1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Platform-specific code for Win32.
6
7// Secure API functions are not available using MinGW with msvcrt.dll
8// on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9// disable definition of secure API functions in standard headers that
10// would conflict with our own implementation.
11#ifdef __MINGW32__
12#include <_mingw.h>
13#ifdef MINGW_HAS_SECURE_API
14#undef MINGW_HAS_SECURE_API
15#endif  // MINGW_HAS_SECURE_API
16#endif  // __MINGW32__
17
18#ifdef _MSC_VER
19#include <limits>
20#endif
21
22#include "src/base/win32-headers.h"
23
24#include "src/base/bits.h"
25#include "src/base/lazy-instance.h"
26#include "src/base/macros.h"
27#include "src/base/platform/platform.h"
28#include "src/base/platform/time.h"
29#include "src/base/utils/random-number-generator.h"
30
31#ifdef _MSC_VER
32
33// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
34// defined in strings.h.
35int strncasecmp(const char* s1, const char* s2, int n) {
36  return _strnicmp(s1, s2, n);
37}
38
39#endif  // _MSC_VER
40
41
42// Extra functions for MinGW. Most of these are the _s functions which are in
43// the Microsoft Visual Studio C++ CRT.
44#ifdef __MINGW32__
45
46
47#ifndef __MINGW64_VERSION_MAJOR
48
49#define _TRUNCATE 0
50#define STRUNCATE 80
51
52inline void MemoryBarrier() {
53  int barrier = 0;
54  __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
55}
56
57#endif  // __MINGW64_VERSION_MAJOR
58
59
60int localtime_s(tm* out_tm, const time_t* time) {
61  tm* posix_local_time_struct = localtime(time);
62  if (posix_local_time_struct == NULL) return 1;
63  *out_tm = *posix_local_time_struct;
64  return 0;
65}
66
67
68int fopen_s(FILE** pFile, const char* filename, const char* mode) {
69  *pFile = fopen(filename, mode);
70  return *pFile != NULL ? 0 : 1;
71}
72
73int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
74                 const char* format, va_list argptr) {
75  DCHECK(count == _TRUNCATE);
76  return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
77}
78
79
80int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
81  CHECK(source != NULL);
82  CHECK(dest != NULL);
83  CHECK_GT(dest_size, 0);
84
85  if (count == _TRUNCATE) {
86    while (dest_size > 0 && *source != 0) {
87      *(dest++) = *(source++);
88      --dest_size;
89    }
90    if (dest_size == 0) {
91      *(dest - 1) = 0;
92      return STRUNCATE;
93    }
94  } else {
95    while (dest_size > 0 && count > 0 && *source != 0) {
96      *(dest++) = *(source++);
97      --dest_size;
98      --count;
99    }
100  }
101  CHECK_GT(dest_size, 0);
102  *dest = 0;
103  return 0;
104}
105
106#endif  // __MINGW32__
107
108namespace v8 {
109namespace base {
110
111namespace {
112
113bool g_hard_abort = false;
114
115}  // namespace
116
117class TimezoneCache {
118 public:
119  TimezoneCache() : initialized_(false) { }
120
121  void Clear() {
122    initialized_ = false;
123  }
124
125  // Initialize timezone information. The timezone information is obtained from
126  // windows. If we cannot get the timezone information we fall back to CET.
127  void InitializeIfNeeded() {
128    // Just return if timezone information has already been initialized.
129    if (initialized_) return;
130
131    // Initialize POSIX time zone data.
132    _tzset();
133    // Obtain timezone information from operating system.
134    memset(&tzinfo_, 0, sizeof(tzinfo_));
135    if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
136      // If we cannot get timezone information we fall back to CET.
137      tzinfo_.Bias = -60;
138      tzinfo_.StandardDate.wMonth = 10;
139      tzinfo_.StandardDate.wDay = 5;
140      tzinfo_.StandardDate.wHour = 3;
141      tzinfo_.StandardBias = 0;
142      tzinfo_.DaylightDate.wMonth = 3;
143      tzinfo_.DaylightDate.wDay = 5;
144      tzinfo_.DaylightDate.wHour = 2;
145      tzinfo_.DaylightBias = -60;
146    }
147
148    // Make standard and DST timezone names.
149    WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
150                        std_tz_name_, kTzNameSize, NULL, NULL);
151    std_tz_name_[kTzNameSize - 1] = '\0';
152    WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
153                        dst_tz_name_, kTzNameSize, NULL, NULL);
154    dst_tz_name_[kTzNameSize - 1] = '\0';
155
156    // If OS returned empty string or resource id (like "@tzres.dll,-211")
157    // simply guess the name from the UTC bias of the timezone.
158    // To properly resolve the resource identifier requires a library load,
159    // which is not possible in a sandbox.
160    if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
161      OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
162                   "%s Standard Time",
163                   GuessTimezoneNameFromBias(tzinfo_.Bias));
164    }
165    if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
166      OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
167                   "%s Daylight Time",
168                   GuessTimezoneNameFromBias(tzinfo_.Bias));
169    }
170    // Timezone information initialized.
171    initialized_ = true;
172  }
173
174  // Guess the name of the timezone from the bias.
175  // The guess is very biased towards the northern hemisphere.
