1// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "include/v8stdint.h"
6#include "src/base/logging.h"
7#include "src/utils.h"
8
9#include "src/fast-dtoa.h"
10
11#include "src/cached-powers.h"
12#include "src/diy-fp.h"
13#include "src/double.h"
14
15namespace v8 {
16namespace internal {
17
18// The minimal and maximal target exponent define the range of w's binary
19// exponent, where 'w' is the result of multiplying the input by a cached power
20// of ten.
21//
22// A different range might be chosen on a different platform, to optimize digit
23// generation, but a smaller range requires more powers of ten to be cached.
24static const int kMinimalTargetExponent = -60;
25static const int kMaximalTargetExponent = -32;
26
27
28// Adjusts the last digit of the generated number, and screens out generated
29// solutions that may be inaccurate. A solution may be inaccurate if it is
30// outside the safe interval, or if we ctannot prove that it is closer to the
31// input than a neighboring representation of the same length.
32//
33// Input: * buffer containing the digits of too_high / 10^kappa
34//        * the buffer's length
35//        * distance_too_high_w == (too_high - w).f() * unit
36//        * unsafe_interval == (too_high - too_low).f() * unit
37//        * rest = (too_high - buffer * 10^kappa).f() * unit
38//        * ten_kappa = 10^kappa * unit
39//        * unit = the common multiplier
40// Output: returns true if the buffer is guaranteed to contain the closest
41//    representable number to the input.
42//  Modifies the generated digits in the buffer to approach (round towards) w.
43static bool RoundWeed(Vector<char> buffer,
44                      int length,
45                      uint64_t distance_too_high_w,
46                      uint64_t unsafe_interval,
47                      uint64_t rest,
48                      uint64_t ten_kappa,
49                      uint64_t unit) {
50  uint64_t small_distance = distance_too_high_w - unit;
51  uint64_t big_distance = distance_too_high_w + unit;
52  // Let w_low  = too_high - big_distance, and
53  //     w_high = too_high - small_distance.
54  // Note: w_low < w < w_high
55  //
56  // The real w (* unit) must lie somewhere inside the interval
57  // ]w_low; w_high[ (often written as "(w_low; w_high)")
58
59  // Basically the buffer currently contains a number in the unsafe interval
60  // ]too_low; too_high[ with too_low < w < too_high
61  //
62  //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63  //                     ^v 1 unit            ^      ^                 ^      ^
64  //  boundary_high ---------------------     .      .                 .      .
65  //                     ^v 1 unit            .      .                 .      .
66  //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
67  //                                          .      .         ^       .      .
68  //                                          .  big_distance  .       .      .
69  //                                          .      .         .       .    rest
70  //                              small_distance     .         .       .      .
71  //                                          v      .         .       .      .
72  //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
73  //                     ^v 1 unit                   .         .       .      .
74  //  w ----------------------------------------     .         .       .      .
75  //                     ^v 1 unit                   v         .       .      .
76  //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
77  //                                                           .       .      v
78  //  buffer --------------------------------------------------+-------+--------
79  //                                                           .       .
80  //                                                  safe_interval    .
81  //                                                           v       .
82  //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
83  //                     ^v 1 unit                                     .
84  //  boundary_low -------------------------                     unsafe_interval
85  //                     ^v 1 unit                                     v
86  //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
87  //
88  //
89  // Note that the value of buffer could lie anywhere inside the range too_low
90  // to too_high.
91  //
92  // boundary_low, boundary_high and w are approximations of the real boundaries
93  // and v (the input number). They are guaranteed to be precise up to one unit.
94  // In fact the error is guaranteed to be strictly less than one unit.
95  //
96  // Anything that lies outside the unsafe interval is guaranteed not to round
97  // to v when read again.
98  // Anything that lies inside the safe interval is guaranteed to round to v
99  // when read again.
100  // If the number inside the buffer lies inside the unsafe interval but not
101  // inside the safe interval then we simply do not know and bail out (returning
102  // false).
103  //
104  // Similarly we have to take into account the imprecision of 'w' when finding
105  // the closest representation of 'w'. If we have two potential
106  // representations, and one is closer to both w_low and w_high, then we know
107  // it is closer to the actual value v.
108  //
109  // By generating the digits of too_high we got the largest (closest to
110  // too_high) buffer that is still in the unsafe interval. In the case where
111  // w_high < buffer < too_high we try to decrement the buffer.
