |
3055                         (underflow_vfp_flag_ << 3) |
3056                         (overflow_vfp_flag_ << 2) |
3057                         (div_zero_vfp_flag_ << 1) |
3058                         (inv_op_vfp_flag_ << 0) |
3059                         (FPSCR_rounding_mode_);
3060        set_register(rt, fpscr);
3061      }
3062    } else if ((instr->VLValue() == 0x0) &&
3063               (instr->VCValue() == 0x0) &&
3064               (instr->VAValue() == 0x7) &&
3065               (instr->Bits(19, 16) == 0x1)) {
3066      // vmsr
3067      uint32_t rt = instr->RtValue();
3068      if (rt == pc) {
3069        UNREACHABLE();
3070      } else {
3071        uint32_t rt_value = get_register(rt);
3072        n_flag_FPSCR_ = (rt_value >> 31) & 1;
3073        z_flag_FPSCR_ = (rt_value >> 30) & 1;
3074        c_flag_FPSCR_ = (rt_value >> 29) & 1;
3075        v_flag_FPSCR_ = (rt_value >> 28) & 1;
3076        FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
3077        inexact_vfp_flag_ = (rt_value >> 4) & 1;
3078        underflow_vfp_flag_ = (rt_value >> 3) & 1;
3079        overflow_vfp_flag_ = (rt_value >> 2) & 1;
3080        div_zero_vfp_flag_ = (rt_value >> 1) & 1;
3081        inv_op_vfp_flag_ = (rt_value >> 0) & 1;
3082        FPSCR_rounding_mode_ =
3083            static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask);
3084      }
3085    } else {
3086      UNIMPLEMENTED();  // Not used by V8.
3087    }
3088  }
3089}
3090
3091
3092void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
3093    Instruction* instr) {
3094  DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
3095         (instr->VAValue() == 0x0));
3096
3097  int t = instr->RtValue();
3098  int n = instr->VFPNRegValue(kSinglePrecision);
3099  bool to_arm_register = (instr->VLValue() == 0x1);
3100
3101  if (to_arm_register) {
3102    int32_t int_value = get_sinteger_from_s_register(n);
3103    set_register(t, int_value);
3104  } else {
3105    int32_t rs_val = get_register(t);
3106    set_s_register_from_sinteger(n, rs_val);
3107  }
3108}
3109
3110
3111void Simulator::DecodeVCMP(Instruction* instr) {
3112  DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
3113  DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
3114         (instr->Opc3Value() & 0x1));
3115  // Comparison.
3116
3117  VFPRegPrecision precision = kSinglePrecision;
3118  if (instr->SzValue() == 1) {
3119    precision = kDoublePrecision;
3120  }
3121
3122  int d = instr->VFPDRegValue(precision);
3123  int m = 0;
3124  if (instr->Opc2Value() == 0x4) {
3125    m = instr->VFPMRegValue(precision);
3126  }
3127
3128  if (precision == kDoublePrecision) {
3129    double dd_value = get_double_from_d_register(d);
3130    double dm_value = 0.0;
3131    if (instr->Opc2Value() == 0x4) {
3132      dm_value = get_double_from_d_register(m);
3133    }
3134
3135    // Raise exceptions for quiet NaNs if necessary.
3136    if (instr->Bit(7) == 1) {
3137      if (std::isnan(dd_value)) {
3138        inv_op_vfp_flag_ = true;
