1// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <cmath>
6
7#include "include/v8stdint.h"
8#include "src/base/logging.h"
9#include "src/utils.h"
10
11#include "src/bignum-dtoa.h"
12
13#include "src/bignum.h"
14#include "src/double.h"
15
16namespace v8 {
17namespace internal {
18
19static int NormalizedExponent(uint64_t significand, int exponent) {
20  DCHECK(significand != 0);
21  while ((significand & Double::kHiddenBit) == 0) {
22    significand = significand << 1;
23    exponent = exponent - 1;
24  }
25  return exponent;
26}
27
28
29// Forward declarations:
30// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
31static int EstimatePower(int exponent);
32// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
33// and denominator.
34static void InitialScaledStartValues(double v,
35                                     int estimated_power,
36                                     bool need_boundary_deltas,
37                                     Bignum* numerator,
38                                     Bignum* denominator,
39                                     Bignum* delta_minus,
40                                     Bignum* delta_plus);
41// Multiplies numerator/denominator so that its values lies in the range 1-10.
42// Returns decimal_point s.t.
43//  v = numerator'/denominator' * 10^(decimal_point-1)
44//     where numerator' and denominator' are the values of numerator and
45//     denominator after the call to this function.
46static void FixupMultiply10(int estimated_power, bool is_even,
47                            int* decimal_point,
48                            Bignum* numerator, Bignum* denominator,
49                            Bignum* delta_minus, Bignum* delta_plus);
50// Generates digits from the left to the right and stops when the generated
51// digits yield the shortest decimal representation of v.
52static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
53                                   Bignum* delta_minus, Bignum* delta_plus,
54                                   bool is_even,
55                                   Vector<char> buffer, int* length);
56// Generates 'requested_digits' after the decimal point.
57static void BignumToFixed(int requested_digits, int* decimal_point,
58                          Bignum* numerator, Bignum* denominator,
59                          Vector<char>(buffer), int* length);
60// Generates 'count' digits of numerator/denominator.
61// Once 'count' digits have been produced rounds the result depending on the
62// remainder (remainders of exactly .5 round upwards). Might update the
63// decimal_point when rounding up (for example for 0.9999).
64static void GenerateCountedDigits(int count, int* decimal_point,
65                                  Bignum* numerator, Bignum* denominator,
66                                  Vector<char>(buffer), int* length);
67
68
69void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
70                Vector<char> buffer, int* length, int* decimal_point) {
71  DCHECK(v > 0);
72  DCHECK(!Double(v).IsSpecial());
73  uint64_t significand = Double(v).Significand();
74  bool is_even = (significand & 1) == 0;
75  int exponent = Double(v).Exponent();
76  int normalized_exponent = NormalizedExponent(significand, exponent);
77  // estimated_power might be too low by 1.
78  int estimated_power = EstimatePower(normalized_exponent);
79
80  // Shortcut for Fixed.
81  // The requested digits correspond to the digits after the point. If the
82  // number is much too small, then there is no need in trying to get any
83  // digits.
84  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
85    buffer[0] = '\0';
86    *length = 0;
87    // Set decimal-point to -requested_digits. This is what Gay does.
88    // Note that it should not have any effect anyways since the string is
89    // empty.
90    *decimal_point = -requested_digits;
91    return;
92  }
93
94  Bignum numerator;
95  Bignum denominator;
96  Bignum delta_minus;
97  Bignum delta_plus;
98  // Make sure the bignum can grow large enough. The smallest double equals
99  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
100  // The maximum double is 1.7976931348623157e308 which needs fewer than
101  // 308*4 binary digits.
102  DCHECK(Bignum::kMaxSignificantBits >= 324*4);
103  bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
104  InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
105                           &numerator, &denominator,
106                           &delta_minus, &delta_plus);
107  // We now have v = (numerator / denominator) * 10^estimated_power.