112  // This way the buffer approaches (rounds towards) w.
113  // There are 3 conditions that stop the decrementation process:
114  //   1) the buffer is already below w_high
115  //   2) decrementing the buffer would make it leave the unsafe interval
116  //   3) decrementing the buffer would yield a number below w_high and farther
117  //      away than the current number. In other words:
118  //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
119  // Instead of using the buffer directly we use its distance to too_high.
120  // Conceptually rest ~= too_high - buffer
121  // We need to do the following tests in this order to avoid over- and
122  // underflows.
123  DCHECK(rest <= unsafe_interval);
124  while (rest < small_distance &&  // Negated condition 1
125         unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
126         (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
127          small_distance - rest >= rest + ten_kappa - small_distance)) {
128    buffer[length - 1]--;
129    rest += ten_kappa;
130  }
131
132  // We have approached w+ as much as possible. We now test if approaching w-
133  // would require changing the buffer. If yes, then we have two possible
134  // representations close to w, but we cannot decide which one is closer.
135  if (rest < big_distance &&
136      unsafe_interval - rest >= ten_kappa &&
137      (rest + ten_kappa < big_distance ||
138       big_distance - rest > rest + ten_kappa - big_distance)) {
139    return false;
140  }
141
142  // Weeding test.
143  //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
144  //   Since too_low = too_high - unsafe_interval this is equivalent to
145  //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
146  //   Conceptually we have: rest ~= too_high - buffer
147  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
148}
149
150
151// Rounds the buffer upwards if the result is closer to v by possibly adding
152// 1 to the buffer. If the precision of the calculation is not sufficient to
153// round correctly, return false.
154// The rounding might shift the whole buffer in which case the kappa is
155// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
156//
157// If 2*rest > ten_kappa then the buffer needs to be round up.
158// rest can have an error of +/- 1 unit. This function accounts for the
159// imprecision and returns false, if the rounding direction cannot be
160// unambiguously determined.
161//
162// Precondition: rest < ten_kappa.
163static bool RoundWeedCounted(Vector<char> buffer,
164                             int length,
165                             uint64_t rest,
166                             uint64_t ten_kappa,
167                             uint64_t unit,
168                             int* kappa) {
169  DCHECK(rest < ten_kappa);
170  // The following tests are done in a specific order to avoid overflows. They
171  // will work correctly with any uint64 values of rest < ten_kappa and unit.
172  //
173  // If the unit is too big, then we don't know which way to round. For example
174  // a unit of 50 means that the real number lies within rest +/- 50. If
175  // 10^kappa == 40 then there is no way to tell which way to round.
176  if (unit >= ten_kappa) return false;
177  // Even if unit is just half the size of 10^kappa we are already completely
178  // lost. (And after the previous test we know that the expression will not
179  // over/underflow.)
180  if (ten_kappa - unit <= unit) return false;
181  // If 2 * (rest + unit) <= 10^kappa we can safely round down.
182  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
183    return true;
184  }
185  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
186  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
187    // Increment the last digit recursively until we find a non '9' digit.
188    buffer[length - 1]++;
189    for (int i = length - 1; i > 0; --i) {
190      if (buffer[i] != '0' + 10) break;
191      buffer[i] = '0';
192      buffer[i - 1]++;
193    }
194    // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
195    // exception of the first digit all digits are now '0'. Simply switch the
196    // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
197    // the power (the kappa) is increased.
198    if (buffer[0] == '0' + 10) {
199      buffer[0] = '1';
200      (*kappa) += 1;
201    }
202    return true;
203  }
204  return false;
205}
206
207
208static const uint32_t kTen4 = 10000;
209static const uint32_t kTen5 = 100000;
210static const uint32_t kTen6 = 1000000;
211static const uint32_t kTen7 = 10000000;
212static const uint32_t kTen8 = 100000000;
213static const uint32_t kTen9 = 1000000000;
214
215// Returns the biggest power of ten that is less than or equal than the given
216// number. We furthermore receive the maximum number of bits 'number' has.
217// If number_bits == 0 then 0^-1 is returned
218// The number of bits must be <= 32.
219// Precondition: number < (1 << (number_bits + 1)).