176  const char* GuessTimezoneNameFromBias(int bias) {
177    static const int kHour = 60;
178    switch (-bias) {
179      case -9*kHour: return "Alaska";
180      case -8*kHour: return "Pacific";
181      case -7*kHour: return "Mountain";
182      case -6*kHour: return "Central";
183      case -5*kHour: return "Eastern";
184      case -4*kHour: return "Atlantic";
185      case  0*kHour: return "GMT";
186      case +1*kHour: return "Central Europe";
187      case +2*kHour: return "Eastern Europe";
188      case +3*kHour: return "Russia";
189      case +5*kHour + 30: return "India";
190      case +8*kHour: return "China";
191      case +9*kHour: return "Japan";
192      case +12*kHour: return "New Zealand";
193      default: return "Local";
194    }
195  }
196
197
198 private:
199  static const int kTzNameSize = 128;
200  bool initialized_;
201  char std_tz_name_[kTzNameSize];
202  char dst_tz_name_[kTzNameSize];
203  TIME_ZONE_INFORMATION tzinfo_;
204  friend class Win32Time;
205};
206
207
208// ----------------------------------------------------------------------------
209// The Time class represents time on win32. A timestamp is represented as
210// a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
211// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
212// January 1, 1970.
213
214class Win32Time {
215 public:
216  // Constructors.
217  Win32Time();
218  explicit Win32Time(double jstime);
219  Win32Time(int year, int mon, int day, int hour, int min, int sec);
220
221  // Convert timestamp to JavaScript representation.
222  double ToJSTime();
223
224  // Set timestamp to current time.
225  void SetToCurrentTime();
226
227  // Returns the local timezone offset in milliseconds east of UTC. This is
228  // the number of milliseconds you must add to UTC to get local time, i.e.
229  // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
230  // routine also takes into account whether daylight saving is effect
231  // at the time.
232  int64_t LocalOffset(TimezoneCache* cache);
233
234  // Returns the daylight savings time offset for the time in milliseconds.
235  int64_t DaylightSavingsOffset(TimezoneCache* cache);
236
237  // Returns a string identifying the current timezone for the
238  // timestamp taking into account daylight saving.
239  char* LocalTimezone(TimezoneCache* cache);
240
241 private:
242  // Constants for time conversion.
243  static const int64_t kTimeEpoc = 116444736000000000LL;
244  static const int64_t kTimeScaler = 10000;
245  static const int64_t kMsPerMinute = 60000;
246
247  // Constants for timezone information.
248  static const bool kShortTzNames = false;
249
250  // Return whether or not daylight savings time is in effect at this time.
251  bool InDST(TimezoneCache* cache);
252
253  // Accessor for FILETIME representation.
254  FILETIME& ft() { return time_.ft_; }
255
256  // Accessor for integer representation.
257  int64_t& t() { return time_.t_; }
258
259  // Although win32 uses 64-bit integers for representing timestamps,
260  // these are packed into a FILETIME structure. The FILETIME structure
261  // is just a struct representing a 64-bit integer. The TimeStamp union
262  // allows access to both a FILETIME and an integer representation of
263  // the timestamp.
264  union TimeStamp {
265    FILETIME ft_;
266    int64_t t_;
267  };
268
269  TimeStamp time_;
270};
271
272
273// Initialize timestamp to start of epoc.
274Win32Time::Win32Time() {
275  t() = 0;
276}
277
278
279// Initialize timestamp from a JavaScript timestamp.
280Win32Time::Win32Time(double jstime) {
281  t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
282}
283
284
285// Initialize timestamp from date/time components.
286Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
287  SYSTEMTIME st;
288  st.wYear = year;
289  st.wMonth = mon;
290  st.wDay = day;
291  st.wHour = hour;
292  st.wMinute = min;
293  st.wSecond = sec;
294  st.wMilliseconds = 0;
295  SystemTimeToFileTime(&st, &ft());
296}
297
298
299// Convert timestamp to JavaScript timestamp.
300double Win32Time::ToJSTime() {
301  return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
302}
303
304
305// Set timestamp to current time.
306void Win32Time::SetToCurrentTime() {
307  // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
308  // Because we're fast, we like fast timers which have at least a
309  // 1ms resolution.
310  //
311  // timeGetTime() provides 1ms granularity when combined with
312  // timeBeginPeriod().  If the host application for v8 wants fast
313  // timers, it can use timeBeginPeriod to increase the resolution.
314  //
315  // Using timeGetTime() has a drawback because it is a 32bit value
316  // and hence rolls-over every ~49days.
317  //
318  // To use the clock, we use GetSystemTimeAsFileTime as our base;
319  // and then use timeGetTime to extrapolate current time from the
320  // start time.  To deal with rollovers, we resync the clock
321  // any time when more than kMaxClockElapsedTime has passed or
322  // whenever timeGetTime creates a rollover.
323
324  static bool initialized = false;
325  static TimeStamp init_time;
326  static DWORD init_ticks;
327  static const int64_t kHundredNanosecondsPerSecond = 10000000;
328  static const int64_t kMaxClockElapsedTime =
329      60*kHundredNanosecondsPerSecond;  // 1 minute
330
331  // If we are uninitialized, we need to resync the clock.