108  FixupMultiply10(estimated_power, is_even, decimal_point,
109                  &numerator, &denominator,
110                  &delta_minus, &delta_plus);
111  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
112  //  1 <= (numerator + delta_plus) / denominator < 10
113  switch (mode) {
114    case BIGNUM_DTOA_SHORTEST:
115      GenerateShortestDigits(&numerator, &denominator,
116                             &delta_minus, &delta_plus,
117                             is_even, buffer, length);
118      break;
119    case BIGNUM_DTOA_FIXED:
120      BignumToFixed(requested_digits, decimal_point,
121                    &numerator, &denominator,
122                    buffer, length);
123      break;
124    case BIGNUM_DTOA_PRECISION:
125      GenerateCountedDigits(requested_digits, decimal_point,
126                            &numerator, &denominator,
127                            buffer, length);
128      break;
129    default:
130      UNREACHABLE();
131  }
132  buffer[*length] = '\0';
133}
134
135
136// The procedure starts generating digits from the left to the right and stops
137// when the generated digits yield the shortest decimal representation of v. A
138// decimal representation of v is a number lying closer to v than to any other
139// double, so it converts to v when read.
140//
141// This is true if d, the decimal representation, is between m- and m+, the
142// upper and lower boundaries. d must be strictly between them if !is_even.
143//           m- := (numerator - delta_minus) / denominator
144//           m+ := (numerator + delta_plus) / denominator
145//
146// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
147//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
148//   will be produced. This should be the standard precondition.
149static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
150                                   Bignum* delta_minus, Bignum* delta_plus,
151                                   bool is_even,
152                                   Vector<char> buffer, int* length) {
153  // Small optimization: if delta_minus and delta_plus are the same just reuse
154  // one of the two bignums.
155  if (Bignum::Equal(*delta_minus, *delta_plus)) {
156    delta_plus = delta_minus;
157  }
158  *length = 0;
159  while (true) {
160    uint16_t digit;
161    digit = numerator->DivideModuloIntBignum(*denominator);
162    DCHECK(digit <= 9);  // digit is a uint16_t and therefore always positive.
163    // digit = numerator / denominator (integer division).
164    // numerator = numerator % denominator.
165    buffer[(*length)++] = digit + '0';
166
167    // Can we stop already?
168    // If the remainder of the division is less than the distance to the lower
169    // boundary we can stop. In this case we simply round down (discarding the
170    // remainder).
171    // Similarly we test if we can round up (using the upper boundary).
172    bool in_delta_room_minus;
173    bool in_delta_room_plus;
174    if (is_even) {
175      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
176    } else {
177      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
178    }
179    if (is_even) {
180      in_delta_room_plus =
181          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
182    } else {
183      in_delta_room_plus =
184          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
185    }
186    if (!in_delta_room_minus && !in_delta_room_plus) {
187      // Prepare for next iteration.
188      numerator->Times10();
189      delta_minus->Times10();
190      // We optimized delta_plus to be equal to delta_minus (if they share the
191      // same value). So don't multiply delta_plus if they point to the same
192      // object.
193      if (delta_minus != delta_plus) {
194        delta_plus->Times10();
195      }
196    } else if (in_delta_room_minus && in_delta_room_plus) {
197      // Let's see if 2*numerator < denominator.
198      // If yes, then the next digit would be < 5 and we can round down.
199      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
200      if (compare < 0) {
201        // Remaining digits are less than .5. -> Round down (== do nothing).
202      } else if (compare > 0) {
203        // Remaining digits are more than .5 of denominator. -> Round up.
204        // Note that the last digit could not be a '9' as otherwise the whole
205        // loop would have stopped earlier.
206        // We still have an assert here in case the preconditions were not
207        // satisfied.
208        DCHECK(buffer[(*length) - 1] != '9');
209        buffer[(*length) - 1]++;
210      } else {
211        // Halfway case.
212        // TODO(floitsch): need a way to solve half-way cases.
213        //   For now let's round towards even (since this is what Gay seems to
214        //   do).
215
216        if ((buffer[(*length) - 1] - '0') % 2 == 0) {
217          // Round down => Do nothing.
218        } else {
219          DCHECK(buffer[(*length) - 1] != '9');
220          buffer[(*length) - 1]++;
221        }
222      }
223      return;
224    } else if (in_delta_room_minus) {
225      // Round down (== do nothing).
