1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// The original source code covered by the above license above has been modified
34// significantly by Google Inc.
35// Copyright 2012 the V8 project authors. All rights reserved.
36
37#include "src/v8.h"
38
39#if V8_TARGET_ARCH_IA32
40
41#include "src/base/bits.h"
42#include "src/base/cpu.h"
43#include "src/disassembler.h"
44#include "src/macro-assembler.h"
45#include "src/serialize.h"
46
47namespace v8 {
48namespace internal {
49
50// -----------------------------------------------------------------------------
51// Implementation of CpuFeatures
52
53void CpuFeatures::ProbeImpl(bool cross_compile) {
54  base::CPU cpu;
55  CHECK(cpu.has_sse2());  // SSE2 support is mandatory.
56  CHECK(cpu.has_cmov());  // CMOV support is mandatory.
57
58  // Only use statically determined features for cross compile (snapshot).
59  if (cross_compile) return;
60
61  if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
62  if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
63}
64
65
66void CpuFeatures::PrintTarget() { }
67void CpuFeatures::PrintFeatures() { }
68
69
70// -----------------------------------------------------------------------------
71// Implementation of Displacement
72
73void Displacement::init(Label* L, Type type) {
74  DCHECK(!L->is_bound());
75  int next = 0;
76  if (L->is_linked()) {
77    next = L->pos();
78    DCHECK(next > 0);  // Displacements must be at positions > 0
79  }
80  // Ensure that we _never_ overflow the next field.
81  DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
82  data_ = NextField::encode(next) | TypeField::encode(type);
83}
84
85
86// -----------------------------------------------------------------------------
87// Implementation of RelocInfo
88
89
90const int RelocInfo::kApplyMask =
91  RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
92    1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE |
93    1 << RelocInfo::DEBUG_BREAK_SLOT | 1 << RelocInfo::CODE_AGE_SEQUENCE;
94
95
96bool RelocInfo::IsCodedSpecially() {
97  // The deserializer needs to know whether a pointer is specially coded.  Being
98  // specially coded on IA32 means that it is a relative address, as used by
99  // branch instructions.  These are also the ones that need changing when a
100  // code object moves.
101  return (1 << rmode_) & kApplyMask;
102}
103
104
105bool RelocInfo::IsInConstantPool() {
106  return false;
107}
108
109
110void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
111  // Patch the code at the current address with the supplied instructions.
112  for (int i = 0; i < instruction_count; i++) {
113    *(pc_ + i) = *(instructions + i);
114  }
115
116  // Indicate that code has changed.
117  CpuFeatures::FlushICache(pc_, instruction_count);
118}
119
120
121// Patch the code at the current PC with a call to the target address.
122// Additional guard int3 instructions can be added if required.
123void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
124  // Call instruction takes up 5 bytes and int3 takes up one byte.
125  static const int kCallCodeSize = 5;
126  int code_size = kCallCodeSize + guard_bytes;
127
128  // Create a code patcher.
129  CodePatcher patcher(pc_, code_size);
130
131  // Add a label for checking the size of the code used for returning.
132#ifdef DEBUG
133  Label check_codesize;
134  patcher.masm()->bind(&check_codesize);
135#endif
136
137  // Patch the code.
138  patcher.masm()->call(target, RelocInfo::NONE32);
139
140  // Check that the size of the code generated is as expected.
141  DCHECK_EQ(kCallCodeSize,
142            patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize));
143
144  // Add the requested number of int3 instructions after the call.
145  DCHECK_GE(guard_bytes, 0);
146  for (int i = 0; i < guard_bytes; i++) {
147    patcher.masm()->int3();
148  }
149}
150
151
152// -----------------------------------------------------------------------------
153// Implementation of Operand
154
155Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
156  // [base + disp/r]
157  if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
158    // [base]
159    set_modrm(0, base);
160    if (base.is(esp)) set_sib(times_1, esp, base);
161  } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
162    // [base + disp8]
163    set_modrm(1, base);
164    if (base.is(esp)) set_sib(times_1, esp, base);
165    set_disp8(disp);
166  } else {
167    // [base + disp/r]
168    set_modrm(2, base);
169    if (base.is(esp)) set_sib(times_1, esp, base);
170    set_dispr(disp, rmode);
171  }
172}
173
174
175Operand::Operand(Register base,
176                 Register index,
177                 ScaleFactor scale,
178                 int32_t disp,
179                 RelocInfo::Mode rmode) {
180  DCHECK(!index.is(esp));  // illegal addressing mode
181  // [base + index*scale + disp/r]
182  if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
183    // [base + index*scale]
184    set_modrm(0, esp);
185    set_sib(scale, index, base);
186  } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
187    // [base + index*scale + disp8]
188    set_modrm(1, esp);
189    set_sib(scale, index, base);
190    set_disp8(disp);
191  } else {
192    // [base + index*scale + disp/r]
193    set_modrm(2, esp);
194    set_sib(scale, index, base);
195    set_dispr(disp, rmode);
196  }
197}
198
199
200Operand::Operand(Register index,
201                 ScaleFactor scale,
202                 int32_t disp,
203                 RelocInfo::Mode rmode) {
204  DCHECK(!index.is(esp));  // illegal addressing mode
205  // [index*scale + disp/r]
206  set_modrm(0, esp);
207  set_sib(scale, index, ebp);
208  set_dispr(disp, rmode);
209}
210
211
212bool Operand::is_reg(Register reg) const {
213  return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
214      && ((buf_[0] & 0x07) == reg.code());  // register codes match.
215}
216
217
218bool Operand::is_reg_only() const {
219  return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
220}
221
222
223Register Operand::reg() const {
224  DCHECK(is_reg_only());
225  return Register::from_code(buf_[0] & 0x07);
226}
227
228
229// -----------------------------------------------------------------------------
230// Implementation of Assembler.
231
232// Emit a single byte. Must always be inlined.
233#define EMIT(x)                                 \
234  *pc_++ = (x)
235
236
237#ifdef GENERATED_CODE_COVERAGE
238static void InitCoverageLog();
239#endif
240
241Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
242    : AssemblerBase(isolate, buffer, buffer_size),
243      positions_recorder_(this) {
244  // Clear the buffer in debug mode unless it was provided by the
245  // caller in which case we can't be sure it's okay to overwrite
246  // existing code in it; see CodePatcher::CodePatcher(...).
247#ifdef DEBUG
248  if (own_buffer_) {
249    memset(buffer_, 0xCC, buffer_size_);  // int3
250  }
251#endif
252
253  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
254
255#ifdef GENERATED_CODE_COVERAGE
256  InitCoverageLog();
257#endif
258}
259
260
261void Assembler::GetCode(CodeDesc* desc) {
262  // Finalize code (at this point overflow() may be true, but the gap ensures
263  // that we are still not overlapping instructions and relocation info).
264  DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
265  // Set up code descriptor.
266  desc->buffer = buffer_;
267  desc->buffer_size = buffer_size_;
268  desc->instr_size = pc_offset();
269  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
270  desc->origin = this;
271}
272
273
274void Assembler::Align(int m) {
275  DCHECK(base::bits::IsPowerOfTwo32(m));
276  int mask = m - 1;
277  int addr = pc_offset();
278  Nop((m - (addr & mask)) & mask);
279}
280
281
282bool Assembler::IsNop(Address addr) {
283  Address a = addr;
284  while (*a == 0x66) a++;
285  if (*a == 0x90) return true;
286  if (a[0] == 0xf && a[1] == 0x1f) return true;
287  return false;
288}
289
290
291void Assembler::Nop(int bytes) {
292  EnsureSpace ensure_space(this);
293
294  // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
295  while (bytes > 0) {
296    switch (bytes) {
297      case 2:
298        EMIT(0x66);
299      case 1:
300        EMIT(0x90);
301        return;
302      case 3:
303        EMIT(0xf);
304        EMIT(0x1f);
305        EMIT(0);
306        return;
307      case 4:
308        EMIT(0xf);
309        EMIT(0x1f);
310        EMIT(0x40);
311        EMIT(0);
312        return;
313      case 6:
314        EMIT(0x66);
315      case 5:
316        EMIT(0xf);
317        EMIT(0x1f);
318        EMIT(0x44);
319        EMIT(0);
320        EMIT(0);
321        return;
322      case 7:
323        EMIT(0xf);
324        EMIT(0x1f);
325        EMIT(0x80);
326        EMIT(0);
327        EMIT(0);
328        EMIT(0);
329        EMIT(0);
330        return;
331      default:
332      case 11:
333        EMIT(0x66);
334        bytes--;
335      case 10:
336        EMIT(0x66);
337        bytes--;
338      case 9:
339        EMIT(0x66);
340        bytes--;
341      case 8:
342        EMIT(0xf);
343        EMIT(0x1f);
344        EMIT(0x84);
345        EMIT(0);
346        EMIT(0);
347        EMIT(0);
348        EMIT(0);
349        EMIT(0);
350        bytes -= 8;