332  bool needs_resync = !initialized;
333
334  // Get the current time.
335  TimeStamp time_now;
336  GetSystemTimeAsFileTime(&time_now.ft_);
337  DWORD ticks_now = timeGetTime();
338
339  // Check if we need to resync due to clock rollover.
340  needs_resync |= ticks_now < init_ticks;
341
342  // Check if we need to resync due to elapsed time.
343  needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
344
345  // Check if we need to resync due to backwards time change.
346  needs_resync |= time_now.t_ < init_time.t_;
347
348  // Resync the clock if necessary.
349  if (needs_resync) {
350    GetSystemTimeAsFileTime(&init_time.ft_);
351    init_ticks = ticks_now = timeGetTime();
352    initialized = true;
353  }
354
355  // Finally, compute the actual time.  Why is this so hard.
356  DWORD elapsed = ticks_now - init_ticks;
357  this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
358}
359
360
361// Return the local timezone offset in milliseconds east of UTC. This
362// takes into account whether daylight saving is in effect at the time.
363// Only times in the 32-bit Unix range may be passed to this function.
364// Also, adding the time-zone offset to the input must not overflow.
365// The function EquivalentTime() in date.js guarantees this.
366int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
367  cache->InitializeIfNeeded();
368
369  Win32Time rounded_to_second(*this);
370  rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
371      1000 * kTimeScaler;
372  // Convert to local time using POSIX localtime function.
373  // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
374  // very slow.  Other browsers use localtime().
375
376  // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
377  // POSIX seconds past 1/1/1970 0:00:00.
378  double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
379  if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
380    return 0;
381  }
382  // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
383  time_t posix_time = static_cast<time_t>(unchecked_posix_time);
384
385  // Convert to local time, as struct with fields for day, hour, year, etc.
386  tm posix_local_time_struct;
387  if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
388
389  if (posix_local_time_struct.tm_isdst > 0) {
390    return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
391  } else if (posix_local_time_struct.tm_isdst == 0) {
392    return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
393  } else {
394    return cache->tzinfo_.Bias * -kMsPerMinute;
395  }
396}
397
398
399// Return whether or not daylight savings time is in effect at this time.
400bool Win32Time::InDST(TimezoneCache* cache) {
401  cache->InitializeIfNeeded();
402
403  // Determine if DST is in effect at the specified time.
404  bool in_dst = false;
405  if (cache->tzinfo_.StandardDate.wMonth != 0 ||
406      cache->tzinfo_.DaylightDate.wMonth != 0) {
407    // Get the local timezone offset for the timestamp in milliseconds.
408    int64_t offset = LocalOffset(cache);
409
410    // Compute the offset for DST. The bias parameters in the timezone info
411    // are specified in minutes. These must be converted to milliseconds.
412    int64_t dstofs =
413        -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
414
415    // If the local time offset equals the timezone bias plus the daylight
416    // bias then DST is in effect.
417    in_dst = offset == dstofs;
418  }
419
420  return in_dst;
421}
422
423
424// Return the daylight savings time offset for this time.
425int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
426  return InDST(cache) ? 60 * kMsPerMinute : 0;
427}
428
429
430// Returns a string identifying the current timezone for the
431// timestamp taking into account daylight saving.
432char* Win32Time::LocalTimezone(TimezoneCache* cache) {
433  // Return the standard or DST time zone name based on whether daylight
434  // saving is in effect at the given time.
435  return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
436}
437
438
439// Returns the accumulated user time for thread.
440int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
441  FILETIME dummy;
442  uint64_t usertime;
443
444  // Get the amount of time that the thread has executed in user mode.
445  if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
446                      reinterpret_cast<FILETIME*>(&usertime))) return -1;
447
448  // Adjust the resolution to micro-seconds.
449  usertime /= 10;
450
451  // Convert to seconds and microseconds
452  *secs = static_cast<uint32_t>(usertime / 1000000);
453  *usecs = static_cast<uint32_t>(usertime % 1000000);
454  return 0;
455}
456
457
458// Returns current time as the number of milliseconds since
459// 00:00:00 UTC, January 1, 1970.
460double OS::TimeCurrentMillis() {
461  return Time::Now().ToJsTime();
462}
463
464
465TimezoneCache* OS::CreateTimezoneCache() {
466  return new TimezoneCache();
467}
468
469
470void OS::DisposeTimezoneCache(TimezoneCache* cache) {
471  delete cache;
472}
473
474
475void OS::ClearTimezoneCache(TimezoneCache* cache) {
476  cache->Clear();
477}
478
479
480// Returns a string identifying the current timezone taking into
481// account daylight saving.
482const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
483  return Win32Time(time).LocalTimezone(cache);
484}
485
486
487// Returns the local time offset in milliseconds east of UTC without
488// taking daylight savings time into account.
489double OS::LocalTimeOffset(TimezoneCache* cache) {
490  // Use current time, rounded to the millisecond.
491  Win32Time t(TimeCurrentMillis());
492  // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
493  return static_cast<double>(t.LocalOffset(cache) -
494                             t.DaylightSavingsOffset(cache));
495}
496
497
498// Returns the daylight savings offset in milliseconds for the given
499// time.