220static void BiggestPowerTen(uint32_t number,
221                            int number_bits,
222                            uint32_t* power,
223                            int* exponent) {
224  switch (number_bits) {
225    case 32:
226    case 31:
227    case 30:
228      if (kTen9 <= number) {
229        *power = kTen9;
230        *exponent = 9;
231        break;
232      }  // else fallthrough
233    case 29:
234    case 28:
235    case 27:
236      if (kTen8 <= number) {
237        *power = kTen8;
238        *exponent = 8;
239        break;
240      }  // else fallthrough
241    case 26:
242    case 25:
243    case 24:
244      if (kTen7 <= number) {
245        *power = kTen7;
246        *exponent = 7;
247        break;
248      }  // else fallthrough
249    case 23:
250    case 22:
251    case 21:
252    case 20:
253      if (kTen6 <= number) {
254        *power = kTen6;
255        *exponent = 6;
256        break;
257      }  // else fallthrough
258    case 19:
259    case 18:
260    case 17:
261      if (kTen5 <= number) {
262        *power = kTen5;
263        *exponent = 5;
264        break;
265      }  // else fallthrough
266    case 16:
267    case 15:
268    case 14:
269      if (kTen4 <= number) {
270        *power = kTen4;
271        *exponent = 4;
272        break;
273      }  // else fallthrough
274    case 13:
275    case 12:
276    case 11:
277    case 10:
278      if (1000 <= number) {
279        *power = 1000;
280        *exponent = 3;
281        break;
282      }  // else fallthrough
283    case 9:
284    case 8:
285    case 7:
286      if (100 <= number) {
287        *power = 100;
288        *exponent = 2;
289        break;
290      }  // else fallthrough
291    case 6:
292    case 5:
293    case 4:
294      if (10 <= number) {
295        *power = 10;
296        *exponent = 1;
297        break;
298      }  // else fallthrough
299    case 3:
300    case 2:
301    case 1:
302      if (1 <= number) {
303        *power = 1;
304        *exponent = 0;
305        break;
306      }  // else fallthrough
307    case 0:
308      *power = 0;
309      *exponent = -1;
310      break;
311    default:
312      // Following assignments are here to silence compiler warnings.
313      *power = 0;
314      *exponent = 0;
315      UNREACHABLE();
316  }
317}
318
319
320// Generates the digits of input number w.
321// w is a floating-point number (DiyFp), consisting of a significand and an
322// exponent. Its exponent is bounded by kMinimalTargetExponent and
323// kMaximalTargetExponent.
324//       Hence -60 <= w.e() <= -32.
325//
326// Returns false if it fails, in which case the generated digits in the buffer
327// should not be used.
328// Preconditions:
329//  * low, w and high are correct up to 1 ulp (unit in the last place). That
330//    is, their error must be less than a unit of their last digits.
331//  * low.e() == w.e() == high.e()
332//  * low < w < high, and taking into account their error: low~ <= high~
333//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
334// Postconditions: returns false if procedure fails.
335//   otherwise:
336//     * buffer is not null-terminated, but len contains the number of digits.
337//     * buffer contains the shortest possible decimal digit-sequence
338//       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
339//       correct values of low and high (without their error).
340//     * if more than one decimal representation gives the minimal number of
341//       decimal digits then the one closest to W (where W is the correct value
342//       of w) is chosen.
343// Remark: this procedure takes into account the imprecision of its input
344//   numbers. If the precision is not enough to guarantee all the postconditions
345//   then false is returned. This usually happens rarely (~0.5%).
346//
347// Say, for the sake of example, that
348//   w.e() == -48, and w.f() == 0x1234567890abcdef
349// w's value can be computed by w.f() * 2^w.e()
350// We can obtain w's integral digits by simply shifting w.f() by -w.e().
351//  -> w's integral part is 0x1234
352//  w's fractional part is therefore 0x567890abcdef.
353// Printing w's integral part is easy (simply print 0x1234 in decimal).
354// In order to print its fraction we repeatedly multiply the fraction by 10 and
355// get each digit. Example the first digit after the point would be computed by
356//   (0x567890abcdef * 10) >> 48. -> 3
357// The whole thing becomes slightly more complicated because we want to stop
358// once we have enough digits. That is, once the digits inside the buffer
359// represent 'w' we can stop. Everything inside the interval low - high
360// represents w. However we have to pay attention to low, high and w's
361// imprecision.