3139      }
3140    }
3141
3142    Compute_FPSCR_Flags(dd_value, dm_value);
3143  } else {
3144    UNIMPLEMENTED();  // Not used by V8.
3145  }
3146}
3147
3148
3149void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
3150  DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
3151  DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
3152
3153  VFPRegPrecision dst_precision = kDoublePrecision;
3154  VFPRegPrecision src_precision = kSinglePrecision;
3155  if (instr->SzValue() == 1) {
3156    dst_precision = kSinglePrecision;
3157    src_precision = kDoublePrecision;
3158  }
3159
3160  int dst = instr->VFPDRegValue(dst_precision);
3161  int src = instr->VFPMRegValue(src_precision);
3162
3163  if (dst_precision == kSinglePrecision) {
3164    double val = get_double_from_d_register(src);
3165    set_s_register_from_float(dst, static_cast<float>(val));
3166  } else {
3167    float val = get_float_from_s_register(src);
3168    set_d_register_from_double(dst, static_cast<double>(val));
3169  }
3170}
3171
3172bool get_inv_op_vfp_flag(VFPRoundingMode mode,
3173                         double val,
3174                         bool unsigned_) {
3175  DCHECK((mode == RN) || (mode == RM) || (mode == RZ));
3176  double max_uint = static_cast<double>(0xffffffffu);
3177  double max_int = static_cast<double>(kMaxInt);
3178  double min_int = static_cast<double>(kMinInt);
3179
3180  // Check for NaN.
3181  if (val != val) {
3182    return true;
3183  }
3184
3185  // Check for overflow. This code works because 32bit integers can be
3186  // exactly represented by ieee-754 64bit floating-point values.
3187  switch (mode) {
3188    case RN:
3189      return  unsigned_ ? (val >= (max_uint + 0.5)) ||
3190                          (val < -0.5)
3191                        : (val >= (max_int + 0.5)) ||
3192                          (val < (min_int - 0.5));
3193
3194    case RM:
3195      return  unsigned_ ? (val >= (max_uint + 1.0)) ||
3196                          (val < 0)
3197                        : (val >= (max_int + 1.0)) ||
3198                          (val < min_int);
3199
3200    case RZ:
3201      return  unsigned_ ? (val >= (max_uint + 1.0)) ||
3202                          (val <= -1)
3203                        : (val >= (max_int + 1.0)) ||
3204                          (val <= (min_int - 1.0));
3205    default:
3206      UNREACHABLE();
3207      return true;
3208  }
3209}
3210
3211
3212// We call this function only if we had a vfp invalid exception.
3213// It returns the correct saturated value.
3214int VFPConversionSaturate(double val, bool unsigned_res) {
3215  if (val != val) {
3216    return 0;
3217  } else {
3218    if (unsigned_res) {
3219      return (val < 0) ? 0 : 0xffffffffu;
3220    } else {
3221      return (val < 0) ? kMinInt : kMaxInt;
3222    }
3223  }
3224}
3225
3226
3227void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
3228  DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) &&
3229         (instr->Bits(27, 23) == 0x1D));
3230  DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
3231         (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
3232
3233  // Conversion between floating-point and integer.
3234  bool to_integer = (instr->Bit(18) == 1);
3235
3236  VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision
3237                                                          : kSinglePrecision;
3238
3239  if (to_integer) {
3240    // We are playing with code close to the C++ standard's limits below,
3241    // hence the very simple code and heavy checks.
3242    //
3243    // Note:
3244    // C++ defines default type casting from floating point to integer as
3245    // (close to) rounding toward zero ("fractional part discarded").
3246
3247    int dst = instr->VFPDRegValue(kSinglePrecision);
3248    int src = instr->VFPMRegValue(src_precision);
3249
3250    // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding
3251    // mode or the default Round to Zero mode.