351    }
352  }
353}
354
355
356void Assembler::CodeTargetAlign() {
357  Align(16);  // Preferred alignment of jump targets on ia32.
358}
359
360
361void Assembler::cpuid() {
362  EnsureSpace ensure_space(this);
363  EMIT(0x0F);
364  EMIT(0xA2);
365}
366
367
368void Assembler::pushad() {
369  EnsureSpace ensure_space(this);
370  EMIT(0x60);
371}
372
373
374void Assembler::popad() {
375  EnsureSpace ensure_space(this);
376  EMIT(0x61);
377}
378
379
380void Assembler::pushfd() {
381  EnsureSpace ensure_space(this);
382  EMIT(0x9C);
383}
384
385
386void Assembler::popfd() {
387  EnsureSpace ensure_space(this);
388  EMIT(0x9D);
389}
390
391
392void Assembler::push(const Immediate& x) {
393  EnsureSpace ensure_space(this);
394  if (x.is_int8()) {
395    EMIT(0x6a);
396    EMIT(x.x_);
397  } else {
398    EMIT(0x68);
399    emit(x);
400  }
401}
402
403
404void Assembler::push_imm32(int32_t imm32) {
405  EnsureSpace ensure_space(this);
406  EMIT(0x68);
407  emit(imm32);
408}
409
410
411void Assembler::push(Register src) {
412  EnsureSpace ensure_space(this);
413  EMIT(0x50 | src.code());
414}
415
416
417void Assembler::push(const Operand& src) {
418  EnsureSpace ensure_space(this);
419  EMIT(0xFF);
420  emit_operand(esi, src);
421}
422
423
424void Assembler::pop(Register dst) {
425  DCHECK(reloc_info_writer.last_pc() != NULL);
426  EnsureSpace ensure_space(this);
427  EMIT(0x58 | dst.code());
428}
429
430
431void Assembler::pop(const Operand& dst) {
432  EnsureSpace ensure_space(this);
433  EMIT(0x8F);
434  emit_operand(eax, dst);
435}
436
437
438void Assembler::enter(const Immediate& size) {
439  EnsureSpace ensure_space(this);
440  EMIT(0xC8);
441  emit_w(size);
442  EMIT(0);
443}
444
445
446void Assembler::leave() {
447  EnsureSpace ensure_space(this);
448  EMIT(0xC9);
449}
450
451
452void Assembler::mov_b(Register dst, const Operand& src) {
453  CHECK(dst.is_byte_register());
454  EnsureSpace ensure_space(this);
455  EMIT(0x8A);
456  emit_operand(dst, src);
457}
458
459
460void Assembler::mov_b(const Operand& dst, int8_t imm8) {
461  EnsureSpace ensure_space(this);
462  EMIT(0xC6);
463  emit_operand(eax, dst);
464  EMIT(imm8);
465}
466
467
468void Assembler::mov_b(const Operand& dst, Register src) {
469  CHECK(src.is_byte_register());
470  EnsureSpace ensure_space(this);
471  EMIT(0x88);
472  emit_operand(src, dst);
473}
474
475
476void Assembler::mov_w(Register dst, const Operand& src) {
477  EnsureSpace ensure_space(this);
478  EMIT(0x66);
479  EMIT(0x8B);
480  emit_operand(dst, src);
481}
482
483
484void Assembler::mov_w(const Operand& dst, Register src) {
485  EnsureSpace ensure_space(this);
486  EMIT(0x66);
487  EMIT(0x89);
488  emit_operand(src, dst);
489}
490
491
492void Assembler::mov_w(const Operand& dst, int16_t imm16) {
493  EnsureSpace ensure_space(this);
494  EMIT(0x66);
495  EMIT(0xC7);
496  emit_operand(eax, dst);
497  EMIT(static_cast<int8_t>(imm16 & 0xff));
498  EMIT(static_cast<int8_t>(imm16 >> 8));
499}
500
501
502void Assembler::mov(Register dst, int32_t imm32) {
503  EnsureSpace ensure_space(this);
504  EMIT(0xB8 | dst.code());
505  emit(imm32);
506}
507
508
509void Assembler::mov(Register dst, const Immediate& x) {
510  EnsureSpace ensure_space(this);
511  EMIT(0xB8 | dst.code());
512  emit(x);
513}
514
515
516void Assembler::mov(Register dst, Handle<Object> handle) {
517  EnsureSpace ensure_space(this);
518  EMIT(0xB8 | dst.code());
519  emit(handle);
520}
521
522
523void Assembler::mov(Register dst, const Operand& src) {
524  EnsureSpace ensure_space(this);
525  EMIT(0x8B);
526  emit_operand(dst, src);
527}
528
529
530void Assembler::mov(Register dst, Register src) {
531  EnsureSpace ensure_space(this);
532  EMIT(0x89);
533  EMIT(0xC0 | src.code() << 3 | dst.code());
534}
535
536
537void Assembler::mov(const Operand& dst, const Immediate& x) {
538  EnsureSpace ensure_space(this);
539  EMIT(0xC7);
540  emit_operand(eax, dst);
541  emit(x);
542}
543
544
545void Assembler::mov(const Operand& dst, Handle<Object> handle) {
546  EnsureSpace ensure_space(this);
547  EMIT(0xC7);
548  emit_operand(eax, dst);
549  emit(handle);
550}
551
552
553void Assembler::mov(const Operand& dst, Register src) {
554  EnsureSpace ensure_space(this);
555  EMIT(0x89);
556  emit_operand(src, dst);
557}
558
559
560void Assembler::movsx_b(Register dst, const Operand& src) {
561  EnsureSpace ensure_space(this);
562  EMIT(0x0F);
563  EMIT(0xBE);
564  emit_operand(dst, src);
565}
566
567
568void Assembler::movsx_w(Register dst, const Operand& src) {
569  EnsureSpace ensure_space(this);
570  EMIT(0x0F);
571  EMIT(0xBF);
572  emit_operand(dst, src);
573}
574
575
576void Assembler::movzx_b(Register dst, const Operand& src) {
577  EnsureSpace ensure_space(this);
578  EMIT(0x0F);
579  EMIT(0xB6);
580  emit_operand(dst, src);
581}
582
583
584void Assembler::movzx_w(Register dst, const Operand& src) {
585  EnsureSpace ensure_space(this);
586  EMIT(0x0F);
587  EMIT(0xB7);
588  emit_operand(dst, src);
589}
590
591
592void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
593  EnsureSpace ensure_space(this);
594  // Opcode: 0f 40 + cc /r.
595  EMIT(0x0F);
596  EMIT(0x40 + cc);
597  emit_operand(dst, src);
598}
599
600
601void Assembler::cld() {
602  EnsureSpace ensure_space(this);
603  EMIT(0xFC);
604}
605
606
607void Assembler::rep_movs() {
608  EnsureSpace ensure_space(this);
609  EMIT(0xF3);
610  EMIT(0xA5);
611}
612
613
614void Assembler::rep_stos() {
615  EnsureSpace ensure_space(this);
616  EMIT(0xF3);
617  EMIT(0xAB);
618}
619
620
621void Assembler::stos() {
622  EnsureSpace ensure_space(this);
623  EMIT(0xAB);
624}
625
626
627void Assembler::xchg(Register dst, Register src) {
628  EnsureSpace ensure_space(this);
629  if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
630    EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
631  } else {
632    EMIT(0x87);
633    EMIT(0xC0 | src.code() << 3 | dst.code());
634  }
635}
636
637
638void Assembler::xchg(Register dst, const Operand& src) {
639  EnsureSpace ensure_space(this);
640  EMIT(0x87);
641  emit_operand(dst, src);
642}
643
644
645void Assembler::adc(Register dst, int32_t imm32) {
646  EnsureSpace ensure_space(this);
647  emit_arith(2, Operand(dst), Immediate(imm32));
648}
649
650
651void Assembler::adc(Register dst, const Operand& src) {
652  EnsureSpace ensure_space(this);
653  EMIT(0x13);
654  emit_operand(dst, src);
655}
656
657
658void Assembler::add(Register dst, const Operand& src) {
659  EnsureSpace ensure_space(this);
660  EMIT(0x03);
661  emit_operand(dst, src);
662}
663
664
665void Assembler::add(const Operand& dst, Register src) {
666  EnsureSpace ensure_space(this);
667  EMIT(0x01);
668  emit_operand(src, dst);
669}
670
671
672void Assembler::add(const Operand& dst, const Immediate& x) {
673  DCHECK(reloc_info_writer.last_pc() != NULL);
674  EnsureSpace ensure_space(this);
675  emit_arith(0, dst, x);
676}
677
678
679void Assembler::and_(Register dst, int32_t imm32) {
680  and_(dst, Immediate(imm32));
681}
682
683
684void Assembler::and_(Register dst, const Immediate& x) {
685  EnsureSpace ensure_space(this);
686  emit_arith(4, Operand(dst), x);
687}
688
689
690void Assembler::and_(Register dst, const Operand& src) {
691  EnsureSpace ensure_space(this);
692  EMIT(0x23);
693  emit_operand(dst, src);
694}
695
696
697void Assembler::and_(const Operand& dst, const Immediate& x) {
698  EnsureSpace ensure_space(this);
699  emit_arith(4, dst, x);
700}
701
702
703void Assembler::and_(const Operand& dst, Register src) {
704  EnsureSpace ensure_space(this);
705  EMIT(0x21);
706  emit_operand(src, dst);
707}
708
709
710void Assembler::cmpb(const Operand& op, int8_t imm8) {
711  EnsureSpace ensure_space(this);
712  if (op.is_reg(eax)) {
713    EMIT(0x3C);
714  } else {
715    EMIT(0x80);
716    emit_operand(edi, op);  // edi == 7
717  }
718  EMIT(imm8);
719}
720
721
722void Assembler::cmpb(const Operand& op, Register reg) {
723  CHECK(reg.is_byte_register());
724  EnsureSpace ensure_space(this);
725  EMIT(0x38);
726  emit_operand(reg, op);
727}
728
729
730void Assembler::cmpb(Register reg, const Operand& op) {
731  CHECK(reg.is_byte_register());
732  EnsureSpace ensure_space(this);
733  EMIT(0x3A);
734  emit_operand(reg, op);
735}
736
737
738void Assembler::cmpw(const Operand& op, Immediate imm16) {
739  DCHECK(imm16.is_int16());
740  EnsureSpace ensure_space(this);
741  EMIT(0x66);
742  EMIT(0x81);
743  emit_operand(edi, op);
744  emit_w(imm16);
745}
746
747
748void Assembler::cmp(Register reg, int32_t imm32) {
749  EnsureSpace ensure_space(this);
750  emit_arith(7, Operand(reg), Immediate(imm32));
751}
752
753
754void Assembler::cmp(Register reg, Handle<Object> handle) {
755  EnsureSpace ensure_space(this);
756  emit_arith(7, Operand(reg), Immediate(handle));
757}
758
759
760void Assembler::cmp(Register reg, const Operand& op) {
761  EnsureSpace ensure_space(this);
762  EMIT(0x3B);
763  emit_operand(reg, op);
764}
765
766
767void Assembler::cmp(const Operand& op, const Immediate& imm) {
768  EnsureSpace ensure_space(this);
769  emit_arith(7, op, imm);
770}
771
772
773void Assembler::cmp(const Operand& op, Handle<Object> handle) {
774  EnsureSpace ensure_space(this);
775  emit_arith(7, op, Immediate(handle));
776}
777
778
779void Assembler::cmpb_al(const Operand& op) {
780  EnsureSpace ensure_space(this);
781  EMIT(0x38);  // CMP r/m8, r8
782  emit_operand(eax, op);  // eax has same code as register al.
