1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_HEAP_HEAP_H_
6#define V8_HEAP_HEAP_H_
7
8#include <cmath>
9
10#include "src/allocation.h"
11#include "src/assert-scope.h"
12#include "src/counters.h"
13#include "src/globals.h"
14#include "src/heap/gc-idle-time-handler.h"
15#include "src/heap/gc-tracer.h"
16#include "src/heap/incremental-marking.h"
17#include "src/heap/mark-compact.h"
18#include "src/heap/objects-visiting.h"
19#include "src/heap/spaces.h"
20#include "src/heap/store-buffer.h"
21#include "src/list.h"
22#include "src/splay-tree-inl.h"
23
24namespace v8 {
25namespace internal {
26
27// Defines all the roots in Heap.
28#define STRONG_ROOT_LIST(V)                                                    \
29  V(Map, byte_array_map, ByteArrayMap)                                         \
30  V(Map, free_space_map, FreeSpaceMap)                                         \
31  V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
32  V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
33  /* Cluster the most popular ones in a few cache lines here at the top.    */ \
34  V(Smi, store_buffer_top, StoreBufferTop)                                     \
35  V(Oddball, undefined_value, UndefinedValue)                                  \
36  V(Oddball, the_hole_value, TheHoleValue)                                     \
37  V(Oddball, null_value, NullValue)                                            \
38  V(Oddball, true_value, TrueValue)                                            \
39  V(Oddball, false_value, FalseValue)                                          \
40  V(Oddball, uninitialized_value, UninitializedValue)                          \
41  V(Oddball, exception, Exception)                                             \
42  V(Map, cell_map, CellMap)                                                    \
43  V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
44  V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
45  V(Map, meta_map, MetaMap)                                                    \
46  V(Map, heap_number_map, HeapNumberMap)                                       \
47  V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
48  V(Map, native_context_map, NativeContextMap)                                 \
49  V(Map, fixed_array_map, FixedArrayMap)                                       \
50  V(Map, code_map, CodeMap)                                                    \
51  V(Map, scope_info_map, ScopeInfoMap)                                         \
52  V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
53  V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
54  V(Map, constant_pool_array_map, ConstantPoolArrayMap)                        \
55  V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
56  V(Map, hash_table_map, HashTableMap)                                         \
57  V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
58  V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
59  V(ByteArray, empty_byte_array, EmptyByteArray)                               \
60  V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
61  V(ConstantPoolArray, empty_constant_pool_array, EmptyConstantPoolArray)      \
62  V(Oddball, arguments_marker, ArgumentsMarker)                                \
63  /* The roots above this line should be boring from a GC point of view.    */ \
64  /* This means they are never in new space and never on a page that is     */ \
65  /* being compacted.                                                       */ \
66  V(FixedArray, number_string_cache, NumberStringCache)                        \
67  V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
68  V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
69  V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
70  V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
71  V(FixedArray, string_split_cache, StringSplitCache)                          \
72  V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
73  V(Oddball, termination_exception, TerminationException)                      \
74  V(Smi, hash_seed, HashSeed)                                                  \
75  V(Map, symbol_map, SymbolMap)                                                \
76  V(Map, string_map, StringMap)                                                \
77  V(Map, one_byte_string_map, OneByteStringMap)                                \
78  V(Map, cons_string_map, ConsStringMap)                                       \
79  V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
80  V(Map, sliced_string_map, SlicedStringMap)                                   \
81  V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
82  V(Map, external_string_map, ExternalStringMap)                               \
83  V(Map, external_string_with_one_byte_data_map,                               \
84    ExternalStringWithOneByteDataMap)                                          \
85  V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
86  V(Map, short_external_string_map, ShortExternalStringMap)                    \
87  V(Map, short_external_string_with_one_byte_data_map,                         \
88    ShortExternalStringWithOneByteDataMap)                                     \
89  V(Map, internalized_string_map, InternalizedStringMap)                       \
90  V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
91  V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
92  V(Map, external_internalized_string_with_one_byte_data_map,                  \
93    ExternalInternalizedStringWithOneByteDataMap)                              \
94  V(Map, external_one_byte_internalized_string_map,                            \
95    ExternalOneByteInternalizedStringMap)                                      \
96  V(Map, short_external_internalized_string_map,                               \
97    ShortExternalInternalizedStringMap)                                        \
98  V(Map, short_external_internalized_string_with_one_byte_data_map,            \
99    ShortExternalInternalizedStringWithOneByteDataMap)                         \
100  V(Map, short_external_one_byte_internalized_string_map,                      \
101    ShortExternalOneByteInternalizedStringMap)                                 \
102  V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
103  V(Map, undetectable_string_map, UndetectableStringMap)                       \
104  V(Map, undetectable_one_byte_string_map, UndetectableOneByteStringMap)       \
105  V(Map, external_int8_array_map, ExternalInt8ArrayMap)                        \
106  V(Map, external_uint8_array_map, ExternalUint8ArrayMap)                      \
107  V(Map, external_int16_array_map, ExternalInt16ArrayMap)                      \
108  V(Map, external_uint16_array_map, ExternalUint16ArrayMap)                    \
109  V(Map, external_int32_array_map, ExternalInt32ArrayMap)                      \
110  V(Map, external_uint32_array_map, ExternalUint32ArrayMap)                    \
111  V(Map, external_float32_array_map, ExternalFloat32ArrayMap)                  \
112  V(Map, external_float64_array_map, ExternalFloat64ArrayMap)                  \
113  V(Map, external_uint8_clamped_array_map, ExternalUint8ClampedArrayMap)       \
114  V(ExternalArray, empty_external_int8_array, EmptyExternalInt8Array)          \
115  V(ExternalArray, empty_external_uint8_array, EmptyExternalUint8Array)        \
116  V(ExternalArray, empty_external_int16_array, EmptyExternalInt16Array)        \
117  V(ExternalArray, empty_external_uint16_array, EmptyExternalUint16Array)      \
118  V(ExternalArray, empty_external_int32_array, EmptyExternalInt32Array)        \
119  V(ExternalArray, empty_external_uint32_array, EmptyExternalUint32Array)      \
120  V(ExternalArray, empty_external_float32_array, EmptyExternalFloat32Array)    \
121  V(ExternalArray, empty_external_float64_array, EmptyExternalFloat64Array)    \
122  V(ExternalArray, empty_external_uint8_clamped_array,                         \
123    EmptyExternalUint8ClampedArray)                                            \
124  V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
125  V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
126  V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
127  V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
128  V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
129  V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
130  V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
131  V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
132  V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
133  V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
134  V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
135  V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
136  V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
137  V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
138  V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
139  V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
140  V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
141  V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
142    EmptyFixedUint8ClampedArray)                                               \
143  V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
144  V(Map, function_context_map, FunctionContextMap)                             \
145  V(Map, catch_context_map, CatchContextMap)                                   \
146  V(Map, with_context_map, WithContextMap)                                     \
147  V(Map, block_context_map, BlockContextMap)                                   \
148  V(Map, module_context_map, ModuleContextMap)                                 \
149  V(Map, global_context_map, GlobalContextMap)                                 \
150  V(Map, undefined_map, UndefinedMap)                                          \
151  V(Map, the_hole_map, TheHoleMap)                                             \
152  V(Map, null_map, NullMap)                                                    \
153  V(Map, boolean_map, BooleanMap)                                              \
154  V(Map, uninitialized_map, UninitializedMap)                                  \
155  V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
156  V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
157  V(Map, exception_map, ExceptionMap)                                          \
158  V(Map, termination_exception_map, TerminationExceptionMap)                   \
159  V(Map, message_object_map, JSMessageObjectMap)                               \
160  V(Map, foreign_map, ForeignMap)                                              \
161  V(HeapNumber, nan_value, NanValue)                                           \
162  V(HeapNumber, infinity_value, InfinityValue)                                 \
163  V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
164  V(Map, neander_map, NeanderMap)                                              \
165  V(JSObject, message_listeners, MessageListeners)                             \
166  V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
167  V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache)      \
168  V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache)        \
169  V(Code, js_entry_code, JsEntryCode)                                          \
170  V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
171  V(FixedArray, natives_source_cache, NativesSourceCache)                      \
172  V(Script, empty_script, EmptyScript)                                         \
173  V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
174  V(Cell, undefined_cell, UndefineCell)                                        \
175  V(JSObject, observation_state, ObservationState)                             \
176  V(Map, external_map, ExternalMap)                                            \
177  V(Object, symbol_registry, SymbolRegistry)                                   \
178  V(Symbol, frozen_symbol, FrozenSymbol)                                       \
179  V(Symbol, nonexistent_symbol, NonExistentSymbol)                             \
180  V(Symbol, elements_transition_symbol, ElementsTransitionSymbol)              \
181  V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
182    EmptySlowElementDictionary)                                                \
183  V(Symbol, observed_symbol, ObservedSymbol)                                   \
184  V(Symbol, uninitialized_symbol, UninitializedSymbol)                         \
185  V(Symbol, megamorphic_symbol, MegamorphicSymbol)                             \
186  V(Symbol, premonomorphic_symbol, PremonomorphicSymbol)                       \
187  V(Symbol, generic_symbol, GenericSymbol)                                     \
188  V(Symbol, stack_trace_symbol, StackTraceSymbol)                              \
189  V(Symbol, detailed_stack_trace_symbol, DetailedStackTraceSymbol)             \
190  V(Symbol, normal_ic_symbol, NormalICSymbol)                                  \
191  V(Symbol, home_object_symbol, HomeObjectSymbol)                              \
192  V(FixedArray, materialized_objects, MaterializedObjects)                     \
193  V(FixedArray, allocation_sites_scratchpad, AllocationSitesScratchpad)        \
194  V(FixedArray, microtask_queue, MicrotaskQueue)
195
196// Entries in this list are limited to Smis and are not visited during GC.
197#define SMI_ROOT_LIST(V)                                                   \
198  V(Smi, stack_limit, StackLimit)                                          \
199  V(Smi, real_stack_limit, RealStackLimit)                                 \
200  V(Smi, last_script_id, LastScriptId)                                     \
201  V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \
202  V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)       \
203  V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)             \
204  V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)
205
206#define ROOT_LIST(V)  \
207  STRONG_ROOT_LIST(V) \
208  SMI_ROOT_LIST(V)    \
209  V(StringTable, string_table, StringTable)
210
211// Heap roots that are known to be immortal immovable, for which we can safely
212// skip write barriers.