500double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
501  int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
502  return static_cast<double>(offset);
503}
504
505
506int OS::GetLastError() {
507  return ::GetLastError();
508}
509
510
511int OS::GetCurrentProcessId() {
512  return static_cast<int>(::GetCurrentProcessId());
513}
514
515
516int OS::GetCurrentThreadId() {
517  return static_cast<int>(::GetCurrentThreadId());
518}
519
520
521// ----------------------------------------------------------------------------
522// Win32 console output.
523//
524// If a Win32 application is linked as a console application it has a normal
525// standard output and standard error. In this case normal printf works fine
526// for output. However, if the application is linked as a GUI application,
527// the process doesn't have a console, and therefore (debugging) output is lost.
528// This is the case if we are embedded in a windows program (like a browser).
529// In order to be able to get debug output in this case the the debugging
530// facility using OutputDebugString. This output goes to the active debugger
531// for the process (if any). Else the output can be monitored using DBMON.EXE.
532
533enum OutputMode {
534  UNKNOWN,  // Output method has not yet been determined.
535  CONSOLE,  // Output is written to stdout.
536  ODS       // Output is written to debug facility.
537};
538
539static OutputMode output_mode = UNKNOWN;  // Current output mode.
540
541
542// Determine if the process has a console for output.
543static bool HasConsole() {
544  // Only check the first time. Eventual race conditions are not a problem,
545  // because all threads will eventually determine the same mode.
546  if (output_mode == UNKNOWN) {
547    // We cannot just check that the standard output is attached to a console
548    // because this would fail if output is redirected to a file. Therefore we
549    // say that a process does not have an output console if either the
550    // standard output handle is invalid or its file type is unknown.
551    if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
552        GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
553      output_mode = CONSOLE;
554    else
555      output_mode = ODS;
556  }
557  return output_mode == CONSOLE;
558}
559
560
561static void VPrintHelper(FILE* stream, const char* format, va_list args) {
562  if ((stream == stdout || stream == stderr) && !HasConsole()) {
563    // It is important to use safe print here in order to avoid
564    // overflowing the buffer. We might truncate the output, but this
565    // does not crash.
566    char buffer[4096];
567    OS::VSNPrintF(buffer, sizeof(buffer), format, args);
568    OutputDebugStringA(buffer);
569  } else {
570    vfprintf(stream, format, args);
571  }
572}
573
574
575FILE* OS::FOpen(const char* path, const char* mode) {
576  FILE* result;
577  if (fopen_s(&result, path, mode) == 0) {
578    return result;
579  } else {
580    return NULL;
581  }
582}
583
584
585bool OS::Remove(const char* path) {
586  return (DeleteFileA(path) != 0);
587}
588
589
590FILE* OS::OpenTemporaryFile() {
591  // tmpfile_s tries to use the root dir, don't use it.
592  char tempPathBuffer[MAX_PATH];
593  DWORD path_result = 0;
594  path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
595  if (path_result > MAX_PATH || path_result == 0) return NULL;
596  UINT name_result = 0;
597  char tempNameBuffer[MAX_PATH];
598  name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
599  if (name_result == 0) return NULL;
600  FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
601  if (result != NULL) {
602    Remove(tempNameBuffer);  // Delete on close.
603  }
604  return result;
605}
606
607
608// Open log file in binary mode to avoid /n -> /r/n conversion.
609const char* const OS::LogFileOpenMode = "wb";
610
611
612// Print (debug) message to console.
613void OS::Print(const char* format, ...) {
614  va_list args;
615  va_start(args, format);
616  VPrint(format, args);
617  va_end(args);
618}
619
620
621void OS::VPrint(const char* format, va_list args) {
622  VPrintHelper(stdout, format, args);
623}
624
625
626void OS::FPrint(FILE* out, const char* format, ...) {
627  va_list args;
628  va_start(args, format);
629  VFPrint(out, format, args);
630  va_end(args);
631}
632
633
634void OS::VFPrint(FILE* out, const char* format, va_list args) {
635  VPrintHelper(out, format, args);
636}
637
638
639// Print error message to console.
640void OS::PrintError(const char* format, ...) {
641  va_list args;
642  va_start(args, format);
643  VPrintError(format, args);
644  va_end(args);
645}
646
647
648void OS::VPrintError(const char* format, va_list args) {
649  VPrintHelper(stderr, format, args);
650}
651
652
653int OS::SNPrintF(char* str, int length, const char* format, ...) {
654  va_list args;
655  va_start(args, format);
656  int result = VSNPrintF(str, length, format, args);
657  va_end(args);
658  return result;
659}
660
661
662int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
663  int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
664  // Make sure to zero-terminate the string if the output was
665  // truncated or if there was an error.
666  if (n < 0 || n >= length) {
667    if (length > 0)
668      str[length - 1] = '\0';
669    return -1;
670  } else {
671    return n;
672  }
673}
674
675
676char* OS::StrChr(char* str, int c) {
677  return const_cast<char*>(strchr(str, c));
678}
679
680
681void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
682  // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
683  size_t buffer_size = static_cast<size_t>(length);
684  if (n + 1 > buffer_size)  // count for trailing '\0'
685    n = _TRUNCATE;
686  int result = strncpy_s(dest, length, src, n);
687  USE(result);
688  DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
689}
690
691
692#undef _TRUNCATE
693#undef STRUNCATE
694
695
696// Get the system's page size used by VirtualAlloc() or the next power
697// of two. The reason for always returning a power of two is that the
698// rounding up in OS::Allocate expects that.