783}
784
785
786void Assembler::cmpw_ax(const Operand& op) {
787  EnsureSpace ensure_space(this);
788  EMIT(0x66);
789  EMIT(0x39);  // CMP r/m16, r16
790  emit_operand(eax, op);  // eax has same code as register ax.
791}
792
793
794void Assembler::dec_b(Register dst) {
795  CHECK(dst.is_byte_register());
796  EnsureSpace ensure_space(this);
797  EMIT(0xFE);
798  EMIT(0xC8 | dst.code());
799}
800
801
802void Assembler::dec_b(const Operand& dst) {
803  EnsureSpace ensure_space(this);
804  EMIT(0xFE);
805  emit_operand(ecx, dst);
806}
807
808
809void Assembler::dec(Register dst) {
810  EnsureSpace ensure_space(this);
811  EMIT(0x48 | dst.code());
812}
813
814
815void Assembler::dec(const Operand& dst) {
816  EnsureSpace ensure_space(this);
817  EMIT(0xFF);
818  emit_operand(ecx, dst);
819}
820
821
822void Assembler::cdq() {
823  EnsureSpace ensure_space(this);
824  EMIT(0x99);
825}
826
827
828void Assembler::idiv(const Operand& src) {
829  EnsureSpace ensure_space(this);
830  EMIT(0xF7);
831  emit_operand(edi, src);
832}
833
834
835void Assembler::div(const Operand& src) {
836  EnsureSpace ensure_space(this);
837  EMIT(0xF7);
838  emit_operand(esi, src);
839}
840
841
842void Assembler::imul(Register reg) {
843  EnsureSpace ensure_space(this);
844  EMIT(0xF7);
845  EMIT(0xE8 | reg.code());
846}
847
848
849void Assembler::imul(Register dst, const Operand& src) {
850  EnsureSpace ensure_space(this);
851  EMIT(0x0F);
852  EMIT(0xAF);
853  emit_operand(dst, src);
854}
855
856
857void Assembler::imul(Register dst, Register src, int32_t imm32) {
858  imul(dst, Operand(src), imm32);
859}
860
861
862void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
863  EnsureSpace ensure_space(this);
864  if (is_int8(imm32)) {
865    EMIT(0x6B);
866    emit_operand(dst, src);
867    EMIT(imm32);
868  } else {
869    EMIT(0x69);
870    emit_operand(dst, src);
871    emit(imm32);
872  }
873}
874
875
876void Assembler::inc(Register dst) {
877  EnsureSpace ensure_space(this);
878  EMIT(0x40 | dst.code());
879}
880
881
882void Assembler::inc(const Operand& dst) {
883  EnsureSpace ensure_space(this);
884  EMIT(0xFF);
885  emit_operand(eax, dst);
886}
887
888
889void Assembler::lea(Register dst, const Operand& src) {
890  EnsureSpace ensure_space(this);
891  EMIT(0x8D);
892  emit_operand(dst, src);
893}
894
895
896void Assembler::mul(Register src) {
897  EnsureSpace ensure_space(this);
898  EMIT(0xF7);
899  EMIT(0xE0 | src.code());
900}
901
902
903void Assembler::neg(Register dst) {
904  EnsureSpace ensure_space(this);
905  EMIT(0xF7);
906  EMIT(0xD8 | dst.code());
907}
908
909
910void Assembler::neg(const Operand& dst) {
911  EnsureSpace ensure_space(this);
912  EMIT(0xF7);
913  emit_operand(ebx, dst);
914}
915
916
917void Assembler::not_(Register dst) {
918  EnsureSpace ensure_space(this);
919  EMIT(0xF7);
920  EMIT(0xD0 | dst.code());
921}
922
923
924void Assembler::not_(const Operand& dst) {
925  EnsureSpace ensure_space(this);
926  EMIT(0xF7);
927  emit_operand(edx, dst);
928}
929
930
931void Assembler::or_(Register dst, int32_t imm32) {
932  EnsureSpace ensure_space(this);
933  emit_arith(1, Operand(dst), Immediate(imm32));
934}
935
936
937void Assembler::or_(Register dst, const Operand& src) {
938  EnsureSpace ensure_space(this);
939  EMIT(0x0B);
940  emit_operand(dst, src);
941}
942
943
944void Assembler::or_(const Operand& dst, const Immediate& x) {
945  EnsureSpace ensure_space(this);
946  emit_arith(1, dst, x);
947}
948
949
950void Assembler::or_(const Operand& dst, Register src) {
951  EnsureSpace ensure_space(this);
952  EMIT(0x09);
953  emit_operand(src, dst);
954}
955
956
957void Assembler::rcl(Register dst, uint8_t imm8) {
958  EnsureSpace ensure_space(this);
959  DCHECK(is_uint5(imm8));  // illegal shift count
960  if (imm8 == 1) {
961    EMIT(0xD1);
962    EMIT(0xD0 | dst.code());
963  } else {
964    EMIT(0xC1);
965    EMIT(0xD0 | dst.code());
966    EMIT(imm8);
967  }
968}
969
970
971void Assembler::rcr(Register dst, uint8_t imm8) {
972  EnsureSpace ensure_space(this);
973  DCHECK(is_uint5(imm8));  // illegal shift count
974  if (imm8 == 1) {
975    EMIT(0xD1);
976    EMIT(0xD8 | dst.code());
977  } else {
978    EMIT(0xC1);
979    EMIT(0xD8 | dst.code());
980    EMIT(imm8);
981  }
982}
983
984
985void Assembler::ror(Register dst, uint8_t imm8) {
986  EnsureSpace ensure_space(this);
987  DCHECK(is_uint5(imm8));  // illegal shift count
988  if (imm8 == 1) {
989    EMIT(0xD1);
990    EMIT(0xC8 | dst.code());
991  } else {
992    EMIT(0xC1);
993    EMIT(0xC8 | dst.code());
994    EMIT(imm8);
995  }
996}
997
998
999void Assembler::ror_cl(Register dst) {
1000  EnsureSpace ensure_space(this);
1001  EMIT(0xD3);
1002  EMIT(0xC8 | dst.code());
1003}
1004
1005
1006void Assembler::sar(const Operand& dst, uint8_t imm8) {
1007  EnsureSpace ensure_space(this);
1008  DCHECK(is_uint5(imm8));  // illegal shift count
1009  if (imm8 == 1) {
1010    EMIT(0xD1);
1011    emit_operand(edi, dst);
1012  } else {
1013    EMIT(0xC1);
1014    emit_operand(edi, dst);
1015    EMIT(imm8);
1016  }
1017}
1018
1019
1020void Assembler::sar_cl(const Operand& dst) {
1021  EnsureSpace ensure_space(this);
1022  EMIT(0xD3);
1023  emit_operand(edi, dst);
1024}
1025
1026
1027void Assembler::sbb(Register dst, const Operand& src) {
1028  EnsureSpace ensure_space(this);
1029  EMIT(0x1B);
1030  emit_operand(dst, src);
1031}
1032
1033
1034void Assembler::shld(Register dst, const Operand& src) {
1035  EnsureSpace ensure_space(this);
1036  EMIT(0x0F);
1037  EMIT(0xA5);
1038  emit_operand(dst, src);
1039}
1040
1041
1042void Assembler::shl(const Operand& dst, uint8_t imm8) {
1043  EnsureSpace ensure_space(this);
1044  DCHECK(is_uint5(imm8));  // illegal shift count
1045  if (imm8 == 1) {
1046    EMIT(0xD1);
1047    emit_operand(esp, dst);
1048  } else {
1049    EMIT(0xC1);
1050    emit_operand(esp, dst);
1051    EMIT(imm8);
1052  }
1053}
1054
1055
1056void Assembler::shl_cl(const Operand& dst) {
1057  EnsureSpace ensure_space(this);
1058  EMIT(0xD3);
1059  emit_operand(esp, dst);
1060}
1061
1062
1063void Assembler::shrd(Register dst, const Operand& src) {
1064  EnsureSpace ensure_space(this);
1065  EMIT(0x0F);
1066  EMIT(0xAD);
1067  emit_operand(dst, src);
1068}
1069
1070
1071void Assembler::shr(const Operand& dst, uint8_t imm8) {
1072  EnsureSpace ensure_space(this);
1073  DCHECK(is_uint5(imm8));  // illegal shift count
1074  if (imm8 == 1) {
1075    EMIT(0xD1);
1076    emit_operand(ebp, dst);
1077  } else {
1078    EMIT(0xC1);
1079    emit_operand(ebp, dst);
1080    EMIT(imm8);
1081  }
1082}
1083
1084
1085void Assembler::shr_cl(const Operand& dst) {
1086  EnsureSpace ensure_space(this);
1087  EMIT(0xD3);
1088  emit_operand(ebp, dst);
1089}
1090
1091
1092void Assembler::sub(const Operand& dst, const Immediate& x) {
1093  EnsureSpace ensure_space(this);
1094  emit_arith(5, dst, x);
1095}
1096
1097
1098void Assembler::sub(Register dst, const Operand& src) {
1099  EnsureSpace ensure_space(this);
1100  EMIT(0x2B);
1101  emit_operand(dst, src);
1102}
1103
1104
1105void Assembler::sub(const Operand& dst, Register src) {
1106  EnsureSpace ensure_space(this);
1107  EMIT(0x29);
1108  emit_operand(src, dst);
1109}
1110
1111
1112void Assembler::test(Register reg, const Immediate& imm) {
1113  if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1114    test_b(reg, imm.x_);
1115    return;
1116  }
1117
1118  EnsureSpace ensure_space(this);
1119  // This is not using emit_arith because test doesn't support
1120  // sign-extension of 8-bit operands.
