1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_FACTORY_H_
6#define V8_FACTORY_H_
7
8#include "src/isolate.h"
9
10namespace v8 {
11namespace internal {
12
13// Interface for handle based allocation.
14
15class Factory FINAL {
16 public:
17  Handle<Oddball> NewOddball(Handle<Map> map,
18                             const char* to_string,
19                             Handle<Object> to_number,
20                             byte kind);
21
22  // Allocates a fixed array initialized with undefined values.
23  Handle<FixedArray> NewFixedArray(
24      int size,
25      PretenureFlag pretenure = NOT_TENURED);
26
27  // Allocate a new fixed array with non-existing entries (the hole).
28  Handle<FixedArray> NewFixedArrayWithHoles(
29      int size,
30      PretenureFlag pretenure = NOT_TENURED);
31
32  // Allocates an uninitialized fixed array. It must be filled by the caller.
33  Handle<FixedArray> NewUninitializedFixedArray(int size);
34
35  // Allocate a new uninitialized fixed double array.
36  // The function returns a pre-allocated empty fixed array for capacity = 0,
37  // so the return type must be the general fixed array class.
38  Handle<FixedArrayBase> NewFixedDoubleArray(
39      int size,
40      PretenureFlag pretenure = NOT_TENURED);
41
42  // Allocate a new fixed double array with hole values.
43  Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
44      int size,
45      PretenureFlag pretenure = NOT_TENURED);
46
47  Handle<ConstantPoolArray> NewConstantPoolArray(
48      const ConstantPoolArray::NumberOfEntries& small);
49
50  Handle<ConstantPoolArray> NewExtendedConstantPoolArray(
51      const ConstantPoolArray::NumberOfEntries& small,
52      const ConstantPoolArray::NumberOfEntries& extended);
53
54  Handle<OrderedHashSet> NewOrderedHashSet();
55  Handle<OrderedHashMap> NewOrderedHashMap();
56
57  // Create a new boxed value.
58  Handle<Box> NewBox(Handle<Object> value);
59
60  // Create a pre-tenured empty AccessorPair.
61  Handle<AccessorPair> NewAccessorPair();
62
63  // Create an empty TypeFeedbackInfo.
64  Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
65
66  // Finds the internalized copy for string in the string table.
67  // If not found, a new string is added to the table and returned.
68  Handle<String> InternalizeUtf8String(Vector<const char> str);
69  Handle<String> InternalizeUtf8String(const char* str) {
70    return InternalizeUtf8String(CStrVector(str));
71  }
72  Handle<String> InternalizeString(Handle<String> str);
73  Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
74  Handle<String> InternalizeOneByteString(
75      Handle<SeqOneByteString>, int from, int length);
76
77  Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
78
79  template<class StringTableKey>
80  Handle<String> InternalizeStringWithKey(StringTableKey* key);
81
82
83  // String creation functions.  Most of the string creation functions take
84  // a Heap::PretenureFlag argument to optionally request that they be
85  // allocated in the old generation.  The pretenure flag defaults to
86  // DONT_TENURE.
87  //
88  // Creates a new String object.  There are two String encodings: one-byte and
89  // two-byte.  One should choose between the three string factory functions
90  // based on the encoding of the string buffer that the string is
91  // initialized from.
92  //   - ...FromOneByte initializes the string from a buffer that is Latin1
93  //     encoded (it does not check that the buffer is Latin1 encoded) and
94  //     the result will be Latin1 encoded.
95  //   - ...FromUtf8 initializes the string from a buffer that is UTF-8
96  //     encoded.  If the characters are all ASCII characters, the result
97  //     will be Latin1 encoded, otherwise it will converted to two-byte.
98  //   - ...FromTwoByte initializes the string from a buffer that is two-byte
99  //     encoded.  If the characters are all Latin1 characters, the result
100  //     will be converted to Latin1, otherwise it will be left as two-byte.
101  //
102  // One-byte strings are pretenured when used as keys in the SourceCodeCache.
103  MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
104      Vector<const uint8_t> str,
105      PretenureFlag pretenure = NOT_TENURED);
106
107  template <size_t N>
108  inline Handle<String> NewStringFromStaticChars(
109      const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
110    DCHECK(N == StrLength(str) + 1);
111    return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
112        .ToHandleChecked();
113  }
114
115  inline Handle<String> NewStringFromAsciiChecked(
116      const char* str,
117      PretenureFlag pretenure = NOT_TENURED) {
118    return NewStringFromOneByte(
119        OneByteVector(str), pretenure).ToHandleChecked();
120  }
121
122
123  // Allocates and fully initializes a String.  There are two String encodings:
124  // one-byte and two-byte. One should choose between the threestring
125  // allocation functions based on the encoding of the string buffer used to
126  // initialized the string.