699static size_t GetPageSize() {
700  static size_t page_size = 0;
701  if (page_size == 0) {
702    SYSTEM_INFO info;
703    GetSystemInfo(&info);
704    page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
705  }
706  return page_size;
707}
708
709
710// The allocation alignment is the guaranteed alignment for
711// VirtualAlloc'ed blocks of memory.
712size_t OS::AllocateAlignment() {
713  static size_t allocate_alignment = 0;
714  if (allocate_alignment == 0) {
715    SYSTEM_INFO info;
716    GetSystemInfo(&info);
717    allocate_alignment = info.dwAllocationGranularity;
718  }
719  return allocate_alignment;
720}
721
722
723static LazyInstance<RandomNumberGenerator>::type
724    platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
725
726
727void OS::Initialize(int64_t random_seed, bool hard_abort,
728                    const char* const gc_fake_mmap) {
729  if (random_seed) {
730    platform_random_number_generator.Pointer()->SetSeed(random_seed);
731  }
732  g_hard_abort = hard_abort;
733}
734
735
736void* OS::GetRandomMmapAddr() {
737  // The address range used to randomize RWX allocations in OS::Allocate
738  // Try not to map pages into the default range that windows loads DLLs
739  // Use a multiple of 64k to prevent committing unused memory.
740  // Note: This does not guarantee RWX regions will be within the
741  // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
742#ifdef V8_HOST_ARCH_64_BIT
743  static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
744  static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
745#else
746  static const intptr_t kAllocationRandomAddressMin = 0x04000000;
747  static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
748#endif
749  uintptr_t address =
750      (platform_random_number_generator.Pointer()->NextInt() << kPageSizeBits) |
751      kAllocationRandomAddressMin;
752  address &= kAllocationRandomAddressMax;
753  return reinterpret_cast<void *>(address);
754}
755
756
757static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
758  LPVOID base = NULL;
759
760  if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
761    // For exectutable pages try and randomize the allocation address
762    for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
763      base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
764    }
765  }
766
767  // After three attempts give up and let the OS find an address to use.
768  if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
769
770  return base;
771}
772
773
774void* OS::Allocate(const size_t requested,
775                   size_t* allocated,
776                   bool is_executable) {
777  // VirtualAlloc rounds allocated size to page size automatically.
778  size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
779
780  // Windows XP SP2 allows Data Excution Prevention (DEP).
781  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
782
783  LPVOID mbase = RandomizedVirtualAlloc(msize,
784                                        MEM_COMMIT | MEM_RESERVE,
785                                        prot);
786
787  if (mbase == NULL) return NULL;
788
789  DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
790
791  *allocated = msize;
792  return mbase;
793}
794
795
796void OS::Free(void* address, const size_t size) {
797  // TODO(1240712): VirtualFree has a return value which is ignored here.
798  VirtualFree(address, 0, MEM_RELEASE);
799  USE(size);
800}
801
802
803intptr_t OS::CommitPageSize() {
804  return 4096;
805}
806
807
808void OS::ProtectCode(void* address, const size_t size) {
809  DWORD old_protect;
810  VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
811}
812
813
814void OS::Guard(void* address, const size_t size) {
815  DWORD oldprotect;
816  VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
817}
818
819
820void OS::Sleep(int milliseconds) {
821  ::Sleep(milliseconds);
822}
823
824
825void OS::Abort() {
826  if (g_hard_abort) {
827    V8_IMMEDIATE_CRASH();
828  }
829  // Make the MSVCRT do a silent abort.
830  raise(SIGABRT);
831}
832
833
834void OS::DebugBreak() {
835#ifdef _MSC_VER
836  // To avoid Visual Studio runtime support the following code can be used
837  // instead
838  // __asm { int 3 }
839  __debugbreak();
840#else
841  ::DebugBreak();
842#endif
843}
844
845
846class Win32MemoryMappedFile : public OS::MemoryMappedFile {
847 public:
848  Win32MemoryMappedFile(HANDLE file,
849                        HANDLE file_mapping,
850                        void* memory,
851                        int size)
852      : file_(file),
853        file_mapping_(file_mapping),
854        memory_(memory),
855        size_(size) { }
856  virtual ~Win32MemoryMappedFile();
857  virtual void* memory() { return memory_; }
858  virtual int size() { return size_; }
859 private:
860  HANDLE file_;
861  HANDLE file_mapping_;
862  void* memory_;
863  int size_;
864};
865
866
867OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
868  // Open a physical file
869  HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
870      FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
871  if (file == INVALID_HANDLE_VALUE) return NULL;
872
873  int size = static_cast<int>(GetFileSize(file, NULL));
874
875  // Create a file mapping for the physical file
876  HANDLE file_mapping = CreateFileMapping(file, NULL,
877      PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
878  if (file_mapping == NULL) return NULL;
879
880  // Map a view of the file into memory
881  void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
882  return new Win32MemoryMappedFile(file, file_mapping, memory, size);
883}
884
885
886OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
887    void* initial) {
888  // Open a physical file
889  HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
890      FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
891  if (file == NULL) return NULL;
892  // Create a file mapping for the physical file
893  HANDLE file_mapping = CreateFileMapping(file, NULL,
894      PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
895  if (file_mapping == NULL) return NULL;
896  // Map a view of the file into memory
897  void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
898  if (memory) memmove(memory, initial, size);
899  return new Win32MemoryMappedFile(file, file_mapping, memory, size);
900}
901
902
903Win32MemoryMappedFile::~Win32MemoryMappedFile() {
904  if (memory_ != NULL)
905    UnmapViewOfFile(memory_);
906  CloseHandle(file_mapping_);
907  CloseHandle(file_);
908}
909
910
911// The following code loads functions defined in DbhHelp.h and TlHelp32.h
912// dynamically. This is to avoid being depending on dbghelp.dll and
913// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
914// kernel32.dll at some point so loading functions defines in TlHelp32.h
915// dynamically might not be necessary any more - for some versions of Windows?).