1121  if (reg.is(eax)) {
1122    EMIT(0xA9);
1123  } else {
1124    EMIT(0xF7);
1125    EMIT(0xC0 | reg.code());
1126  }
1127  emit(imm);
1128}
1129
1130
1131void Assembler::test(Register reg, const Operand& op) {
1132  EnsureSpace ensure_space(this);
1133  EMIT(0x85);
1134  emit_operand(reg, op);
1135}
1136
1137
1138void Assembler::test_b(Register reg, const Operand& op) {
1139  CHECK(reg.is_byte_register());
1140  EnsureSpace ensure_space(this);
1141  EMIT(0x84);
1142  emit_operand(reg, op);
1143}
1144
1145
1146void Assembler::test(const Operand& op, const Immediate& imm) {
1147  if (op.is_reg_only()) {
1148    test(op.reg(), imm);
1149    return;
1150  }
1151  if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1152    return test_b(op, imm.x_);
1153  }
1154  EnsureSpace ensure_space(this);
1155  EMIT(0xF7);
1156  emit_operand(eax, op);
1157  emit(imm);
1158}
1159
1160
1161void Assembler::test_b(Register reg, uint8_t imm8) {
1162  EnsureSpace ensure_space(this);
1163  // Only use test against byte for registers that have a byte
1164  // variant: eax, ebx, ecx, and edx.
1165  if (reg.is(eax)) {
1166    EMIT(0xA8);
1167    EMIT(imm8);
1168  } else if (reg.is_byte_register()) {
1169    emit_arith_b(0xF6, 0xC0, reg, imm8);
1170  } else {
1171    EMIT(0xF7);
1172    EMIT(0xC0 | reg.code());
1173    emit(imm8);
1174  }
1175}
1176
1177
1178void Assembler::test_b(const Operand& op, uint8_t imm8) {
1179  if (op.is_reg_only()) {
1180    test_b(op.reg(), imm8);
1181    return;
1182  }
1183  EnsureSpace ensure_space(this);
1184  EMIT(0xF6);
1185  emit_operand(eax, op);
1186  EMIT(imm8);
1187}
1188
1189
1190void Assembler::xor_(Register dst, int32_t imm32) {
1191  EnsureSpace ensure_space(this);
1192  emit_arith(6, Operand(dst), Immediate(imm32));
1193}
1194
1195
1196void Assembler::xor_(Register dst, const Operand& src) {
1197  EnsureSpace ensure_space(this);
1198  EMIT(0x33);
1199  emit_operand(dst, src);
1200}
1201
1202
1203void Assembler::xor_(const Operand& dst, Register src) {
1204  EnsureSpace ensure_space(this);
1205  EMIT(0x31);
1206  emit_operand(src, dst);
1207}
1208
1209
1210void Assembler::xor_(const Operand& dst, const Immediate& x) {
1211  EnsureSpace ensure_space(this);
1212  emit_arith(6, dst, x);
1213}
1214
1215
1216void Assembler::bt(const Operand& dst, Register src) {
1217  EnsureSpace ensure_space(this);
1218  EMIT(0x0F);
1219  EMIT(0xA3);
1220  emit_operand(src, dst);
1221}
1222
1223
1224void Assembler::bts(const Operand& dst, Register src) {
1225  EnsureSpace ensure_space(this);
1226  EMIT(0x0F);
1227  EMIT(0xAB);
1228  emit_operand(src, dst);
1229}
1230
1231
1232void Assembler::bsr(Register dst, const Operand& src) {
1233  EnsureSpace ensure_space(this);
1234  EMIT(0x0F);
1235  EMIT(0xBD);
1236  emit_operand(dst, src);
1237}
1238
1239
1240void Assembler::hlt() {
1241  EnsureSpace ensure_space(this);
1242  EMIT(0xF4);
1243}
1244
1245
1246void Assembler::int3() {
1247  EnsureSpace ensure_space(this);
1248  EMIT(0xCC);
1249}
1250
1251
1252void Assembler::nop() {
1253  EnsureSpace ensure_space(this);
1254  EMIT(0x90);
1255}
1256
1257
1258void Assembler::ret(int imm16) {
1259  EnsureSpace ensure_space(this);
1260  DCHECK(is_uint16(imm16));
1261  if (imm16 == 0) {
1262    EMIT(0xC3);
1263  } else {
1264    EMIT(0xC2);
1265    EMIT(imm16 & 0xFF);
1266    EMIT((imm16 >> 8) & 0xFF);
1267  }
1268}
1269
1270
1271// Labels refer to positions in the (to be) generated code.
1272// There are bound, linked, and unused labels.
1273//
1274// Bound labels refer to known positions in the already
1275// generated code. pos() is the position the label refers to.
1276//
1277// Linked labels refer to unknown positions in the code
1278// to be generated; pos() is the position of the 32bit
1279// Displacement of the last instruction using the label.
1280
1281
1282void Assembler::print(Label* L) {
1283  if (L->is_unused()) {
1284    PrintF("unused label\n");
1285  } else if (L->is_bound()) {
1286    PrintF("bound label to %d\n", L->pos());
1287  } else if (L->is_linked()) {
1288    Label l = *L;
1289    PrintF("unbound label");
1290    while (l.is_linked()) {
1291      Displacement disp = disp_at(&l);
1292      PrintF("@ %d ", l.pos());
1293      disp.print();
1294      PrintF("\n");
1295      disp.next(&l);
1296    }
1297  } else {
1298    PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1299  }
1300}
1301
1302
1303void Assembler::bind_to(Label* L, int pos) {
1304  EnsureSpace ensure_space(this);
1305  DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
1306  while (L->is_linked()) {
1307    Displacement disp = disp_at(L);
1308    int fixup_pos = L->pos();
1309    if (disp.type() == Displacement::CODE_RELATIVE) {
1310      // Relative to Code* heap object pointer.
1311      long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1312    } else {
1313      if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1314        DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
1315      }
1316      // Relative address, relative to point after address.
1317      int imm32 = pos - (fixup_pos + sizeof(int32_t));
1318      long_at_put(fixup_pos, imm32);
1319    }
1320    disp.next(L);
1321  }
1322  while (L->is_near_linked()) {
1323    int fixup_pos = L->near_link_pos();
1324    int offset_to_next =
1325        static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1326    DCHECK(offset_to_next <= 0);
1327    // Relative address, relative to point after address.
1328    int disp = pos - fixup_pos - sizeof(int8_t);
1329    CHECK(0 <= disp && disp <= 127);
1330    set_byte_at(fixup_pos, disp);
1331    if (offset_to_next < 0) {
1332      L->link_to(fixup_pos + offset_to_next, Label::kNear);
1333    } else {
1334      L->UnuseNear();
1335    }
1336  }
1337  L->bind_to(pos);
1338}
1339
1340
1341void Assembler::bind(Label* L) {
1342  EnsureSpace ensure_space(this);
1343  DCHECK(!L->is_bound());  // label can only be bound once
1344  bind_to(L, pc_offset());
1345}
1346
1347
1348void Assembler::call(Label* L) {
1349  positions_recorder()->WriteRecordedPositions();
1350  EnsureSpace ensure_space(this);
1351  if (L->is_bound()) {
1352    const int long_size = 5;
1353    int offs = L->pos() - pc_offset();
1354    DCHECK(offs <= 0);
1355    // 1110 1000 #32-bit disp.
1356    EMIT(0xE8);
1357    emit(offs - long_size);
1358  } else {
1359    // 1110 1000 #32-bit disp.
1360    EMIT(0xE8);
1361    emit_disp(L, Displacement::OTHER);
1362  }
1363}
1364
1365
1366void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1367  positions_recorder()->WriteRecordedPositions();
1368  EnsureSpace ensure_space(this);
1369  DCHECK(!RelocInfo::IsCodeTarget(rmode));
1370  EMIT(0xE8);
1371  if (RelocInfo::IsRuntimeEntry(rmode)) {
1372    emit(reinterpret_cast<uint32_t>(entry), rmode);
1373  } else {
1374    emit(entry - (pc_ + sizeof(int32_t)), rmode);
1375  }
1376}
1377
1378
1379int Assembler::CallSize(const Operand& adr) {
1380  // Call size is 1 (opcode) + adr.len_ (operand).