213#define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
214  V(byte_array_map)                     \
215  V(free_space_map)                     \
216  V(one_pointer_filler_map)             \
217  V(two_pointer_filler_map)             \
218  V(undefined_value)                    \
219  V(the_hole_value)                     \
220  V(null_value)                         \
221  V(true_value)                         \
222  V(false_value)                        \
223  V(uninitialized_value)                \
224  V(cell_map)                           \
225  V(global_property_cell_map)           \
226  V(shared_function_info_map)           \
227  V(meta_map)                           \
228  V(heap_number_map)                    \
229  V(mutable_heap_number_map)            \
230  V(native_context_map)                 \
231  V(fixed_array_map)                    \
232  V(code_map)                           \
233  V(scope_info_map)                     \
234  V(fixed_cow_array_map)                \
235  V(fixed_double_array_map)             \
236  V(constant_pool_array_map)            \
237  V(no_interceptor_result_sentinel)     \
238  V(hash_table_map)                     \
239  V(ordered_hash_table_map)             \
240  V(empty_fixed_array)                  \
241  V(empty_byte_array)                   \
242  V(empty_descriptor_array)             \
243  V(empty_constant_pool_array)          \
244  V(arguments_marker)                   \
245  V(symbol_map)                         \
246  V(sloppy_arguments_elements_map)      \
247  V(function_context_map)               \
248  V(catch_context_map)                  \
249  V(with_context_map)                   \
250  V(block_context_map)                  \
251  V(module_context_map)                 \
252  V(global_context_map)                 \
253  V(undefined_map)                      \
254  V(the_hole_map)                       \
255  V(null_map)                           \
256  V(boolean_map)                        \
257  V(uninitialized_map)                  \
258  V(message_object_map)                 \
259  V(foreign_map)                        \
260  V(neander_map)
261
262#define INTERNALIZED_STRING_LIST(V)                                \
263  V(Object_string, "Object")                                       \
264  V(proto_string, "__proto__")                                     \
265  V(arguments_string, "arguments")                                 \
266  V(Arguments_string, "Arguments")                                 \
267  V(caller_string, "caller")                                       \
268  V(boolean_string, "boolean")                                     \
269  V(Boolean_string, "Boolean")                                     \
270  V(callee_string, "callee")                                       \
271  V(constructor_string, "constructor")                             \
272  V(dot_result_string, ".result")                                  \
273  V(dot_for_string, ".for.")                                       \
274  V(eval_string, "eval")                                           \
275  V(empty_string, "")                                              \
276  V(function_string, "function")                                   \
277  V(Function_string, "Function")                                   \
278  V(length_string, "length")                                       \
279  V(name_string, "name")                                           \
280  V(null_string, "null")                                           \
281  V(number_string, "number")                                       \
282  V(Number_string, "Number")                                       \
283  V(nan_string, "NaN")                                             \
284  V(source_string, "source")                                       \
285  V(source_url_string, "source_url")                               \
286  V(source_mapping_url_string, "source_mapping_url")               \
287  V(global_string, "global")                                       \
288  V(ignore_case_string, "ignoreCase")                              \
289  V(multiline_string, "multiline")                                 \
290  V(sticky_string, "sticky")                                       \
291  V(harmony_regexps_string, "harmony_regexps")                     \
292  V(input_string, "input")                                         \
293  V(index_string, "index")                                         \
294  V(last_index_string, "lastIndex")                                \
295  V(object_string, "object")                                       \
296  V(prototype_string, "prototype")                                 \
297  V(string_string, "string")                                       \
298  V(String_string, "String")                                       \
299  V(symbol_string, "symbol")                                       \
300  V(Symbol_string, "Symbol")                                       \
301  V(Map_string, "Map")                                             \
302  V(Set_string, "Set")                                             \
303  V(WeakMap_string, "WeakMap")                                     \
304  V(WeakSet_string, "WeakSet")                                     \
305  V(for_string, "for")                                             \
306  V(for_api_string, "for_api")                                     \
307  V(for_intern_string, "for_intern")                               \
308  V(private_api_string, "private_api")                             \
309  V(private_intern_string, "private_intern")                       \
310  V(Date_string, "Date")                                           \
311  V(char_at_string, "CharAt")                                      \
312  V(undefined_string, "undefined")                                 \
313  V(value_of_string, "valueOf")                                    \
314  V(stack_string, "stack")                                         \
315  V(toJSON_string, "toJSON")                                       \
316  V(KeyedLoadMonomorphic_string, "KeyedLoadMonomorphic")           \
317  V(KeyedStoreMonomorphic_string, "KeyedStoreMonomorphic")         \
318  V(stack_overflow_string, "kStackOverflowBoilerplate")            \
319  V(illegal_access_string, "illegal access")                       \
320  V(cell_value_string, "%cell_value")                              \
321  V(illegal_argument_string, "illegal argument")                   \
322  V(identity_hash_string, "v8::IdentityHash")                      \
323  V(closure_string, "(closure)")                                   \
324  V(dot_string, ".")                                               \
325  V(compare_ic_string, "==")                                       \
326  V(strict_compare_ic_string, "===")                               \
327  V(infinity_string, "Infinity")                                   \
328  V(minus_infinity_string, "-Infinity")                            \
329  V(query_colon_string, "(?:)")                                    \
330  V(Generator_string, "Generator")                                 \
331  V(throw_string, "throw")                                         \
332  V(done_string, "done")                                           \
333  V(value_string, "value")                                         \
334  V(next_string, "next")                                           \
335  V(byte_length_string, "byteLength")                              \
336  V(byte_offset_string, "byteOffset")                              \
337  V(intl_initialized_marker_string, "v8::intl_initialized_marker") \
338  V(intl_impl_object_string, "v8::intl_object")
339
340// Forward declarations.
341class HeapStats;
342class Isolate;
343class WeakObjectRetainer;
344
345
346typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
347                                                      Object** pointer);
348
349class StoreBufferRebuilder {
350 public:
351  explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
352      : store_buffer_(store_buffer) {}
353
354  void Callback(MemoryChunk* page, StoreBufferEvent event);
355
356 private:
357  StoreBuffer* store_buffer_;
358
359  // We record in this variable how full the store buffer was when we started
360  // iterating over the current page, finding pointers to new space.  If the
361  // store buffer overflows again we can exempt the page from the store buffer
362  // by rewinding to this point instead of having to search the store buffer.
363  Object*** start_of_current_page_;
364  // The current page we are scanning in the store buffer iterator.
365  MemoryChunk* current_page_;
366};
367
368
369// A queue of objects promoted during scavenge. Each object is accompanied
370// by it's size to avoid dereferencing a map pointer for scanning.
371class PromotionQueue {
372 public:
373  explicit PromotionQueue(Heap* heap)
374      : front_(NULL),
375        rear_(NULL),
376        limit_(NULL),
377        emergency_stack_(0),
378        heap_(heap) {}
379
380  void Initialize();
381
382  void Destroy() {
383    DCHECK(is_empty());
384    delete emergency_stack_;
385    emergency_stack_ = NULL;
386  }
387
388  Page* GetHeadPage() {
389    return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
390  }
391
392  void SetNewLimit(Address limit) {
393    limit_ = reinterpret_cast<intptr_t*>(limit);
394
395    if (limit_ <= rear_) {
396      return;
397    }
398
399    RelocateQueueHead();
400  }
401
402  bool IsBelowPromotionQueue(Address to_space_top) {
403    // If the given to-space top pointer and the head of the promotion queue
404    // are not on the same page, then the to-space objects are below the
405    // promotion queue.
406    if (GetHeadPage() != Page::FromAddress(to_space_top)) {
407      return true;
408    }
409    // If the to space top pointer is smaller or equal than the promotion
410    // queue head, then the to-space objects are below the promotion queue.
411    return reinterpret_cast<intptr_t*>(to_space_top) <= rear_;
412  }
413
414  bool is_empty() {
415    return (front_ == rear_) &&
416           (emergency_stack_ == NULL || emergency_stack_->length() == 0);
417  }
418
419  inline void insert(HeapObject* target, int size);
420
421  void remove(HeapObject** target, int* size) {
422    DCHECK(!is_empty());
423    if (front_ == rear_) {
424      Entry e = emergency_stack_->RemoveLast();
425      *target = e.obj_;
426      *size = e.size_;
427      return;
428    }
429
430    if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) {
431      NewSpacePage* front_page =
432          NewSpacePage::FromAddress(reinterpret_cast<Address>(front_));
433      DCHECK(!front_page->prev_page()->is_anchor());
434      front_ = reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end());
435    }
436    *target = reinterpret_cast<HeapObject*>(*(--front_));
437    *size = static_cast<int>(*(--front_));
438    // Assert no underflow.
439    SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
440                                reinterpret_cast<Address>(front_));
441  }
442
443 private:
444  // The front of the queue is higher in the memory page chain than the rear.
445  intptr_t* front_;
446  intptr_t* rear_;
447  intptr_t* limit_;
448
449  static const int kEntrySizeInWords = 2;
450
451  struct Entry {
452    Entry(HeapObject* obj, int size) : obj_(obj), size_(size) {}
453
454    HeapObject* obj_;
455    int size_;
456  };
457  List<Entry>* emergency_stack_;
458
459  Heap* heap_;
460
461  void RelocateQueueHead();
462
463  DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
464};
465
466
467typedef void (*ScavengingCallback)(Map* map, HeapObject** slot,
468                                   HeapObject* object);
469
470
471// External strings table is a place where all external strings are
472// registered.  We need to keep track of such strings to properly
473// finalize them.
474class ExternalStringTable {
475 public:
476  // Registers an external string.
477  inline void AddString(String* string);
478
479  inline void Iterate(ObjectVisitor* v);
480
481  // Restores internal invariant and gets rid of collected strings.
482  // Must be called after each Iterate() that modified the strings.
483  void CleanUp();
484
485  // Destroys all allocated memory.
486  void TearDown();
487
488 private:
489  explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
490
491  friend class Heap;
492
493  inline void Verify();
494
495  inline void AddOldString(String* string);
496
497  // Notifies the table that only a prefix of the new list is valid.
498  inline void ShrinkNewStrings(int position);
499
500  // To speed up scavenge collections new space string are kept
501  // separate from old space strings.
502  List<Object*> new_space_strings_;
503  List<Object*> old_space_strings_;
504
505  Heap* heap_;
506
507  DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
508};
509
510
511enum ArrayStorageAllocationMode {
512  DONT_INITIALIZE_ARRAY_ELEMENTS,
513  INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
514};
515
516
517class Heap {
518 public:
519  // Configure heap size in MB before setup. Return false if the heap has been
520  // set up already.
521  bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
522                     int max_executable_size, size_t code_range_size);
523  bool ConfigureHeapDefault();
524
525  // Prepares the heap, setting up memory areas that are needed in the isolate
526  // without actually creating any objects.
527  bool SetUp();
528
529  // Bootstraps the object heap with the core set of objects required to run.
530  // Returns whether it succeeded.
531  bool CreateHeapObjects();
532
533  // Destroys all memory allocated by the heap.
534  void TearDown();
535
536  // Set the stack limit in the roots_ array.  Some architectures generate
537  // code that looks here, because it is faster than loading from the static
538  // jslimit_/real_jslimit_ variable in the StackGuard.
539  void SetStackLimits();
540
541  // Returns whether SetUp has been called.
542  bool HasBeenSetUp();
543
544  // Returns the maximum amount of memory reserved for the heap.  For
545  // the young generation, we reserve 4 times the amount needed for a
546  // semi space.  The young generation consists of two semi spaces and
547  // we reserve twice the amount needed for those in order to ensure
548  // that new space can be aligned to its size.
549  intptr_t MaxReserved() {
550    return 4 * reserved_semispace_size_ + max_old_generation_size_;
551  }
552  int MaxSemiSpaceSize() { return max_semi_space_size_; }
553  int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
554  int InitialSemiSpaceSize() { return initial_semispace_size_; }
555  intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
556  intptr_t MaxExecutableSize() { return max_executable_size_; }
557
558  // Returns the capacity of the heap in bytes w/o growing. Heap grows when
559  // more spaces are needed until it reaches the limit.
