1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/factory.h"
6
7#include "src/allocation-site-scopes.h"
8#include "src/base/bits.h"
9#include "src/conversions.h"
10#include "src/isolate-inl.h"
11#include "src/macro-assembler.h"
12
13namespace v8 {
14namespace internal {
15
16
17template<typename T>
18Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
19  CALL_HEAP_FUNCTION(
20      isolate(),
21      isolate()->heap()->Allocate(*map, space),
22      T);
23}
24
25
26template<typename T>
27Handle<T> Factory::New(Handle<Map> map,
28                       AllocationSpace space,
29                       Handle<AllocationSite> allocation_site) {
30  CALL_HEAP_FUNCTION(
31      isolate(),
32      isolate()->heap()->Allocate(*map, space, *allocation_site),
33      T);
34}
35
36
37Handle<HeapObject> Factory::NewFillerObject(int size,
38                                            bool double_align,
39                                            AllocationSpace space) {
40  CALL_HEAP_FUNCTION(
41      isolate(),
42      isolate()->heap()->AllocateFillerObject(size, double_align, space),
43      HeapObject);
44}
45
46
47Handle<Box> Factory::NewBox(Handle<Object> value) {
48  Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
49  result->set_value(*value);
50  return result;
51}
52
53
54Handle<Oddball> Factory::NewOddball(Handle<Map> map,
55                                    const char* to_string,
56                                    Handle<Object> to_number,
57                                    byte kind) {
58  Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE);
59  Oddball::Initialize(isolate(), oddball, to_string, to_number, kind);
60  return oddball;
61}
62
63
64Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
65  DCHECK(0 <= size);
66  CALL_HEAP_FUNCTION(
67      isolate(),
68      isolate()->heap()->AllocateFixedArray(size, pretenure),
69      FixedArray);
70}
71
72
73Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
74                                                   PretenureFlag pretenure) {
75  DCHECK(0 <= size);
76  CALL_HEAP_FUNCTION(
77      isolate(),
78      isolate()->heap()->AllocateFixedArrayWithFiller(size,
79                                                      pretenure,
80                                                      *the_hole_value()),
81      FixedArray);
82}
83
84
85Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
86  CALL_HEAP_FUNCTION(
87      isolate(),
88      isolate()->heap()->AllocateUninitializedFixedArray(size),
89      FixedArray);
90}
91
92
93Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
94                                                    PretenureFlag pretenure) {
95  DCHECK(0 <= size);
96  CALL_HEAP_FUNCTION(
97      isolate(),
98      isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
99      FixedArrayBase);
100}
101
102
103Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
104    int size,
105    PretenureFlag pretenure) {
106  DCHECK(0 <= size);
107  Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
108  if (size > 0) {
109    Handle<FixedDoubleArray> double_array =
110        Handle<FixedDoubleArray>::cast(array);
111    for (int i = 0; i < size; ++i) {
112      double_array->set_the_hole(i);
113    }
114  }
115  return array;
116}
117
118
119Handle<ConstantPoolArray> Factory::NewConstantPoolArray(
120    const ConstantPoolArray::NumberOfEntries& small) {
121  DCHECK(small.total_count() > 0);
122  CALL_HEAP_FUNCTION(
123      isolate(),
124      isolate()->heap()->AllocateConstantPoolArray(small),
125      ConstantPoolArray);
126}
127
128
129Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray(
130    const ConstantPoolArray::NumberOfEntries& small,
131    const ConstantPoolArray::NumberOfEntries& extended) {
132  DCHECK(small.total_count() > 0);
133  DCHECK(extended.total_count() > 0);
134  CALL_HEAP_FUNCTION(
135      isolate(),
136      isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended),
137      ConstantPoolArray);
138}
139
140
141Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
142  return OrderedHashSet::Allocate(isolate(), 4);
143}
144
145
146Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
147  return OrderedHashMap::Allocate(isolate(), 4);
148}
149
150
151Handle<AccessorPair> Factory::NewAccessorPair() {
152  Handle<AccessorPair> accessors =
153      Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
154  accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
155  accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
156  return accessors;
157}
158
159
160Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
161  Handle<TypeFeedbackInfo> info =
162      Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
163  info->initialize_storage();
164  return info;
165}
166
167
168// Internalized strings are created in the old generation (data space).
169Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
170  Utf8StringKey key(string, isolate()->heap()->HashSeed());
171  return InternalizeStringWithKey(&key);
172}
173
174
175// Internalized strings are created in the old generation (data space).
176Handle<String> Factory::InternalizeString(Handle<String> string) {
177  if (string->IsInternalizedString()) return string;
178  return StringTable::LookupString(isolate(), string);
179}
180
181
182Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
183  OneByteStringKey key(string, isolate()->heap()->HashSeed());
184  return InternalizeStringWithKey(&key);
185}
186
187
188Handle<String> Factory::InternalizeOneByteString(
189    Handle<SeqOneByteString> string, int from, int length) {
190  SeqOneByteSubStringKey key(string, from, length);
191  return InternalizeStringWithKey(&key);
192}
193
194
195Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
196  TwoByteStringKey key(string, isolate()->heap()->HashSeed());
197  return InternalizeStringWithKey(&key);
198}
199
200
201template<class StringTableKey>
202Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
203  return StringTable::LookupKey(isolate(), key);
204}
205
206
207MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
208                                                  PretenureFlag pretenure) {
209  int length = string.length();
210  if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
211  Handle<SeqOneByteString> result;
212  ASSIGN_RETURN_ON_EXCEPTION(
213      isolate(),
214      result,
215      NewRawOneByteString(string.length(), pretenure),
216      String);
217
218  DisallowHeapAllocation no_gc;
219  // Copy the characters into the new object.
220  CopyChars(SeqOneByteString::cast(*result)->GetChars(),
221            string.start(),
222            length);
223  return result;
224}
225
226MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
227                                               PretenureFlag pretenure) {
228  // Check for ASCII first since this is the common case.
229  const char* start = string.start();
230  int length = string.length();
231  int non_ascii_start = String::NonAsciiStart(start, length);
232  if (non_ascii_start >= length) {
233    // If the string is ASCII, we do not need to convert the characters
234    // since UTF8 is backwards compatible with ASCII.
235    return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
236  }
237
238  // Non-ASCII and we need to decode.
239  Access<UnicodeCache::Utf8Decoder>
240      decoder(isolate()->unicode_cache()->utf8_decoder());
241  decoder->Reset(string.start() + non_ascii_start,
242                 length - non_ascii_start);
243  int utf16_length = decoder->Utf16Length();
244  DCHECK(utf16_length > 0);
245  // Allocate string.
246  Handle<SeqTwoByteString> result;
247  ASSIGN_RETURN_ON_EXCEPTION(
248      isolate(), result,
249      NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
250      String);
251  // Copy ASCII portion.
252  uint16_t* data = result->GetChars();
253  const char* ascii_data = string.start();
254  for (int i = 0; i < non_ascii_start; i++) {
255    *data++ = *ascii_data++;
256  }
257  // Now write the remainder.
258  decoder->WriteUtf16(data, utf16_length);
259  return result;
260}
261
262
263MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
264                                                  PretenureFlag pretenure) {
265  int length = string.length();
266  const uc16* start = string.start();
267  if (String::IsOneByte(start, length)) {
268    if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
269    Handle<SeqOneByteString> result;
270    ASSIGN_RETURN_ON_EXCEPTION(
271        isolate(),
272        result,
273        NewRawOneByteString(length, pretenure),
274        String);
275    CopyChars(result->GetChars(), start, length);
276    return result;
277  } else {
278    Handle<SeqTwoByteString> result;
279    ASSIGN_RETURN_ON_EXCEPTION(
280        isolate(),
281        result,
282        NewRawTwoByteString(length, pretenure),
283        String);
284    CopyChars(result->GetChars(), start, length);
285    return result;
286  }
287}
288
289
290Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
291                                                      int chars,
292                                                      uint32_t hash_field) {
293  CALL_HEAP_FUNCTION(
294      isolate(),
295      isolate()->heap()->AllocateInternalizedStringFromUtf8(
296          str, chars, hash_field),
297      String);
298}
299
300
301MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
302      Vector<const uint8_t> str,
303      uint32_t hash_field) {
304  CALL_HEAP_FUNCTION(
305      isolate(),
306      isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
307      String);
308}
309
310
311MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
312    Handle<SeqOneByteString> string, int offset, int length,
313    uint32_t hash_field) {
314  CALL_HEAP_FUNCTION(
315      isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
316                     Vector<const uint8_t>(string->GetChars() + offset, length),
317                     hash_field),
318      String);
319}
320
321
322MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
323      Vector<const uc16> str,
324      uint32_t hash_field) {
325  CALL_HEAP_FUNCTION(
326      isolate(),
327      isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
328      String);
329}
330
331
332Handle<String> Factory::NewInternalizedStringImpl(
333    Handle<String> string, int chars, uint32_t hash_field) {
334  CALL_HEAP_FUNCTION(
335      isolate(),
336      isolate()->heap()->AllocateInternalizedStringImpl(
337          *string, chars, hash_field),
338      String);
339}
340
341
342MaybeHandle<Map> Factory::InternalizedStringMapForString(
343    Handle<String> string) {
344  // If the string is in new space it cannot be used as internalized.
345  if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
346
347  // Find the corresponding internalized string map for strings.
348  switch (string->map()->instance_type()) {
349    case STRING_TYPE: return internalized_string_map();
350    case ONE_BYTE_STRING_TYPE:
351      return one_byte_internalized_string_map();
352    case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
353    case EXTERNAL_ONE_BYTE_STRING_TYPE:
354      return external_one_byte_internalized_string_map();
355    case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
356      return external_internalized_string_with_one_byte_data_map();
357    case SHORT_EXTERNAL_STRING_TYPE:
358      return short_external_internalized_string_map();
359    case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
360      return short_external_one_byte_internalized_string_map();
361    case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
362      return short_external_internalized_string_with_one_byte_data_map();
363    default: return MaybeHandle<Map>();  // No match found.