1381  return 1 + adr.len_;
1382}
1383
1384
1385void Assembler::call(const Operand& adr) {
1386  positions_recorder()->WriteRecordedPositions();
1387  EnsureSpace ensure_space(this);
1388  EMIT(0xFF);
1389  emit_operand(edx, adr);
1390}
1391
1392
1393int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1394  return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1395}
1396
1397
1398void Assembler::call(Handle<Code> code,
1399                     RelocInfo::Mode rmode,
1400                     TypeFeedbackId ast_id) {
1401  positions_recorder()->WriteRecordedPositions();
1402  EnsureSpace ensure_space(this);
1403  DCHECK(RelocInfo::IsCodeTarget(rmode)
1404      || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1405  EMIT(0xE8);
1406  emit(code, rmode, ast_id);
1407}
1408
1409
1410void Assembler::jmp(Label* L, Label::Distance distance) {
1411  EnsureSpace ensure_space(this);
1412  if (L->is_bound()) {
1413    const int short_size = 2;
1414    const int long_size  = 5;
1415    int offs = L->pos() - pc_offset();
1416    DCHECK(offs <= 0);
1417    if (is_int8(offs - short_size)) {
1418      // 1110 1011 #8-bit disp.
1419      EMIT(0xEB);
1420      EMIT((offs - short_size) & 0xFF);
1421    } else {
1422      // 1110 1001 #32-bit disp.
1423      EMIT(0xE9);
1424      emit(offs - long_size);
1425    }
1426  } else if (distance == Label::kNear) {
1427    EMIT(0xEB);
1428    emit_near_disp(L);
1429  } else {
1430    // 1110 1001 #32-bit disp.
1431    EMIT(0xE9);
1432    emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1433  }
1434}
1435
1436
1437void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1438  EnsureSpace ensure_space(this);
1439  DCHECK(!RelocInfo::IsCodeTarget(rmode));
1440  EMIT(0xE9);
1441  if (RelocInfo::IsRuntimeEntry(rmode)) {
1442    emit(reinterpret_cast<uint32_t>(entry), rmode);
1443  } else {
1444    emit(entry - (pc_ + sizeof(int32_t)), rmode);
1445  }
1446}
1447
1448
1449void Assembler::jmp(const Operand& adr) {
1450  EnsureSpace ensure_space(this);
1451  EMIT(0xFF);
1452  emit_operand(esp, adr);
1453}
1454
1455
1456void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1457  EnsureSpace ensure_space(this);
1458  DCHECK(RelocInfo::IsCodeTarget(rmode));
1459  EMIT(0xE9);
1460  emit(code, rmode);
1461}
1462
1463
1464void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1465  EnsureSpace ensure_space(this);
1466  DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1467  if (L->is_bound()) {
1468    const int short_size = 2;
1469    const int long_size  = 6;
1470    int offs = L->pos() - pc_offset();
1471    DCHECK(offs <= 0);
1472    if (is_int8(offs - short_size)) {
1473      // 0111 tttn #8-bit disp
1474      EMIT(0x70 | cc);
1475      EMIT((offs - short_size) & 0xFF);
1476    } else {
1477      // 0000 1111 1000 tttn #32-bit disp
1478      EMIT(0x0F);
1479      EMIT(0x80 | cc);
1480      emit(offs - long_size);
1481    }
1482  } else if (distance == Label::kNear) {
1483    EMIT(0x70 | cc);
1484    emit_near_disp(L);
1485  } else {
1486    // 0000 1111 1000 tttn #32-bit disp
1487    // Note: could eliminate cond. jumps to this jump if condition
1488    //       is the same however, seems to be rather unlikely case.
1489    EMIT(0x0F);
1490    EMIT(0x80 | cc);
1491    emit_disp(L, Displacement::OTHER);
1492  }
1493}
1494
1495
1496void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1497  EnsureSpace ensure_space(this);
1498  DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1499  // 0000 1111 1000 tttn #32-bit disp.
1500  EMIT(0x0F);
1501  EMIT(0x80 | cc);
1502  if (RelocInfo::IsRuntimeEntry(rmode)) {
1503    emit(reinterpret_cast<uint32_t>(entry), rmode);
1504  } else {
1505    emit(entry - (pc_ + sizeof(int32_t)), rmode);
1506  }
1507}
1508
1509
1510void Assembler::j(Condition cc, Handle<Code> code) {
1511  EnsureSpace ensure_space(this);
1512  // 0000 1111 1000 tttn #32-bit disp
1513  EMIT(0x0F);
1514  EMIT(0x80 | cc);
1515  emit(code, RelocInfo::CODE_TARGET);
1516}
1517
1518
1519// FPU instructions.
1520
1521void Assembler::fld(int i) {
1522  EnsureSpace ensure_space(this);
1523  emit_farith(0xD9, 0xC0, i);
1524}
1525
1526
1527void Assembler::fstp(int i) {
1528  EnsureSpace ensure_space(this);
1529  emit_farith(0xDD, 0xD8, i);
1530}
1531
1532
1533void Assembler::fld1() {
1534  EnsureSpace ensure_space(this);
1535  EMIT(0xD9);
1536  EMIT(0xE8);
1537}
1538
1539
1540void Assembler::fldpi() {
1541  EnsureSpace ensure_space(this);
1542  EMIT(0xD9);
1543  EMIT(0xEB);
1544}
1545
1546
1547void Assembler::fldz() {
1548  EnsureSpace ensure_space(this);
1549  EMIT(0xD9);
1550  EMIT(0xEE);
1551}
1552
1553
1554void Assembler::fldln2() {
1555  EnsureSpace ensure_space(this);
1556  EMIT(0xD9);
1557  EMIT(0xED);
1558}
1559
1560
1561void Assembler::fld_s(const Operand& adr) {
1562  EnsureSpace ensure_space(this);
1563  EMIT(0xD9);
1564  emit_operand(eax, adr);
1565}
1566
1567
1568void Assembler::fld_d(const Operand& adr) {
1569  EnsureSpace ensure_space(this);
1570  EMIT(0xDD);
1571  emit_operand(eax, adr);
1572}
1573
1574
1575void Assembler::fstp_s(const Operand& adr) {
1576  EnsureSpace ensure_space(this);
1577  EMIT(0xD9);
1578  emit_operand(ebx, adr);
1579}
1580
1581
1582void Assembler::fst_s(const Operand& adr) {
1583  EnsureSpace ensure_space(this);
1584  EMIT(0xD9);
1585  emit_operand(edx, adr);
1586}
1587
1588
1589void Assembler::fstp_d(const Operand& adr) {
1590  EnsureSpace ensure_space(this);
1591  EMIT(0xDD);
1592  emit_operand(ebx, adr);
1593}
1594
1595
1596void Assembler::fst_d(const Operand& adr) {
1597  EnsureSpace ensure_space(this);
1598  EMIT(0xDD);
1599  emit_operand(edx, adr);
1600}
1601
1602
1603void Assembler::fild_s(const Operand& adr) {
1604  EnsureSpace ensure_space(this);
1605  EMIT(0xDB);
1606  emit_operand(eax, adr);
1607}
1608
1609
1610void Assembler::fild_d(const Operand& adr) {
1611  EnsureSpace ensure_space(this);
1612  EMIT(0xDF);
1613  emit_operand(ebp, adr);
1614}
1615
1616
1617void Assembler::fistp_s(const Operand& adr) {
1618  EnsureSpace ensure_space(this);
1619  EMIT(0xDB);
1620  emit_operand(ebx, adr);
1621}
1622
1623
1624void Assembler::fisttp_s(const Operand& adr) {
1625  DCHECK(IsEnabled(SSE3));
1626  EnsureSpace ensure_space(this);
1627  EMIT(0xDB);
1628  emit_operand(ecx, adr);
1629}
1630
1631
1632void Assembler::fisttp_d(const Operand& adr) {
1633  DCHECK(IsEnabled(SSE3));
1634  EnsureSpace ensure_space(this);
1635  EMIT(0xDD);
1636  emit_operand(ecx, adr);
1637}
1638
1639
1640void Assembler::fist_s(const Operand& adr) {
1641  EnsureSpace ensure_space(this);
1642  EMIT(0xDB);
1643  emit_operand(edx, adr);
1644}
1645
1646
1647void Assembler::fistp_d(const Operand& adr) {