362static bool DigitGen(DiyFp low,
363                     DiyFp w,
364                     DiyFp high,
365                     Vector<char> buffer,
366                     int* length,
367                     int* kappa) {
368  DCHECK(low.e() == w.e() && w.e() == high.e());
369  DCHECK(low.f() + 1 <= high.f() - 1);
370  DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
371  // low, w and high are imprecise, but by less than one ulp (unit in the last
372  // place).
373  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
374  // the new numbers are outside of the interval we want the final
375  // representation to lie in.
376  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
377  // numbers that are certain to lie in the interval. We will use this fact
378  // later on.
379  // We will now start by generating the digits within the uncertain
380  // interval. Later we will weed out representations that lie outside the safe
381  // interval and thus _might_ lie outside the correct interval.
382  uint64_t unit = 1;
383  DiyFp too_low = DiyFp(low.f() - unit, low.e());
384  DiyFp too_high = DiyFp(high.f() + unit, high.e());
385  // too_low and too_high are guaranteed to lie outside the interval we want the
386  // generated number in.
387  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
388  // We now cut the input number into two parts: the integral digits and the
389  // fractionals. We will not write any decimal separator though, but adapt
390  // kappa instead.
391  // Reminder: we are currently computing the digits (stored inside the buffer)
392  // such that:   too_low < buffer * 10^kappa < too_high
393  // We use too_high for the digit_generation and stop as soon as possible.
394  // If we stop early we effectively round down.
395  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
396  // Division by one is a shift.
397  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
398  // Modulo by one is an and.
399  uint64_t fractionals = too_high.f() & (one.f() - 1);
400  uint32_t divisor;
401  int divisor_exponent;
402  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
403                  &divisor, &divisor_exponent);
404  *kappa = divisor_exponent + 1;
405  *length = 0;
406  // Loop invariant: buffer = too_high / 10^kappa  (integer division)
407  // The invariant holds for the first iteration: kappa has been initialized
408  // with the divisor exponent + 1. And the divisor is the biggest power of ten
409  // that is smaller than integrals.
410  while (*kappa > 0) {
411    int digit = integrals / divisor;
412    buffer[*length] = '0' + digit;
413    (*length)++;
414    integrals %= divisor;
415    (*kappa)--;
416    // Note that kappa now equals the exponent of the divisor and that the
417    // invariant thus holds again.
418    uint64_t rest =
419        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
420    // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
421    // Reminder: unsafe_interval.e() == one.e()
422    if (rest < unsafe_interval.f()) {
423      // Rounding down (by not emitting the remaining digits) yields a number
424      // that lies within the unsafe interval.
425      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
426                       unsafe_interval.f(), rest,
427                       static_cast<uint64_t>(divisor) << -one.e(), unit);
428    }
429    divisor /= 10;
430  }
431
432  // The integrals have been generated. We are at the point of the decimal
433  // separator. In the following loop we simply multiply the remaining digits by
434  // 10 and divide by one. We just need to pay attention to multiply associated
435  // data (like the interval or 'unit'), too.
436  // Note that the multiplication by 10 does not overflow, because w.e >= -60
437  // and thus one.e >= -60.
438  DCHECK(one.e() >= -60);
439  DCHECK(fractionals < one.f());
440  DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
441  while (true) {
442    fractionals *= 10;
443    unit *= 10;
444    unsafe_interval.set_f(unsafe_interval.f() * 10);
445    // Integer division by one.
446    int digit = static_cast<int>(fractionals >> -one.e());
447    buffer[*length] = '0' + digit;
448    (*length)++;
449    fractionals &= one.f() - 1;  // Modulo by one.
450    (*kappa)--;
451    if (fractionals < unsafe_interval.f()) {
452      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
453                       unsafe_interval.f(), fractionals, one.f(), unit);
454    }
455  }
456}
457
458
459
460// Generates (at most) requested_digits of input number w.
461// w is a floating-point number (DiyFp), consisting of a significand and an
462// exponent. Its exponent is bounded by kMinimalTargetExponent and
463// kMaximalTargetExponent.
464//       Hence -60 <= w.e() <= -32.
465//
466// Returns false if it fails, in which case the generated digits in the buffer
467// should not be used.
468// Preconditions:
469//  * w is correct up to 1 ulp (unit in the last place). That
470//    is, its error must be strictly less than a unit of its last digit.