364  }
365}
366
367
368MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
369    int length, PretenureFlag pretenure) {
370  if (length > String::kMaxLength || length < 0) {
371    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
372  }
373  CALL_HEAP_FUNCTION(
374      isolate(),
375      isolate()->heap()->AllocateRawOneByteString(length, pretenure),
376      SeqOneByteString);
377}
378
379
380MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
381    int length, PretenureFlag pretenure) {
382  if (length > String::kMaxLength || length < 0) {
383    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
384  }
385  CALL_HEAP_FUNCTION(
386      isolate(),
387      isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
388      SeqTwoByteString);
389}
390
391
392Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
393  if (code <= String::kMaxOneByteCharCodeU) {
394    {
395      DisallowHeapAllocation no_allocation;
396      Object* value = single_character_string_cache()->get(code);
397      if (value != *undefined_value()) {
398        return handle(String::cast(value), isolate());
399      }
400    }
401    uint8_t buffer[1];
402    buffer[0] = static_cast<uint8_t>(code);
403    Handle<String> result =
404        InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
405    single_character_string_cache()->set(code, *result);
406    return result;
407  }
408  DCHECK(code <= String::kMaxUtf16CodeUnitU);
409
410  Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
411  result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
412  return result;
413}
414
415
416// Returns true for a character in a range.  Both limits are inclusive.
417static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
418  // This makes uses of the the unsigned wraparound.
419  return character - from <= to - from;
420}
421
422
423static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
424                                                          uint16_t c1,
425                                                          uint16_t c2) {
426  // Numeric strings have a different hash algorithm not known by
427  // LookupTwoCharsStringIfExists, so we skip this step for such strings.
428  if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
429    Handle<String> result;
430    if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
431        ToHandle(&result)) {
432      return result;
433    }
434  }
435
436  // Now we know the length is 2, we might as well make use of that fact
437  // when building the new string.
438  if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
439    // We can do this.
440    DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
441                                      1));  // because of this.
442    Handle<SeqOneByteString> str =
443        isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
444    uint8_t* dest = str->GetChars();
445    dest[0] = static_cast<uint8_t>(c1);
446    dest[1] = static_cast<uint8_t>(c2);
447    return str;
448  } else {
449    Handle<SeqTwoByteString> str =
450        isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
451    uc16* dest = str->GetChars();
452    dest[0] = c1;
453    dest[1] = c2;
454    return str;
455  }
456}
457
458
459template<typename SinkChar, typename StringType>
460Handle<String> ConcatStringContent(Handle<StringType> result,
461                                   Handle<String> first,
462                                   Handle<String> second) {
463  DisallowHeapAllocation pointer_stays_valid;
464  SinkChar* sink = result->GetChars();
465  String::WriteToFlat(*first, sink, 0, first->length());
466  String::WriteToFlat(*second, sink + first->length(), 0, second->length());
467  return result;
468}
469
470
471MaybeHandle<String> Factory::NewConsString(Handle<String> left,
472                                           Handle<String> right) {
473  int left_length = left->length();
474  if (left_length == 0) return right;
475  int right_length = right->length();
476  if (right_length == 0) return left;
477
478  int length = left_length + right_length;
479
480  if (length == 2) {
481    uint16_t c1 = left->Get(0);
482    uint16_t c2 = right->Get(0);
483    return MakeOrFindTwoCharacterString(isolate(), c1, c2);
484  }
485
486  // Make sure that an out of memory exception is thrown if the length
487  // of the new cons string is too large.
488  if (length > String::kMaxLength || length < 0) {
489    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
490  }
491
492  bool left_is_one_byte = left->IsOneByteRepresentation();
493  bool right_is_one_byte = right->IsOneByteRepresentation();
494  bool is_one_byte = left_is_one_byte && right_is_one_byte;
495  bool is_one_byte_data_in_two_byte_string = false;
496  if (!is_one_byte) {
497    // At least one of the strings uses two-byte representation so we
498    // can't use the fast case code for short one-byte strings below, but
499    // we can try to save memory if all chars actually fit in one-byte.
500    is_one_byte_data_in_two_byte_string =
501        left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
502    if (is_one_byte_data_in_two_byte_string) {
503      isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
504    }
505  }
506
507  // If the resulting string is small make a flat string.
508  if (length < ConsString::kMinLength) {
509    // Note that neither of the two inputs can be a slice because:
510    STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
511    DCHECK(left->IsFlat());
512    DCHECK(right->IsFlat());
513
514    STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
515    if (is_one_byte) {
516      Handle<SeqOneByteString> result =
517          NewRawOneByteString(length).ToHandleChecked();
518      DisallowHeapAllocation no_gc;
519      uint8_t* dest = result->GetChars();
520      // Copy left part.
521      const uint8_t* src =
522          left->IsExternalString()
523              ? Handle<ExternalOneByteString>::cast(left)->GetChars()
524              : Handle<SeqOneByteString>::cast(left)->GetChars();
525      for (int i = 0; i < left_length; i++) *dest++ = src[i];
526      // Copy right part.
527      src = right->IsExternalString()
528                ? Handle<ExternalOneByteString>::cast(right)->GetChars()
529                : Handle<SeqOneByteString>::cast(right)->GetChars();
530      for (int i = 0; i < right_length; i++) *dest++ = src[i];
531      return result;
532    }
533
534    return (is_one_byte_data_in_two_byte_string)
535        ? ConcatStringContent<uint8_t>(
536            NewRawOneByteString(length).ToHandleChecked(), left, right)
537        : ConcatStringContent<uc16>(
538            NewRawTwoByteString(length).ToHandleChecked(), left, right);
539  }
540
541  Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string)
542                        ? cons_one_byte_string_map()
543                        : cons_string_map();
544  Handle<ConsString> result =  New<ConsString>(map, NEW_SPACE);
545
546  DisallowHeapAllocation no_gc;
547  WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
548
549  result->set_hash_field(String::kEmptyHashField);
550  result->set_length(length);
551  result->set_first(*left, mode);
552  result->set_second(*right, mode);
553  return result;
554}
555
556
557Handle<String> Factory::NewProperSubString(Handle<String> str,
558                                           int begin,
559                                           int end) {
560#if VERIFY_HEAP
561  if (FLAG_verify_heap) str->StringVerify();
562#endif
563  DCHECK(begin > 0 || end < str->length());
564
565  str = String::Flatten(str);
566
567  int length = end - begin;
568  if (length <= 0) return empty_string();
569  if (length == 1) {
570    return LookupSingleCharacterStringFromCode(str->Get(begin));
571  }
572  if (length == 2) {
573    // Optimization for 2-byte strings often used as keys in a decompression
574    // dictionary.  Check whether we already have the string in the string
575    // table to prevent creation of many unnecessary strings.
576    uint16_t c1 = str->Get(begin);
577    uint16_t c2 = str->Get(begin + 1);
578    return MakeOrFindTwoCharacterString(isolate(), c1, c2);
579  }
580
581  if (!FLAG_string_slices || length < SlicedString::kMinLength) {
582    if (str->IsOneByteRepresentation()) {
583      Handle<SeqOneByteString> result =
584          NewRawOneByteString(length).ToHandleChecked();
585      uint8_t* dest = result->GetChars();
586      DisallowHeapAllocation no_gc;
587      String::WriteToFlat(*str, dest, begin, end);
588      return result;
589    } else {
590      Handle<SeqTwoByteString> result =
591          NewRawTwoByteString(length).ToHandleChecked();
592      uc16* dest = result->GetChars();
593      DisallowHeapAllocation no_gc;
594      String::WriteToFlat(*str, dest, begin, end);
595      return result;
596    }
597  }
598
599  int offset = begin;
600
601  if (str->IsSlicedString()) {
602    Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
603    str = Handle<String>(slice->parent(), isolate());
604    offset += slice->offset();
605  }
606
607  DCHECK(str->IsSeqString() || str->IsExternalString());
608  Handle<Map> map = str->IsOneByteRepresentation()
609                        ? sliced_one_byte_string_map()
610                        : sliced_string_map();
611  Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
612
613  slice->set_hash_field(String::kEmptyHashField);
614  slice->set_length(length);
615  slice->set_parent(*str);
616  slice->set_offset(offset);
617  return slice;
618}
619
620
621MaybeHandle<String> Factory::NewExternalStringFromOneByte(
622    const ExternalOneByteString::Resource* resource) {
623  size_t length = resource->length();
624  if (length > static_cast<size_t>(String::kMaxLength)) {
625    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
626  }
627
628  Handle<Map> map = external_one_byte_string_map();
629  Handle<ExternalOneByteString> external_string =
630      New<ExternalOneByteString>(map, NEW_SPACE);
631  external_string->set_length(static_cast<int>(length));
632  external_string->set_hash_field(String::kEmptyHashField);
633  external_string->set_resource(resource);
634
635  return external_string;
636}
637
638
639MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
640    const ExternalTwoByteString::Resource* resource) {
641  size_t length = resource->length();
642  if (length > static_cast<size_t>(String::kMaxLength)) {
643    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
644  }
645
646  // For small strings we check whether the resource contains only
647  // one byte characters.  If yes, we use a different string map.