3252    VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_
3253                                                : RZ;
3254    DCHECK((mode == RM) || (mode == RZ) || (mode == RN));
3255
3256    bool unsigned_integer = (instr->Bit(16) == 0);
3257    bool double_precision = (src_precision == kDoublePrecision);
3258
3259    double val = double_precision ? get_double_from_d_register(src)
3260                                  : get_float_from_s_register(src);
3261
3262    int temp = unsigned_integer ? static_cast<uint32_t>(val)
3263                                : static_cast<int32_t>(val);
3264
3265    inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
3266
3267    double abs_diff =
3268      unsigned_integer ? std::fabs(val - static_cast<uint32_t>(temp))
3269                       : std::fabs(val - temp);
3270
3271    inexact_vfp_flag_ = (abs_diff != 0);
3272
3273    if (inv_op_vfp_flag_) {
3274      temp = VFPConversionSaturate(val, unsigned_integer);
3275    } else {
3276      switch (mode) {
3277        case RN: {
3278          int val_sign = (val > 0) ? 1 : -1;
3279          if (abs_diff > 0.5) {
3280            temp += val_sign;
3281          } else if (abs_diff == 0.5) {
3282            // Round to even if exactly halfway.
3283            temp = ((temp % 2) == 0) ? temp : temp + val_sign;
3284          }
3285          break;
3286        }
3287
3288        case RM:
3289          temp = temp > val ? temp - 1 : temp;
3290          break;
3291
3292        case RZ:
3293          // Nothing to do.
3294          break;
3295
3296        default:
3297          UNREACHABLE();
3298      }
3299    }
3300
3301    // Update the destination register.
3302    set_s_register_from_sinteger(dst, temp);
3303
3304  } else {
3305    bool unsigned_integer = (instr->Bit(7) == 0);
3306
3307    int dst = instr->VFPDRegValue(src_precision);
3308    int src = instr->VFPMRegValue(kSinglePrecision);
3309
3310    int val = get_sinteger_from_s_register(src);
3311
3312    if (src_precision == kDoublePrecision) {
3313      if (unsigned_integer) {
3314        set_d_register_from_double(
3315            dst, static_cast<double>(static_cast<uint32_t>(val)));
3316      } else {
3317        set_d_register_from_double(dst, static_cast<double>(val));
3318      }
3319    } else {
3320      if (unsigned_integer) {
3321        set_s_register_from_float(
3322            dst, static_cast<float>(static_cast<uint32_t>(val)));
3323      } else {
3324        set_s_register_from_float(dst, static_cast<float>(val));
3325      }
3326    }
3327  }
3328}
3329
3330
3331// void Simulator::DecodeType6CoprocessorIns(Instruction* instr)
3332// Decode Type 6 coprocessor instructions.
3333// Dm = vmov(Rt, Rt2)
3334// <Rt, Rt2> = vmov(Dm)
3335// Ddst = MEM(Rbase + 4*offset).
3336// MEM(Rbase + 4*offset) = Dsrc.
3337void Simulator::DecodeType6CoprocessorIns(Instruction* instr) {
3338  DCHECK((instr->TypeValue() == 6));
3339
3340  if (instr->CoprocessorValue() == 0xA) {
3341    switch (instr->OpcodeValue()) {
3342      case 0x8:
3343      case 0xA:
3344      case 0xC:
3345      case 0xE: {  // Load and store single precision float to memory.
3346        int rn = instr->RnValue();
3347        int vd = instr->VFPDRegValue(kSinglePrecision);
3348        int offset = instr->Immed8Value();
3349        if (!instr->HasU()) {
3350          offset = -offset;
3351        }
3352
3353        int32_t address = get_register(rn) + 4 * offset;
3354        if (instr->HasL()) {
3355          // Load double from memory: vldr.
3356          set_s_register_from_sinteger(vd, ReadW(address, instr));
3357        } else {
3358          // Store double to memory: vstr.
3359          WriteW(address, get_sinteger_from_s_register(vd), instr);
3360        }
3361        break;
3362      }
3363      case 0x4:
3364      case 0x5:
3365      case 0x6:
3366      case 0x7:
3367      case 0x9:
3368      case 0xB:
3369        // Load/store multiple single from memory: vldm/vstm.