127  //   - ...FromOneByte initializes the string from a buffer that is Latin1
128  //     encoded (it does not check that the buffer is Latin1 encoded) and the
129  //     result will be Latin1 encoded.
130  //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
131  //     encoded.  If the characters are all ASCII characters, the result
132  //     will be Latin1 encoded, otherwise it will converted to two-byte.
133  //   - ...FromTwoByte initializes the string from a buffer that is two-byte
134  //     encoded.  If the characters are all Latin1 characters, the
135  //     result will be converted to Latin1, otherwise it will be left as
136  //     two-byte.
137
138  // TODO(dcarney): remove this function.
139  MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
140      Vector<const char> str,
141      PretenureFlag pretenure = NOT_TENURED) {
142    return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
143  }
144
145  // UTF8 strings are pretenured when used for regexp literal patterns and
146  // flags in the parser.
147  MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
148      Vector<const char> str,
149      PretenureFlag pretenure = NOT_TENURED);
150
151  MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
152      Vector<const uc16> str,
153      PretenureFlag pretenure = NOT_TENURED);
154
155  // Allocates an internalized string in old space based on the character
156  // stream.
157  MUST_USE_RESULT Handle<String> NewInternalizedStringFromUtf8(
158      Vector<const char> str,
159      int chars,
160      uint32_t hash_field);
161
162  MUST_USE_RESULT Handle<String> NewOneByteInternalizedString(
163      Vector<const uint8_t> str, uint32_t hash_field);
164
165  MUST_USE_RESULT Handle<String> NewOneByteInternalizedSubString(
166      Handle<SeqOneByteString> string, int offset, int length,
167      uint32_t hash_field);
168
169  MUST_USE_RESULT Handle<String> NewTwoByteInternalizedString(
170        Vector<const uc16> str,
171        uint32_t hash_field);
172
173  MUST_USE_RESULT Handle<String> NewInternalizedStringImpl(
174      Handle<String> string, int chars, uint32_t hash_field);
175
176  // Compute the matching internalized string map for a string if possible.
177  // Empty handle is returned if string is in new space or not flattened.
178  MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
179      Handle<String> string);
180
181  // Allocates and partially initializes an one-byte or two-byte String. The
182  // characters of the string are uninitialized. Currently used in regexp code
183  // only, where they are pretenured.
184  MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
185      int length,
186      PretenureFlag pretenure = NOT_TENURED);
187  MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
188      int length,
189      PretenureFlag pretenure = NOT_TENURED);
190
191  // Creates a single character string where the character has given code.
192  // A cache is used for Latin1 codes.
193  Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
194
195  // Create a new cons string object which consists of a pair of strings.
196  MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
197                                                    Handle<String> right);
198
199  // Create a new string object which holds a proper substring of a string.
200  Handle<String> NewProperSubString(Handle<String> str,
201                                    int begin,
202                                    int end);
203
204  // Create a new string object which holds a substring of a string.
205  Handle<String> NewSubString(Handle<String> str, int begin, int end) {
206    if (begin == 0 && end == str->length()) return str;
207    return NewProperSubString(str, begin, end);
208  }
209
210  // Creates a new external String object.  There are two String encodings
211  // in the system: one-byte and two-byte.  Unlike other String types, it does
212  // not make sense to have a UTF-8 factory function for external strings,
213  // because we cannot change the underlying buffer.  Note that these strings
214  // are backed by a string resource that resides outside the V8 heap.
215  MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
216      const ExternalOneByteString::Resource* resource);
217  MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
218      const ExternalTwoByteString::Resource* resource);
219
220  // Create a symbol.
221  Handle<Symbol> NewSymbol();
222  Handle<Symbol> NewPrivateSymbol();
223  Handle<Symbol> NewPrivateOwnSymbol();
224
225  // Create a global (but otherwise uninitialized) context.
226  Handle<Context> NewNativeContext();
227
228  // Create a global context.
229  Handle<Context> NewGlobalContext(Handle<JSFunction> function,
230                                   Handle<ScopeInfo> scope_info);
231
232  // Create a module context.
233  Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info);
234
235  // Create a function context.