560  intptr_t Capacity();
561
562  // Returns the amount of memory currently committed for the heap.
563  intptr_t CommittedMemory();
564
565  // Returns the amount of executable memory currently committed for the heap.
566  intptr_t CommittedMemoryExecutable();
567
568  // Returns the amount of phyical memory currently committed for the heap.
569  size_t CommittedPhysicalMemory();
570
571  // Returns the maximum amount of memory ever committed for the heap.
572  intptr_t MaximumCommittedMemory() { return maximum_committed_; }
573
574  // Updates the maximum committed memory for the heap. Should be called
575  // whenever a space grows.
576  void UpdateMaximumCommitted();
577
578  // Returns the available bytes in space w/o growing.
579  // Heap doesn't guarantee that it can allocate an object that requires
580  // all available bytes. Check MaxHeapObjectSize() instead.
581  intptr_t Available();
582
583  // Returns of size of all objects residing in the heap.
584  intptr_t SizeOfObjects();
585
586  // Return the starting address and a mask for the new space.  And-masking an
587  // address with the mask will result in the start address of the new space
588  // for all addresses in either semispace.
589  Address NewSpaceStart() { return new_space_.start(); }
590  uintptr_t NewSpaceMask() { return new_space_.mask(); }
591  Address NewSpaceTop() { return new_space_.top(); }
592
593  NewSpace* new_space() { return &new_space_; }
594  OldSpace* old_pointer_space() { return old_pointer_space_; }
595  OldSpace* old_data_space() { return old_data_space_; }
596  OldSpace* code_space() { return code_space_; }
597  MapSpace* map_space() { return map_space_; }
598  CellSpace* cell_space() { return cell_space_; }
599  PropertyCellSpace* property_cell_space() { return property_cell_space_; }
600  LargeObjectSpace* lo_space() { return lo_space_; }
601  PagedSpace* paged_space(int idx) {
602    switch (idx) {
603      case OLD_POINTER_SPACE:
604        return old_pointer_space();
605      case OLD_DATA_SPACE:
606        return old_data_space();
607      case MAP_SPACE:
608        return map_space();
609      case CELL_SPACE:
610        return cell_space();
611      case PROPERTY_CELL_SPACE:
612        return property_cell_space();
613      case CODE_SPACE:
614        return code_space();
615      case NEW_SPACE:
616      case LO_SPACE:
617        UNREACHABLE();
618    }
619    return NULL;
620  }
621
622  bool always_allocate() { return always_allocate_scope_depth_ != 0; }
623  Address always_allocate_scope_depth_address() {
624    return reinterpret_cast<Address>(&always_allocate_scope_depth_);
625  }
626
627  Address* NewSpaceAllocationTopAddress() {
628    return new_space_.allocation_top_address();
629  }
630  Address* NewSpaceAllocationLimitAddress() {
631    return new_space_.allocation_limit_address();
632  }
633
634  Address* OldPointerSpaceAllocationTopAddress() {
635    return old_pointer_space_->allocation_top_address();
636  }
637  Address* OldPointerSpaceAllocationLimitAddress() {
638    return old_pointer_space_->allocation_limit_address();
639  }
640
641  Address* OldDataSpaceAllocationTopAddress() {
642    return old_data_space_->allocation_top_address();
643  }
644  Address* OldDataSpaceAllocationLimitAddress() {
645    return old_data_space_->allocation_limit_address();
646  }
647
648  // Returns a deep copy of the JavaScript object.
649  // Properties and elements are copied too.
650  // Optionally takes an AllocationSite to be appended in an AllocationMemento.
651  MUST_USE_RESULT AllocationResult
652      CopyJSObject(JSObject* source, AllocationSite* site = NULL);
653
654  // Clear the Instanceof cache (used when a prototype changes).
655  inline void ClearInstanceofCache();
656
657  // Iterates the whole code space to clear all ICs of the given kind.
658  void ClearAllICsByKind(Code::Kind kind);
659
660  // For use during bootup.
661  void RepairFreeListsAfterBoot();
662
663  template <typename T>
664  static inline bool IsOneByte(T t, int chars);
665
666  // Move len elements within a given array from src_index index to dst_index
667  // index.
668  void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
669
670  // Sloppy mode arguments object size.
671  static const int kSloppyArgumentsObjectSize =
672      JSObject::kHeaderSize + 2 * kPointerSize;
673  // Strict mode arguments has no callee so it is smaller.
674  static const int kStrictArgumentsObjectSize =
675      JSObject::kHeaderSize + 1 * kPointerSize;
676  // Indicies for direct access into argument objects.
677  static const int kArgumentsLengthIndex = 0;
678  // callee is only valid in sloppy mode.
679  static const int kArgumentsCalleeIndex = 1;
680
681  // Finalizes an external string by deleting the associated external
682  // data and clearing the resource pointer.
683  inline void FinalizeExternalString(String* string);
684
685  // Initialize a filler object to keep the ability to iterate over the heap
686  // when introducing gaps within pages.
687  void CreateFillerObjectAt(Address addr, int size);
688
689  bool CanMoveObjectStart(HeapObject* object);
690
691  // Indicates whether live bytes adjustment is triggered from within the GC
692  // code or from mutator code.
693  enum InvocationMode { FROM_GC, FROM_MUTATOR };
694
695  // Maintain consistency of live bytes during incremental marking.
696  void AdjustLiveBytes(Address address, int by, InvocationMode mode);
697
698  // Trim the given array from the left. Note that this relocates the object
699  // start and hence is only valid if there is only a single reference to it.
700  FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
701
702  // Trim the given array from the right.
703  template<Heap::InvocationMode mode>
704  void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
705
706  // Converts the given boolean condition to JavaScript boolean value.
707  inline Object* ToBoolean(bool condition);
708
709  // Performs garbage collection operation.
710  // Returns whether there is a chance that another major GC could
711  // collect more garbage.
712  inline bool CollectGarbage(
713      AllocationSpace space, const char* gc_reason = NULL,
714      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
715
716  static const int kNoGCFlags = 0;
717  static const int kReduceMemoryFootprintMask = 1;
718  static const int kAbortIncrementalMarkingMask = 2;
719
720  // Making the heap iterable requires us to abort incremental marking.
721  static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
722
723  // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
724  // non-zero, then the slower precise sweeper is used, which leaves the heap
725  // in a state where we can iterate over the heap visiting all objects.
726  void CollectAllGarbage(
727      int flags, const char* gc_reason = NULL,
728      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
729
730  // Last hope GC, should try to squeeze as much as possible.
731  void CollectAllAvailableGarbage(const char* gc_reason = NULL);
732
733  // Check whether the heap is currently iterable.
734  bool IsHeapIterable();
735
736  // Notify the heap that a context has been disposed.
737  int NotifyContextDisposed();
738
739  inline void increment_scan_on_scavenge_pages() {
740    scan_on_scavenge_pages_++;
741    if (FLAG_gc_verbose) {
742      PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
743    }
744  }
745
746  inline void decrement_scan_on_scavenge_pages() {
747    scan_on_scavenge_pages_--;
748    if (FLAG_gc_verbose) {
749      PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
750    }
751  }
752
753  PromotionQueue* promotion_queue() { return &promotion_queue_; }
754
755  void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
756                             GCType gc_type_filter, bool pass_isolate = true);
757  void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback);
758
759  void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
760                             GCType gc_type_filter, bool pass_isolate = true);
761  void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback);
762
763// Heap root getters.  We have versions with and without type::cast() here.
764// You can't use type::cast during GC because the assert fails.
765// TODO(1490): Try removing the unchecked accessors, now that GC marking does
766// not corrupt the map.
767#define ROOT_ACCESSOR(type, name, camel_name)                           \
768  type* name() { return type::cast(roots_[k##camel_name##RootIndex]); } \
769  type* raw_unchecked_##name() {                                        \
770    return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]);   \
771  }
772  ROOT_LIST(ROOT_ACCESSOR)
773#undef ROOT_ACCESSOR
774
775// Utility type maps
776#define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
777  Map* name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
778  STRUCT_LIST(STRUCT_MAP_ACCESSOR)
779#undef STRUCT_MAP_ACCESSOR
780
781#define STRING_ACCESSOR(name, str) \
782  String* name() { return String::cast(roots_[k##name##RootIndex]); }
783  INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
784#undef STRING_ACCESSOR
785
786  // The hidden_string is special because it is the empty string, but does
787  // not match the empty string.
788  String* hidden_string() { return hidden_string_; }
789
790  void set_native_contexts_list(Object* object) {
791    native_contexts_list_ = object;
792  }
793  Object* native_contexts_list() const { return native_contexts_list_; }
794
795  void set_array_buffers_list(Object* object) { array_buffers_list_ = object; }
796  Object* array_buffers_list() const { return array_buffers_list_; }
797
798  void set_allocation_sites_list(Object* object) {
799    allocation_sites_list_ = object;
800  }
801  Object* allocation_sites_list() { return allocation_sites_list_; }
802
803  // Used in CreateAllocationSiteStub and the (de)serializer.
804  Object** allocation_sites_list_address() { return &allocation_sites_list_; }
805
806  Object* weak_object_to_code_table() { return weak_object_to_code_table_; }
807
808  void set_encountered_weak_collections(Object* weak_collection) {
809    encountered_weak_collections_ = weak_collection;
810  }
811  Object* encountered_weak_collections() const {
812    return encountered_weak_collections_;
813  }
814
815  // Number of mark-sweeps.
816  unsigned int ms_count() { return ms_count_; }
817
818  // Iterates over all roots in the heap.
819  void IterateRoots(ObjectVisitor* v, VisitMode mode);
820  // Iterates over all strong roots in the heap.
821  void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
822  // Iterates over entries in the smi roots list.  Only interesting to the
823  // serializer/deserializer, since GC does not care about smis.
824  void IterateSmiRoots(ObjectVisitor* v);
825  // Iterates over all the other roots in the heap.
826  void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
827
828  // Iterate pointers to from semispace of new space found in memory interval
829  // from start to end.
830  void IterateAndMarkPointersToFromSpace(Address start, Address end,
831                                         ObjectSlotCallback callback);
832
833  // Returns whether the object resides in new space.
834  inline bool InNewSpace(Object* object);
835  inline bool InNewSpace(Address address);
836  inline bool InNewSpacePage(Address address);
837  inline bool InFromSpace(Object* object);
838  inline bool InToSpace(Object* object);
839
840  // Returns whether the object resides in old pointer space.
841  inline bool InOldPointerSpace(Address address);
842  inline bool InOldPointerSpace(Object* object);
843
844  // Returns whether the object resides in old data space.
845  inline bool InOldDataSpace(Address address);
846  inline bool InOldDataSpace(Object* object);
847
848  // Checks whether an address/object in the heap (including auxiliary
849  // area and unused area).
850  bool Contains(Address addr);
851  bool Contains(HeapObject* value);
852
853  // Checks whether an address/object in a space.
854  // Currently used by tests, serialization and heap verification only.