648  static const size_t kOneByteCheckLengthLimit = 32;
649  bool is_one_byte = length <= kOneByteCheckLengthLimit &&
650      String::IsOneByte(resource->data(), static_cast<int>(length));
651  Handle<Map> map = is_one_byte ?
652      external_string_with_one_byte_data_map() : external_string_map();
653  Handle<ExternalTwoByteString> external_string =
654      New<ExternalTwoByteString>(map, NEW_SPACE);
655  external_string->set_length(static_cast<int>(length));
656  external_string->set_hash_field(String::kEmptyHashField);
657  external_string->set_resource(resource);
658
659  return external_string;
660}
661
662
663Handle<Symbol> Factory::NewSymbol() {
664  CALL_HEAP_FUNCTION(
665      isolate(),
666      isolate()->heap()->AllocateSymbol(),
667      Symbol);
668}
669
670
671Handle<Symbol> Factory::NewPrivateSymbol() {
672  Handle<Symbol> symbol = NewSymbol();
673  symbol->set_is_private(true);
674  return symbol;
675}
676
677
678Handle<Symbol> Factory::NewPrivateOwnSymbol() {
679  Handle<Symbol> symbol = NewSymbol();
680  symbol->set_is_private(true);
681  symbol->set_is_own(true);
682  return symbol;
683}
684
685
686Handle<Context> Factory::NewNativeContext() {
687  Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS);
688  array->set_map_no_write_barrier(*native_context_map());
689  Handle<Context> context = Handle<Context>::cast(array);
690  context->set_js_array_maps(*undefined_value());
691  DCHECK(context->IsNativeContext());
692  return context;
693}
694
695
696Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function,
697                                          Handle<ScopeInfo> scope_info) {
698  Handle<FixedArray> array =
699      NewFixedArray(scope_info->ContextLength(), TENURED);
700  array->set_map_no_write_barrier(*global_context_map());
701  Handle<Context> context = Handle<Context>::cast(array);
702  context->set_closure(*function);
703  context->set_previous(function->context());
704  context->set_extension(*scope_info);
705  context->set_global_object(function->context()->global_object());
706  DCHECK(context->IsGlobalContext());
707  return context;
708}
709
710
711Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
712  Handle<FixedArray> array =
713      NewFixedArray(scope_info->ContextLength(), TENURED);
714  array->set_map_no_write_barrier(*module_context_map());
715  // Instance link will be set later.
716  Handle<Context> context = Handle<Context>::cast(array);
717  context->set_extension(Smi::FromInt(0));
718  return context;
719}
720
721
722Handle<Context> Factory::NewFunctionContext(int length,
723                                            Handle<JSFunction> function) {
724  DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
725  Handle<FixedArray> array = NewFixedArray(length);
726  array->set_map_no_write_barrier(*function_context_map());
727  Handle<Context> context = Handle<Context>::cast(array);
728  context->set_closure(*function);
729  context->set_previous(function->context());
730  context->set_extension(Smi::FromInt(0));
731  context->set_global_object(function->context()->global_object());
732  return context;
733}
734
735
736Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
737                                         Handle<Context> previous,
738                                         Handle<String> name,
739                                         Handle<Object> thrown_object) {
740  STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
741  Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
742  array->set_map_no_write_barrier(*catch_context_map());
743  Handle<Context> context = Handle<Context>::cast(array);
744  context->set_closure(*function);
745  context->set_previous(*previous);
746  context->set_extension(*name);
747  context->set_global_object(previous->global_object());
748  context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
749  return context;
750}
751
752
753Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
754                                        Handle<Context> previous,
755                                        Handle<JSReceiver> extension) {
756  Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
757  array->set_map_no_write_barrier(*with_context_map());
758  Handle<Context> context = Handle<Context>::cast(array);
759  context->set_closure(*function);
760  context->set_previous(*previous);
761  context->set_extension(*extension);
762  context->set_global_object(previous->global_object());
763  return context;
764}
765
766
767Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
768                                         Handle<Context> previous,
769                                         Handle<ScopeInfo> scope_info) {
770  Handle<FixedArray> array =
771      NewFixedArrayWithHoles(scope_info->ContextLength());
772  array->set_map_no_write_barrier(*block_context_map());
773  Handle<Context> context = Handle<Context>::cast(array);
774  context->set_closure(*function);
775  context->set_previous(*previous);
776  context->set_extension(*scope_info);
777  context->set_global_object(previous->global_object());
778  return context;
779}
780
781
782Handle<Struct> Factory::NewStruct(InstanceType type) {
783  CALL_HEAP_FUNCTION(
784      isolate(),
785      isolate()->heap()->AllocateStruct(type),
786      Struct);
787}
788
789
790Handle<CodeCache> Factory::NewCodeCache() {
791  Handle<CodeCache> code_cache =
792      Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
793  code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
794  code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
795  return code_cache;
796}
797
798
799Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
800    int aliased_context_slot) {
801  Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
802      NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
803  entry->set_aliased_context_slot(aliased_context_slot);
804  return entry;
805}
806
807
808Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() {
809  return Handle<DeclaredAccessorDescriptor>::cast(
810      NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE));
811}
812
813
814Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() {
815  Handle<DeclaredAccessorInfo> info =
816      Handle<DeclaredAccessorInfo>::cast(
817          NewStruct(DECLARED_ACCESSOR_INFO_TYPE));
818  info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
819  return info;
820}
821
822
823Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
824  Handle<ExecutableAccessorInfo> info =
825      Handle<ExecutableAccessorInfo>::cast(
826          NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
827  info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
828  return info;
829}
830
831
832Handle<Script> Factory::NewScript(Handle<String> source) {
833  // Generate id for this script.
834  Heap* heap = isolate()->heap();
835  int id = heap->last_script_id()->value() + 1;
836  if (!Smi::IsValid(id) || id < 0) id = 1;
837  heap->set_last_script_id(Smi::FromInt(id));
838
839  // Create and initialize script object.
840  Handle<Foreign> wrapper = NewForeign(0, TENURED);
841  Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
842  script->set_source(*source);
843  script->set_name(heap->undefined_value());
844  script->set_id(Smi::FromInt(id));
845  script->set_line_offset(Smi::FromInt(0));
846  script->set_column_offset(Smi::FromInt(0));
847  script->set_context_data(heap->undefined_value());
848  script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
849  script->set_wrapper(*wrapper);
850  script->set_line_ends(heap->undefined_value());
851  script->set_eval_from_shared(heap->undefined_value());
852  script->set_eval_from_instructions_offset(Smi::FromInt(0));
853  script->set_flags(Smi::FromInt(0));
854
855  return script;
856}
857
858
859Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
860  CALL_HEAP_FUNCTION(isolate(),
861                     isolate()->heap()->AllocateForeign(addr, pretenure),
862                     Foreign);
863}
864
865
866Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
867  return NewForeign((Address) desc, TENURED);
868}
869
870
871Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
872  DCHECK(0 <= length);
873  CALL_HEAP_FUNCTION(
874      isolate(),
875      isolate()->heap()->AllocateByteArray(length, pretenure),
876      ByteArray);
877}
878
879
880Handle<ExternalArray> Factory::NewExternalArray(int length,
881                                                ExternalArrayType array_type,
882                                                void* external_pointer,
883                                                PretenureFlag pretenure) {
884  DCHECK(0 <= length && length <= Smi::kMaxValue);
885  CALL_HEAP_FUNCTION(
886      isolate(),
887      isolate()->heap()->AllocateExternalArray(length,
888                                               array_type,
889                                               external_pointer,
890                                               pretenure),
891      ExternalArray);
892}
893
894
895Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
896    int length,
897    ExternalArrayType array_type,
898    PretenureFlag pretenure) {
899  DCHECK(0 <= length && length <= Smi::kMaxValue);
900  CALL_HEAP_FUNCTION(
901      isolate(),
902      isolate()->heap()->AllocateFixedTypedArray(length,
903                                                 array_type,
904                                                 pretenure),
905      FixedTypedArrayBase);
906}
907
908
909Handle<Cell> Factory::NewCell(Handle<Object> value) {
910  AllowDeferredHandleDereference convert_to_cell;
911  CALL_HEAP_FUNCTION(
912      isolate(),
913      isolate()->heap()->AllocateCell(*value),
914      Cell);
915}
916
917
918Handle<PropertyCell> Factory::NewPropertyCellWithHole() {
919  CALL_HEAP_FUNCTION(
920      isolate(),
921      isolate()->heap()->AllocatePropertyCell(),
922      PropertyCell);
923}
924
925
926Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) {
927  AllowDeferredHandleDereference convert_to_cell;
928  Handle<PropertyCell> cell = NewPropertyCellWithHole();
929  PropertyCell::SetValueInferType(cell, value);
930  return cell;
931}
932
933
934Handle<AllocationSite> Factory::NewAllocationSite() {
935  Handle<Map> map = allocation_site_map();
936  Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE);
937  site->Initialize();
938
939  // Link the site
940  site->set_weak_next(isolate()->heap()->allocation_sites_list());
941  isolate()->heap()->set_allocation_sites_list(*site);
942  return site;
943}
944
945
946Handle<Map> Factory::NewMap(InstanceType type,
947                            int instance_size,
948                            ElementsKind elements_kind) {
949  CALL_HEAP_FUNCTION(
950      isolate(),
951      isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
952      Map);
953}
954
955
956Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
957  CALL_HEAP_FUNCTION(isolate(),
958                     isolate()->heap()->CopyJSObject(*object, NULL),
959                     JSObject);
960}
961
962
963Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
964    Handle<JSObject> object,
965    Handle<AllocationSite> site) {
966  CALL_HEAP_FUNCTION(isolate(),
967                     isolate()->heap()->CopyJSObject(
968                         *object,
969                         site.is_null() ? NULL : *site),
970                     JSObject);
971}
972
973
974Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
975                                                  Handle<Map> map) {
976  CALL_HEAP_FUNCTION(isolate(),
977                     isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
978                     FixedArray);
979}
980
981
982Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
983  CALL_HEAP_FUNCTION(isolate(),
984                     isolate()->heap()->CopyFixedArray(*array),
985                     FixedArray);
986}
987
988
989Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
990    Handle<FixedArray> array) {
991  DCHECK(isolate()->heap()->InNewSpace(*array));
992  CALL_HEAP_FUNCTION(isolate(),
993                     isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
994                     FixedArray);
995}
996
997
998Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
999    Handle<FixedDoubleArray> array) {
1000  CALL_HEAP_FUNCTION(isolate(),
1001                     isolate()->heap()->CopyFixedDoubleArray(*array),
1002                     FixedDoubleArray);
1003}
1004
1005
1006Handle<ConstantPoolArray> Factory::CopyConstantPoolArray(
1007    Handle<ConstantPoolArray> array) {
1008  CALL_HEAP_FUNCTION(isolate(),
1009                     isolate()->heap()->CopyConstantPoolArray(*array),
1010                     ConstantPoolArray);
1011}
1012
1013
1014Handle<Object> Factory::NewNumber(double value,
1015                                  PretenureFlag pretenure) {
1016  // We need to distinguish the minus zero value and this cannot be
1017  // done after conversion to int. Doing this by comparing bit
1018  // patterns is faster than using fpclassify() et al.