236  Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function);
237
238  // Create a catch context.
239  Handle<Context> NewCatchContext(Handle<JSFunction> function,
240                                  Handle<Context> previous,
241                                  Handle<String> name,
242                                  Handle<Object> thrown_object);
243
244  // Create a 'with' context.
245  Handle<Context> NewWithContext(Handle<JSFunction> function,
246                                 Handle<Context> previous,
247                                 Handle<JSReceiver> extension);
248
249  // Create a block context.
250  Handle<Context> NewBlockContext(Handle<JSFunction> function,
251                                  Handle<Context> previous,
252                                  Handle<ScopeInfo> scope_info);
253
254  // Allocate a new struct.  The struct is pretenured (allocated directly in
255  // the old generation).
256  Handle<Struct> NewStruct(InstanceType type);
257
258  Handle<CodeCache> NewCodeCache();
259
260  Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
261      int aliased_context_slot);
262
263  Handle<DeclaredAccessorDescriptor> NewDeclaredAccessorDescriptor();
264
265  Handle<DeclaredAccessorInfo> NewDeclaredAccessorInfo();
266
267  Handle<ExecutableAccessorInfo> NewExecutableAccessorInfo();
268
269  Handle<Script> NewScript(Handle<String> source);
270
271  // Foreign objects are pretenured when allocated by the bootstrapper.
272  Handle<Foreign> NewForeign(Address addr,
273                             PretenureFlag pretenure = NOT_TENURED);
274
275  // Allocate a new foreign object.  The foreign is pretenured (allocated
276  // directly in the old generation).
277  Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
278
279  Handle<ByteArray> NewByteArray(int length,
280                                 PretenureFlag pretenure = NOT_TENURED);
281
282  Handle<ExternalArray> NewExternalArray(
283      int length,
284      ExternalArrayType array_type,
285      void* external_pointer,
286      PretenureFlag pretenure = NOT_TENURED);
287
288  Handle<FixedTypedArrayBase> NewFixedTypedArray(
289      int length,
290      ExternalArrayType array_type,
291      PretenureFlag pretenure = NOT_TENURED);
292
293  Handle<Cell> NewCell(Handle<Object> value);
294
295  Handle<PropertyCell> NewPropertyCellWithHole();
296
297  Handle<PropertyCell> NewPropertyCell(Handle<Object> value);
298
299  // Allocate a tenured AllocationSite. It's payload is null.
300  Handle<AllocationSite> NewAllocationSite();
301
302  Handle<Map> NewMap(
303      InstanceType type,
304      int instance_size,
305      ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
306
307  Handle<HeapObject> NewFillerObject(int size,
308                                     bool double_align,
309                                     AllocationSpace space);
310
311  Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
312
313  Handle<JSObject> CopyJSObject(Handle<JSObject> object);
314
315  Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
316                                                  Handle<AllocationSite> site);
317
318  Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
319                                           Handle<Map> map);
320
321  Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
322
323  // This method expects a COW array in new space, and creates a copy
324  // of it in old space.
325  Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
326
327  Handle<FixedDoubleArray> CopyFixedDoubleArray(
328      Handle<FixedDoubleArray> array);
329
330  Handle<ConstantPoolArray> CopyConstantPoolArray(
331      Handle<ConstantPoolArray> array);
332
333  // Numbers (e.g. literals) are pretenured by the parser.
334  // The return value may be a smi or a heap number.
335  Handle<Object> NewNumber(double value,
336                           PretenureFlag pretenure = NOT_TENURED);
337
338  Handle<Object> NewNumberFromInt(int32_t value,
339                                  PretenureFlag pretenure = NOT_TENURED);
340  Handle<Object> NewNumberFromUint(uint32_t value,
341                                  PretenureFlag pretenure = NOT_TENURED);
342  Handle<Object> NewNumberFromSize(size_t value,
343                                   PretenureFlag pretenure = NOT_TENURED) {
344    if (Smi::IsValid(static_cast<intptr_t>(value))) {
345      return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
346                            isolate());
347    }
348    return NewNumber(static_cast<double>(value), pretenure);
349  }
350  Handle<HeapNumber> NewHeapNumber(double value,
351                                   MutableMode mode = IMMUTABLE,
352                                   PretenureFlag pretenure = NOT_TENURED);
353
354  // These objects are used by the api to create env-independent data
355  // structures in the heap.
356  inline Handle<JSObject> NewNeanderObject() {
357    return NewJSObjectFromMap(neander_map());
358  }
359
360  Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
361
362  // JS objects are pretenured when allocated by the bootstrapper and
363  // runtime.