855  bool InSpace(Address addr, AllocationSpace space);
856  bool InSpace(HeapObject* value, AllocationSpace space);
857
858  // Finds out which space an object should get promoted to based on its type.
859  inline OldSpace* TargetSpace(HeapObject* object);
860  static inline AllocationSpace TargetSpaceId(InstanceType type);
861
862  // Checks whether the given object is allowed to be migrated from it's
863  // current space into the given destination space. Used for debugging.
864  inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
865
866  // Sets the stub_cache_ (only used when expanding the dictionary).
867  void public_set_code_stubs(UnseededNumberDictionary* value) {
868    roots_[kCodeStubsRootIndex] = value;
869  }
870
871  // Support for computing object sizes for old objects during GCs. Returns
872  // a function that is guaranteed to be safe for computing object sizes in
873  // the current GC phase.
874  HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
875    return gc_safe_size_of_old_object_;
876  }
877
878  // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
879  void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
880    roots_[kNonMonomorphicCacheRootIndex] = value;
881  }
882
883  void public_set_empty_script(Script* script) {
884    roots_[kEmptyScriptRootIndex] = script;
885  }
886
887  void public_set_store_buffer_top(Address* top) {
888    roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
889  }
890
891  void public_set_materialized_objects(FixedArray* objects) {
892    roots_[kMaterializedObjectsRootIndex] = objects;
893  }
894
895  // Generated code can embed this address to get access to the roots.
896  Object** roots_array_start() { return roots_; }
897
898  Address* store_buffer_top_address() {
899    return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
900  }
901
902#ifdef VERIFY_HEAP
903  // Verify the heap is in its normal state before or after a GC.
904  void Verify();
905
906
907  bool weak_embedded_objects_verification_enabled() {
908    return no_weak_object_verification_scope_depth_ == 0;
909  }
910#endif
911
912#ifdef DEBUG
913  void Print();
914  void PrintHandles();
915
916  void OldPointerSpaceCheckStoreBuffer();
917  void MapSpaceCheckStoreBuffer();
918  void LargeObjectSpaceCheckStoreBuffer();
919
920  // Report heap statistics.
921  void ReportHeapStatistics(const char* title);
922  void ReportCodeStatistics(const char* title);
923#endif
924
925  // Zapping is needed for verify heap, and always done in debug builds.
926  static inline bool ShouldZapGarbage() {
927#ifdef DEBUG
928    return true;
929#else
930#ifdef VERIFY_HEAP
931    return FLAG_verify_heap;
932#else
933    return false;
934#endif
935#endif
936  }
937
938  // Number of "runtime allocations" done so far.
939  uint32_t allocations_count() { return allocations_count_; }
940
941  // Returns deterministic "time" value in ms. Works only with
942  // FLAG_verify_predictable.
943  double synthetic_time() { return allocations_count_ / 2.0; }
944
945  // Print short heap statistics.
946  void PrintShortHeapStatistics();
947
948  // Write barrier support for address[offset] = o.
949  INLINE(void RecordWrite(Address address, int offset));
950
951  // Write barrier support for address[start : start + len[ = o.
952  INLINE(void RecordWrites(Address address, int start, int len));
953
954  enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
955  inline HeapState gc_state() { return gc_state_; }
956
957  inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
958
959#ifdef DEBUG
960  void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
961
962  void TracePathToObjectFrom(Object* target, Object* root);
963  void TracePathToObject(Object* target);
964  void TracePathToGlobal();
965#endif
966
967  // Callback function passed to Heap::Iterate etc.  Copies an object if
968  // necessary, the object might be promoted to an old space.  The caller must
969  // ensure the precondition that the object is (a) a heap object and (b) in
970  // the heap's from space.
971  static inline void ScavengePointer(HeapObject** p);
972  static inline void ScavengeObject(HeapObject** p, HeapObject* object);
973
974  enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT };
975
976  // If an object has an AllocationMemento trailing it, return it, otherwise
977  // return NULL;
978  inline AllocationMemento* FindAllocationMemento(HeapObject* object);
979
980  // An object may have an AllocationSite associated with it through a trailing
981  // AllocationMemento. Its feedback should be updated when objects are found
982  // in the heap.
983  static inline void UpdateAllocationSiteFeedback(HeapObject* object,
984                                                  ScratchpadSlotMode mode);
985
986  // Support for partial snapshots.  After calling this we have a linear
987  // space to write objects in each space.
988  void ReserveSpace(int* sizes, Address* addresses);
989
990  //
991  // Support for the API.
992  //
993
994  void CreateApiObjects();
995
996  inline intptr_t PromotedTotalSize() {
997    int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
998    if (total > kMaxInt) return static_cast<intptr_t>(kMaxInt);
999    if (total < 0) return 0;
1000    return static_cast<intptr_t>(total);
1001  }
1002
1003  inline intptr_t OldGenerationSpaceAvailable() {
1004    return old_generation_allocation_limit_ - PromotedTotalSize();
1005  }
1006
1007  inline intptr_t OldGenerationCapacityAvailable() {
1008    return max_old_generation_size_ - PromotedTotalSize();
1009  }
1010
1011  static const intptr_t kMinimumOldGenerationAllocationLimit =
1012      8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
1013
1014  static const int kPointerMultiplier = i::kPointerSize / 4;
1015
1016  // The new space size has to be a power of 2. Sizes are in MB.
1017  static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
1018  static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
1019  static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
1020  static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
1021
1022  // The old space size has to be a multiple of Page::kPageSize.
1023  // Sizes are in MB.
1024  static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
1025  static const int kMaxOldSpaceSizeMediumMemoryDevice =
1026      256 * kPointerMultiplier;
1027  static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
1028  static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
1029
1030  // The executable size has to be a multiple of Page::kPageSize.
1031  // Sizes are in MB.
1032  static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
1033  static const int kMaxExecutableSizeMediumMemoryDevice =
1034      192 * kPointerMultiplier;
1035  static const int kMaxExecutableSizeHighMemoryDevice =
1036      256 * kPointerMultiplier;
1037  static const int kMaxExecutableSizeHugeMemoryDevice =
1038      256 * kPointerMultiplier;
1039
1040  intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size,
1041                                        int freed_global_handles);
1042
1043  // Indicates whether inline bump-pointer allocation has been disabled.
1044  bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1045
1046  // Switch whether inline bump-pointer allocation should be used.
1047  void EnableInlineAllocation();
1048  void DisableInlineAllocation();
1049
1050  // Implements the corresponding V8 API function.
1051  bool IdleNotification(int idle_time_in_ms);
1052
1053  // Declare all the root indices.  This defines the root list order.
1054  enum RootListIndex {
1055#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1056    STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
1057#undef ROOT_INDEX_DECLARATION
1058
1059#define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
1060    INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
1061#undef STRING_DECLARATION
1062
1063// Utility type maps
1064#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
1065    STRUCT_LIST(DECLARE_STRUCT_MAP)
1066#undef DECLARE_STRUCT_MAP
1067    kStringTableRootIndex,
1068
1069#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1070    SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
1071#undef ROOT_INDEX_DECLARATION
1072    kRootListLength,
1073    kStrongRootListLength = kStringTableRootIndex,
1074    kSmiRootsStart = kStringTableRootIndex + 1
1075  };
1076
1077  STATIC_ASSERT(kUndefinedValueRootIndex ==
1078                Internals::kUndefinedValueRootIndex);
1079  STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
1080  STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
1081  STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
1082  STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
1083
1084  // Generated code can embed direct references to non-writable roots if
1085  // they are in new space.
1086  static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
1087  // Generated code can treat direct references to this root as constant.
1088  bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1089
1090  Map* MapForFixedTypedArray(ExternalArrayType array_type);
1091  RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
1092
1093  Map* MapForExternalArrayType(ExternalArrayType array_type);
1094  RootListIndex RootIndexForExternalArrayType(ExternalArrayType array_type);
1095
1096  RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
1097  RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1098  ExternalArray* EmptyExternalArrayForMap(Map* map);
1099  FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1100
1101  void RecordStats(HeapStats* stats, bool take_snapshot = false);
1102
1103  // Copy block of memory from src to dst. Size of block should be aligned
1104  // by pointer size.
1105  static inline void CopyBlock(Address dst, Address src, int byte_size);
1106
1107  // Optimized version of memmove for blocks with pointer size aligned sizes and
1108  // pointer size aligned addresses.
1109  static inline void MoveBlock(Address dst, Address src, int byte_size);
1110
1111  // Check new space expansion criteria and expand semispaces if it was hit.
1112  void CheckNewSpaceExpansionCriteria();
1113
1114  inline void IncrementPromotedObjectsSize(int object_size) {
1115    DCHECK(object_size > 0);
1116    promoted_objects_size_ += object_size;
1117  }
1118
1119  inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
1120    DCHECK(object_size > 0);
1121    semi_space_copied_object_size_ += object_size;
1122  }
1123
1124  inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
1125
1126  inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
1127
1128  inline void IncrementNodesPromoted() { nodes_promoted_++; }
1129
1130  inline void IncrementYoungSurvivorsCounter(int survived) {
1131    DCHECK(survived >= 0);
1132    survived_since_last_expansion_ += survived;
1133  }
1134
1135  inline bool NextGCIsLikelyToBeFull() {
1136    if (FLAG_gc_global) return true;
1137
1138    if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
1139
1140    intptr_t adjusted_allocation_limit =
1141        old_generation_allocation_limit_ - new_space_.Capacity();
1142
1143    if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
1144
1145    return false;
1146  }
1147
1148  void UpdateNewSpaceReferencesInExternalStringTable(
1149      ExternalStringTableUpdaterCallback updater_func);
1150
1151  void UpdateReferencesInExternalStringTable(
1152      ExternalStringTableUpdaterCallback updater_func);
1153
1154  void ProcessWeakReferences(WeakObjectRetainer* retainer);
1155
1156  void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
1157
1158  // An object should be promoted if the object has survived a
1159  // scavenge operation.
1160  inline bool ShouldBePromoted(Address old_address, int object_size);
1161
1162  void ClearJSFunctionResultCaches();
1163
1164  void ClearNormalizedMapCaches();
1165
1166  GCTracer* tracer() { return &tracer_; }
1167
1168  // Returns the size of objects residing in non new spaces.
1169  intptr_t PromotedSpaceSizeOfObjects();
1170
1171  double total_regexp_code_generated() { return total_regexp_code_generated_; }
1172  void IncreaseTotalRegexpCodeGenerated(int size) {
1173    total_regexp_code_generated_ += size;
1174  }
1175
1176  void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
1177    if (is_crankshafted) {
1178      crankshaft_codegen_bytes_generated_ += size;
1179    } else {
1180      full_codegen_bytes_generated_ += size;
1181    }
1182  }
1183
1184  // Update GC statistics that are tracked on the Heap.
1185  void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
1186                                    double marking_time);
1187
1188  // Returns maximum GC pause.
1189  double get_max_gc_pause() { return max_gc_pause_; }
1190
1191  // Returns maximum size of objects alive after GC.
1192  intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1193
1194  // Returns minimal interval between two subsequent collections.