1019  if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
1020
1021  int int_value = FastD2I(value);
1022  if (value == int_value && Smi::IsValid(int_value)) {
1023    return handle(Smi::FromInt(int_value), isolate());
1024  }
1025
1026  // Materialize the value in the heap.
1027  return NewHeapNumber(value, IMMUTABLE, pretenure);
1028}
1029
1030
1031Handle<Object> Factory::NewNumberFromInt(int32_t value,
1032                                         PretenureFlag pretenure) {
1033  if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1034  // Bypass NewNumber to avoid various redundant checks.
1035  return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
1036}
1037
1038
1039Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1040                                          PretenureFlag pretenure) {
1041  int32_t int32v = static_cast<int32_t>(value);
1042  if (int32v >= 0 && Smi::IsValid(int32v)) {
1043    return handle(Smi::FromInt(int32v), isolate());
1044  }
1045  return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
1046}
1047
1048
1049Handle<HeapNumber> Factory::NewHeapNumber(double value,
1050                                          MutableMode mode,
1051                                          PretenureFlag pretenure) {
1052  CALL_HEAP_FUNCTION(
1053      isolate(),
1054      isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
1055      HeapNumber);
1056}
1057
1058
1059MaybeHandle<Object> Factory::NewTypeError(const char* message,
1060                                          Vector<Handle<Object> > args) {
1061  return NewError("MakeTypeError", message, args);
1062}
1063
1064
1065MaybeHandle<Object> Factory::NewTypeError(Handle<String> message) {
1066  return NewError("$TypeError", message);
1067}
1068
1069
1070MaybeHandle<Object> Factory::NewRangeError(const char* message,
1071                                           Vector<Handle<Object> > args) {
1072  return NewError("MakeRangeError", message, args);
1073}
1074
1075
1076MaybeHandle<Object> Factory::NewRangeError(Handle<String> message) {
1077  return NewError("$RangeError", message);
1078}
1079
1080
1081MaybeHandle<Object> Factory::NewSyntaxError(const char* message,
1082                                            Handle<JSArray> args) {
1083  return NewError("MakeSyntaxError", message, args);
1084}
1085
1086
1087MaybeHandle<Object> Factory::NewSyntaxError(Handle<String> message) {
1088  return NewError("$SyntaxError", message);
1089}
1090
1091
1092MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1093                                               Vector<Handle<Object> > args) {
1094  return NewError("MakeReferenceError", message, args);
1095}
1096
1097
1098MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1099                                               Handle<JSArray> args) {
1100  return NewError("MakeReferenceError", message, args);
1101}
1102
1103
1104MaybeHandle<Object> Factory::NewReferenceError(Handle<String> message) {
1105  return NewError("$ReferenceError", message);
1106}
1107
1108
1109MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1110                                      Vector<Handle<Object> > args) {
1111  // Instantiate a closeable HandleScope for EscapeFrom.
1112  v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate()));
1113  Handle<FixedArray> array = NewFixedArray(args.length());
1114  for (int i = 0; i < args.length(); i++) {
1115    array->set(i, *args[i]);
1116  }
1117  Handle<JSArray> object = NewJSArrayWithElements(array);
1118  Handle<Object> result;
1119  ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
1120                             NewError(maker, message, object), Object);
1121  return result.EscapeFrom(&scope);
1122}
1123
1124
1125MaybeHandle<Object> Factory::NewEvalError(const char* message,
1126                                          Vector<Handle<Object> > args) {
1127  return NewError("MakeEvalError", message, args);
1128}
1129
1130
1131MaybeHandle<Object> Factory::NewError(const char* message,
1132                                      Vector<Handle<Object> > args) {
1133  return NewError("MakeError", message, args);
1134}
1135
1136
1137Handle<String> Factory::EmergencyNewError(const char* message,
1138                                          Handle<JSArray> args) {
1139  const int kBufferSize = 1000;
1140  char buffer[kBufferSize];
1141  size_t space = kBufferSize;
1142  char* p = &buffer[0];
1143
1144  Vector<char> v(buffer, kBufferSize);
1145  StrNCpy(v, message, space);
1146  space -= Min(space, strlen(message));
1147  p = &buffer[kBufferSize] - space;
1148
1149  for (int i = 0; i < Smi::cast(args->length())->value(); i++) {
1150    if (space > 0) {
1151      *p++ = ' ';
1152      space--;
1153      if (space > 0) {
1154        Handle<String> arg_str = Handle<String>::cast(
1155            Object::GetElement(isolate(), args, i).ToHandleChecked());
1156        SmartArrayPointer<char> arg = arg_str->ToCString();
1157        Vector<char> v2(p, static_cast<int>(space));
1158        StrNCpy(v2, arg.get(), space);
1159        space -= Min(space, strlen(arg.get()));
1160        p = &buffer[kBufferSize] - space;
1161      }
1162    }
1163  }
1164  if (space > 0) {
1165    *p = '\0';
1166  } else {
1167    buffer[kBufferSize - 1] = '\0';
1168  }
1169  return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1170}
1171
1172
1173MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1174                                      Handle<JSArray> args) {
1175  Handle<String> make_str = InternalizeUtf8String(maker);
1176  Handle<Object> fun_obj = Object::GetProperty(
1177      isolate()->js_builtins_object(), make_str).ToHandleChecked();
1178  // If the builtins haven't been properly configured yet this error
1179  // constructor may not have been defined.  Bail out.
1180  if (!fun_obj->IsJSFunction()) {
1181    return EmergencyNewError(message, args);
1182  }
1183  Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1184  Handle<Object> message_obj = InternalizeUtf8String(message);
1185  Handle<Object> argv[] = { message_obj, args };
1186
1187  // Invoke the JavaScript factory method. If an exception is thrown while
1188  // running the factory method, use the exception as the result.
1189  Handle<Object> result;
1190  MaybeHandle<Object> exception;
1191  if (!Execution::TryCall(fun,
1192                          isolate()->js_builtins_object(),
1193                          arraysize(argv),
1194                          argv,
1195                          &exception).ToHandle(&result)) {
1196    return exception;
1197  }
1198  return result;
1199}
1200
1201
1202MaybeHandle<Object> Factory::NewError(Handle<String> message) {
1203  return NewError("$Error", message);
1204}
1205
1206
1207MaybeHandle<Object> Factory::NewError(const char* constructor,
1208                                      Handle<String> message) {
1209  Handle<String> constr = InternalizeUtf8String(constructor);
1210  Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1211      isolate()->js_builtins_object(), constr).ToHandleChecked());
1212  Handle<Object> argv[] = { message };
1213
1214  // Invoke the JavaScript factory method. If an exception is thrown while
1215  // running the factory method, use the exception as the result.
1216  Handle<Object> result;
1217  MaybeHandle<Object> exception;
1218  if (!Execution::TryCall(fun,
1219                          isolate()->js_builtins_object(),
1220                          arraysize(argv),
1221                          argv,
1222                          &exception).ToHandle(&result)) {
1223    return exception;
1224  }
1225  return result;
1226}
1227
1228
1229void Factory::InitializeFunction(Handle<JSFunction> function,
1230                                 Handle<SharedFunctionInfo> info,
1231                                 Handle<Context> context) {
1232  function->initialize_properties();
1233  function->initialize_elements();
1234  function->set_shared(*info);
1235  function->set_code(info->code());
1236  function->set_context(*context);
1237  function->set_prototype_or_initial_map(*the_hole_value());
1238  function->set_literals_or_bindings(*empty_fixed_array());
1239  function->set_next_function_link(*undefined_value());
1240}
1241
1242
1243Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1244                                        Handle<SharedFunctionInfo> info,
1245                                        Handle<Context> context,
1246                                        PretenureFlag pretenure) {
1247  AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE;
1248  Handle<JSFunction> result = New<JSFunction>(map, space);
1249  InitializeFunction(result, info, context);
1250  return result;
1251}
1252
1253
1254Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1255                                        Handle<String> name,
1256                                        MaybeHandle<Code> code) {
1257  Handle<Context> context(isolate()->native_context());
1258  Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1259  DCHECK((info->strict_mode() == SLOPPY) &&
1260         (map.is_identical_to(isolate()->sloppy_function_map()) ||
1261          map.is_identical_to(
1262              isolate()->sloppy_function_without_prototype_map()) ||
1263          map.is_identical_to(
1264              isolate()->sloppy_function_with_readonly_prototype_map())));
1265  return NewFunction(map, info, context);
1266}
1267
1268
1269Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1270  return NewFunction(
1271      isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1272}
1273
1274
1275Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1276                                                        Handle<Code> code) {
1277  return NewFunction(
1278      isolate()->sloppy_function_without_prototype_map(), name, code);
1279}
1280
1281
1282Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1283                                        Handle<Code> code,
1284                                        Handle<Object> prototype,
1285                                        bool read_only_prototype) {
1286  Handle<Map> map = read_only_prototype
1287      ? isolate()->sloppy_function_with_readonly_prototype_map()
1288      : isolate()->sloppy_function_map();
1289  Handle<JSFunction> result = NewFunction(map, name, code);
1290  result->set_prototype_or_initial_map(*prototype);
1291  return result;
1292}
1293
1294
1295Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1296                                        Handle<Code> code,
1297                                        Handle<Object> prototype,
1298                                        InstanceType type,
1299                                        int instance_size,
1300                                        bool read_only_prototype) {
1301  // Allocate the function
1302  Handle<JSFunction> function = NewFunction(
1303      name, code, prototype, read_only_prototype);
1304
1305  Handle<Map> initial_map = NewMap(
1306      type, instance_size, GetInitialFastElementsKind());
1307  if (prototype->IsTheHole() && !function->shared()->is_generator()) {
1308    prototype = NewFunctionPrototype(function);
1309  }
1310
1311  JSFunction::SetInitialMap(function, initial_map,
1312                            Handle<JSReceiver>::cast(prototype));
1313
1314  return function;
1315}
1316
1317
1318Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1319                                        Handle<Code> code,
1320                                        InstanceType type,
1321                                        int instance_size) {
1322  return NewFunction(name, code, the_hole_value(), type, instance_size);
1323}
1324
1325
1326Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1327  // Make sure to use globals from the function's context, since the function
1328  // can be from a different context.