471//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
472//
473// Postconditions: returns false if procedure fails.
474//   otherwise:
475//     * buffer is not null-terminated, but length contains the number of
476//       digits.
477//     * the representation in buffer is the most precise representation of
478//       requested_digits digits.
479//     * buffer contains at most requested_digits digits of w. If there are less
480//       than requested_digits digits then some trailing '0's have been removed.
481//     * kappa is such that
482//            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
483//
484// Remark: This procedure takes into account the imprecision of its input
485//   numbers. If the precision is not enough to guarantee all the postconditions
486//   then false is returned. This usually happens rarely, but the failure-rate
487//   increases with higher requested_digits.
488static bool DigitGenCounted(DiyFp w,
489                            int requested_digits,
490                            Vector<char> buffer,
491                            int* length,
492                            int* kappa) {
493  DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
494  DCHECK(kMinimalTargetExponent >= -60);
495  DCHECK(kMaximalTargetExponent <= -32);
496  // w is assumed to have an error less than 1 unit. Whenever w is scaled we
497  // also scale its error.
498  uint64_t w_error = 1;
499  // We cut the input number into two parts: the integral digits and the
500  // fractional digits. We don't emit any decimal separator, but adapt kappa
501  // instead. Example: instead of writing "1.2" we put "12" into the buffer and
502  // increase kappa by 1.
503  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
504  // Division by one is a shift.
505  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
506  // Modulo by one is an and.
507  uint64_t fractionals = w.f() & (one.f() - 1);
508  uint32_t divisor;
509  int divisor_exponent;
510  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
511                  &divisor, &divisor_exponent);
512  *kappa = divisor_exponent + 1;
513  *length = 0;
514
515  // Loop invariant: buffer = w / 10^kappa  (integer division)
516  // The invariant holds for the first iteration: kappa has been initialized
517  // with the divisor exponent + 1. And the divisor is the biggest power of ten
518  // that is smaller than 'integrals'.
519  while (*kappa > 0) {
520    int digit = integrals / divisor;
521    buffer[*length] = '0' + digit;
522    (*length)++;
523    requested_digits--;
524    integrals %= divisor;
525    (*kappa)--;
526    // Note that kappa now equals the exponent of the divisor and that the
527    // invariant thus holds again.
528    if (requested_digits == 0) break;
529    divisor /= 10;
530  }
531
532  if (requested_digits == 0) {
533    uint64_t rest =
534        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
535    return RoundWeedCounted(buffer, *length, rest,
536                            static_cast<uint64_t>(divisor) << -one.e(), w_error,
537                            kappa);
538  }
539
540  // The integrals have been generated. We are at the point of the decimal
541  // separator. In the following loop we simply multiply the remaining digits by
542  // 10 and divide by one. We just need to pay attention to multiply associated
543  // data (the 'unit'), too.
544  // Note that the multiplication by 10 does not overflow, because w.e >= -60
545  // and thus one.e >= -60.
546  DCHECK(one.e() >= -60);
547  DCHECK(fractionals < one.f());
548  DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
549  while (requested_digits > 0 && fractionals > w_error) {
550    fractionals *= 10;
551    w_error *= 10;
552    // Integer division by one.
553    int digit = static_cast<int>(fractionals >> -one.e());
554    buffer[*length] = '0' + digit;
555    (*length)++;
556    requested_digits--;
557    fractionals &= one.f() - 1;  // Modulo by one.
558    (*kappa)--;
559  }
560  if (requested_digits != 0) return false;
561  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
562                          kappa);
563}
564
565
566// Provides a decimal representation of v.
567// Returns true if it succeeds, otherwise the result cannot be trusted.
568// There will be *length digits inside the buffer (not null-terminated).
569// If the function returns true then
570//        v == (double) (buffer * 10^decimal_exponent).
571// The digits in the buffer are the shortest representation possible: no
572// 0.09999999999999999 instead of 0.1. The shorter representation will even be
573// chosen even if the longer one would be closer to v.
574// The last digit will be closest to the actual v. That is, even if several
575// digits might correctly yield 'v' when read again, the closest will be
576// computed.