916
917// Function pointers to functions dynamically loaded from dbghelp.dll.
918#define DBGHELP_FUNCTION_LIST(V)  \
919  V(SymInitialize)                \
920  V(SymGetOptions)                \
921  V(SymSetOptions)                \
922  V(SymGetSearchPath)             \
923  V(SymLoadModule64)              \
924  V(StackWalk64)                  \
925  V(SymGetSymFromAddr64)          \
926  V(SymGetLineFromAddr64)         \
927  V(SymFunctionTableAccess64)     \
928  V(SymGetModuleBase64)
929
930// Function pointers to functions dynamically loaded from dbghelp.dll.
931#define TLHELP32_FUNCTION_LIST(V)  \
932  V(CreateToolhelp32Snapshot)      \
933  V(Module32FirstW)                \
934  V(Module32NextW)
935
936// Define the decoration to use for the type and variable name used for
937// dynamically loaded DLL function..
938#define DLL_FUNC_TYPE(name) _##name##_
939#define DLL_FUNC_VAR(name) _##name
940
941// Define the type for each dynamically loaded DLL function. The function
942// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
943// from the Windows include files are redefined here to have the function
944// definitions to be as close to the ones in the original .h files as possible.
945#ifndef IN
946#define IN
947#endif
948#ifndef VOID
949#define VOID void
950#endif
951
952// DbgHelp isn't supported on MinGW yet
953#ifndef __MINGW32__
954// DbgHelp.h functions.
955typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
956                                                       IN PSTR UserSearchPath,
957                                                       IN BOOL fInvadeProcess);
958typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
959typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
960typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
961    IN HANDLE hProcess,
962    OUT PSTR SearchPath,
963    IN DWORD SearchPathLength);
964typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
965    IN HANDLE hProcess,
966    IN HANDLE hFile,
967    IN PSTR ImageName,
968    IN PSTR ModuleName,
969    IN DWORD64 BaseOfDll,
970    IN DWORD SizeOfDll);
971typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
972    DWORD MachineType,
973    HANDLE hProcess,
974    HANDLE hThread,
975    LPSTACKFRAME64 StackFrame,
976    PVOID ContextRecord,
977    PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
978    PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
979    PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
980    PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
981typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
982    IN HANDLE hProcess,
983    IN DWORD64 qwAddr,
984    OUT PDWORD64 pdwDisplacement,
985    OUT PIMAGEHLP_SYMBOL64 Symbol);
986typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
987    IN HANDLE hProcess,
988    IN DWORD64 qwAddr,
989    OUT PDWORD pdwDisplacement,
990    OUT PIMAGEHLP_LINE64 Line64);
991// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
992typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
993    HANDLE hProcess,
994    DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
995typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
996    HANDLE hProcess,
997    DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
998
999// TlHelp32.h functions.
1000typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1001    DWORD dwFlags,
1002    DWORD th32ProcessID);
1003typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1004                                                        LPMODULEENTRY32W lpme);
1005typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1006                                                       LPMODULEENTRY32W lpme);
1007
1008#undef IN
1009#undef VOID
1010
1011// Declare a variable for each dynamically loaded DLL function.
1012#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1013DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
1014TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1015#undef DEF_DLL_FUNCTION
1016
1017// Load the functions. This function has a lot of "ugly" macros in order to
1018// keep down code duplication.
1019
1020static bool LoadDbgHelpAndTlHelp32() {
1021  static bool dbghelp_loaded = false;
1022
1023  if (dbghelp_loaded) return true;
1024
1025  HMODULE module;
1026
1027  // Load functions from the dbghelp.dll module.
1028  module = LoadLibrary(TEXT("dbghelp.dll"));
1029  if (module == NULL) {
1030    return false;
1031  }
1032
1033#define LOAD_DLL_FUNC(name)                                                 \
1034  DLL_FUNC_VAR(name) =                                                      \
1035      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1036
1037DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1038
1039#undef LOAD_DLL_FUNC
1040
1041  // Load functions from the kernel32.dll module (the TlHelp32.h function used
1042  // to be in tlhelp32.dll but are now moved to kernel32.dll).