1329  Handle<Context> native_context(function->context()->native_context());
1330  Handle<Map> new_map;
1331  if (function->shared()->is_generator()) {
1332    // Generator prototypes can share maps since they don't have "constructor"
1333    // properties.
1334    new_map = handle(native_context->generator_object_prototype_map());
1335  } else {
1336    // Each function prototype gets a fresh map to avoid unwanted sharing of
1337    // maps between prototypes of different constructors.
1338    Handle<JSFunction> object_function(native_context->object_function());
1339    DCHECK(object_function->has_initial_map());
1340    new_map = handle(object_function->initial_map());
1341  }
1342
1343  DCHECK(!new_map->is_prototype_map());
1344  Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1345
1346  if (!function->shared()->is_generator()) {
1347    JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
1348  }
1349
1350  return prototype;
1351}
1352
1353
1354Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1355    Handle<SharedFunctionInfo> info,
1356    Handle<Context> context,
1357    PretenureFlag pretenure) {
1358  int map_index = Context::FunctionMapIndex(info->strict_mode(), info->kind());
1359  Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1360  Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1361
1362  if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1363    info->ResetForNewContext(isolate()->heap()->global_ic_age());
1364  }
1365
1366  int index = info->SearchOptimizedCodeMap(context->native_context(),
1367                                           BailoutId::None());
1368  if (!info->bound() && index < 0) {
1369    int number_of_literals = info->num_literals();
1370    Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1371    if (number_of_literals > 0) {
1372      // Store the native context in the literals array prefix. This
1373      // context will be used when creating object, regexp and array
1374      // literals in this function.
1375      literals->set(JSFunction::kLiteralNativeContextIndex,
1376                    context->native_context());
1377    }
1378    result->set_literals(*literals);
1379  }
1380
1381  if (index > 0) {
1382    // Caching of optimized code enabled and optimized code found.
1383    FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index);
1384    if (literals != NULL) result->set_literals(literals);
1385    Code* code = info->GetCodeFromOptimizedCodeMap(index);
1386    DCHECK(!code->marked_for_deoptimization());
1387    result->ReplaceCode(code);
1388    return result;
1389  }
1390
1391  if (isolate()->use_crankshaft() &&
1392      FLAG_always_opt &&
1393      result->is_compiled() &&
1394      !info->is_toplevel() &&
1395      info->allows_lazy_compilation() &&
1396      !info->optimization_disabled() &&
1397      !isolate()->DebuggerHasBreakPoints()) {
1398    result->MarkForOptimization();
1399  }
1400  return result;
1401}
1402
1403
1404Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1405  Handle<FixedArray> array = NewFixedArray(length, TENURED);
1406  array->set_map_no_write_barrier(*scope_info_map());
1407  Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1408  return scope_info;
1409}
1410
1411
1412Handle<JSObject> Factory::NewExternal(void* value) {
1413  Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1414  Handle<JSObject> external = NewJSObjectFromMap(external_map());
1415  external->SetInternalField(0, *foreign);
1416  return external;
1417}
1418
1419
1420Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1421  CALL_HEAP_FUNCTION(isolate(),
1422                     isolate()->heap()->AllocateCode(object_size, immovable),
1423                     Code);
1424}
1425
1426
1427Handle<Code> Factory::NewCode(const CodeDesc& desc,
1428                              Code::Flags flags,
1429                              Handle<Object> self_ref,
1430                              bool immovable,
1431                              bool crankshafted,
1432                              int prologue_offset,
1433                              bool is_debug) {
1434  Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1435  Handle<ConstantPoolArray> constant_pool =
1436      desc.origin->NewConstantPool(isolate());
1437
1438  // Compute size.
1439  int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1440  int obj_size = Code::SizeFor(body_size);
1441
1442  Handle<Code> code = NewCodeRaw(obj_size, immovable);
1443  DCHECK(isolate()->code_range() == NULL ||
1444         !isolate()->code_range()->valid() ||
1445         isolate()->code_range()->contains(code->address()));
1446
1447  // The code object has not been fully initialized yet.  We rely on the
1448  // fact that no allocation will happen from this point on.
1449  DisallowHeapAllocation no_gc;
1450  code->set_gc_metadata(Smi::FromInt(0));
1451  code->set_ic_age(isolate()->heap()->global_ic_age());
1452  code->set_instruction_size(desc.instr_size);
1453  code->set_relocation_info(*reloc_info);
1454  code->set_flags(flags);
1455  code->set_raw_kind_specific_flags1(0);
1456  code->set_raw_kind_specific_flags2(0);
1457  code->set_is_crankshafted(crankshafted);
1458  code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1459  code->set_raw_type_feedback_info(Smi::FromInt(0));
1460  code->set_next_code_link(*undefined_value());
1461  code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1462  code->set_prologue_offset(prologue_offset);
1463  if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1464    code->set_marked_for_deoptimization(false);
1465  }
1466
1467  if (is_debug) {
1468    DCHECK(code->kind() == Code::FUNCTION);
1469    code->set_has_debug_break_slots(true);
1470  }
1471
1472  desc.origin->PopulateConstantPool(*constant_pool);
1473  code->set_constant_pool(*constant_pool);
1474
1475  // Allow self references to created code object by patching the handle to
1476  // point to the newly allocated Code object.
1477  if (!self_ref.is_null()) *(self_ref.location()) = *code;
1478
1479  // Migrate generated code.
1480  // The generated code can contain Object** values (typically from handles)
1481  // that are dereferenced during the copy to point directly to the actual heap
1482  // objects. These pointers can include references to the code object itself,
1483  // through the self_reference parameter.
1484  code->CopyFrom(desc);
1485
1486#ifdef VERIFY_HEAP
1487  if (FLAG_verify_heap) code->ObjectVerify();
1488#endif
1489  return code;
1490}
1491
1492
1493Handle<Code> Factory::CopyCode(Handle<Code> code) {
1494  CALL_HEAP_FUNCTION(isolate(),
1495                     isolate()->heap()->CopyCode(*code),
1496                     Code);
1497}
1498
1499
1500Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1501  CALL_HEAP_FUNCTION(isolate(),
1502                     isolate()->heap()->CopyCode(*code, reloc_info),
1503                     Code);
1504}
1505
1506
1507Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1508                                      PretenureFlag pretenure) {
1509  JSFunction::EnsureHasInitialMap(constructor);
1510  CALL_HEAP_FUNCTION(
1511      isolate(),
1512      isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1513}
1514
1515
1516Handle<JSObject> Factory::NewJSObjectWithMemento(
1517    Handle<JSFunction> constructor,
1518    Handle<AllocationSite> site) {
1519  JSFunction::EnsureHasInitialMap(constructor);
1520  CALL_HEAP_FUNCTION(
1521      isolate(),
1522      isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1523      JSObject);
1524}
1525
1526
1527Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1528                                      Handle<ScopeInfo> scope_info) {
1529  // Allocate a fresh map. Modules do not have a prototype.
1530  Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1531  // Allocate the object based on the map.
1532  Handle<JSModule> module =
1533      Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1534  module->set_context(*context);
1535  module->set_scope_info(*scope_info);
1536  return module;
1537}
1538
1539
1540Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1541  DCHECK(constructor->has_initial_map());
1542  Handle<Map> map(constructor->initial_map());
1543  DCHECK(map->is_dictionary_map());
1544
1545  // Make sure no field properties are described in the initial map.
1546  // This guarantees us that normalizing the properties does not
1547  // require us to change property values to PropertyCells.
1548  DCHECK(map->NextFreePropertyIndex() == 0);
1549
1550  // Make sure we don't have a ton of pre-allocated slots in the
1551  // global objects. They will be unused once we normalize the object.
1552  DCHECK(map->unused_property_fields() == 0);
1553  DCHECK(map->inobject_properties() == 0);
1554
1555  // Initial size of the backing store to avoid resize of the storage during
1556  // bootstrapping. The size differs between the JS global object ad the
1557  // builtins object.
1558  int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1559
1560  // Allocate a dictionary object for backing storage.
1561  int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1562  Handle<NameDictionary> dictionary =
1563      NameDictionary::New(isolate(), at_least_space_for);
1564
1565  // The global object might be created from an object template with accessors.
1566  // Fill these accessors into the dictionary.