3370        HandleVList(instr);
3371        break;
3372      default:
3373        UNIMPLEMENTED();  // Not used by V8.
3374    }
3375  } else if (instr->CoprocessorValue() == 0xB) {
3376    switch (instr->OpcodeValue()) {
3377      case 0x2:
3378        // Load and store double to two GP registers
3379        if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
3380          UNIMPLEMENTED();  // Not used by V8.
3381        } else {
3382          int rt = instr->RtValue();
3383          int rn = instr->RnValue();
3384          int vm = instr->VFPMRegValue(kDoublePrecision);
3385          if (instr->HasL()) {
3386            int32_t data[2];
3387            double d = get_double_from_d_register(vm);
3388            memcpy(data, &d, 8);
3389            set_register(rt, data[0]);
3390            set_register(rn, data[1]);
3391          } else {
3392            int32_t data[] = { get_register(rt), get_register(rn) };
3393            double d;
3394            memcpy(&d, data, 8);
3395            set_d_register_from_double(vm, d);
3396          }
3397        }
3398        break;
3399      case 0x8:
3400      case 0xA:
3401      case 0xC:
3402      case 0xE: {  // Load and store double to memory.
3403        int rn = instr->RnValue();
3404        int vd = instr->VFPDRegValue(kDoublePrecision);
3405        int offset = instr->Immed8Value();
3406        if (!instr->HasU()) {
3407          offset = -offset;
3408        }
3409        int32_t address = get_register(rn) + 4 * offset;
3410        if (instr->HasL()) {
3411          // Load double from memory: vldr.
3412          int32_t data[] = {
3413            ReadW(address, instr),
3414            ReadW(address + 4, instr)
3415          };
3416          double val;
3417          memcpy(&val, data, 8);
3418          set_d_register_from_double(vd, val);
3419        } else {
3420          // Store double to memory: vstr.
3421          int32_t data[2];
3422          double val = get_double_from_d_register(vd);
3423          memcpy(data, &val, 8);
3424          WriteW(address, data[0], instr);
3425          WriteW(address + 4, data[1], instr);
3426        }
3427        break;
3428      }
3429      case 0x4:
3430      case 0x5:
3431      case 0x6:
3432      case 0x7:
3433      case 0x9:
3434      case 0xB:
3435        // Load/store multiple double from memory: vldm/vstm.
3436        HandleVList(instr);
3437        break;
3438      default:
3439        UNIMPLEMENTED();  // Not used by V8.
3440    }
3441  } else {
3442    UNIMPLEMENTED();  // Not used by V8.
3443  }
3444}
3445
3446
3447void Simulator::DecodeSpecialCondition(Instruction* instr) {
3448  switch (instr->SpecialValue()) {
3449    case 5:
3450      if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
3451          (instr->Bit(4) == 1)) {
3452        // vmovl signed
3453        if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
3454        int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
3455        int Vm = (instr->Bit(5) << 4) | instr->VmValue();
3456        int imm3 = instr->Bits(21, 19);
3457        if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED();
3458        int esize = 8 * imm3;
3459        int elements = 64 / esize;
3460        int8_t from[8];
3461        get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
3462        int16_t to[8];
3463        int e = 0;
3464        while (e < elements) {
3465          to[e] = from[e];
3466          e++;
3467        }
3468        set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
3469      } else {
3470        UNIMPLEMENTED();
3471      }
3472      break;
3473    case 7:
3474      if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
3475          (instr->Bit(4) == 1)) {
3476        // vmovl unsigned
3477        if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
3478        int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
3479        int Vm = (instr->Bit(5) << 4) | instr->VmValue();
3480        int imm3 = instr->Bits(21, 19);
3481        if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED();
3482        int esize = 8 * imm3;
3483        int elements = 64 / esize;
3484        uint8_t from[8];
3485        get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
3486        uint16_t to[8];
3487        int e = 0;
3488        while (e < elements) {
3489          to[e] = from[e];
3490          e++;
3491        }
3492        set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
3493      } else {
3494        UNIMPLEMENTED();
3495      }
3496      break;
3497    case 8:
3498      if (instr->Bits(21, 20) == 0) {
3499        // vst1
3500        int Vd = (instr->Bit(22) << 4) | instr->VdValue();
3501        int Rn = instr->VnValue();
3502        int type = instr->Bits(11, 8);
3503        int Rm = instr->VmValue();
3504        int32_t address = get_register(Rn);
3505        int regs = 0;
3506        switch (type) {
3507          case nlt_1:
3508            regs = 1;
3509            break;
3510          case nlt_2:
3511            regs = 2;
3512            break;
3513          case nlt_3:
3514            regs = 3;
3515            break;
3516          case nlt_4:
3517            regs = 4;
3518            break;
3519          default:
3520            UNIMPLEMENTED();
3521            break;
3522        }
3523        int r = 0;
3524        while (r < regs) {
3525          uint32_t data[2];
3526          get_d_register(Vd + r, data);
3527          WriteW(address, data[0], instr);
3528          WriteW(address + 4, data[1], instr);
3529          address += 8;
3530          r++;
3531        }
3532        if (Rm != 15) {
3533          if (Rm == 13) {
3534            set_register(Rn, address);
3535          } else {
3536            set_register(Rn, get_register(Rn) + get_register(Rm));
3537          }
3538        }
3539      } else if (instr->Bits(21, 20) == 2) {
3540        // vld1
3541        int Vd = (instr->Bit(22) << 4) | instr->VdValue();
3542        int Rn = instr->VnValue();
3543        int type = instr->Bits(11, 8);
3544        int Rm = instr->VmValue();
3545        int32_t address = get_register(Rn);
3546        int regs = 0;
3547        switch (type) {
3548          case nlt_1:
3549            regs = 1;
3550            break;
3551          case nlt_2:
3552            regs = 2;
3553            break;
3554          case nlt_3:
3555            regs = 3;
3556            break;
3557          case nlt_4:
3558            regs = 4;
3559            break;
3560          default:
3561            UNIMPLEMENTED();
3562            break;
3563        }
3564        int r = 0;
3565        while (r < regs) {
3566          uint32_t data[2];
3567          data[0] = ReadW(address, instr);
3568          data[1] = ReadW(address + 4, instr);
3569          set_d_register(Vd + r, data);
3570          address += 8;
3571          r++;
3572        }
3573        if (Rm != 15) {
3574          if (Rm == 13) {
3575            set_register(Rn, address);
3576          } else {
3577            set_register(Rn, get_register(Rn) + get_register(Rm));
3578          }
3579        }
3580      } else {
3581        UNIMPLEMENTED();
3582      }
3583      break;
3584    case 0xA:
3585    case 0xB:
3586      if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) {
3587        // pld: ignore instruction.
3588      } else {
3589        UNIMPLEMENTED();
3590      }
3591      break;
3592    default:
3593      UNIMPLEMENTED();
3594      break;
3595  }
3596}
3597
3598
3599// Executes the current instruction.
3600void Simulator::InstructionDecode(Instruction* instr) {
3601  if (v8::internal::FLAG_check_icache) {
3602    CheckICache(isolate_->simulator_i_cache(), instr);
3603  }
3604  pc_modified_ = false;
3605  if (::v8::internal::FLAG_trace_sim) {
3606    disasm::NameConverter converter;
3607    disasm::Disassembler dasm(converter);
3608    // use a reasonably large buffer
3609    v8::internal::EmbeddedVector<char, 256> buffer;
3610    dasm.InstructionDecode(buffer,
3611                           reinterpret_cast<byte*>(instr));
3612    PrintF("  0x%08x  %s\n", reinterpret_cast<intptr_t>(instr), buffer.start());
3613  }
3614  if (instr->ConditionField() == kSpecialCondition) {
3615    DecodeSpecialCondition(instr);
3616  } else if (ConditionallyExecute(instr)) {
3617    switch (instr->TypeValue()) {
3618      case 0:
3619      case 1: {
3620        DecodeType01(instr);
3621        break;
3622      }
3623      case 2: {
3624        DecodeType2(instr);
3625        break;
3626      }
3627      case 3: {
3628        DecodeType3(instr);
3629        break;
3630      }
3631      case 4: {
3632        DecodeType4(instr);
3633        break;
3634      }
3635      case 5: {
3636        DecodeType5(instr);
3637        break;
3638      }
3639      case 6: {
3640        DecodeType6(instr);
3641        break;
3642      }
3643      case 7: {
3644        DecodeType7(instr);
3645        break;
3646      }
3647      default: {
3648        UNIMPLEMENTED();
3649        break;
3650      }
3651    }
3652  // If the instruction is a non taken conditional stop, we need to skip the
3653  // inlined message address.