364  Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
365                               PretenureFlag pretenure = NOT_TENURED);
366  // JSObject that should have a memento pointing to the allocation site.
367  Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor,
368                                          Handle<AllocationSite> site);
369
370  // Global objects are pretenured and initialized based on a constructor.
371  Handle<GlobalObject> NewGlobalObject(Handle<JSFunction> constructor);
372
373  // JS objects are pretenured when allocated by the bootstrapper and
374  // runtime.
375  Handle<JSObject> NewJSObjectFromMap(
376      Handle<Map> map,
377      PretenureFlag pretenure = NOT_TENURED,
378      bool allocate_properties = true,
379      Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
380
381  // JS modules are pretenured.
382  Handle<JSModule> NewJSModule(Handle<Context> context,
383                               Handle<ScopeInfo> scope_info);
384
385  // JS arrays are pretenured when allocated by the parser.
386
387  // Create a JSArray with no elements.
388  Handle<JSArray> NewJSArray(
389      ElementsKind elements_kind,
390      PretenureFlag pretenure = NOT_TENURED);
391
392  // Create a JSArray with a specified length and elements initialized
393  // according to the specified mode.
394  Handle<JSArray> NewJSArray(
395      ElementsKind elements_kind, int length, int capacity,
396      ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
397      PretenureFlag pretenure = NOT_TENURED);
398
399  Handle<JSArray> NewJSArray(
400      int capacity,
401      ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
402      PretenureFlag pretenure = NOT_TENURED) {
403    if (capacity != 0) {
404      elements_kind = GetHoleyElementsKind(elements_kind);
405    }
406    return NewJSArray(elements_kind, 0, capacity,
407                      INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
408  }
409
410  // Create a JSArray with the given elements.
411  Handle<JSArray> NewJSArrayWithElements(
412      Handle<FixedArrayBase> elements,
413      ElementsKind elements_kind,
414      int length,
415      PretenureFlag pretenure = NOT_TENURED);
416
417  Handle<JSArray> NewJSArrayWithElements(
418      Handle<FixedArrayBase> elements,
419      ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
420      PretenureFlag pretenure = NOT_TENURED) {
421    return NewJSArrayWithElements(
422        elements, elements_kind, elements->length(), pretenure);
423  }
424
425  void NewJSArrayStorage(
426      Handle<JSArray> array,
427      int length,
428      int capacity,
429      ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
430
431  Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
432
433  Handle<JSArrayBuffer> NewJSArrayBuffer();
434
435  Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type);
436
437  Handle<JSDataView> NewJSDataView();
438
439  // Allocates a Harmony proxy.
440  Handle<JSProxy> NewJSProxy(Handle<Object> handler, Handle<Object> prototype);
441
442  // Allocates a Harmony function proxy.
443  Handle<JSProxy> NewJSFunctionProxy(Handle<Object> handler,
444                                     Handle<Object> call_trap,
445                                     Handle<Object> construct_trap,
446                                     Handle<Object> prototype);
447
448  // Reinitialize an JSGlobalProxy based on a constructor.  The object
449  // must have the same size as objects allocated using the
450  // constructor.  The object is reinitialized and behaves as an
451  // object that has been freshly allocated using the constructor.
452  void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
453                                 Handle<JSFunction> constructor);
454
455  // Change the type of the argument into a JS object/function and reinitialize.
456  void BecomeJSObject(Handle<JSProxy> object);
457  void BecomeJSFunction(Handle<JSProxy> object);
458
459  Handle<JSFunction> NewFunction(Handle<String> name,
460                                 Handle<Code> code,
461                                 Handle<Object> prototype,
462                                 bool read_only_prototype = false);
463  Handle<JSFunction> NewFunction(Handle<String> name);
464  Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
465                                                 Handle<Code> code);
466
467  Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
468      Handle<SharedFunctionInfo> function_info,
469      Handle<Context> context,
470      PretenureFlag pretenure = TENURED);
471
472  Handle<JSFunction> NewFunction(Handle<String> name,
473                                 Handle<Code> code,
474                                 Handle<Object> prototype,
475                                 InstanceType type,
476                                 int instance_size,
477                                 bool read_only_prototype = false);
478  Handle<JSFunction> NewFunction(Handle<String> name,
479                                 Handle<Code> code,
480                                 InstanceType type,
481                                 int instance_size);
482
483  // Create a serialized scope info.