1195  double get_min_in_mutator() { return min_in_mutator_; }
1196
1197  MarkCompactCollector* mark_compact_collector() {
1198    return &mark_compact_collector_;
1199  }
1200
1201  StoreBuffer* store_buffer() { return &store_buffer_; }
1202
1203  Marking* marking() { return &marking_; }
1204
1205  IncrementalMarking* incremental_marking() { return &incremental_marking_; }
1206
1207  ExternalStringTable* external_string_table() {
1208    return &external_string_table_;
1209  }
1210
1211  // Returns the current sweep generation.
1212  int sweep_generation() { return sweep_generation_; }
1213
1214  inline Isolate* isolate();
1215
1216  void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1217  void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1218
1219  inline bool OldGenerationAllocationLimitReached();
1220
1221  inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
1222    scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
1223  }
1224
1225  void QueueMemoryChunkForFree(MemoryChunk* chunk);
1226  void FreeQueuedChunks();
1227
1228  int gc_count() const { return gc_count_; }
1229
1230  // Completely clear the Instanceof cache (to stop it keeping objects alive
1231  // around a GC).
1232  inline void CompletelyClearInstanceofCache();
1233
1234  // The roots that have an index less than this are always in old space.
1235  static const int kOldSpaceRoots = 0x20;
1236
1237  uint32_t HashSeed() {
1238    uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
1239    DCHECK(FLAG_randomize_hashes || seed == 0);
1240    return seed;
1241  }
1242
1243  void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
1244    DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
1245    set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
1246  }
1247
1248  void SetConstructStubDeoptPCOffset(int pc_offset) {
1249    DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
1250    set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1251  }
1252
1253  void SetGetterStubDeoptPCOffset(int pc_offset) {
1254    DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
1255    set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1256  }
1257
1258  void SetSetterStubDeoptPCOffset(int pc_offset) {
1259    DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
1260    set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1261  }
1262
1263  // For post mortem debugging.
1264  void RememberUnmappedPage(Address page, bool compacted);
1265
1266  // Global inline caching age: it is incremented on some GCs after context
1267  // disposal. We use it to flush inline caches.
1268  int global_ic_age() { return global_ic_age_; }
1269
1270  void AgeInlineCaches() {
1271    global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
1272  }
1273
1274  bool flush_monomorphic_ics() { return flush_monomorphic_ics_; }
1275
1276  int64_t amount_of_external_allocated_memory() {
1277    return amount_of_external_allocated_memory_;
1278  }
1279
1280  void DeoptMarkedAllocationSites();
1281
1282  bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
1283
1284  bool DeoptMaybeTenuredAllocationSites() {
1285    return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
1286  }
1287
1288  // ObjectStats are kept in two arrays, counts and sizes. Related stats are
1289  // stored in a contiguous linear buffer. Stats groups are stored one after
1290  // another.
1291  enum {
1292    FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
1293    FIRST_FIXED_ARRAY_SUB_TYPE =
1294        FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
1295    FIRST_CODE_AGE_SUB_TYPE =
1296        FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
1297    OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
1298  };
1299
1300  void RecordObjectStats(InstanceType type, size_t size) {
1301    DCHECK(type <= LAST_TYPE);
1302    object_counts_[type]++;
1303    object_sizes_[type] += size;
1304  }
1305
1306  void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) {
1307    int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type;
1308    int code_age_index =
1309        FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge;
1310    DCHECK(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE &&
1311           code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE);
1312    DCHECK(code_age_index >= FIRST_CODE_AGE_SUB_TYPE &&
1313           code_age_index < OBJECT_STATS_COUNT);
1314    object_counts_[code_sub_type_index]++;
1315    object_sizes_[code_sub_type_index] += size;
1316    object_counts_[code_age_index]++;
1317    object_sizes_[code_age_index] += size;
1318  }
1319
1320  void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) {
1321    DCHECK(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
1322    object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++;
1323    object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size;
1324  }
1325
1326  void CheckpointObjectStats();
1327
1328  // We don't use a LockGuard here since we want to lock the heap
1329  // only when FLAG_concurrent_recompilation is true.
1330  class RelocationLock {
1331   public:
1332    explicit RelocationLock(Heap* heap) : heap_(heap) {
1333      heap_->relocation_mutex_.Lock();
1334    }
1335
1336
1337    ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
1338
1339   private:
1340    Heap* heap_;
1341  };
1342
1343  void AddWeakObjectToCodeDependency(Handle<Object> obj,
1344                                     Handle<DependentCode> dep);
1345
1346  DependentCode* LookupWeakObjectToCodeDependency(Handle<Object> obj);
1347
1348  void InitializeWeakObjectToCodeTable() {
1349    set_weak_object_to_code_table(undefined_value());
1350  }
1351
1352  void EnsureWeakObjectToCodeTable();
1353
1354  static void FatalProcessOutOfMemory(const char* location,
1355                                      bool take_snapshot = false);
1356
1357  // This event is triggered after successful allocation of a new object made
1358  // by runtime. Allocations of target space for object evacuation do not
1359  // trigger the event. In order to track ALL allocations one must turn off
1360  // FLAG_inline_new and FLAG_use_allocation_folding.
1361  inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
1362
1363  // This event is triggered after object is moved to a new place.
1364  inline void OnMoveEvent(HeapObject* target, HeapObject* source,
1365                          int size_in_bytes);
1366
1367 protected:
1368  // Methods made available to tests.
1369
1370  // Allocates a JS Map in the heap.
1371  MUST_USE_RESULT AllocationResult
1372      AllocateMap(InstanceType instance_type, int instance_size,
1373                  ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1374
1375  // Allocates and initializes a new JavaScript object based on a
1376  // constructor.
1377  // If allocation_site is non-null, then a memento is emitted after the object
1378  // that points to the site.
1379  MUST_USE_RESULT AllocationResult
1380      AllocateJSObject(JSFunction* constructor,
1381                       PretenureFlag pretenure = NOT_TENURED,
1382                       AllocationSite* allocation_site = NULL);
1383
1384  // Allocates and initializes a new JavaScript object based on a map.
1385  // Passing an allocation site means that a memento will be created that
1386  // points to the site.
1387  MUST_USE_RESULT AllocationResult
1388      AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
1389                              bool alloc_props = true,
1390                              AllocationSite* allocation_site = NULL);
1391
1392  // Allocated a HeapNumber from value.
1393  MUST_USE_RESULT AllocationResult
1394      AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
1395                         PretenureFlag pretenure = NOT_TENURED);
1396
1397  // Allocate a byte array of the specified length
1398  MUST_USE_RESULT AllocationResult
1399      AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
1400
1401  // Copy the code and scope info part of the code object, but insert
1402  // the provided data as the relocation information.
1403  MUST_USE_RESULT AllocationResult
1404      CopyCode(Code* code, Vector<byte> reloc_info);
1405
1406  MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1407
1408  // Allocates a fixed array initialized with undefined values
1409  MUST_USE_RESULT AllocationResult
1410      AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
1411
1412 private:
1413  Heap();
1414
1415  // The amount of external memory registered through the API kept alive
1416  // by global handles
1417  int64_t amount_of_external_allocated_memory_;
1418
1419  // Caches the amount of external memory registered at the last global gc.
1420  int64_t amount_of_external_allocated_memory_at_last_global_gc_;
1421
1422  // This can be calculated directly from a pointer to the heap; however, it is
1423  // more expedient to get at the isolate directly from within Heap methods.
1424  Isolate* isolate_;
1425
1426  Object* roots_[kRootListLength];
1427
1428  size_t code_range_size_;
1429  int reserved_semispace_size_;
1430  int max_semi_space_size_;
1431  int initial_semispace_size_;
1432  intptr_t max_old_generation_size_;
1433  intptr_t max_executable_size_;
1434  intptr_t maximum_committed_;
1435
1436  // For keeping track of how much data has survived
1437  // scavenge since last new space expansion.
1438  int survived_since_last_expansion_;
1439
1440  // For keeping track on when to flush RegExp code.
1441  int sweep_generation_;
1442
1443  int always_allocate_scope_depth_;
1444
1445  // For keeping track of context disposals.
1446  int contexts_disposed_;
1447
1448  int global_ic_age_;
1449
1450  bool flush_monomorphic_ics_;
1451
1452  int scan_on_scavenge_pages_;
1453
1454  NewSpace new_space_;
1455  OldSpace* old_pointer_space_;
1456  OldSpace* old_data_space_;
1457  OldSpace* code_space_;
1458  MapSpace* map_space_;
1459  CellSpace* cell_space_;
1460  PropertyCellSpace* property_cell_space_;
1461  LargeObjectSpace* lo_space_;
1462  HeapState gc_state_;
1463  int gc_post_processing_depth_;
1464  Address new_space_top_after_last_gc_;
1465
1466  // Returns the amount of external memory registered since last global gc.
1467  int64_t PromotedExternalMemorySize();
1468
1469  // How many "runtime allocations" happened.
1470  uint32_t allocations_count_;
1471
1472  // Running hash over allocations performed.
1473  uint32_t raw_allocations_hash_;
1474
1475  // Countdown counter, dumps allocation hash when 0.
1476  uint32_t dump_allocations_hash_countdown_;
1477
1478  // How many mark-sweep collections happened.
1479  unsigned int ms_count_;
1480
1481  // How many gc happened.
1482  unsigned int gc_count_;
1483
1484  // For post mortem debugging.
1485  static const int kRememberedUnmappedPages = 128;
1486  int remembered_unmapped_pages_index_;
1487  Address remembered_unmapped_pages_[kRememberedUnmappedPages];
1488
1489  // Total length of the strings we failed to flatten since the last GC.
1490  int unflattened_strings_length_;
1491
1492#define ROOT_ACCESSOR(type, name, camel_name)                                 \
1493  inline void set_##name(type* value) {                                       \
1494    /* The deserializer makes use of the fact that these common roots are */  \
1495    /* never in new space and never on a page that is being compacted.    */  \
1496    DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
1497    roots_[k##camel_name##RootIndex] = value;                                 \
1498  }
1499  ROOT_LIST(ROOT_ACCESSOR)
1500#undef ROOT_ACCESSOR
1501
1502#ifdef DEBUG
1503  // If the --gc-interval flag is set to a positive value, this
1504  // variable holds the value indicating the number of allocations
1505  // remain until the next failure and garbage collection.
1506  int allocation_timeout_;
1507#endif  // DEBUG
1508
1509  // Limit that triggers a global GC on the next (normally caused) GC.  This
1510  // is checked when we have already decided to do a GC to help determine
1511  // which collector to invoke, before expanding a paged space in the old
1512  // generation and on every allocation in large object space.
1513  intptr_t old_generation_allocation_limit_;
1514
1515  // Indicates that an allocation has failed in the old generation since the
1516  // last GC.
1517  bool old_gen_exhausted_;
1518
1519  // Indicates that inline bump-pointer allocation has been globally disabled
1520  // for all spaces. This is used to disable allocations in generated code.
1521  bool inline_allocation_disabled_;
1522
1523  // Weak list heads, threaded through the objects.
1524  // List heads are initilized lazily and contain the undefined_value at start.
1525  Object* native_contexts_list_;
1526  Object* array_buffers_list_;
1527  Object* allocation_sites_list_;
1528
1529  // WeakHashTable that maps objects embedded in optimized code to dependent
1530  // code list. It is initilized lazily and contains the undefined_value at
1531  // start.