1648  EnsureSpace ensure_space(this);
1649  EMIT(0xDF);
1650  emit_operand(edi, adr);
1651}
1652
1653
1654void Assembler::fabs() {
1655  EnsureSpace ensure_space(this);
1656  EMIT(0xD9);
1657  EMIT(0xE1);
1658}
1659
1660
1661void Assembler::fchs() {
1662  EnsureSpace ensure_space(this);
1663  EMIT(0xD9);
1664  EMIT(0xE0);
1665}
1666
1667
1668void Assembler::fcos() {
1669  EnsureSpace ensure_space(this);
1670  EMIT(0xD9);
1671  EMIT(0xFF);
1672}
1673
1674
1675void Assembler::fsin() {
1676  EnsureSpace ensure_space(this);
1677  EMIT(0xD9);
1678  EMIT(0xFE);
1679}
1680
1681
1682void Assembler::fptan() {
1683  EnsureSpace ensure_space(this);
1684  EMIT(0xD9);
1685  EMIT(0xF2);
1686}
1687
1688
1689void Assembler::fyl2x() {
1690  EnsureSpace ensure_space(this);
1691  EMIT(0xD9);
1692  EMIT(0xF1);
1693}
1694
1695
1696void Assembler::f2xm1() {
1697  EnsureSpace ensure_space(this);
1698  EMIT(0xD9);
1699  EMIT(0xF0);
1700}
1701
1702
1703void Assembler::fscale() {
1704  EnsureSpace ensure_space(this);
1705  EMIT(0xD9);
1706  EMIT(0xFD);
1707}
1708
1709
1710void Assembler::fninit() {
1711  EnsureSpace ensure_space(this);
1712  EMIT(0xDB);
1713  EMIT(0xE3);
1714}
1715
1716
1717void Assembler::fadd(int i) {
1718  EnsureSpace ensure_space(this);
1719  emit_farith(0xDC, 0xC0, i);
1720}
1721
1722
1723void Assembler::fadd_i(int i) {
1724  EnsureSpace ensure_space(this);
1725  emit_farith(0xD8, 0xC0, i);
1726}
1727
1728
1729void Assembler::fsub(int i) {
1730  EnsureSpace ensure_space(this);
1731  emit_farith(0xDC, 0xE8, i);
1732}
1733
1734
1735void Assembler::fsub_i(int i) {
1736  EnsureSpace ensure_space(this);
1737  emit_farith(0xD8, 0xE0, i);
1738}
1739
1740
1741void Assembler::fisub_s(const Operand& adr) {
1742  EnsureSpace ensure_space(this);
1743  EMIT(0xDA);
1744  emit_operand(esp, adr);
1745}
1746
1747
1748void Assembler::fmul_i(int i) {
1749  EnsureSpace ensure_space(this);
1750  emit_farith(0xD8, 0xC8, i);
1751}
1752
1753
1754void Assembler::fmul(int i) {
1755  EnsureSpace ensure_space(this);
1756  emit_farith(0xDC, 0xC8, i);
1757}
1758
1759
1760void Assembler::fdiv(int i) {
1761  EnsureSpace ensure_space(this);
1762  emit_farith(0xDC, 0xF8, i);
1763}
1764
1765
1766void Assembler::fdiv_i(int i) {
1767  EnsureSpace ensure_space(this);
1768  emit_farith(0xD8, 0xF0, i);
1769}
1770
1771
1772void Assembler::faddp(int i) {
1773  EnsureSpace ensure_space(this);
1774  emit_farith(0xDE, 0xC0, i);
1775}
1776
1777
1778void Assembler::fsubp(int i) {
1779  EnsureSpace ensure_space(this);
1780  emit_farith(0xDE, 0xE8, i);
1781}
1782
1783
1784void Assembler::fsubrp(int i) {
1785  EnsureSpace ensure_space(this);
1786  emit_farith(0xDE, 0xE0, i);
1787}
1788
1789
1790void Assembler::fmulp(int i) {
1791  EnsureSpace ensure_space(this);
1792  emit_farith(0xDE, 0xC8, i);
1793}
1794
1795
1796void Assembler::fdivp(int i) {
1797  EnsureSpace ensure_space(this);
1798  emit_farith(0xDE, 0xF8, i);
1799}
1800
1801
1802void Assembler::fprem() {
1803  EnsureSpace ensure_space(this);
1804  EMIT(0xD9);
1805  EMIT(0xF8);
1806}
1807
1808
1809void Assembler::fprem1() {
1810  EnsureSpace ensure_space(this);
1811  EMIT(0xD9);
1812  EMIT(0xF5);
1813}
1814
1815
1816void Assembler::fxch(int i) {
1817  EnsureSpace ensure_space(this);
1818  emit_farith(0xD9, 0xC8, i);
1819}
1820
1821
1822void Assembler::fincstp() {
1823  EnsureSpace ensure_space(this);
1824  EMIT(0xD9);
1825  EMIT(0xF7);
1826}
1827
1828
1829void Assembler::ffree(int i) {
1830  EnsureSpace ensure_space(this);
1831  emit_farith(0xDD, 0xC0, i);
1832}
1833
1834
1835void Assembler::ftst() {
1836  EnsureSpace ensure_space(this);
1837  EMIT(0xD9);
1838  EMIT(0xE4);
1839}
1840
1841
1842void Assembler::fucomp(int i) {
1843  EnsureSpace ensure_space(this);
1844  emit_farith(0xDD, 0xE8, i);
1845}
1846
1847
1848void Assembler::fucompp() {
1849  EnsureSpace ensure_space(this);
1850  EMIT(0xDA);
1851  EMIT(0xE9);
1852}
1853
1854
1855void Assembler::fucomi(int i) {
1856  EnsureSpace ensure_space(this);
1857  EMIT(0xDB);
1858  EMIT(0xE8 + i);
1859}
1860
1861
1862void Assembler::fucomip() {
1863  EnsureSpace ensure_space(this);
1864  EMIT(0xDF);
1865  EMIT(0xE9);
1866}
1867
1868
1869void Assembler::fcompp() {
1870  EnsureSpace ensure_space(this);
1871  EMIT(0xDE);
1872  EMIT(0xD9);
1873}
1874
1875
1876void Assembler::fnstsw_ax() {
1877  EnsureSpace ensure_space(this);
1878  EMIT(0xDF);
1879  EMIT(0xE0);
1880}
1881
1882
1883void Assembler::fwait() {
1884  EnsureSpace ensure_space(this);
1885  EMIT(0x9B);
1886}
1887
1888
1889void Assembler::frndint() {
1890  EnsureSpace ensure_space(this);
1891  EMIT(0xD9);
1892  EMIT(0xFC);
1893}
1894
1895
1896void Assembler::fnclex() {
1897  EnsureSpace ensure_space(this);
1898  EMIT(0xDB);
1899  EMIT(0xE2);
1900}
1901
1902
1903void Assembler::sahf() {
1904  EnsureSpace ensure_space(this);
1905  EMIT(0x9E);
1906}
1907
1908
1909void Assembler::setcc(Condition cc, Register reg) {
1910  DCHECK(reg.is_byte_register());
1911  EnsureSpace ensure_space(this);
1912  EMIT(0x0F);
1913  EMIT(0x90 | cc);
1914  EMIT(0xC0 | reg.code());
1915}
1916
1917
1918void Assembler::cvttss2si(Register dst, const Operand& src) {
1919  EnsureSpace ensure_space(this);
1920  EMIT(0xF3);
1921  EMIT(0x0F);
1922  EMIT(0x2C);
1923  emit_operand(dst, src);
1924}
1925
1926
1927void Assembler::cvttsd2si(Register dst, const Operand& src) {
1928  EnsureSpace ensure_space(this);
1929  EMIT(0xF2);
1930  EMIT(0x0F);
1931  EMIT(0x2C);
1932  emit_operand(dst, src);
1933}
1934
1935
1936void Assembler::cvtsd2si(Register dst, XMMRegister src) {
1937  EnsureSpace ensure_space(this);
1938  EMIT(0xF2);
1939  EMIT(0x0F);
1940  EMIT(0x2D);
1941  emit_sse_operand(dst, src);
1942}
1943
1944
1945void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
1946  EnsureSpace ensure_space(this);
1947  EMIT(0xF2);
1948  EMIT(0x0F);
1949  EMIT(0x2A);
1950  emit_sse_operand(dst, src);
1951}
1952
1953
1954void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1955  EnsureSpace ensure_space(this);
1956  EMIT(0xF3);
1957  EMIT(0x0F);
1958  EMIT(0x5A);
1959  emit_sse_operand(dst, src);
1960}
1961
1962
1963void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1964  EnsureSpace ensure_space(this);
1965  EMIT(0xF2);
1966  EMIT(0x0F);
1967  EMIT(0x5A);
1968  emit_sse_operand(dst, src);
1969}
1970
1971
1972void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1973  EnsureSpace ensure_space(this);
1974  EMIT(0xF2);
1975  EMIT(0x0F);
1976  EMIT(0x58);
1977  emit_sse_operand(dst, src);
1978}
1979
1980
1981void Assembler::addsd(XMMRegister dst, const Operand& src) {
1982  EnsureSpace ensure_space(this);
1983  EMIT(0xF2);
1984  EMIT(0x0F);
1985  EMIT(0x58);
1986  emit_sse_operand(dst, src);