1567  Handle<DescriptorArray> descs(map->instance_descriptors());
1568  for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1569    PropertyDetails details = descs->GetDetails(i);
1570    DCHECK(details.type() == CALLBACKS);  // Only accessors are expected.
1571    PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
1572    Handle<Name> name(descs->GetKey(i));
1573    Handle<Object> value(descs->GetCallbacksObject(i), isolate());
1574    Handle<PropertyCell> cell = NewPropertyCell(value);
1575    // |dictionary| already contains enough space for all properties.
1576    USE(NameDictionary::Add(dictionary, name, cell, d));
1577  }
1578
1579  // Allocate the global object and initialize it with the backing store.
1580  Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE);
1581  isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1582
1583  // Create a new map for the global object.
1584  Handle<Map> new_map = Map::CopyDropDescriptors(map);
1585  new_map->set_dictionary_map(true);
1586
1587  // Set up the global object as a normalized object.
1588  global->set_map(*new_map);
1589  global->set_properties(*dictionary);
1590
1591  // Make sure result is a global object with properties in dictionary.
1592  DCHECK(global->IsGlobalObject() && !global->HasFastProperties());
1593  return global;
1594}
1595
1596
1597Handle<JSObject> Factory::NewJSObjectFromMap(
1598    Handle<Map> map,
1599    PretenureFlag pretenure,
1600    bool alloc_props,
1601    Handle<AllocationSite> allocation_site) {
1602  CALL_HEAP_FUNCTION(
1603      isolate(),
1604      isolate()->heap()->AllocateJSObjectFromMap(
1605          *map,
1606          pretenure,
1607          alloc_props,
1608          allocation_site.is_null() ? NULL : *allocation_site),
1609      JSObject);
1610}
1611
1612
1613Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1614                                    PretenureFlag pretenure) {
1615  Context* native_context = isolate()->context()->native_context();
1616  JSFunction* array_function = native_context->array_function();
1617  Map* map = array_function->initial_map();
1618  Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
1619  if (transition_map != NULL) map = transition_map;
1620  return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1621}
1622
1623
1624Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1625                                    int length,
1626                                    int capacity,
1627                                    ArrayStorageAllocationMode mode,
1628                                    PretenureFlag pretenure) {
1629  Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1630  NewJSArrayStorage(array, length, capacity, mode);
1631  return array;
1632}
1633
1634
1635Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1636                                                ElementsKind elements_kind,
1637                                                int length,
1638                                                PretenureFlag pretenure) {
1639  DCHECK(length <= elements->length());
1640  Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1641
1642  array->set_elements(*elements);
1643  array->set_length(Smi::FromInt(length));
1644  JSObject::ValidateElements(array);
1645  return array;
1646}
1647
1648
1649void Factory::NewJSArrayStorage(Handle<JSArray> array,
1650                                int length,
1651                                int capacity,
1652                                ArrayStorageAllocationMode mode) {
1653  DCHECK(capacity >= length);
1654
1655  if (capacity == 0) {
1656    array->set_length(Smi::FromInt(0));
1657    array->set_elements(*empty_fixed_array());
1658    return;
1659  }
1660
1661  Handle<FixedArrayBase> elms;
1662  ElementsKind elements_kind = array->GetElementsKind();
1663  if (IsFastDoubleElementsKind(elements_kind)) {
1664    if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1665      elms = NewFixedDoubleArray(capacity);
1666    } else {
1667      DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1668      elms = NewFixedDoubleArrayWithHoles(capacity);
1669    }
1670  } else {
1671    DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
1672    if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1673      elms = NewUninitializedFixedArray(capacity);
1674    } else {
1675      DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1676      elms = NewFixedArrayWithHoles(capacity);
1677    }
1678  }
1679
1680  array->set_elements(*elms);
1681  array->set_length(Smi::FromInt(length));
1682}
1683
1684
1685Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1686    Handle<JSFunction> function) {
1687  DCHECK(function->shared()->is_generator());
1688  JSFunction::EnsureHasInitialMap(function);
1689  Handle<Map> map(function->initial_map());
1690  DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1691  CALL_HEAP_FUNCTION(
1692      isolate(),
1693      isolate()->heap()->AllocateJSObjectFromMap(*map),
1694      JSGeneratorObject);
1695}
1696
1697
1698Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() {
1699  Handle<JSFunction> array_buffer_fun(
1700      isolate()->native_context()->array_buffer_fun());
1701  CALL_HEAP_FUNCTION(
1702      isolate(),
1703      isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1704      JSArrayBuffer);
1705}
1706
1707
1708Handle<JSDataView> Factory::NewJSDataView() {
1709  Handle<JSFunction> data_view_fun(
1710      isolate()->native_context()->data_view_fun());
1711  CALL_HEAP_FUNCTION(
1712      isolate(),
1713      isolate()->heap()->AllocateJSObject(*data_view_fun),
1714      JSDataView);
1715}
1716
1717
1718static JSFunction* GetTypedArrayFun(ExternalArrayType type,
1719                                    Isolate* isolate) {
1720  Context* native_context = isolate->context()->native_context();
1721  switch (type) {
1722#define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
1723    case kExternal##Type##Array:                                              \
1724      return native_context->type##_array_fun();
1725
1726    TYPED_ARRAYS(TYPED_ARRAY_FUN)
1727#undef TYPED_ARRAY_FUN
1728
1729    default:
1730      UNREACHABLE();
1731      return NULL;
1732  }
1733}
1734
1735
1736Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1737  Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1738
1739  CALL_HEAP_FUNCTION(
1740      isolate(),
1741      isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1742      JSTypedArray);
1743}
1744
1745
1746Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
1747                                    Handle<Object> prototype) {
1748  // Allocate map.
1749  // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1750  // maps. Will probably depend on the identity of the handler object, too.
1751  Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
1752  map->set_prototype(*prototype);
1753
1754  // Allocate the proxy object.
1755  Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
1756  result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1757  result->set_handler(*handler);
1758  result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1759  return result;
1760}
1761
1762
1763Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
1764                                            Handle<Object> call_trap,
1765                                            Handle<Object> construct_trap,
1766                                            Handle<Object> prototype) {
1767  // Allocate map.
1768  // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1769  // maps. Will probably depend on the identity of the handler object, too.
1770  Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
1771  map->set_prototype(*prototype);
1772
1773  // Allocate the proxy object.
1774  Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
1775  result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1776  result->set_handler(*handler);
1777  result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1778  result->set_call_trap(*call_trap);
1779  result->set_construct_trap(*construct_trap);
1780  return result;
1781}
1782
1783
1784void Factory::ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type,
1785                                  int size) {
1786  DCHECK(type == JS_OBJECT_TYPE || type == JS_FUNCTION_TYPE);
1787
1788  // Allocate fresh map.
1789  // TODO(rossberg): Once we optimize proxies, cache these maps.
1790  Handle<Map> map = NewMap(type, size);
1791
1792  // Check that the receiver has at least the size of the fresh object.
1793  int size_difference = proxy->map()->instance_size() - map->instance_size();
1794  DCHECK(size_difference >= 0);
1795
1796  map->set_prototype(proxy->map()->prototype());
1797
1798  // Allocate the backing storage for the properties.
1799  int prop_size = map->InitialPropertiesLength();
1800  Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1801
1802  Heap* heap = isolate()->heap();
1803  MaybeHandle<SharedFunctionInfo> shared;
1804  if (type == JS_FUNCTION_TYPE) {
1805    OneByteStringKey key(STATIC_CHAR_VECTOR("<freezing call trap>"),
1806                         heap->HashSeed());
1807    Handle<String> name = InternalizeStringWithKey(&key);
1808    shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
1809  }
1810
1811  // In order to keep heap in consistent state there must be no allocations
1812  // before object re-initialization is finished and filler object is installed.
1813  DisallowHeapAllocation no_allocation;
1814
1815  // Put in filler if the new object is smaller than the old.
1816  if (size_difference > 0) {
1817    Address address = proxy->address();
1818    heap->CreateFillerObjectAt(address + map->instance_size(), size_difference);
1819    heap->AdjustLiveBytes(address, -size_difference, Heap::FROM_MUTATOR);
1820  }
1821
1822  // Reset the map for the object.
1823  proxy->synchronized_set_map(*map);
1824  Handle<JSObject> jsobj = Handle<JSObject>::cast(proxy);
1825
1826  // Reinitialize the object from the constructor map.
1827  heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
1828
1829  // The current native context is used to set up certain bits.
1830  // TODO(adamk): Using the current context seems wrong, it should be whatever
1831  // context the JSProxy originated in. But that context isn't stored anywhere.
1832  Handle<Context> context(isolate()->native_context());
1833
1834  // Functions require some minimal initialization.
1835  if (type == JS_FUNCTION_TYPE) {
1836    map->set_function_with_prototype(true);
1837    Handle<JSFunction> js_function = Handle<JSFunction>::cast(proxy);
1838    InitializeFunction(js_function, shared.ToHandleChecked(), context);
1839  } else {
1840    // Provide JSObjects with a constructor.
1841    map->set_constructor(context->object_function());
1842  }
1843}
1844
1845
1846void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
1847                                        Handle<JSFunction> constructor) {
1848  DCHECK(constructor->has_initial_map());
1849  Handle<Map> map(constructor->initial_map(), isolate());
1850
1851  // The proxy's hash should be retained across reinitialization.
1852  Handle<Object> hash(object->hash(), isolate());
1853
1854  // Check that the already allocated object has the same size and type as
1855  // objects allocated using the constructor.
1856  DCHECK(map->instance_size() == object->map()->instance_size());
1857  DCHECK(map->instance_type() == object->map()->instance_type());
1858
1859  // Allocate the backing storage for the properties.
1860  int prop_size = map->InitialPropertiesLength();
1861  Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1862
1863  // In order to keep heap in consistent state there must be no allocations
1864  // before object re-initialization is finished.