1043  module = LoadLibrary(TEXT("kernel32.dll"));
1044  if (module == NULL) {
1045    return false;
1046  }
1047
1048#define LOAD_DLL_FUNC(name)                                                 \
1049  DLL_FUNC_VAR(name) =                                                      \
1050      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1051
1052TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1053
1054#undef LOAD_DLL_FUNC
1055
1056  // Check that all functions where loaded.
1057  bool result =
1058#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1059
1060DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1061TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1062
1063#undef DLL_FUNC_LOADED
1064  true;
1065
1066  dbghelp_loaded = result;
1067  return result;
1068  // NOTE: The modules are never unloaded and will stay around until the
1069  // application is closed.
1070}
1071
1072#undef DBGHELP_FUNCTION_LIST
1073#undef TLHELP32_FUNCTION_LIST
1074#undef DLL_FUNC_VAR
1075#undef DLL_FUNC_TYPE
1076
1077
1078// Load the symbols for generating stack traces.
1079static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1080    HANDLE process_handle) {
1081  static std::vector<OS::SharedLibraryAddress> result;
1082
1083  static bool symbols_loaded = false;
1084
1085  if (symbols_loaded) return result;
1086
1087  BOOL ok;
1088
1089  // Initialize the symbol engine.
1090  ok = _SymInitialize(process_handle,  // hProcess
1091                      NULL,            // UserSearchPath
1092                      false);          // fInvadeProcess
1093  if (!ok) return result;
1094
1095  DWORD options = _SymGetOptions();
1096  options |= SYMOPT_LOAD_LINES;
1097  options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1098  options = _SymSetOptions(options);
1099
1100  char buf[OS::kStackWalkMaxNameLen] = {0};
1101  ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1102  if (!ok) {
1103    int err = GetLastError();
1104    OS::Print("%d\n", err);
1105    return result;
1106  }
1107
1108  HANDLE snapshot = _CreateToolhelp32Snapshot(
1109      TH32CS_SNAPMODULE,       // dwFlags
1110      GetCurrentProcessId());  // th32ProcessId
1111  if (snapshot == INVALID_HANDLE_VALUE) return result;
1112  MODULEENTRY32W module_entry;
1113  module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1114  BOOL cont = _Module32FirstW(snapshot, &module_entry);
1115  while (cont) {
1116    DWORD64 base;
1117    // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1118    // both unicode and ASCII strings even though the parameter is PSTR.
1119    base = _SymLoadModule64(
1120        process_handle,                                       // hProcess
1121        0,                                                    // hFile
1122        reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1123        reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1124        reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1125        module_entry.modBaseSize);                            // SizeOfDll
1126    if (base == 0) {
1127      int err = GetLastError();
1128      if (err != ERROR_MOD_NOT_FOUND &&
1129          err != ERROR_INVALID_HANDLE) {
1130        result.clear();
1131        return result;
1132      }
1133    }
1134    int lib_name_length = WideCharToMultiByte(
1135        CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1136    std::string lib_name(lib_name_length, 0);
1137    WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1138                        lib_name_length, NULL, NULL);
1139    result.push_back(OS::SharedLibraryAddress(
1140        lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1141        reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1142                                       module_entry.modBaseSize)));
1143    cont = _Module32NextW(snapshot, &module_entry);
1144  }
1145  CloseHandle(snapshot);
1146
1147  symbols_loaded = true;
1148  return result;
1149}
1150
1151
1152std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1153  // SharedLibraryEvents are logged when loading symbol information.
1154  // Only the shared libraries loaded at the time of the call to
1155  // GetSharedLibraryAddresses are logged.  DLLs loaded after
1156  // initialization are not accounted for.
1157  if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1158  HANDLE process_handle = GetCurrentProcess();
1159  return LoadSymbols(process_handle);
1160}
1161
1162
1163void OS::SignalCodeMovingGC() {
1164}
1165
1166
1167#else  // __MINGW32__
1168std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1169  return std::vector<OS::SharedLibraryAddress>();
1170}
1171
1172
1173void OS::SignalCodeMovingGC() { }
1174#endif  // __MINGW32__
1175
1176
1177double OS::nan_value() {
1178#ifdef _MSC_VER
1179  return std::numeric_limits<double>::quiet_NaN();
1180#else  // _MSC_VER
1181  return NAN;
1182#endif  // _MSC_VER
1183}
1184
1185
1186int OS::ActivationFrameAlignment() {
1187#ifdef _WIN64
1188  return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1189#elif defined(__MINGW32__)
1190  // With gcc 4.4 the tree vectorization optimizer can generate code
1191  // that requires 16 byte alignment such as movdqa on x86.
1192  return 16;
1193#else
1194  return 8;  // Floating-point math runs faster with 8-byte alignment.
1195#endif
1196}
1197
1198
1199VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1200
1201
1202VirtualMemory::VirtualMemory(size_t size)
1203    : address_(ReserveRegion(size)), size_(size) { }
1204
1205
1206VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1207    : address_(NULL), size_(0) {
1208  DCHECK((alignment % OS::AllocateAlignment()) == 0);
1209  size_t request_size = RoundUp(size + alignment,
1210                                static_cast<intptr_t>(OS::AllocateAlignment()));
1211  void* address = ReserveRegion(request_size);
1212  if (address == NULL) return;
1213  uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
1214  // Try reducing the size by freeing and then reallocating a specific area.