1987}
1988
1989
1990void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
1991  EnsureSpace ensure_space(this);
1992  EMIT(0xF2);
1993  EMIT(0x0F);
1994  EMIT(0x59);
1995  emit_sse_operand(dst, src);
1996}
1997
1998
1999void Assembler::mulsd(XMMRegister dst, const Operand& src) {
2000  EnsureSpace ensure_space(this);
2001  EMIT(0xF2);
2002  EMIT(0x0F);
2003  EMIT(0x59);
2004  emit_sse_operand(dst, src);
2005}
2006
2007
2008void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2009  EnsureSpace ensure_space(this);
2010  EMIT(0xF2);
2011  EMIT(0x0F);
2012  EMIT(0x5C);
2013  emit_sse_operand(dst, src);
2014}
2015
2016
2017void Assembler::subsd(XMMRegister dst, const Operand& src) {
2018  EnsureSpace ensure_space(this);
2019  EMIT(0xF2);
2020  EMIT(0x0F);
2021  EMIT(0x5C);
2022  emit_sse_operand(dst, src);
2023}
2024
2025
2026void Assembler::divsd(XMMRegister dst, XMMRegister src) {
2027  EnsureSpace ensure_space(this);
2028  EMIT(0xF2);
2029  EMIT(0x0F);
2030  EMIT(0x5E);
2031  emit_sse_operand(dst, src);
2032}
2033
2034
2035void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2036  EnsureSpace ensure_space(this);
2037  EMIT(0x66);
2038  EMIT(0x0F);
2039  EMIT(0x57);
2040  emit_sse_operand(dst, src);
2041}
2042
2043
2044void Assembler::andps(XMMRegister dst, const Operand& src) {
2045  EnsureSpace ensure_space(this);
2046  EMIT(0x0F);
2047  EMIT(0x54);
2048  emit_sse_operand(dst, src);
2049}
2050
2051
2052void Assembler::orps(XMMRegister dst, const Operand& src) {
2053  EnsureSpace ensure_space(this);
2054  EMIT(0x0F);
2055  EMIT(0x56);
2056  emit_sse_operand(dst, src);
2057}
2058
2059
2060void Assembler::xorps(XMMRegister dst, const Operand& src) {
2061  EnsureSpace ensure_space(this);
2062  EMIT(0x0F);
2063  EMIT(0x57);
2064  emit_sse_operand(dst, src);
2065}
2066
2067
2068void Assembler::addps(XMMRegister dst, const Operand& src) {
2069  EnsureSpace ensure_space(this);
2070  EMIT(0x0F);
2071  EMIT(0x58);
2072  emit_sse_operand(dst, src);
2073}
2074
2075
2076void Assembler::subps(XMMRegister dst, const Operand& src) {
2077  EnsureSpace ensure_space(this);
2078  EMIT(0x0F);
2079  EMIT(0x5C);
2080  emit_sse_operand(dst, src);
2081}
2082
2083
2084void Assembler::mulps(XMMRegister dst, const Operand& src) {
2085  EnsureSpace ensure_space(this);
2086  EMIT(0x0F);
2087  EMIT(0x59);
2088  emit_sse_operand(dst, src);
2089}
2090
2091
2092void Assembler::divps(XMMRegister dst, const Operand& src) {
2093  EnsureSpace ensure_space(this);
2094  EMIT(0x0F);
2095  EMIT(0x5E);
2096  emit_sse_operand(dst, src);
2097}
2098
2099
2100void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2101  EnsureSpace ensure_space(this);
2102  EMIT(0xF2);
2103  EMIT(0x0F);
2104  EMIT(0x51);
2105  emit_sse_operand(dst, src);
2106}
2107
2108
2109void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
2110  EnsureSpace ensure_space(this);
2111  EMIT(0xF2);
2112  EMIT(0x0F);
2113  EMIT(0x51);
2114  emit_sse_operand(dst, src);
2115}
2116
2117
2118void Assembler::andpd(XMMRegister dst, XMMRegister src) {
2119  EnsureSpace ensure_space(this);
2120  EMIT(0x66);
2121  EMIT(0x0F);
2122  EMIT(0x54);
2123  emit_sse_operand(dst, src);
2124}
2125
2126
2127void Assembler::orpd(XMMRegister dst, XMMRegister src) {
2128  EnsureSpace ensure_space(this);
2129  EMIT(0x66);
2130  EMIT(0x0F);
2131  EMIT(0x56);
2132  emit_sse_operand(dst, src);
2133}
2134
2135
2136void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
2137  EnsureSpace ensure_space(this);
2138  EMIT(0x66);
2139  EMIT(0x0F);
2140  EMIT(0x2E);
2141  emit_sse_operand(dst, src);
2142}
2143
2144
2145void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2146  DCHECK(IsEnabled(SSE4_1));
2147  EnsureSpace ensure_space(this);
2148  EMIT(0x66);
2149  EMIT(0x0F);
2150  EMIT(0x3A);
2151  EMIT(0x0B);
2152  emit_sse_operand(dst, src);
2153  // Mask precision exeption.
2154  EMIT(static_cast<byte>(mode) | 0x8);
2155}
2156
2157
2158void Assembler::movmskpd(Register dst, XMMRegister src) {
2159  EnsureSpace ensure_space(this);
2160  EMIT(0x66);
2161  EMIT(0x0F);
2162  EMIT(0x50);
2163  emit_sse_operand(dst, src);
2164}
2165
2166
2167void Assembler::movmskps(Register dst, XMMRegister src) {
2168  EnsureSpace ensure_space(this);
2169  EMIT(0x0F);
2170  EMIT(0x50);
2171  emit_sse_operand(dst, src);
2172}
2173
2174
2175void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
2176  EnsureSpace ensure_space(this);
2177  EMIT(0x66);
2178  EMIT(0x0F);
2179  EMIT(0x76);
2180  emit_sse_operand(dst, src);
2181}
2182
2183
2184void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2185  EnsureSpace ensure_space(this);
2186  EMIT(0xF2);
2187  EMIT(0x0F);
2188  EMIT(0xC2);
2189  emit_sse_operand(dst, src);
2190  EMIT(1);  // LT == 1
2191}
2192
2193
2194void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2195  EnsureSpace ensure_space(this);
2196  EMIT(0x0F);
2197  EMIT(0x28);
2198  emit_sse_operand(dst, src);
2199}
2200
2201
2202void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2203  DCHECK(is_uint8(imm8));
2204  EnsureSpace ensure_space(this);
2205  EMIT(0x0F);
2206  EMIT(0xC6);
2207  emit_sse_operand(dst, src);
2208  EMIT(imm8);
2209}
2210
2211
2212void Assembler::movdqa(const Operand& dst, XMMRegister src) {
2213  EnsureSpace ensure_space(this);
2214  EMIT(0x66);
2215  EMIT(0x0F);
2216  EMIT(0x7F);
2217  emit_sse_operand(src, dst);
2218}
2219
2220
2221void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2222  EnsureSpace ensure_space(this);
2223  EMIT(0x66);
2224  EMIT(0x0F);
2225  EMIT(0x6F);
2226  emit_sse_operand(dst, src);
2227}
2228
2229
2230void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
2231  EnsureSpace ensure_space(this);
2232  EMIT(0xF3);
2233  EMIT(0x0F);
2234  EMIT(0x7F);
2235  emit_sse_operand(src, dst);
2236}
2237
2238
2239void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2240  EnsureSpace ensure_space(this);
2241  EMIT(0xF3);
2242  EMIT(0x0F);
2243  EMIT(0x6F);
2244  emit_sse_operand(dst, src);
2245}
2246
2247
2248void Assembler::movntdqa(XMMRegister dst, const Operand& src) {
2249  DCHECK(IsEnabled(SSE4_1));
2250  EnsureSpace ensure_space(this);
2251  EMIT(0x66);
2252  EMIT(0x0F);
2253  EMIT(0x38);
2254  EMIT(0x2A);
2255  emit_sse_operand(dst, src);
2256}
2257
2258
2259void Assembler::movntdq(const Operand& dst, XMMRegister src) {
2260  EnsureSpace ensure_space(this);
2261  EMIT(0x66);
2262  EMIT(0x0F);
2263  EMIT(0xE7);
2264  emit_sse_operand(src, dst);
2265}
2266
2267
2268void Assembler::prefetch(const Operand& src, int level) {
2269  DCHECK(is_uint2(level));
2270  EnsureSpace ensure_space(this);
2271  EMIT(0x0F);
2272  EMIT(0x18);
2273  // Emit hint number in Reg position of RegR/M.