1532  Object* weak_object_to_code_table_;
1533
1534  // List of encountered weak collections (JSWeakMap and JSWeakSet) during
1535  // marking. It is initialized during marking, destroyed after marking and
1536  // contains Smi(0) while marking is not active.
1537  Object* encountered_weak_collections_;
1538
1539  StoreBufferRebuilder store_buffer_rebuilder_;
1540
1541  struct StringTypeTable {
1542    InstanceType type;
1543    int size;
1544    RootListIndex index;
1545  };
1546
1547  struct ConstantStringTable {
1548    const char* contents;
1549    RootListIndex index;
1550  };
1551
1552  struct StructTable {
1553    InstanceType type;
1554    int size;
1555    RootListIndex index;
1556  };
1557
1558  static const StringTypeTable string_type_table[];
1559  static const ConstantStringTable constant_string_table[];
1560  static const StructTable struct_table[];
1561
1562  // The special hidden string which is an empty string, but does not match
1563  // any string when looked up in properties.
1564  String* hidden_string_;
1565
1566  // GC callback function, called before and after mark-compact GC.
1567  // Allocations in the callback function are disallowed.
1568  struct GCPrologueCallbackPair {
1569    GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1570                           GCType gc_type, bool pass_isolate)
1571        : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1572    bool operator==(const GCPrologueCallbackPair& pair) const {
1573      return pair.callback == callback;
1574    }
1575    v8::Isolate::GCPrologueCallback callback;
1576    GCType gc_type;
1577    // TODO(dcarney): remove variable
1578    bool pass_isolate_;
1579  };
1580  List<GCPrologueCallbackPair> gc_prologue_callbacks_;
1581
1582  struct GCEpilogueCallbackPair {
1583    GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1584                           GCType gc_type, bool pass_isolate)
1585        : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1586    bool operator==(const GCEpilogueCallbackPair& pair) const {
1587      return pair.callback == callback;
1588    }
1589    v8::Isolate::GCPrologueCallback callback;
1590    GCType gc_type;
1591    // TODO(dcarney): remove variable
1592    bool pass_isolate_;
1593  };
1594  List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
1595
1596  // Support for computing object sizes during GC.
1597  HeapObjectCallback gc_safe_size_of_old_object_;
1598  static int GcSafeSizeOfOldObject(HeapObject* object);
1599
1600  // Update the GC state. Called from the mark-compact collector.
1601  void MarkMapPointersAsEncoded(bool encoded) {
1602    DCHECK(!encoded);
1603    gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
1604  }
1605
1606  // Code that should be run before and after each GC.  Includes some
1607  // reporting/verification activities when compiled with DEBUG set.
1608  void GarbageCollectionPrologue();
1609  void GarbageCollectionEpilogue();
1610
1611  // Pretenuring decisions are made based on feedback collected during new
1612  // space evacuation. Note that between feedback collection and calling this
1613  // method object in old space must not move.
1614  // Right now we only process pretenuring feedback in high promotion mode.
1615  void ProcessPretenuringFeedback();
1616
1617  // Checks whether a global GC is necessary
1618  GarbageCollector SelectGarbageCollector(AllocationSpace space,
1619                                          const char** reason);
1620
1621  // Make sure there is a filler value behind the top of the new space
1622  // so that the GC does not confuse some unintialized/stale memory
1623  // with the allocation memento of the object at the top
1624  void EnsureFillerObjectAtTop();
1625
1626  // Ensure that we have swept all spaces in such a way that we can iterate
1627  // over all objects.  May cause a GC.
1628  void MakeHeapIterable();
1629
1630  // Performs garbage collection operation.
1631  // Returns whether there is a chance that another major GC could
1632  // collect more garbage.
1633  bool CollectGarbage(
1634      GarbageCollector collector, const char* gc_reason,
1635      const char* collector_reason,
1636      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1637
1638  // Performs garbage collection
1639  // Returns whether there is a chance another major GC could
1640  // collect more garbage.
1641  bool PerformGarbageCollection(
1642      GarbageCollector collector,
1643      const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1644
1645  inline void UpdateOldSpaceLimits();
1646
1647  // Selects the proper allocation space depending on the given object
1648  // size, pretenuring decision, and preferred old-space.
1649  static AllocationSpace SelectSpace(int object_size,
1650                                     AllocationSpace preferred_old_space,
1651                                     PretenureFlag pretenure) {
1652    DCHECK(preferred_old_space == OLD_POINTER_SPACE ||
1653           preferred_old_space == OLD_DATA_SPACE);
1654    if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
1655    return (pretenure == TENURED) ? preferred_old_space : NEW_SPACE;
1656  }
1657
1658  // Allocate an uninitialized object.  The memory is non-executable if the
1659  // hardware and OS allow.  This is the single choke-point for allocations
1660  // performed by the runtime and should not be bypassed (to extend this to
1661  // inlined allocations, use the Heap::DisableInlineAllocation() support).
1662  MUST_USE_RESULT inline AllocationResult AllocateRaw(
1663      int size_in_bytes, AllocationSpace space, AllocationSpace retry_space);
1664
1665  // Allocates a heap object based on the map.
1666  MUST_USE_RESULT AllocationResult
1667      Allocate(Map* map, AllocationSpace space,
1668               AllocationSite* allocation_site = NULL);
1669
1670  // Allocates a partial map for bootstrapping.
1671  MUST_USE_RESULT AllocationResult
1672      AllocatePartialMap(InstanceType instance_type, int instance_size);
1673
1674  // Initializes a JSObject based on its map.
1675  void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
1676                                 Map* map);
1677  void InitializeAllocationMemento(AllocationMemento* memento,
1678                                   AllocationSite* allocation_site);
1679
1680  // Allocate a block of memory in the given space (filled with a filler).
1681  // Used as a fall-back for generated code when the space is full.
1682  MUST_USE_RESULT AllocationResult
1683      AllocateFillerObject(int size, bool double_align, AllocationSpace space);
1684
1685  // Allocate an uninitialized fixed array.
1686  MUST_USE_RESULT AllocationResult
1687      AllocateRawFixedArray(int length, PretenureFlag pretenure);
1688
1689  // Allocate an uninitialized fixed double array.
1690  MUST_USE_RESULT AllocationResult
1691      AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
1692
1693  // Allocate an initialized fixed array with the given filler value.
1694  MUST_USE_RESULT AllocationResult
1695      AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
1696                                   Object* filler);
1697
1698  // Allocate and partially initializes a String.  There are two String
1699  // encodings: one-byte and two-byte.  These functions allocate a string of
1700  // the given length and set its map and length fields.  The characters of
1701  // the string are uninitialized.
1702  MUST_USE_RESULT AllocationResult
1703      AllocateRawOneByteString(int length, PretenureFlag pretenure);
1704  MUST_USE_RESULT AllocationResult
1705      AllocateRawTwoByteString(int length, PretenureFlag pretenure);
1706
1707  bool CreateInitialMaps();
1708  void CreateInitialObjects();
1709
1710  // Allocates an internalized string in old space based on the character
1711  // stream.
1712  MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
1713      Vector<const char> str, int chars, uint32_t hash_field);
1714
1715  MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
1716      Vector<const uint8_t> str, uint32_t hash_field);
1717
1718  MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
1719      Vector<const uc16> str, uint32_t hash_field);
1720
1721  template <bool is_one_byte, typename T>
1722  MUST_USE_RESULT AllocationResult
1723      AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
1724
1725  template <typename T>
1726  MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
1727      T t, int chars, uint32_t hash_field);
1728
1729  // Allocates an uninitialized fixed array. It must be filled by the caller.
1730  MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
1731
1732  // Make a copy of src and return it. Returns
1733  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1734  MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
1735
1736  // Make a copy of src, set the map, and return the copy. Returns
1737  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1738  MUST_USE_RESULT AllocationResult
1739      CopyFixedArrayWithMap(FixedArray* src, Map* map);
1740
1741  // Make a copy of src and return it. Returns
1742  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1743  MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
1744      FixedDoubleArray* src);
1745
1746  // Make a copy of src and return it. Returns
1747  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1748  MUST_USE_RESULT inline AllocationResult CopyConstantPoolArray(
1749      ConstantPoolArray* src);
1750
1751
1752  // Computes a single character string where the character has code.
1753  // A cache is used for one-byte (Latin1) codes.
1754  MUST_USE_RESULT AllocationResult
1755      LookupSingleCharacterStringFromCode(uint16_t code);
1756
1757  // Allocate a symbol in old space.
1758  MUST_USE_RESULT AllocationResult AllocateSymbol();
1759
1760  // Make a copy of src, set the map, and return the copy.
1761  MUST_USE_RESULT AllocationResult
1762      CopyConstantPoolArrayWithMap(ConstantPoolArray* src, Map* map);
1763
1764  MUST_USE_RESULT AllocationResult AllocateConstantPoolArray(
1765      const ConstantPoolArray::NumberOfEntries& small);
1766
1767  MUST_USE_RESULT AllocationResult AllocateExtendedConstantPoolArray(
1768      const ConstantPoolArray::NumberOfEntries& small,
1769      const ConstantPoolArray::NumberOfEntries& extended);
1770
1771  // Allocates an external array of the specified length and type.
1772  MUST_USE_RESULT AllocationResult
1773      AllocateExternalArray(int length, ExternalArrayType array_type,
1774                            void* external_pointer, PretenureFlag pretenure);
1775
1776  // Allocates a fixed typed array of the specified length and type.
1777  MUST_USE_RESULT AllocationResult
1778      AllocateFixedTypedArray(int length, ExternalArrayType array_type,
1779                              PretenureFlag pretenure);
1780
1781  // Make a copy of src and return it.
1782  MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
1783
1784  // Make a copy of src, set the map, and return the copy.
1785  MUST_USE_RESULT AllocationResult
1786      CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
1787
1788  // Allocates a fixed double array with uninitialized values. Returns
1789  MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
1790      int length, PretenureFlag pretenure = NOT_TENURED);
1791
1792  // These five Create*EntryStub functions are here and forced to not be inlined
1793  // because of a gcc-4.4 bug that assigns wrong vtable entries.
1794  NO_INLINE(void CreateJSEntryStub());
1795  NO_INLINE(void CreateJSConstructEntryStub());
1796
1797  void CreateFixedStubs();
1798
1799  // Allocate empty fixed array.
1800  MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
1801
1802  // Allocate empty external array of given type.
1803  MUST_USE_RESULT AllocationResult
1804      AllocateEmptyExternalArray(ExternalArrayType array_type);
1805
1806  // Allocate empty fixed typed array of given type.
1807  MUST_USE_RESULT AllocationResult
1808      AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
1809
1810  // Allocate empty constant pool array.
1811  MUST_USE_RESULT AllocationResult AllocateEmptyConstantPoolArray();
1812
1813  // Allocate a tenured simple cell.
1814  MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
1815
1816  // Allocate a tenured JS global property cell initialized with the hole.
1817  MUST_USE_RESULT AllocationResult AllocatePropertyCell();
1818
1819  // Allocates a new utility object in the old generation.
1820  MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
1821
1822  // Allocates a new foreign object.