1865  DisallowHeapAllocation no_allocation;
1866
1867  // Reset the map for the object.
1868  object->synchronized_set_map(*map);
1869
1870  Heap* heap = isolate()->heap();
1871  // Reinitialize the object from the constructor map.
1872  heap->InitializeJSObjectFromMap(*object, *properties, *map);
1873
1874  // Restore the saved hash.
1875  object->set_hash(*hash);
1876}
1877
1878
1879void Factory::BecomeJSObject(Handle<JSProxy> proxy) {
1880  ReinitializeJSProxy(proxy, JS_OBJECT_TYPE, JSObject::kHeaderSize);
1881}
1882
1883
1884void Factory::BecomeJSFunction(Handle<JSProxy> proxy) {
1885  ReinitializeJSProxy(proxy, JS_FUNCTION_TYPE, JSFunction::kSize);
1886}
1887
1888
1889Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(int slot_count) {
1890  // Ensure we can skip the write barrier
1891  DCHECK_EQ(isolate()->heap()->uninitialized_symbol(),
1892            *TypeFeedbackVector::UninitializedSentinel(isolate()));
1893
1894  if (slot_count == 0) {
1895    return Handle<TypeFeedbackVector>::cast(empty_fixed_array());
1896  }
1897
1898  CALL_HEAP_FUNCTION(isolate(),
1899                     isolate()->heap()->AllocateFixedArrayWithFiller(
1900                         slot_count, TENURED,
1901                         *TypeFeedbackVector::UninitializedSentinel(isolate())),
1902                     TypeFeedbackVector);
1903}
1904
1905
1906Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1907    Handle<String> name, int number_of_literals, FunctionKind kind,
1908    Handle<Code> code, Handle<ScopeInfo> scope_info,
1909    Handle<TypeFeedbackVector> feedback_vector) {
1910  DCHECK(IsValidFunctionKind(kind));
1911  Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
1912  shared->set_scope_info(*scope_info);
1913  shared->set_feedback_vector(*feedback_vector);
1914  shared->set_kind(kind);
1915  int literals_array_size = number_of_literals;
1916  // If the function contains object, regexp or array literals,
1917  // allocate extra space for a literals array prefix containing the
1918  // context.
1919  if (number_of_literals > 0) {
1920    literals_array_size += JSFunction::kLiteralsPrefixSize;
1921  }
1922  shared->set_num_literals(literals_array_size);
1923  if (IsGeneratorFunction(kind)) {
1924    shared->set_instance_class_name(isolate()->heap()->Generator_string());
1925    shared->DisableOptimization(kGenerator);
1926  }
1927  return shared;
1928}
1929
1930
1931Handle<JSMessageObject> Factory::NewJSMessageObject(
1932    Handle<String> type,
1933    Handle<JSArray> arguments,
1934    int start_position,
1935    int end_position,
1936    Handle<Object> script,
1937    Handle<Object> stack_frames) {
1938  Handle<Map> map = message_object_map();
1939  Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE);
1940  message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1941  message->initialize_elements();
1942  message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1943  message->set_type(*type);
1944  message->set_arguments(*arguments);
1945  message->set_start_position(start_position);
1946  message->set_end_position(end_position);
1947  message->set_script(*script);
1948  message->set_stack_frames(*stack_frames);
1949  return message;
1950}
1951
1952
1953Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1954    Handle<String> name,
1955    MaybeHandle<Code> maybe_code) {
1956  Handle<Map> map = shared_function_info_map();
1957  Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map,
1958                                                             OLD_POINTER_SPACE);
1959
1960  // Set pointer fields.
1961  share->set_name(*name);
1962  Handle<Code> code;
1963  if (!maybe_code.ToHandle(&code)) {
1964    code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
1965  }
1966  share->set_code(*code);
1967  share->set_optimized_code_map(Smi::FromInt(0));
1968  share->set_scope_info(ScopeInfo::Empty(isolate()));
1969  Code* construct_stub =
1970      isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
1971  share->set_construct_stub(construct_stub);
1972  share->set_instance_class_name(*Object_string());
1973  share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
1974  share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
1975  share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
1976  share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
1977  Handle<TypeFeedbackVector> feedback_vector = NewTypeFeedbackVector(0);
1978  share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER);
1979  share->set_profiler_ticks(0);
1980  share->set_ast_node_count(0);
1981  share->set_counters(0);
1982
1983  // Set integer fields (smi or int, depending on the architecture).
1984  share->set_length(0);
1985  share->set_formal_parameter_count(0);
1986  share->set_expected_nof_properties(0);
1987  share->set_num_literals(0);
1988  share->set_start_position_and_type(0);
1989  share->set_end_position(0);
1990  share->set_function_token_position(0);
1991  // All compiler hints default to false or 0.
1992  share->set_compiler_hints(0);
1993  share->set_opt_count_and_bailout_reason(0);
1994
1995  return share;
1996}
1997
1998
1999static inline int NumberCacheHash(Handle<FixedArray> cache,
2000                                  Handle<Object> number) {
2001  int mask = (cache->length() >> 1) - 1;
2002  if (number->IsSmi()) {
2003    return Handle<Smi>::cast(number)->value() & mask;
2004  } else {
2005    DoubleRepresentation rep(number->Number());
2006    return
2007        (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2008  }
2009}
2010
2011
2012Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2013  DisallowHeapAllocation no_gc;
2014  int hash = NumberCacheHash(number_string_cache(), number);
2015  Object* key = number_string_cache()->get(hash * 2);
2016  if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2017                         key->Number() == number->Number())) {
2018    return Handle<String>(
2019        String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2020  }
2021  return undefined_value();
2022}
2023
2024
2025void Factory::SetNumberStringCache(Handle<Object> number,
2026                                   Handle<String> string) {
2027  int hash = NumberCacheHash(number_string_cache(), number);
2028  if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2029    int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2030    if (number_string_cache()->length() != full_size) {
2031      // The first time we have a hash collision, we move to the full sized
2032      // number string cache.  The idea is to have a small number string
2033      // cache in the snapshot to keep  boot-time memory usage down.
2034      // If we expand the number string cache already while creating
2035      // the snapshot then that didn't work out.
2036      DCHECK(!isolate()->serializer_enabled() || FLAG_extra_code != NULL);
2037      Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2038      isolate()->heap()->set_number_string_cache(*new_cache);
2039      return;
2040    }
2041  }
2042  number_string_cache()->set(hash * 2, *number);
2043  number_string_cache()->set(hash * 2 + 1, *string);
2044}
2045
2046
2047Handle<String> Factory::NumberToString(Handle<Object> number,
2048                                       bool check_number_string_cache) {
2049  isolate()->counters()->number_to_string_runtime()->Increment();
2050  if (check_number_string_cache) {
2051    Handle<Object> cached = GetNumberStringCache(number);
2052    if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2053  }
2054
2055  char arr[100];
2056  Vector<char> buffer(arr, arraysize(arr));
2057  const char* str;
2058  if (number->IsSmi()) {
2059    int num = Handle<Smi>::cast(number)->value();
2060    str = IntToCString(num, buffer);
2061  } else {
2062    double num = Handle<HeapNumber>::cast(number)->value();
2063    str = DoubleToCString(num, buffer);
2064  }
2065
2066  // We tenure the allocated string since it is referenced from the
2067  // number-string cache which lives in the old space.
2068  Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2069  SetNumberStringCache(number, js_string);
2070  return js_string;
2071}
2072
2073
2074Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2075  // Get the original code of the function.
2076  Handle<Code> code(shared->code());
2077
2078  // Create a copy of the code before allocating the debug info object to avoid
2079  // allocation while setting up the debug info object.
2080  Handle<Code> original_code(*Factory::CopyCode(code));
2081
2082  // Allocate initial fixed array for active break points before allocating the
2083  // debug info object to avoid allocation while setting up the debug info
2084  // object.
2085  Handle<FixedArray> break_points(
2086      NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2087
2088  // Create and set up the debug info object. Debug info contains function, a
2089  // copy of the original code, the executing code and initial fixed array for
2090  // active break points.
2091  Handle<DebugInfo> debug_info =
2092      Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2093  debug_info->set_shared(*shared);
2094  debug_info->set_original_code(*original_code);
2095  debug_info->set_code(*code);
2096  debug_info->set_break_points(*break_points);
2097
2098  // Link debug info to function.
2099  shared->set_debug_info(*debug_info);
2100
2101  return debug_info;
2102}
2103
2104
2105Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
2106                                             int length) {
2107  bool strict_mode_callee = callee->shared()->strict_mode() == STRICT;
2108  Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
2109                                       : isolate()->sloppy_arguments_map();
2110
2111  AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
2112                                     false);
2113  DCHECK(!isolate()->has_pending_exception());
2114  Handle<JSObject> result = NewJSObjectFromMap(map);
2115  Handle<Smi> value(Smi::FromInt(length), isolate());
2116  Object::SetProperty(result, length_string(), value, STRICT).Assert();
2117  if (!strict_mode_callee) {
2118    Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
2119  }
2120  return result;
2121}
2122
2123
2124Handle<JSFunction> Factory::CreateApiFunction(
2125    Handle<FunctionTemplateInfo> obj,
2126    Handle<Object> prototype,
2127    ApiInstanceType instance_type) {
2128  Handle<Code> code = isolate()->builtins()->HandleApiCall();
2129  Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi();
2130
2131  Handle<JSFunction> result;
2132  if (obj->remove_prototype()) {
2133    result = NewFunctionWithoutPrototype(empty_string(), code);
2134  } else {
2135    int internal_field_count = 0;
2136    if (!obj->instance_template()->IsUndefined()) {
2137      Handle<ObjectTemplateInfo> instance_template =
2138          Handle<ObjectTemplateInfo>(
2139              ObjectTemplateInfo::cast(obj->instance_template()));
2140      internal_field_count =
2141          Smi::cast(instance_template->internal_field_count())->value();
2142    }
2143
2144    // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing
2145    // JSObject::GetHeaderSize.