3654  } else if (instr->IsStop()) {
3655    set_pc(get_pc() + 2 * Instruction::kInstrSize);
3656  }
3657  if (!pc_modified_) {
3658    set_register(pc, reinterpret_cast<int32_t>(instr)
3659                         + Instruction::kInstrSize);
3660  }
3661}
3662
3663
3664void Simulator::Execute() {
3665  // Get the PC to simulate. Cannot use the accessor here as we need the
3666  // raw PC value and not the one used as input to arithmetic instructions.
3667  int program_counter = get_pc();
3668
3669  if (::v8::internal::FLAG_stop_sim_at == 0) {
3670    // Fast version of the dispatch loop without checking whether the simulator
3671    // should be stopping at a particular executed instruction.
3672    while (program_counter != end_sim_pc) {
3673      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3674      icount_++;
3675      InstructionDecode(instr);
3676      program_counter = get_pc();
3677    }
3678  } else {
3679    // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3680    // we reach the particular instuction count.
3681    while (program_counter != end_sim_pc) {
3682      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3683      icount_++;
3684      if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3685        ArmDebugger dbg(this);
3686        dbg.Debug();
3687      } else {
3688        InstructionDecode(instr);
3689      }
3690      program_counter = get_pc();
3691    }
3692  }
3693}
3694
3695
3696void Simulator::CallInternal(byte* entry) {
3697  // Prepare to execute the code at entry
3698  set_register(pc, reinterpret_cast<int32_t>(entry));
3699  // Put down marker for end of simulation. The simulator will stop simulation
3700  // when the PC reaches this value. By saving the "end simulation" value into
3701  // the LR the simulation stops when returning to this call point.
3702  set_register(lr, end_sim_pc);
3703
3704  // Remember the values of callee-saved registers.
3705  // The code below assumes that r9 is not used as sb (static base) in
3706  // simulator code and therefore is regarded as a callee-saved register.
3707  int32_t r4_val = get_register(r4);
3708  int32_t r5_val = get_register(r5);
3709  int32_t r6_val = get_register(r6);
3710  int32_t r7_val = get_register(r7);
3711  int32_t r8_val = get_register(r8);
3712  int32_t r9_val = get_register(r9);
3713  int32_t r10_val = get_register(r10);
3714  int32_t r11_val = get_register(r11);
3715
3716  // Set up the callee-saved registers with a known value. To be able to check
3717  // that they are preserved properly across JS execution.
3718  int32_t callee_saved_value = icount_;
3719  set_register(r4, callee_saved_value);
3720  set_register(r5, callee_saved_value);
3721  set_register(r6, callee_saved_value);
3722  set_register(r7, callee_saved_value);
3723  set_register(r8, callee_saved_value);
3724  set_register(r9, callee_saved_value);
3725  set_register(r10, callee_saved_value);
3726  set_register(r11, callee_saved_value);
3727
3728  // Start the simulation
3729  Execute();
3730
3731  // Check that the callee-saved registers have been preserved.