1215  bool result = ReleaseRegion(address, request_size);
1216  USE(result);
1217  DCHECK(result);
1218  address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1219  if (address != NULL) {
1220    request_size = size;
1221    DCHECK(base == static_cast<uint8_t*>(address));
1222  } else {
1223    // Resizing failed, just go with a bigger area.
1224    address = ReserveRegion(request_size);
1225    if (address == NULL) return;
1226  }
1227  address_ = address;
1228  size_ = request_size;
1229}
1230
1231
1232VirtualMemory::~VirtualMemory() {
1233  if (IsReserved()) {
1234    bool result = ReleaseRegion(address(), size());
1235    DCHECK(result);
1236    USE(result);
1237  }
1238}
1239
1240
1241bool VirtualMemory::IsReserved() {
1242  return address_ != NULL;
1243}
1244
1245
1246void VirtualMemory::Reset() {
1247  address_ = NULL;
1248  size_ = 0;
1249}
1250
1251
1252bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1253  return CommitRegion(address, size, is_executable);
1254}
1255
1256
1257bool VirtualMemory::Uncommit(void* address, size_t size) {
1258  DCHECK(IsReserved());
1259  return UncommitRegion(address, size);
1260}
1261
1262
1263bool VirtualMemory::Guard(void* address) {
1264  if (NULL == VirtualAlloc(address,
1265                           OS::CommitPageSize(),
1266                           MEM_COMMIT,
1267                           PAGE_NOACCESS)) {
1268    return false;
1269  }
1270  return true;
1271}
1272
1273
1274void* VirtualMemory::ReserveRegion(size_t size) {
1275  return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1276}
1277
1278
1279bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1280  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1281  if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1282    return false;
1283  }
1284  return true;
1285}
1286
1287
1288bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1289  return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1290}
1291
1292
1293bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1294  return VirtualFree(base, 0, MEM_RELEASE) != 0;
1295}
1296
1297
1298bool VirtualMemory::HasLazyCommits() {
1299  // TODO(alph): implement for the platform.
1300  return false;
1301}
1302
1303
1304// ----------------------------------------------------------------------------
1305// Win32 thread support.
1306
1307// Definition of invalid thread handle and id.
1308static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1309
1310// Entry point for threads. The supplied argument is a pointer to the thread
1311// object. The entry function dispatches to the run method in the thread
1312// object. It is important that this function has __stdcall calling
1313// convention.
1314static unsigned int __stdcall ThreadEntry(void* arg) {
1315  Thread* thread = reinterpret_cast<Thread*>(arg);
1316  thread->NotifyStartedAndRun();
1317  return 0;
1318}
1319
1320
1321class Thread::PlatformData {
1322 public:
1323  explicit PlatformData(HANDLE thread) : thread_(thread) {}
1324  HANDLE thread_;
1325  unsigned thread_id_;
1326};
1327
1328
1329// Initialize a Win32 thread object. The thread has an invalid thread
1330// handle until it is started.
1331
1332Thread::Thread(const Options& options)
1333    : stack_size_(options.stack_size()),
1334      start_semaphore_(NULL) {
1335  data_ = new PlatformData(kNoThread);
1336  set_name(options.name());
1337}
1338
1339
1340void Thread::set_name(const char* name) {
1341  OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1342  name_[sizeof(name_) - 1] = '\0';
1343}
1344
1345
1346// Close our own handle for the thread.
1347Thread::~Thread() {
1348  if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1349  delete data_;
1350}
1351
1352
1353// Create a new thread. It is important to use _beginthreadex() instead of
1354// the Win32 function CreateThread(), because the CreateThread() does not
1355// initialize thread specific structures in the C runtime library.
1356void Thread::Start() {
1357  data_->thread_ = reinterpret_cast<HANDLE>(
1358      _beginthreadex(NULL,
1359                     static_cast<unsigned>(stack_size_),
1360                     ThreadEntry,
1361                     this,
1362                     0,
1363                     &data_->thread_id_));
1364}
1365
1366
1367// Wait for thread to terminate.
1368void Thread::Join() {
1369  if (data_->thread_id_ != GetCurrentThreadId()) {
1370    WaitForSingleObject(data_->thread_, INFINITE);
1371  }
1372}
1373
1374
1375Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1376  DWORD result = TlsAlloc();
1377  DCHECK(result != TLS_OUT_OF_INDEXES);
1378  return static_cast<LocalStorageKey>(result);
1379}
1380
1381
1382void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1383  BOOL result = TlsFree(static_cast<DWORD>(key));
1384  USE(result);
1385  DCHECK(result);
1386}
1387
1388
1389void* Thread::GetThreadLocal(LocalStorageKey key) {
1390  return TlsGetValue(static_cast<DWORD>(key));
1391}
1392
1393
1394void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1395  BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1396  USE(result);
1397  DCHECK(result);
1398}
1399
1400
1401
1402void Thread::YieldCPU() {
1403  Sleep(0);
1404}
1405
1406} }  // namespace v8::base
1407