577static bool Grisu3(double v,
578                   Vector<char> buffer,
579                   int* length,
580                   int* decimal_exponent) {
581  DiyFp w = Double(v).AsNormalizedDiyFp();
582  // boundary_minus and boundary_plus are the boundaries between v and its
583  // closest floating-point neighbors. Any number strictly between
584  // boundary_minus and boundary_plus will round to v when convert to a double.
585  // Grisu3 will never output representations that lie exactly on a boundary.
586  DiyFp boundary_minus, boundary_plus;
587  Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
588  DCHECK(boundary_plus.e() == w.e());
589  DiyFp ten_mk;  // Cached power of ten: 10^-k
590  int mk;        // -k
591  int ten_mk_minimal_binary_exponent =
592     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
593  int ten_mk_maximal_binary_exponent =
594     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
595  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
596      ten_mk_minimal_binary_exponent,
597      ten_mk_maximal_binary_exponent,
598      &ten_mk, &mk);
599  DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
600          DiyFp::kSignificandSize) &&
601         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
602          DiyFp::kSignificandSize));
603  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
604  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
605
606  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
607  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
608  // off by a small amount.
609  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
610  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
611  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
612  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
613  DCHECK(scaled_w.e() ==
614         boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
615  // In theory it would be possible to avoid some recomputations by computing
616  // the difference between w and boundary_minus/plus (a power of 2) and to
617  // compute scaled_boundary_minus/plus by subtracting/adding from
618  // scaled_w. However the code becomes much less readable and the speed
619  // enhancements are not terriffic.
620  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
621  DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
622
623  // DigitGen will generate the digits of scaled_w. Therefore we have
624  // v == (double) (scaled_w * 10^-mk).
625  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
626  // integer than it will be updated. For instance if scaled_w == 1.23 then
627  // the buffer will be filled with "123" und the decimal_exponent will be
628  // decreased by 2.
629  int kappa;
630  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
631                         buffer, length, &kappa);
632  *decimal_exponent = -mk + kappa;
633  return result;
634}
635
636
637// The "counted" version of grisu3 (see above) only generates requested_digits
638// number of digits. This version does not generate the shortest representation,
639// and with enough requested digits 0.1 will at some point print as 0.9999999...
640// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
641// therefore the rounding strategy for halfway cases is irrelevant.
642static bool Grisu3Counted(double v,
643                          int requested_digits,
644                          Vector<char> buffer,
645                          int* length,
646                          int* decimal_exponent) {
647  DiyFp w = Double(v).AsNormalizedDiyFp();
648  DiyFp ten_mk;  // Cached power of ten: 10^-k
649  int mk;        // -k
650  int ten_mk_minimal_binary_exponent =
651     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
652  int ten_mk_maximal_binary_exponent =
653     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
654  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
655      ten_mk_minimal_binary_exponent,
656      ten_mk_maximal_binary_exponent,
657      &ten_mk, &mk);
658  DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
659          DiyFp::kSignificandSize) &&
660         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
661          DiyFp::kSignificandSize));
662  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
663  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
664
665  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
666  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
667  // off by a small amount.
668  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
669  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
670  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
671  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
672
673  // We now have (double) (scaled_w * 10^-mk).
674  // DigitGen will generate the first requested_digits digits of scaled_w and
675  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
676  // will not always be exactly the same since DigitGenCounted only produces a
677  // limited number of digits.)
678  int kappa;
679  bool result = DigitGenCounted(scaled_w, requested_digits,
680                                buffer, length, &kappa);
681  *decimal_exponent = -mk + kappa;
682  return result;
683}
684
685
686bool FastDtoa(double v,
687              FastDtoaMode mode,
688              int requested_digits,
689              Vector<char> buffer,
690              int* length,
691              int* decimal_point) {
692  DCHECK(v > 0);
693  DCHECK(!Double(v).IsSpecial());
694
695  bool result = false;
696  int decimal_exponent = 0;
697  switch (mode) {
698    case FAST_DTOA_SHORTEST:
699      result = Grisu3(v, buffer, length, &decimal_exponent);
700      break;
701    case FAST_DTOA_PRECISION:
702      result = Grisu3Counted(v, requested_digits,
703                             buffer, length, &decimal_exponent);
704      break;
705    default:
706      UNREACHABLE();
707  }
708  if (result) {
709    *decimal_point = *length + decimal_exponent;
710    buffer[*length] = '\0';
711  }
712  return result;
713}
714
715} }  // namespace v8::internal
716