226      return;
227    } else {  // in_delta_room_plus
228      // Round up.
229      // Note again that the last digit could not be '9' since this would have
230      // stopped the loop earlier.
231      // We still have an DCHECK here, in case the preconditions were not
232      // satisfied.
233      DCHECK(buffer[(*length) -1] != '9');
234      buffer[(*length) - 1]++;
235      return;
236    }
237  }
238}
239
240
241// Let v = numerator / denominator < 10.
242// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
243// from left to right. Once 'count' digits have been produced we decide wether
244// to round up or down. Remainders of exactly .5 round upwards. Numbers such
245// as 9.999999 propagate a carry all the way, and change the
246// exponent (decimal_point), when rounding upwards.
247static void GenerateCountedDigits(int count, int* decimal_point,
248                                  Bignum* numerator, Bignum* denominator,
249                                  Vector<char>(buffer), int* length) {
250  DCHECK(count >= 0);
251  for (int i = 0; i < count - 1; ++i) {
252    uint16_t digit;
253    digit = numerator->DivideModuloIntBignum(*denominator);
254    DCHECK(digit <= 9);  // digit is a uint16_t and therefore always positive.
255    // digit = numerator / denominator (integer division).
256    // numerator = numerator % denominator.
257    buffer[i] = digit + '0';
258    // Prepare for next iteration.
259    numerator->Times10();
260  }
261  // Generate the last digit.
262  uint16_t digit;
263  digit = numerator->DivideModuloIntBignum(*denominator);
264  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
265    digit++;
266  }
267  buffer[count - 1] = digit + '0';
268  // Correct bad digits (in case we had a sequence of '9's). Propagate the
269  // carry until we hat a non-'9' or til we reach the first digit.
270  for (int i = count - 1; i > 0; --i) {
271    if (buffer[i] != '0' + 10) break;
272    buffer[i] = '0';
273    buffer[i - 1]++;
274  }
275  if (buffer[0] == '0' + 10) {
276    // Propagate a carry past the top place.
277    buffer[0] = '1';
278    (*decimal_point)++;
279  }
280  *length = count;
281}
282
283
284// Generates 'requested_digits' after the decimal point. It might omit
285// trailing '0's. If the input number is too small then no digits at all are
286// generated (ex.: 2 fixed digits for 0.00001).
287//
288// Input verifies:  1 <= (numerator + delta) / denominator < 10.
289static void BignumToFixed(int requested_digits, int* decimal_point,
290                          Bignum* numerator, Bignum* denominator,
291                          Vector<char>(buffer), int* length) {
292  // Note that we have to look at more than just the requested_digits, since
293  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
294  // Even though the power of v equals 0 we can't just stop here.
295  if (-(*decimal_point) > requested_digits) {
296    // The number is definitively too small.
297    // Ex: 0.001 with requested_digits == 1.
298    // Set decimal-point to -requested_digits. This is what Gay does.
299    // Note that it should not have any effect anyways since the string is
300    // empty.
301    *decimal_point = -requested_digits;
302    *length = 0;
303    return;
304  } else if (-(*decimal_point) == requested_digits) {
305    // We only need to verify if the number rounds down or up.
306    // Ex: 0.04 and 0.06 with requested_digits == 1.
307    DCHECK(*decimal_point == -requested_digits);
308    // Initially the fraction lies in range (1, 10]. Multiply the denominator
309    // by 10 so that we can compare more easily.
310    denominator->Times10();
311    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
312      // If the fraction is >= 0.5 then we have to include the rounded
313      // digit.
314      buffer[0] = '1';
315      *length = 1;
316      (*decimal_point)++;
317    } else {
318      // Note that we caught most of similar cases earlier.
319      *length = 0;
320    }
321    return;
322  } else {
323    // The requested digits correspond to the digits after the point.
324    // The variable 'needed_digits' includes the digits before the point.
325    int needed_digits = (*decimal_point) + requested_digits;
326    GenerateCountedDigits(needed_digits, decimal_point,
327                          numerator, denominator,
328                          buffer, length);
329  }
330}
331
332
333// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
334// v = f * 2^exponent and 2^52 <= f < 2^53.