1823  MUST_USE_RESULT AllocationResult
1824      AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
1825
1826  MUST_USE_RESULT AllocationResult
1827      AllocateCode(int object_size, bool immovable);
1828
1829  MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
1830
1831  MUST_USE_RESULT AllocationResult InternalizeString(String* str);
1832
1833  // Performs a minor collection in new generation.
1834  void Scavenge();
1835
1836  // Commits from space if it is uncommitted.
1837  void EnsureFromSpaceIsCommitted();
1838
1839  // Uncommit unused semi space.
1840  bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
1841
1842  // Fill in bogus values in from space
1843  void ZapFromSpace();
1844
1845  static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1846      Heap* heap, Object** pointer);
1847
1848  Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
1849  static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
1850                                          StoreBufferEvent event);
1851
1852  // Performs a major collection in the whole heap.
1853  void MarkCompact();
1854
1855  // Code to be run before and after mark-compact.
1856  void MarkCompactPrologue();
1857
1858  void ProcessNativeContexts(WeakObjectRetainer* retainer);
1859  void ProcessArrayBuffers(WeakObjectRetainer* retainer);
1860  void ProcessAllocationSites(WeakObjectRetainer* retainer);
1861
1862  // Deopts all code that contains allocation instruction which are tenured or
1863  // not tenured. Moreover it clears the pretenuring allocation site statistics.
1864  void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
1865
1866  // Evaluates local pretenuring for the old space and calls
1867  // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
1868  // the old space.
1869  void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
1870
1871  // Called on heap tear-down.
1872  void TearDownArrayBuffers();
1873
1874  // Record statistics before and after garbage collection.
1875  void ReportStatisticsBeforeGC();
1876  void ReportStatisticsAfterGC();
1877
1878  // Slow part of scavenge object.
1879  static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
1880
1881  // Total RegExp code ever generated
1882  double total_regexp_code_generated_;
1883
1884  GCTracer tracer_;
1885
1886  // Creates and installs the full-sized number string cache.
1887  int FullSizeNumberStringCacheLength();
1888  // Flush the number to string cache.
1889  void FlushNumberStringCache();
1890
1891  // Sets used allocation sites entries to undefined.
1892  void FlushAllocationSitesScratchpad();
1893
1894  // Initializes the allocation sites scratchpad with undefined values.
1895  void InitializeAllocationSitesScratchpad();
1896
1897  // Adds an allocation site to the scratchpad if there is space left.
1898  void AddAllocationSiteToScratchpad(AllocationSite* site,
1899                                     ScratchpadSlotMode mode);
1900
1901  void UpdateSurvivalStatistics(int start_new_space_size);
1902
1903  static const int kYoungSurvivalRateHighThreshold = 90;
1904  static const int kYoungSurvivalRateAllowedDeviation = 15;
1905
1906  static const int kOldSurvivalRateLowThreshold = 10;
1907
1908  int high_survival_rate_period_length_;
1909  intptr_t promoted_objects_size_;
1910  double promotion_rate_;
1911  intptr_t semi_space_copied_object_size_;
1912  double semi_space_copied_rate_;
1913  int nodes_died_in_new_space_;
1914  int nodes_copied_in_new_space_;
1915  int nodes_promoted_;
1916
1917  // This is the pretenuring trigger for allocation sites that are in maybe
1918  // tenure state. When we switched to the maximum new space size we deoptimize
1919  // the code that belongs to the allocation site and derive the lifetime
1920  // of the allocation site.
1921  unsigned int maximum_size_scavenges_;
1922
1923  // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
1924  // Re-visit incremental marking heuristics.
1925  bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
1926
1927  void SelectScavengingVisitorsTable();
1928
1929  void IdleMarkCompact(const char* message);
1930
1931  void AdvanceIdleIncrementalMarking(intptr_t step_size);
1932
1933  bool WorthActivatingIncrementalMarking();
1934
1935  void ClearObjectStats(bool clear_last_time_stats = false);
1936
1937  void set_weak_object_to_code_table(Object* value) {
1938    DCHECK(!InNewSpace(value));
1939    weak_object_to_code_table_ = value;
1940  }
1941
1942  Object** weak_object_to_code_table_address() {
1943    return &weak_object_to_code_table_;
1944  }
1945
1946  inline void UpdateAllocationsHash(HeapObject* object);
1947  inline void UpdateAllocationsHash(uint32_t value);
1948  inline void PrintAlloctionsHash();
1949
1950  static const int kInitialStringTableSize = 2048;
1951  static const int kInitialEvalCacheSize = 64;
1952  static const int kInitialNumberStringCacheSize = 256;
1953
1954  // Object counts and used memory by InstanceType
1955  size_t object_counts_[OBJECT_STATS_COUNT];
1956  size_t object_counts_last_time_[OBJECT_STATS_COUNT];
1957  size_t object_sizes_[OBJECT_STATS_COUNT];
1958  size_t object_sizes_last_time_[OBJECT_STATS_COUNT];
1959
1960  // Maximum GC pause.
1961  double max_gc_pause_;
1962
1963  // Total time spent in GC.
1964  double total_gc_time_ms_;
1965
1966  // Maximum size of objects alive after GC.
1967  intptr_t max_alive_after_gc_;
1968
1969  // Minimal interval between two subsequent collections.
1970  double min_in_mutator_;
1971
1972  // Cumulative GC time spent in marking
1973  double marking_time_;
1974
1975  // Cumulative GC time spent in sweeping
1976  double sweeping_time_;
1977
1978  MarkCompactCollector mark_compact_collector_;
1979
1980  StoreBuffer store_buffer_;
1981
1982  Marking marking_;
1983
1984  IncrementalMarking incremental_marking_;
1985
1986  GCIdleTimeHandler gc_idle_time_handler_;
1987  unsigned int gc_count_at_last_idle_gc_;
1988
1989  // These two counters are monotomically increasing and never reset.
1990  size_t full_codegen_bytes_generated_;
1991  size_t crankshaft_codegen_bytes_generated_;
1992
1993  // If the --deopt_every_n_garbage_collections flag is set to a positive value,
1994  // this variable holds the number of garbage collections since the last
1995  // deoptimization triggered by garbage collection.
1996  int gcs_since_last_deopt_;
1997
1998#ifdef VERIFY_HEAP
1999  int no_weak_object_verification_scope_depth_;
2000#endif
2001
2002  static const int kAllocationSiteScratchpadSize = 256;
2003  int allocation_sites_scratchpad_length_;
2004
2005  static const int kMaxMarkCompactsInIdleRound = 7;
2006  static const int kIdleScavengeThreshold = 5;
2007
2008  // Shared state read by the scavenge collector and set by ScavengeObject.
2009  PromotionQueue promotion_queue_;
2010
2011  // Flag is set when the heap has been configured.  The heap can be repeatedly
2012  // configured through the API until it is set up.
2013  bool configured_;
2014
2015  ExternalStringTable external_string_table_;
2016
2017  VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
2018
2019  MemoryChunk* chunks_queued_for_free_;
2020
2021  base::Mutex relocation_mutex_;
2022
2023  int gc_callbacks_depth_;
2024
2025  friend class AlwaysAllocateScope;
2026  friend class Factory;
2027  friend class GCCallbacksScope;
2028  friend class GCTracer;
2029  friend class HeapIterator;
2030  friend class Isolate;
2031  friend class MarkCompactCollector;
2032  friend class MarkCompactMarkingVisitor;
2033  friend class MapCompact;
2034#ifdef VERIFY_HEAP
2035  friend class NoWeakObjectVerificationScope;
2036#endif
2037  friend class Page;
2038
2039  DISALLOW_COPY_AND_ASSIGN(Heap);
2040};
2041
2042
2043class HeapStats {
2044 public:
2045  static const int kStartMarker = 0xDECADE00;
2046  static const int kEndMarker = 0xDECADE01;
2047
2048  int* start_marker;                       //  0
2049  int* new_space_size;                     //  1
2050  int* new_space_capacity;                 //  2
2051  intptr_t* old_pointer_space_size;        //  3
2052  intptr_t* old_pointer_space_capacity;    //  4
2053  intptr_t* old_data_space_size;           //  5
2054  intptr_t* old_data_space_capacity;       //  6
2055  intptr_t* code_space_size;               //  7
2056  intptr_t* code_space_capacity;           //  8
2057  intptr_t* map_space_size;                //  9
2058  intptr_t* map_space_capacity;            // 10
2059  intptr_t* cell_space_size;               // 11
2060  intptr_t* cell_space_capacity;           // 12
2061  intptr_t* lo_space_size;                 // 13
2062  int* global_handle_count;                // 14
2063  int* weak_global_handle_count;           // 15
2064  int* pending_global_handle_count;        // 16
2065  int* near_death_global_handle_count;     // 17
2066  int* free_global_handle_count;           // 18
2067  intptr_t* memory_allocator_size;         // 19
2068  intptr_t* memory_allocator_capacity;     // 20
2069  int* objects_per_type;                   // 21
2070  int* size_per_type;                      // 22
2071  int* os_error;                           // 23
2072  int* end_marker;                         // 24
2073  intptr_t* property_cell_space_size;      // 25
2074  intptr_t* property_cell_space_capacity;  // 26
2075};
2076
2077
2078class AlwaysAllocateScope {
2079 public:
2080  explicit inline AlwaysAllocateScope(Isolate* isolate);
2081  inline ~AlwaysAllocateScope();
2082
2083 private:
2084  // Implicitly disable artificial allocation failures.
2085  Heap* heap_;
2086  DisallowAllocationFailure daf_;
2087};
2088
2089
2090#ifdef VERIFY_HEAP
2091class NoWeakObjectVerificationScope {
2092 public:
2093  inline NoWeakObjectVerificationScope();
2094  inline ~NoWeakObjectVerificationScope();
2095};
2096#endif
2097
2098
2099class GCCallbacksScope {
2100 public:
2101  explicit inline GCCallbacksScope(Heap* heap);
2102  inline ~GCCallbacksScope();
2103
2104  inline bool CheckReenter();
2105
2106 private:
2107  Heap* heap_;
2108};
2109
2110
2111// Visitor class to verify interior pointers in spaces that do not contain
2112// or care about intergenerational references. All heap object pointers have to
2113// point into the heap to a location that has a map pointer at its first word.
2114// Caveat: Heap::Contains is an approximation because it can return true for
2115// objects in a heap space but above the allocation pointer.
2116class VerifyPointersVisitor : public ObjectVisitor {
2117 public:
2118  inline void VisitPointers(Object** start, Object** end);
2119};
2120
2121
2122// Verify that all objects are Smis.
2123class VerifySmisVisitor : public ObjectVisitor {
2124 public:
2125  inline void VisitPointers(Object** start, Object** end);
2126};
2127
2128
2129// Space iterator for iterating over all spaces of the heap.  Returns each space
2130// in turn, and null when it is done.
2131class AllSpaces BASE_EMBEDDED {
2132 public:
2133  explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2134  Space* next();
2135
2136 private:
2137  Heap* heap_;
2138  int counter_;
2139};
2140
2141
2142// Space iterator for iterating over all old spaces of the heap: Old pointer
2143// space, old data space and code space.  Returns each space in turn, and null
2144// when it is done.