484  Handle<ScopeInfo> NewScopeInfo(int length);
485
486  // Create an External object for V8's external API.
487  Handle<JSObject> NewExternal(void* value);
488
489  // The reference to the Code object is stored in self_reference.
490  // This allows generated code to reference its own Code object
491  // by containing this handle.
492  Handle<Code> NewCode(const CodeDesc& desc,
493                       Code::Flags flags,
494                       Handle<Object> self_reference,
495                       bool immovable = false,
496                       bool crankshafted = false,
497                       int prologue_offset = Code::kPrologueOffsetNotSet,
498                       bool is_debug = false);
499
500  Handle<Code> CopyCode(Handle<Code> code);
501
502  Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info);
503
504  // Interface for creating error objects.
505
506  MaybeHandle<Object> NewError(const char* maker, const char* message,
507                               Handle<JSArray> args);
508  Handle<String> EmergencyNewError(const char* message, Handle<JSArray> args);
509  MaybeHandle<Object> NewError(const char* maker, const char* message,
510                               Vector<Handle<Object> > args);
511  MaybeHandle<Object> NewError(const char* message,
512                               Vector<Handle<Object> > args);
513  MaybeHandle<Object> NewError(Handle<String> message);
514  MaybeHandle<Object> NewError(const char* constructor, Handle<String> message);
515
516  MaybeHandle<Object> NewTypeError(const char* message,
517                                   Vector<Handle<Object> > args);
518  MaybeHandle<Object> NewTypeError(Handle<String> message);
519
520  MaybeHandle<Object> NewRangeError(const char* message,
521                                    Vector<Handle<Object> > args);
522  MaybeHandle<Object> NewRangeError(Handle<String> message);
523
524  MaybeHandle<Object> NewInvalidStringLengthError() {
525    return NewRangeError("invalid_string_length",
526                         HandleVector<Object>(NULL, 0));
527  }
528
529  MaybeHandle<Object> NewSyntaxError(const char* message, Handle<JSArray> args);
530  MaybeHandle<Object> NewSyntaxError(Handle<String> message);
531
532  MaybeHandle<Object> NewReferenceError(const char* message,
533                                        Vector<Handle<Object> > args);
534  MaybeHandle<Object> NewReferenceError(const char* message,
535                                        Handle<JSArray> args);
536  MaybeHandle<Object> NewReferenceError(Handle<String> message);
537
538  MaybeHandle<Object> NewEvalError(const char* message,
539                                   Vector<Handle<Object> > args);
540
541  Handle<String> NumberToString(Handle<Object> number,
542                                bool check_number_string_cache = true);
543
544  Handle<String> Uint32ToString(uint32_t value) {
545    return NumberToString(NewNumberFromUint(value));
546  }
547
548  enum ApiInstanceType {
549    JavaScriptObjectType,
550    GlobalObjectType,
551    GlobalProxyType
552  };
553
554  Handle<JSFunction> CreateApiFunction(
555      Handle<FunctionTemplateInfo> data,
556      Handle<Object> prototype,
557      ApiInstanceType type = JavaScriptObjectType);
558
559  Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
560
561  // Installs interceptors on the instance.  'desc' is a function template,
562  // and instance is an object instance created by the function of this
563  // function template.
564  MUST_USE_RESULT MaybeHandle<FunctionTemplateInfo> ConfigureInstance(
565      Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance);
566
567#define ROOT_ACCESSOR(type, name, camel_name)                         \
568  inline Handle<type> name() {                                        \
569    return Handle<type>(bit_cast<type**>(                             \
570        &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
571  }
572  ROOT_LIST(ROOT_ACCESSOR)
573#undef ROOT_ACCESSOR
574
575#define STRUCT_MAP_ACCESSOR(NAME, Name, name)                      \
576  inline Handle<Map> name##_map() {                                \
577    return Handle<Map>(bit_cast<Map**>(                            \
578        &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
579  }
580  STRUCT_LIST(STRUCT_MAP_ACCESSOR)
581#undef STRUCT_MAP_ACCESSOR
582
583#define STRING_ACCESSOR(name, str)                              \
584  inline Handle<String> name() {                                \
585    return Handle<String>(bit_cast<String**>(                   \
586        &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
587  }
588  INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
589#undef STRING_ACCESSOR
590
591  inline void set_string_table(Handle<StringTable> table) {
592    isolate()->heap()->set_string_table(*table);
593  }
594
595  Handle<String> hidden_string() {
596    return Handle<String>(&isolate()->heap()->hidden_string_);
597  }
598
599  // Allocates a new SharedFunctionInfo object.