335// v is hence a normalized double with the given exponent. The output is an
336// approximation for the exponent of the decimal approimation .digits * 10^k.
337//
338// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
339// Note: this property holds for v's upper boundary m+ too.
340//    10^k <= m+ < 10^k+1.
341//   (see explanation below).
342//
343// Examples:
344//  EstimatePower(0)   => 16
345//  EstimatePower(-52) => 0
346//
347// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
348static int EstimatePower(int exponent) {
349  // This function estimates log10 of v where v = f*2^e (with e == exponent).
350  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
351  // Note that f is bounded by its container size. Let p = 53 (the double's
352  // significand size). Then 2^(p-1) <= f < 2^p.
353  //
354  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
355  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
356  // The computed number undershoots by less than 0.631 (when we compute log3
357  // and not log10).
358  //
359  // Optimization: since we only need an approximated result this computation
360  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
361  // not really measurable, though.
362  //
363  // Since we want to avoid overshooting we decrement by 1e10 so that
364  // floating-point imprecisions don't affect us.
365  //
366  // Explanation for v's boundary m+: the computation takes advantage of
367  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
368  // (even for denormals where the delta can be much more important).
369
370  const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
371
372  // For doubles len(f) == 53 (don't forget the hidden bit).
373  const int kSignificandSize = 53;
374  double estimate =
375      std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
376  return static_cast<int>(estimate);
377}
378
379
380// See comments for InitialScaledStartValues.
381static void InitialScaledStartValuesPositiveExponent(
382    double v, int estimated_power, bool need_boundary_deltas,
383    Bignum* numerator, Bignum* denominator,
384    Bignum* delta_minus, Bignum* delta_plus) {
385  // A positive exponent implies a positive power.
386  DCHECK(estimated_power >= 0);
387  // Since the estimated_power is positive we simply multiply the denominator
388  // by 10^estimated_power.
389
390  // numerator = v.
391  numerator->AssignUInt64(Double(v).Significand());
392  numerator->ShiftLeft(Double(v).Exponent());
393  // denominator = 10^estimated_power.
394  denominator->AssignPowerUInt16(10, estimated_power);
395
396  if (need_boundary_deltas) {
397    // Introduce a common denominator so that the deltas to the boundaries are
398    // integers.
399    denominator->ShiftLeft(1);
400    numerator->ShiftLeft(1);
401    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
402    // denominator (of 2) delta_plus equals 2^e.
403    delta_plus->AssignUInt16(1);
404    delta_plus->ShiftLeft(Double(v).Exponent());
405    // Same for delta_minus (with adjustments below if f == 2^p-1).
406    delta_minus->AssignUInt16(1);
407    delta_minus->ShiftLeft(Double(v).Exponent());
408
409    // If the significand (without the hidden bit) is 0, then the lower
410    // boundary is closer than just half a ulp (unit in the last place).
411    // There is only one exception: if the next lower number is a denormal then
412    // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
413    // have to test it in the other function where exponent < 0).
414    uint64_t v_bits = Double(v).AsUint64();
415    if ((v_bits & Double::kSignificandMask) == 0) {
416      // The lower boundary is closer at half the distance of "normal" numbers.
417      // Increase the common denominator and adapt all but the delta_minus.
418      denominator->ShiftLeft(1);  // *2
419      numerator->ShiftLeft(1);    // *2
420      delta_plus->ShiftLeft(1);   // *2
421    }
422  }
423}
424
425
426// See comments for InitialScaledStartValues
427static void InitialScaledStartValuesNegativeExponentPositivePower(
428    double v, int estimated_power, bool need_boundary_deltas,
429    Bignum* numerator, Bignum* denominator,
430    Bignum* delta_minus, Bignum* delta_plus) {
431  uint64_t significand = Double(v).Significand();
432  int exponent = Double(v).Exponent();
433  // v = f * 2^e with e < 0, and with estimated_power >= 0.
434  // This means that e is close to 0 (have a look at how estimated_power is
435  // computed).