2145class OldSpaces BASE_EMBEDDED {
2146 public:
2147  explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2148  OldSpace* next();
2149
2150 private:
2151  Heap* heap_;
2152  int counter_;
2153};
2154
2155
2156// Space iterator for iterating over all the paged spaces of the heap: Map
2157// space, old pointer space, old data space, code space and cell space.  Returns
2158// each space in turn, and null when it is done.
2159class PagedSpaces BASE_EMBEDDED {
2160 public:
2161  explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2162  PagedSpace* next();
2163
2164 private:
2165  Heap* heap_;
2166  int counter_;
2167};
2168
2169
2170// Space iterator for iterating over all spaces of the heap.
2171// For each space an object iterator is provided. The deallocation of the
2172// returned object iterators is handled by the space iterator.
2173class SpaceIterator : public Malloced {
2174 public:
2175  explicit SpaceIterator(Heap* heap);
2176  SpaceIterator(Heap* heap, HeapObjectCallback size_func);
2177  virtual ~SpaceIterator();
2178
2179  bool has_next();
2180  ObjectIterator* next();
2181
2182 private:
2183  ObjectIterator* CreateIterator();
2184
2185  Heap* heap_;
2186  int current_space_;         // from enum AllocationSpace.
2187  ObjectIterator* iterator_;  // object iterator for the current space.
2188  HeapObjectCallback size_func_;
2189};
2190
2191
2192// A HeapIterator provides iteration over the whole heap. It
2193// aggregates the specific iterators for the different spaces as
2194// these can only iterate over one space only.
2195//
2196// HeapIterator ensures there is no allocation during its lifetime
2197// (using an embedded DisallowHeapAllocation instance).
2198//
2199// HeapIterator can skip free list nodes (that is, de-allocated heap
2200// objects that still remain in the heap). As implementation of free
2201// nodes filtering uses GC marks, it can't be used during MS/MC GC
2202// phases. Also, it is forbidden to interrupt iteration in this mode,
2203// as this will leave heap objects marked (and thus, unusable).
2204class HeapObjectsFilter;
2205
2206class HeapIterator BASE_EMBEDDED {
2207 public:
2208  enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
2209
2210  explicit HeapIterator(Heap* heap);
2211  HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
2212  ~HeapIterator();
2213
2214  HeapObject* next();
2215  void reset();
2216
2217 private:
2218  struct MakeHeapIterableHelper {
2219    explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
2220  };
2221
2222  // Perform the initialization.
2223  void Init();
2224  // Perform all necessary shutdown (destruction) work.
2225  void Shutdown();
2226  HeapObject* NextObject();
2227
2228  MakeHeapIterableHelper make_heap_iterable_helper_;
2229  DisallowHeapAllocation no_heap_allocation_;
2230  Heap* heap_;
2231  HeapObjectsFiltering filtering_;
2232  HeapObjectsFilter* filter_;
2233  // Space iterator for iterating all the spaces.
2234  SpaceIterator* space_iterator_;
2235  // Object iterator for the space currently being iterated.
2236  ObjectIterator* object_iterator_;
2237};
2238
2239
2240// Cache for mapping (map, property name) into field offset.
2241// Cleared at startup and prior to mark sweep collection.
2242class KeyedLookupCache {
2243 public:
2244  // Lookup field offset for (map, name). If absent, -1 is returned.
2245  int Lookup(Handle<Map> map, Handle<Name> name);
2246
2247  // Update an element in the cache.
2248  void Update(Handle<Map> map, Handle<Name> name, int field_offset);
2249
2250  // Clear the cache.
2251  void Clear();
2252
2253  static const int kLength = 256;
2254  static const int kCapacityMask = kLength - 1;
2255  static const int kMapHashShift = 5;
2256  static const int kHashMask = -4;  // Zero the last two bits.
2257  static const int kEntriesPerBucket = 4;
2258  static const int kEntryLength = 2;
2259  static const int kMapIndex = 0;
2260  static const int kKeyIndex = 1;
2261  static const int kNotFound = -1;
2262
2263  // kEntriesPerBucket should be a power of 2.
2264  STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
2265  STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
2266
2267 private:
2268  KeyedLookupCache() {
2269    for (int i = 0; i < kLength; ++i) {
2270      keys_[i].map = NULL;
2271      keys_[i].name = NULL;
2272      field_offsets_[i] = kNotFound;
2273    }
2274  }
2275
2276  static inline int Hash(Handle<Map> map, Handle<Name> name);
2277
2278  // Get the address of the keys and field_offsets arrays.  Used in
2279  // generated code to perform cache lookups.
2280  Address keys_address() { return reinterpret_cast<Address>(&keys_); }
2281
2282  Address field_offsets_address() {
2283    return reinterpret_cast<Address>(&field_offsets_);
2284  }
2285
2286  struct Key {
2287    Map* map;
2288    Name* name;
2289  };
2290
2291  Key keys_[kLength];
2292  int field_offsets_[kLength];
2293
2294  friend class ExternalReference;
2295  friend class Isolate;
2296  DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
2297};
2298
2299
2300// Cache for mapping (map, property name) into descriptor index.
2301// The cache contains both positive and negative results.
2302// Descriptor index equals kNotFound means the property is absent.
2303// Cleared at startup and prior to any gc.
2304class DescriptorLookupCache {
2305 public:
2306  // Lookup descriptor index for (map, name).
2307  // If absent, kAbsent is returned.
2308  int Lookup(Map* source, Name* name) {
2309    if (!name->IsUniqueName()) return kAbsent;
2310    int index = Hash(source, name);
2311    Key& key = keys_[index];
2312    if ((key.source == source) && (key.name == name)) return results_[index];
2313    return kAbsent;
2314  }
2315
2316  // Update an element in the cache.
2317  void Update(Map* source, Name* name, int result) {
2318    DCHECK(result != kAbsent);
2319    if (name->IsUniqueName()) {
2320      int index = Hash(source, name);
2321      Key& key = keys_[index];
2322      key.source = source;
2323      key.name = name;
2324      results_[index] = result;
2325    }
2326  }
2327
2328  // Clear the cache.
2329  void Clear();
2330
2331  static const int kAbsent = -2;
2332
2333 private:
2334  DescriptorLookupCache() {
2335    for (int i = 0; i < kLength; ++i) {
2336      keys_[i].source = NULL;
2337      keys_[i].name = NULL;
2338      results_[i] = kAbsent;
2339    }
2340  }
2341
2342  static int Hash(Object* source, Name* name) {
2343    // Uses only lower 32 bits if pointers are larger.
2344    uint32_t source_hash =
2345        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
2346        kPointerSizeLog2;
2347    uint32_t name_hash =
2348        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >>
2349        kPointerSizeLog2;
2350    return (source_hash ^ name_hash) % kLength;
2351  }
2352
2353  static const int kLength = 64;
2354  struct Key {
2355    Map* source;
2356    Name* name;
2357  };
2358
2359  Key keys_[kLength];
2360  int results_[kLength];
2361
2362  friend class Isolate;
2363  DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
2364};
2365
2366
2367class RegExpResultsCache {
2368 public:
2369  enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
2370
2371  // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
2372  // On success, the returned result is guaranteed to be a COW-array.
2373  static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
2374                        ResultsCacheType type);
2375  // Attempt to add value_array to the cache specified by type.  On success,
2376  // value_array is turned into a COW-array.
2377  static void Enter(Isolate* isolate, Handle<String> key_string,
2378                    Handle<Object> key_pattern, Handle<FixedArray> value_array,
2379                    ResultsCacheType type);
2380  static void Clear(FixedArray* cache);
2381  static const int kRegExpResultsCacheSize = 0x100;
2382
2383 private:
2384  static const int kArrayEntriesPerCacheEntry = 4;
2385  static const int kStringOffset = 0;
2386  static const int kPatternOffset = 1;
2387  static const int kArrayOffset = 2;
2388};
2389
2390
2391// Abstract base class for checking whether a weak object should be retained.
2392class WeakObjectRetainer {
2393 public:
2394  virtual ~WeakObjectRetainer() {}
2395
2396  // Return whether this object should be retained. If NULL is returned the
2397  // object has no references. Otherwise the address of the retained object
2398  // should be returned as in some GC situations the object has been moved.
2399  virtual Object* RetainAs(Object* object) = 0;
2400};
2401
2402
2403// Intrusive object marking uses least significant bit of
2404// heap object's map word to mark objects.
2405// Normally all map words have least significant bit set
2406// because they contain tagged map pointer.
2407// If the bit is not set object is marked.
2408// All objects should be unmarked before resuming
2409// JavaScript execution.
2410class IntrusiveMarking {
2411 public:
2412  static bool IsMarked(HeapObject* object) {
2413    return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
2414  }
2415
2416  static void ClearMark(HeapObject* object) {
2417    uintptr_t map_word = object->map_word().ToRawValue();
2418    object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
2419    DCHECK(!IsMarked(object));
2420  }
2421
2422  static void SetMark(HeapObject* object) {
2423    uintptr_t map_word = object->map_word().ToRawValue();
2424    object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
2425    DCHECK(IsMarked(object));
2426  }
2427
2428  static Map* MapOfMarkedObject(HeapObject* object) {
2429    uintptr_t map_word = object->map_word().ToRawValue();
2430    return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
2431  }
2432
2433  static int SizeOfMarkedObject(HeapObject* object) {
2434    return object->SizeFromMap(MapOfMarkedObject(object));
2435  }
2436
2437 private:
2438  static const uintptr_t kNotMarkedBit = 0x1;
2439  STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0);  // NOLINT
2440};
2441
2442
2443#ifdef DEBUG
2444// Helper class for tracing paths to a search target Object from all roots.
2445// The TracePathFrom() method can be used to trace paths from a specific
2446// object to the search target object.
2447class PathTracer : public ObjectVisitor {
2448 public:
2449  enum WhatToFind {
2450    FIND_ALL,   // Will find all matches.
2451    FIND_FIRST  // Will stop the search after first match.
2452  };
2453
2454  // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2455  static const int kMarkTag = 2;
2456
2457  // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2458  // after the first match.  If FIND_ALL is specified, then tracing will be
2459  // done for all matches.
2460  PathTracer(Object* search_target, WhatToFind what_to_find,
2461             VisitMode visit_mode)
2462      : search_target_(search_target),
2463        found_target_(false),
2464        found_target_in_trace_(false),
2465        what_to_find_(what_to_find),
2466        visit_mode_(visit_mode),
2467        object_stack_(20),
2468        no_allocation() {}
2469
2470  virtual void VisitPointers(Object** start, Object** end);
2471
2472  void Reset();
2473  void TracePathFrom(Object** root);
2474
2475  bool found() const { return found_target_; }
2476
2477  static Object* const kAnyGlobalObject;
2478
2479 protected:
2480  class MarkVisitor;
2481  class UnmarkVisitor;
2482
2483  void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2484  void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2485  virtual void ProcessResults();
2486
2487  Object* search_target_;
2488  bool found_target_;
2489  bool found_target_in_trace_;
2490  WhatToFind what_to_find_;
2491  VisitMode visit_mode_;
2492  List<Object*> object_stack_;
2493
2494  DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
2495
2496 private:
2497  DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2498};
2499#endif  // DEBUG
2500}
2501}  // namespace v8::internal
2502
2503#endif  // V8_HEAP_HEAP_H_
2504