600  Handle<SharedFunctionInfo> NewSharedFunctionInfo(
601      Handle<String> name, int number_of_literals, FunctionKind kind,
602      Handle<Code> code, Handle<ScopeInfo> scope_info,
603      Handle<TypeFeedbackVector> feedback_vector);
604  Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
605                                                   MaybeHandle<Code> code);
606
607  // Allocate a new type feedback vector
608  Handle<TypeFeedbackVector> NewTypeFeedbackVector(int slot_count);
609
610  // Allocates a new JSMessageObject object.
611  Handle<JSMessageObject> NewJSMessageObject(
612      Handle<String> type,
613      Handle<JSArray> arguments,
614      int start_position,
615      int end_position,
616      Handle<Object> script,
617      Handle<Object> stack_frames);
618
619  Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
620
621  // Return a map using the map cache in the native context.
622  // The key the an ordered set of property names.
623  Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
624                                        Handle<FixedArray> keys);
625
626  // Creates a new FixedArray that holds the data associated with the
627  // atom regexp and stores it in the regexp.
628  void SetRegExpAtomData(Handle<JSRegExp> regexp,
629                         JSRegExp::Type type,
630                         Handle<String> source,
631                         JSRegExp::Flags flags,
632                         Handle<Object> match_pattern);
633
634  // Creates a new FixedArray that holds the data associated with the
635  // irregexp regexp and stores it in the regexp.
636  void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
637                             JSRegExp::Type type,
638                             Handle<String> source,
639                             JSRegExp::Flags flags,
640                             int capture_count);
641
642  // Returns the value for a known global constant (a property of the global
643  // object which is neither configurable nor writable) like 'undefined'.
644  // Returns a null handle when the given name is unknown.
645  Handle<Object> GlobalConstantFor(Handle<String> name);
646
647  // Converts the given boolean condition to JavaScript boolean value.
648  Handle<Object> ToBoolean(bool value);
649
650 private:
651  Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
652
653  // Creates a heap object based on the map. The fields of the heap object are
654  // not initialized by New<>() functions. It's the responsibility of the caller
655  // to do that.
656  template<typename T>
657  Handle<T> New(Handle<Map> map, AllocationSpace space);
658
659  template<typename T>
660  Handle<T> New(Handle<Map> map,
661                AllocationSpace space,
662                Handle<AllocationSite> allocation_site);
663
664  // Creates a code object that is not yet fully initialized yet.
665  inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
666
667  // Create a new map cache.
668  Handle<MapCache> NewMapCache(int at_least_space_for);
669
670  // Update the map cache in the native context with (keys, map)
671  Handle<MapCache> AddToMapCache(Handle<Context> context,
672                                 Handle<FixedArray> keys,
673                                 Handle<Map> map);
674
675  // Attempt to find the number in a small cache.  If we finds it, return
676  // the string representation of the number.  Otherwise return undefined.
677  Handle<Object> GetNumberStringCache(Handle<Object> number);
678
679  // Update the cache with a new number-string pair.
680  void SetNumberStringCache(Handle<Object> number, Handle<String> string);
681
682  // Initializes a function with a shared part and prototype.
683  // Note: this code was factored out of NewFunction such that other parts of
684  // the VM could use it. Specifically, a function that creates instances of
685  // type JS_FUNCTION_TYPE benefit from the use of this function.
686  inline void InitializeFunction(Handle<JSFunction> function,
687                                 Handle<SharedFunctionInfo> info,
688                                 Handle<Context> context);
689
690  // Creates a function initialized with a shared part.
691  Handle<JSFunction> NewFunction(Handle<Map> map,
692                                 Handle<SharedFunctionInfo> info,
693                                 Handle<Context> context,
694                                 PretenureFlag pretenure = TENURED);
695
696  Handle<JSFunction> NewFunction(Handle<Map> map,
697                                 Handle<String> name,
698                                 MaybeHandle<Code> maybe_code);
699
700  // Reinitialize a JSProxy into an (empty) JS object of respective type and
701  // size, but keeping the original prototype.  The receiver must have at least
702  // the size of the new object.  The object is reinitialized and behaves as an
703  // object that has been freshly allocated.
704  void ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type, int size);
705};
706
707} }  // namespace v8::internal
708
709#endif  // V8_FACTORY_H_
710