436
437  // numerator = significand
438  //  since v = significand * 2^exponent this is equivalent to
439  //  numerator = v * / 2^-exponent
440  numerator->AssignUInt64(significand);
441  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
442  denominator->AssignPowerUInt16(10, estimated_power);
443  denominator->ShiftLeft(-exponent);
444
445  if (need_boundary_deltas) {
446    // Introduce a common denominator so that the deltas to the boundaries are
447    // integers.
448    denominator->ShiftLeft(1);
449    numerator->ShiftLeft(1);
450    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
451    // denominator (of 2) delta_plus equals 2^e.
452    // Given that the denominator already includes v's exponent the distance
453    // to the boundaries is simply 1.
454    delta_plus->AssignUInt16(1);
455    // Same for delta_minus (with adjustments below if f == 2^p-1).
456    delta_minus->AssignUInt16(1);
457
458    // If the significand (without the hidden bit) is 0, then the lower
459    // boundary is closer than just one ulp (unit in the last place).
460    // There is only one exception: if the next lower number is a denormal
461    // then the distance is 1 ulp. Since the exponent is close to zero
462    // (otherwise estimated_power would have been negative) this cannot happen
463    // here either.
464    uint64_t v_bits = Double(v).AsUint64();
465    if ((v_bits & Double::kSignificandMask) == 0) {
466      // The lower boundary is closer at half the distance of "normal" numbers.
467      // Increase the denominator and adapt all but the delta_minus.
468      denominator->ShiftLeft(1);  // *2
469      numerator->ShiftLeft(1);    // *2
470      delta_plus->ShiftLeft(1);   // *2
471    }
472  }
473}
474
475
476// See comments for InitialScaledStartValues
477static void InitialScaledStartValuesNegativeExponentNegativePower(
478    double v, int estimated_power, bool need_boundary_deltas,
479    Bignum* numerator, Bignum* denominator,
480    Bignum* delta_minus, Bignum* delta_plus) {
481  const uint64_t kMinimalNormalizedExponent =
482      V8_2PART_UINT64_C(0x00100000, 00000000);
483  uint64_t significand = Double(v).Significand();
484  int exponent = Double(v).Exponent();
485  // Instead of multiplying the denominator with 10^estimated_power we
486  // multiply all values (numerator and deltas) by 10^-estimated_power.
487
488  // Use numerator as temporary container for power_ten.
489  Bignum* power_ten = numerator;
490  power_ten->AssignPowerUInt16(10, -estimated_power);
491
492  if (need_boundary_deltas) {
493    // Since power_ten == numerator we must make a copy of 10^estimated_power
494    // before we complete the computation of the numerator.
495    // delta_plus = delta_minus = 10^estimated_power
496    delta_plus->AssignBignum(*power_ten);
497    delta_minus->AssignBignum(*power_ten);
498  }
499
500  // numerator = significand * 2 * 10^-estimated_power
501  //  since v = significand * 2^exponent this is equivalent to
502  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
503  // Remember: numerator has been abused as power_ten. So no need to assign it
504  //  to itself.
505  DCHECK(numerator == power_ten);
506  numerator->MultiplyByUInt64(significand);
507
508  // denominator = 2 * 2^-exponent with exponent < 0.
509  denominator->AssignUInt16(1);
510  denominator->ShiftLeft(-exponent);
511
512  if (need_boundary_deltas) {
513    // Introduce a common denominator so that the deltas to the boundaries are
514    // integers.
515    numerator->ShiftLeft(1);
516    denominator->ShiftLeft(1);
517    // With this shift the boundaries have their correct value, since
518    // delta_plus = 10^-estimated_power, and
519    // delta_minus = 10^-estimated_power.
520    // These assignments have been done earlier.
521
522    // The special case where the lower boundary is twice as close.
523    // This time we have to look out for the exception too.
524    uint64_t v_bits = Double(v).AsUint64();
525    if ((v_bits & Double::kSignificandMask) == 0 &&
526        // The only exception where a significand == 0 has its boundaries at
527        // "normal" distances:
528        (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
529      numerator->ShiftLeft(1);    // *2
530      denominator->ShiftLeft(1);  // *2
531      delta_plus->ShiftLeft(1);   // *2
532    }
533  }
534}
535
536
537// Let v = significand * 2^exponent.
538// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
539// and denominator. The functions GenerateShortestDigits and
540// GenerateCountedDigits will then convert this ratio to its decimal
541// representation d, with the required accuracy.
542// Then d * 10^estimated_power is the representation of v.
543// (Note: the fraction and the estimated_power might get adjusted before
544// generating the decimal representation.)
545//
546// The initial start values consist of:
547//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
548//  - a scaled (common) denominator.
549//  optionally (used by GenerateShortestDigits to decide if it has the shortest
550//  decimal converting back to v):
551//  - v - m-: the distance to the lower boundary.
552//  - m+ - v: the distance to the upper boundary.
553//
554// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
555//
556// Let ep == estimated_power, then the returned values will satisfy:
557//  v / 10^ep = numerator / denominator.
558//  v's boundarys m- and m+:
559//    m- / 10^ep == v / 10^ep - delta_minus / denominator
560//    m+ / 10^ep == v / 10^ep + delta_plus / denominator
561//  Or in other words:
562//    m- == v - delta_minus * 10^ep / denominator;
563//    m+ == v + delta_plus * 10^ep / denominator;
564//
565// Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
566//  or       10^k <= v < 10^(k+1)
567//  we then have 0.1 <= numerator/denominator < 1
568//           or    1 <= numerator/denominator < 10
569//
570// It is then easy to kickstart the digit-generation routine.
571//
572// The boundary-deltas are only filled if need_boundary_deltas is set.
573static void InitialScaledStartValues(double v,
574                                     int estimated_power,
575                                     bool need_boundary_deltas,
576                                     Bignum* numerator,
577                                     Bignum* denominator,
578                                     Bignum* delta_minus,
579                                     Bignum* delta_plus) {
580  if (Double(v).Exponent() >= 0) {
581    InitialScaledStartValuesPositiveExponent(
582        v, estimated_power, need_boundary_deltas,
583        numerator, denominator, delta_minus, delta_plus);
584  } else if (estimated_power >= 0) {
585    InitialScaledStartValuesNegativeExponentPositivePower(
586        v, estimated_power, need_boundary_deltas,
587        numerator, denominator, delta_minus, delta_plus);
588  } else {
589    InitialScaledStartValuesNegativeExponentNegativePower(
590        v, estimated_power, need_boundary_deltas,
591        numerator, denominator, delta_minus, delta_plus);
592  }
593}
594
595
596// This routine multiplies numerator/denominator so that its values lies in the
597// range 1-10. That is after a call to this function we have:
598//    1 <= (numerator + delta_plus) /denominator < 10.
599// Let numerator the input before modification and numerator' the argument
600// after modification, then the output-parameter decimal_point is such that
601//  numerator / denominator * 10^estimated_power ==
602//    numerator' / denominator' * 10^(decimal_point - 1)
603// In some cases estimated_power was too low, and this is already the case. We
604// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
605// estimated_power) but do not touch the numerator or denominator.
606// Otherwise the routine multiplies the numerator and the deltas by 10.
607static void FixupMultiply10(int estimated_power, bool is_even,
608                            int* decimal_point,
609                            Bignum* numerator, Bignum* denominator,
610                            Bignum* delta_minus, Bignum* delta_plus) {
611  bool in_range;
612  if (is_even) {
613    // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
614    // are rounded to the closest floating-point number with even significand.
615    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
616  } else {
617    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
618  }
619  if (in_range) {
620    // Since numerator + delta_plus >= denominator we already have
621    // 1 <= numerator/denominator < 10. Simply update the estimated_power.
622    *decimal_point = estimated_power + 1;
623  } else {
624    *decimal_point = estimated_power;
625    numerator->Times10();
626    if (Bignum::Equal(*delta_minus, *delta_plus)) {
627      delta_minus->Times10();
628      delta_plus->AssignBignum(*delta_minus);
629    } else {
630      delta_minus->Times10();
631      delta_plus->Times10();
632    }
633  }
634}
635
636} }  // namespace v8::internal
637