2274  XMMRegister code = XMMRegister::from_code(level);
2275  emit_sse_operand(code, src);
2276}
2277
2278
2279void Assembler::movsd(const Operand& dst, XMMRegister src ) {
2280  EnsureSpace ensure_space(this);
2281  EMIT(0xF2);  // double
2282  EMIT(0x0F);
2283  EMIT(0x11);  // store
2284  emit_sse_operand(src, dst);
2285}
2286
2287
2288void Assembler::movsd(XMMRegister dst, const Operand& src) {
2289  EnsureSpace ensure_space(this);
2290  EMIT(0xF2);  // double
2291  EMIT(0x0F);
2292  EMIT(0x10);  // load
2293  emit_sse_operand(dst, src);
2294}
2295
2296
2297void Assembler::movss(const Operand& dst, XMMRegister src ) {
2298  EnsureSpace ensure_space(this);
2299  EMIT(0xF3);  // float
2300  EMIT(0x0F);
2301  EMIT(0x11);  // store
2302  emit_sse_operand(src, dst);
2303}
2304
2305
2306void Assembler::movss(XMMRegister dst, const Operand& src) {
2307  EnsureSpace ensure_space(this);
2308  EMIT(0xF3);  // float
2309  EMIT(0x0F);
2310  EMIT(0x10);  // load
2311  emit_sse_operand(dst, src);
2312}
2313
2314
2315void Assembler::movd(XMMRegister dst, const Operand& src) {
2316  EnsureSpace ensure_space(this);
2317  EMIT(0x66);
2318  EMIT(0x0F);
2319  EMIT(0x6E);
2320  emit_sse_operand(dst, src);
2321}
2322
2323
2324void Assembler::movd(const Operand& dst, XMMRegister src) {
2325  EnsureSpace ensure_space(this);
2326  EMIT(0x66);
2327  EMIT(0x0F);
2328  EMIT(0x7E);
2329  emit_sse_operand(src, dst);
2330}
2331
2332
2333void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2334  DCHECK(IsEnabled(SSE4_1));
2335  DCHECK(is_uint8(imm8));
2336  EnsureSpace ensure_space(this);
2337  EMIT(0x66);
2338  EMIT(0x0F);
2339  EMIT(0x3A);
2340  EMIT(0x17);
2341  emit_sse_operand(src, dst);
2342  EMIT(imm8);
2343}
2344
2345
2346void Assembler::pand(XMMRegister dst, XMMRegister src) {
2347  EnsureSpace ensure_space(this);
2348  EMIT(0x66);
2349  EMIT(0x0F);
2350  EMIT(0xDB);
2351  emit_sse_operand(dst, src);
2352}
2353
2354
2355void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2356  EnsureSpace ensure_space(this);
2357  EMIT(0x66);
2358  EMIT(0x0F);
2359  EMIT(0xEF);
2360  emit_sse_operand(dst, src);
2361}
2362
2363
2364void Assembler::por(XMMRegister dst, XMMRegister src) {
2365  EnsureSpace ensure_space(this);
2366  EMIT(0x66);
2367  EMIT(0x0F);
2368  EMIT(0xEB);
2369  emit_sse_operand(dst, src);
2370}
2371
2372
2373void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2374  DCHECK(IsEnabled(SSE4_1));
2375  EnsureSpace ensure_space(this);
2376  EMIT(0x66);
2377  EMIT(0x0F);
2378  EMIT(0x38);
2379  EMIT(0x17);
2380  emit_sse_operand(dst, src);
2381}
2382
2383
2384void Assembler::psllq(XMMRegister reg, int8_t shift) {
2385  EnsureSpace ensure_space(this);
2386  EMIT(0x66);
2387  EMIT(0x0F);
2388  EMIT(0x73);
2389  emit_sse_operand(esi, reg);  // esi == 6
2390  EMIT(shift);
2391}
2392
2393
2394void Assembler::psllq(XMMRegister dst, XMMRegister src) {
2395  EnsureSpace ensure_space(this);
2396  EMIT(0x66);
2397  EMIT(0x0F);
2398  EMIT(0xF3);
2399  emit_sse_operand(dst, src);
2400}
2401
2402
2403void Assembler::psrlq(XMMRegister reg, int8_t shift) {
2404  EnsureSpace ensure_space(this);
2405  EMIT(0x66);
2406  EMIT(0x0F);
2407  EMIT(0x73);
2408  emit_sse_operand(edx, reg);  // edx == 2
2409  EMIT(shift);
2410}
2411
2412
2413void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
2414  EnsureSpace ensure_space(this);
2415  EMIT(0x66);
2416  EMIT(0x0F);
2417  EMIT(0xD3);
2418  emit_sse_operand(dst, src);
2419}
2420
2421
2422void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
2423  EnsureSpace ensure_space(this);
2424  EMIT(0x66);
2425  EMIT(0x0F);
2426  EMIT(0x70);
2427  emit_sse_operand(dst, src);
2428  EMIT(shuffle);
2429}
2430
2431
2432void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
2433  DCHECK(IsEnabled(SSE4_1));
2434  EnsureSpace ensure_space(this);
2435  EMIT(0x66);
2436  EMIT(0x0F);
2437  EMIT(0x3A);
2438  EMIT(0x16);
2439  emit_sse_operand(src, dst);
2440  EMIT(offset);
2441}
2442
2443
2444void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) {
2445  DCHECK(IsEnabled(SSE4_1));
2446  EnsureSpace ensure_space(this);
2447  EMIT(0x66);
2448  EMIT(0x0F);
2449  EMIT(0x3A);
2450  EMIT(0x22);
2451  emit_sse_operand(dst, src);
2452  EMIT(offset);
2453}
2454
2455
2456void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2457  Register ireg = { reg.code() };
2458  emit_operand(ireg, adr);
2459}
2460
2461
2462void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2463  EMIT(0xC0 | dst.code() << 3 | src.code());
2464}
2465
2466
2467void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
2468  EMIT(0xC0 | dst.code() << 3 | src.code());
2469}
2470
2471
2472void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
2473  EMIT(0xC0 | (dst.code() << 3) | src.code());
2474}
2475
2476
2477void Assembler::Print() {
2478  Disassembler::Decode(isolate(), stdout, buffer_, pc_);
2479}
2480
2481
2482void Assembler::RecordJSReturn() {
2483  positions_recorder()->WriteRecordedPositions();
2484  EnsureSpace ensure_space(this);
2485  RecordRelocInfo(RelocInfo::JS_RETURN);
2486}
2487
2488
2489void Assembler::RecordDebugBreakSlot() {
2490  positions_recorder()->WriteRecordedPositions();
2491  EnsureSpace ensure_space(this);
2492  RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
2493}
2494
2495
2496void Assembler::RecordComment(const char* msg, bool force) {
2497  if (FLAG_code_comments || force) {
2498    EnsureSpace ensure_space(this);
2499    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2500  }
2501}
2502
2503
2504void Assembler::GrowBuffer() {
2505  DCHECK(buffer_overflow());
2506  if (!own_buffer_) FATAL("external code buffer is too small");
2507
2508  // Compute new buffer size.
2509  CodeDesc desc;  // the new buffer
2510  desc.buffer_size = 2 * buffer_size_;
2511
2512  // Some internal data structures overflow for very large buffers,
2513  // they must ensure that kMaximalBufferSize is not too large.
2514  if ((desc.buffer_size > kMaximalBufferSize) ||
2515      (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
2516    V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
2517  }
2518
2519  // Set up new buffer.
2520  desc.buffer = NewArray<byte>(desc.buffer_size);
2521  desc.instr_size = pc_offset();
2522  desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
2523
2524  // Clear the buffer in debug mode. Use 'int3' instructions to make
2525  // sure to get into problems if we ever run uninitialized code.
2526#ifdef DEBUG
2527  memset(desc.buffer, 0xCC, desc.buffer_size);
2528#endif
2529
2530  // Copy the data.
2531  int pc_delta = desc.buffer - buffer_;
2532  int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2533  MemMove(desc.buffer, buffer_, desc.instr_size);
2534  MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
2535          desc.reloc_size);
2536
2537  // Switch buffers.
2538  DeleteArray(buffer_);
2539  buffer_ = desc.buffer;
2540  buffer_size_ = desc.buffer_size;
2541  pc_ += pc_delta;
2542  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2543                               reloc_info_writer.last_pc() + pc_delta);
2544
2545  // Relocate runtime entries.
2546  for (RelocIterator it(desc); !it.done(); it.next()) {
2547    RelocInfo::Mode rmode = it.rinfo()->rmode();
2548    if (rmode == RelocInfo::INTERNAL_REFERENCE) {
2549      int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc());
2550      if (*p != 0) {  // 0 means uninitialized.
2551        *p += pc_delta;
2552      }
2553    }
2554  }
2555
2556  DCHECK(!buffer_overflow());
2557}
2558
2559
2560void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
2561  DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
2562  DCHECK(is_uint8(imm8));
2563  DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
2564  EMIT(op1);
2565  EMIT(op2 | dst.code());
2566  EMIT(imm8);
2567}
2568
2569
2570void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
2571  DCHECK((0 <= sel) && (sel <= 7));
2572  Register ireg = { sel };
2573  if (x.is_int8()) {
2574    EMIT(0x83);  // using a sign-extended 8-bit immediate.
2575    emit_operand(ireg, dst);
2576    EMIT(x.x_ & 0xFF);
2577  } else if (dst.is_reg(eax)) {
2578    EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
2579    emit(x);
2580  } else {
2581    EMIT(0x81);  // using a literal 32-bit immediate.
2582    emit_operand(ireg, dst);
2583    emit(x);
2584  }
2585}
2586
2587
2588void Assembler::emit_operand(Register reg, const Operand& adr) {
2589  const unsigned length = adr.len_;
2590  DCHECK(length > 0);
2591
2592  // Emit updated ModRM byte containing the given register.
2593  pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2594
2595  // Emit the rest of the encoded operand.
2596  for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2597  pc_ += length;
2598
2599  // Emit relocation information if necessary.
2600  if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2601    pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
2602    RecordRelocInfo(adr.rmode_);
2603    pc_ += sizeof(int32_t);
2604  }
2605}
2606
2607
2608void Assembler::emit_farith(int b1, int b2, int i) {
2609  DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
2610  DCHECK(0 <= i &&  i < 8);  // illegal stack offset
2611  EMIT(b1);
2612  EMIT(b2 + i);
2613}
2614
2615
2616void Assembler::db(uint8_t data) {
2617  EnsureSpace ensure_space(this);
2618  EMIT(data);
2619}
2620
2621
2622void Assembler::dd(uint32_t data) {
2623  EnsureSpace ensure_space(this);
2624  emit(data);
2625}
2626
2627
2628void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2629  DCHECK(!RelocInfo::IsNone(rmode));
2630  // Don't record external references unless the heap will be serialized.
2631  if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2632      !serializer_enabled() && !emit_debug_code()) {
2633    return;
2634  }
2635  RelocInfo rinfo(pc_, rmode, data, NULL);
2636  reloc_info_writer.Write(&rinfo);
2637}
2638
2639
2640Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
2641  // No out-of-line constant pool support.
2642  DCHECK(!FLAG_enable_ool_constant_pool);
2643  return isolate->factory()->empty_constant_pool_array();
2644}
2645
2646
2647void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
2648  // No out-of-line constant pool support.
2649  DCHECK(!FLAG_enable_ool_constant_pool);
2650  return;
2651}
2652
2653
2654#ifdef GENERATED_CODE_COVERAGE
2655static FILE* coverage_log = NULL;
2656
2657
2658static void InitCoverageLog() {
2659  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
2660  if (file_name != NULL) {
2661    coverage_log = fopen(file_name, "aw+");
2662  }
2663}
2664
2665
2666void LogGeneratedCodeCoverage(const char* file_line) {
2667  const char* return_address = (&file_line)[-1];
2668  char* push_insn = const_cast<char*>(return_address - 12);
2669  push_insn[0] = 0xeb;  // Relative branch insn.
2670  push_insn[1] = 13;    // Skip over coverage insns.
2671  if (coverage_log != NULL) {
2672    fprintf(coverage_log, "%s\n", file_line);
2673    fflush(coverage_log);
2674  }
2675}
2676
2677#endif
2678
2679} }  // namespace v8::internal
2680
2681#endif  // V8_TARGET_ARCH_IA32
2682