2146    int instance_size = kPointerSize * internal_field_count;
2147    InstanceType type;
2148    switch (instance_type) {
2149      case JavaScriptObjectType:
2150        type = JS_OBJECT_TYPE;
2151        instance_size += JSObject::kHeaderSize;
2152        break;
2153      case GlobalObjectType:
2154        type = JS_GLOBAL_OBJECT_TYPE;
2155        instance_size += JSGlobalObject::kSize;
2156        break;
2157      case GlobalProxyType:
2158        type = JS_GLOBAL_PROXY_TYPE;
2159        instance_size += JSGlobalProxy::kSize;
2160        break;
2161      default:
2162        UNREACHABLE();
2163        type = JS_OBJECT_TYPE;  // Keep the compiler happy.
2164        break;
2165    }
2166
2167    result = NewFunction(empty_string(), code, prototype, type,
2168                         instance_size, obj->read_only_prototype());
2169  }
2170
2171  result->shared()->set_length(obj->length());
2172  Handle<Object> class_name(obj->class_name(), isolate());
2173  if (class_name->IsString()) {
2174    result->shared()->set_instance_class_name(*class_name);
2175    result->shared()->set_name(*class_name);
2176  }
2177  result->shared()->set_function_data(*obj);
2178  result->shared()->set_construct_stub(*construct_stub);
2179  result->shared()->DontAdaptArguments();
2180
2181  if (obj->remove_prototype()) {
2182    DCHECK(result->shared()->IsApiFunction());
2183    DCHECK(!result->has_initial_map());
2184    DCHECK(!result->has_prototype());
2185    return result;
2186  }
2187
2188  if (prototype->IsTheHole()) {
2189#ifdef DEBUG
2190    LookupIterator it(handle(JSObject::cast(result->prototype())),
2191                      constructor_string(),
2192                      LookupIterator::OWN_SKIP_INTERCEPTOR);
2193    MaybeHandle<Object> maybe_prop = Object::GetProperty(&it);
2194    DCHECK(it.IsFound());
2195    DCHECK(maybe_prop.ToHandleChecked().is_identical_to(result));
2196#endif
2197  } else {
2198    JSObject::AddProperty(handle(JSObject::cast(result->prototype())),
2199                          constructor_string(), result, DONT_ENUM);
2200  }
2201
2202  // Down from here is only valid for API functions that can be used as a
2203  // constructor (don't set the "remove prototype" flag).
2204
2205  Handle<Map> map(result->initial_map());
2206
2207  // Mark as undetectable if needed.
2208  if (obj->undetectable()) {
2209    map->set_is_undetectable();
2210  }
2211
2212  // Mark as hidden for the __proto__ accessor if needed.
2213  if (obj->hidden_prototype()) {
2214    map->set_is_hidden_prototype();
2215  }
2216
2217  // Mark as needs_access_check if needed.
2218  if (obj->needs_access_check()) {
2219    map->set_is_access_check_needed(true);
2220  }
2221
2222  // Set interceptor information in the map.
2223  if (!obj->named_property_handler()->IsUndefined()) {
2224    map->set_has_named_interceptor();
2225  }
2226  if (!obj->indexed_property_handler()->IsUndefined()) {
2227    map->set_has_indexed_interceptor();
2228  }
2229
2230  // Set instance call-as-function information in the map.
2231  if (!obj->instance_call_handler()->IsUndefined()) {
2232    map->set_has_instance_call_handler();
2233  }
2234
2235  // Recursively copy parent instance templates' accessors,
2236  // 'data' may be modified.
2237  int max_number_of_additional_properties = 0;
2238  int max_number_of_static_properties = 0;
2239  FunctionTemplateInfo* info = *obj;
2240  while (true) {
2241    if (!info->instance_template()->IsUndefined()) {
2242      Object* props =
2243          ObjectTemplateInfo::cast(
2244              info->instance_template())->property_accessors();
2245      if (!props->IsUndefined()) {
2246        Handle<Object> props_handle(props, isolate());
2247        NeanderArray props_array(props_handle);
2248        max_number_of_additional_properties += props_array.length();
2249      }
2250    }
2251    if (!info->property_accessors()->IsUndefined()) {
2252      Object* props = info->property_accessors();
2253      if (!props->IsUndefined()) {
2254        Handle<Object> props_handle(props, isolate());
2255        NeanderArray props_array(props_handle);
2256        max_number_of_static_properties += props_array.length();
2257      }
2258    }
2259    Object* parent = info->parent_template();
2260    if (parent->IsUndefined()) break;
2261    info = FunctionTemplateInfo::cast(parent);
2262  }
2263
2264  Map::EnsureDescriptorSlack(map, max_number_of_additional_properties);
2265
2266  // Use a temporary FixedArray to acculumate static accessors
2267  int valid_descriptors = 0;
2268  Handle<FixedArray> array;
2269  if (max_number_of_static_properties > 0) {
2270    array = NewFixedArray(max_number_of_static_properties);
2271  }
2272
2273  while (true) {
2274    // Install instance descriptors
2275    if (!obj->instance_template()->IsUndefined()) {
2276      Handle<ObjectTemplateInfo> instance =
2277          Handle<ObjectTemplateInfo>(
2278              ObjectTemplateInfo::cast(obj->instance_template()), isolate());
2279      Handle<Object> props = Handle<Object>(instance->property_accessors(),
2280                                            isolate());
2281      if (!props->IsUndefined()) {
2282        Map::AppendCallbackDescriptors(map, props);
2283      }
2284    }
2285    // Accumulate static accessors
2286    if (!obj->property_accessors()->IsUndefined()) {
2287      Handle<Object> props = Handle<Object>(obj->property_accessors(),
2288                                            isolate());
2289      valid_descriptors =
2290          AccessorInfo::AppendUnique(props, array, valid_descriptors);
2291    }
2292    // Climb parent chain
2293    Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate());
2294    if (parent->IsUndefined()) break;
2295    obj = Handle<FunctionTemplateInfo>::cast(parent);
2296  }
2297
2298  // Install accumulated static accessors
2299  for (int i = 0; i < valid_descriptors; i++) {
2300    Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i)));
2301    JSObject::SetAccessor(result, accessor).Assert();
2302  }
2303
2304  DCHECK(result->shared()->IsApiFunction());
2305  return result;
2306}
2307
2308
2309Handle<MapCache> Factory::AddToMapCache(Handle<Context> context,
2310                                        Handle<FixedArray> keys,
2311                                        Handle<Map> map) {
2312  Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache()));
2313  Handle<MapCache> result = MapCache::Put(map_cache, keys, map);
2314  context->set_map_cache(*result);
2315  return result;
2316}
2317
2318
2319Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2320                                               Handle<FixedArray> keys) {
2321  if (context->map_cache()->IsUndefined()) {
2322    // Allocate the new map cache for the native context.
2323    Handle<MapCache> new_cache = MapCache::New(isolate(), 24);
2324    context->set_map_cache(*new_cache);
2325  }
2326  // Check to see whether there is a matching element in the cache.
2327  Handle<MapCache> cache =
2328      Handle<MapCache>(MapCache::cast(context->map_cache()));
2329  Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate());
2330  if (result->IsMap()) return Handle<Map>::cast(result);
2331  int length = keys->length();
2332  // Create a new map and add it to the cache. Reuse the initial map of the
2333  // Object function if the literal has no predeclared properties.
2334  Handle<Map> map = length == 0
2335                        ? handle(context->object_function()->initial_map())
2336                        : Map::Create(isolate(), length);
2337  AddToMapCache(context, keys, map);
2338  return map;
2339}
2340
2341
2342void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2343                                JSRegExp::Type type,
2344                                Handle<String> source,
2345                                JSRegExp::Flags flags,
2346                                Handle<Object> data) {
2347  Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2348
2349  store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2350  store->set(JSRegExp::kSourceIndex, *source);
2351  store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2352  store->set(JSRegExp::kAtomPatternIndex, *data);
2353  regexp->set_data(*store);
2354}
2355
2356void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2357                                    JSRegExp::Type type,
2358                                    Handle<String> source,
2359                                    JSRegExp::Flags flags,
2360                                    int capture_count) {
2361  Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2362  Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2363  store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2364  store->set(JSRegExp::kSourceIndex, *source);
2365  store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2366  store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
2367  store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2368  store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
2369  store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2370  store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2371  store->set(JSRegExp::kIrregexpCaptureCountIndex,
2372             Smi::FromInt(capture_count));
2373  regexp->set_data(*store);
2374}
2375
2376
2377
2378MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance(
2379    Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) {
2380  // Configure the instance by adding the properties specified by the
2381  // instance template.
2382  Handle<Object> instance_template(desc->instance_template(), isolate());
2383  if (!instance_template->IsUndefined()) {
2384      RETURN_ON_EXCEPTION(
2385          isolate(),
2386          Execution::ConfigureInstance(isolate(), instance, instance_template),
2387          FunctionTemplateInfo);
2388  }
2389  return desc;
2390}
2391
2392
2393Handle<Object> Factory::GlobalConstantFor(Handle<String> name) {
2394  if (String::Equals(name, undefined_string())) return undefined_value();
2395  if (String::Equals(name, nan_string())) return nan_value();
2396  if (String::Equals(name, infinity_string())) return infinity_value();
2397  return Handle<Object>::null();
2398}
2399
2400
2401Handle<Object> Factory::ToBoolean(bool value) {
2402  return value ? true_value() : false_value();
2403}
2404
2405
2406} }  // namespace v8::internal
2407