3732  CHECK_EQ(callee_saved_value, get_register(r4));
3733  CHECK_EQ(callee_saved_value, get_register(r5));
3734  CHECK_EQ(callee_saved_value, get_register(r6));
3735  CHECK_EQ(callee_saved_value, get_register(r7));
3736  CHECK_EQ(callee_saved_value, get_register(r8));
3737  CHECK_EQ(callee_saved_value, get_register(r9));
3738  CHECK_EQ(callee_saved_value, get_register(r10));
3739  CHECK_EQ(callee_saved_value, get_register(r11));
3740
3741  // Restore callee-saved registers with the original value.
3742  set_register(r4, r4_val);
3743  set_register(r5, r5_val);
3744  set_register(r6, r6_val);
3745  set_register(r7, r7_val);
3746  set_register(r8, r8_val);
3747  set_register(r9, r9_val);
3748  set_register(r10, r10_val);
3749  set_register(r11, r11_val);
3750}
3751
3752
3753int32_t Simulator::Call(byte* entry, int argument_count, ...) {
3754  va_list parameters;
3755  va_start(parameters, argument_count);
3756  // Set up arguments
3757
3758  // First four arguments passed in registers.
3759  DCHECK(argument_count >= 4);
3760  set_register(r0, va_arg(parameters, int32_t));
3761  set_register(r1, va_arg(parameters, int32_t));
3762  set_register(r2, va_arg(parameters, int32_t));
3763  set_register(r3, va_arg(parameters, int32_t));
3764
3765  // Remaining arguments passed on stack.
3766  int original_stack = get_register(sp);
3767  // Compute position of stack on entry to generated code.
3768  int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
3769  if (base::OS::ActivationFrameAlignment() != 0) {
3770    entry_stack &= -base::OS::ActivationFrameAlignment();
3771  }
3772  // Store remaining arguments on stack, from low to high memory.
3773  intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
3774  for (int i = 4; i < argument_count; i++) {
3775    stack_argument[i - 4] = va_arg(parameters, int32_t);
3776  }
3777  va_end(parameters);
3778  set_register(sp, entry_stack);
3779
3780  CallInternal(entry);
3781
3782  // Pop stack passed arguments.
3783  CHECK_EQ(entry_stack, get_register(sp));
3784  set_register(sp, original_stack);
3785
3786  int32_t result = get_register(r0);
3787  return result;
3788}
3789
3790
3791void Simulator::CallFP(byte* entry, double d0, double d1) {
3792  if (use_eabi_hardfloat()) {
3793    set_d_register_from_double(0, d0);
3794    set_d_register_from_double(1, d1);
3795  } else {
3796    set_register_pair_from_double(0, &d0);
3797    set_register_pair_from_double(2, &d1);
3798  }
3799  CallInternal(entry);
3800}
3801
3802
3803int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
3804  CallFP(entry, d0, d1);
3805  int32_t result = get_register(r0);
3806  return result;
3807}
3808
3809
3810double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
3811  CallFP(entry, d0, d1);
3812  if (use_eabi_hardfloat()) {
3813    return get_double_from_d_register(0);
3814  } else {
3815    return get_double_from_register_pair(0);
3816  }
3817}
3818
3819
3820uintptr_t Simulator::PushAddress(uintptr_t address) {
3821  int new_sp = get_register(sp) - sizeof(uintptr_t);
3822  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
3823  *stack_slot = address;
3824  set_register(sp, new_sp);
3825  return new_sp;
3826}
3827
3828
3829uintptr_t Simulator::PopAddress() {
3830  int current_sp = get_register(sp);
3831  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
3832  uintptr_t address = *stack_slot;
3833  set_register(sp, current_sp + sizeof(uintptr_t));
3834  return address;
3835}
3836
3837} }  // namespace v8::internal
3838
3839#endif  // USE_SIMULATOR
3840
3841#endif  // V8_TARGET_ARCH_ARM
3842