1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2011 the V8 project authors. All rights reserved.
34
35// A light-weight IA32 Assembler.
36
37#ifndef V8_IA32_ASSEMBLER_IA32_H_
38#define V8_IA32_ASSEMBLER_IA32_H_
39
40#include "src/isolate.h"
41#include "src/serialize.h"
42
43namespace v8 {
44namespace internal {
45
46// CPU Registers.
47//
48// 1) We would prefer to use an enum, but enum values are assignment-
49// compatible with int, which has caused code-generation bugs.
50//
51// 2) We would prefer to use a class instead of a struct but we don't like
52// the register initialization to depend on the particular initialization
53// order (which appears to be different on OS X, Linux, and Windows for the
54// installed versions of C++ we tried). Using a struct permits C-style
55// "initialization". Also, the Register objects cannot be const as this
56// forces initialization stubs in MSVC, making us dependent on initialization
57// order.
58//
59// 3) By not using an enum, we are possibly preventing the compiler from
60// doing certain constant folds, which may significantly reduce the
61// code generated for some assembly instructions (because they boil down
62// to a few constants). If this is a problem, we could change the code
63// such that we use an enum in optimized mode, and the struct in debug
64// mode. This way we get the compile-time error checking in debug mode
65// and best performance in optimized code.
66//
67struct Register {
68  static const int kMaxNumAllocatableRegisters = 6;
69  static int NumAllocatableRegisters() {
70    return kMaxNumAllocatableRegisters;
71  }
72  static const int kNumRegisters = 8;
73
74  static inline const char* AllocationIndexToString(int index);
75
76  static inline int ToAllocationIndex(Register reg);
77
78  static inline Register FromAllocationIndex(int index);
79
80  static Register from_code(int code) {
81    DCHECK(code >= 0);
82    DCHECK(code < kNumRegisters);
83    Register r = { code };
84    return r;
85  }
86  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
87  bool is(Register reg) const { return code_ == reg.code_; }
88  // eax, ebx, ecx and edx are byte registers, the rest are not.
89  bool is_byte_register() const { return code_ <= 3; }
90  int code() const {
91    DCHECK(is_valid());
92    return code_;
93  }
94  int bit() const {
95    DCHECK(is_valid());
96    return 1 << code_;
97  }
98
99  // Unfortunately we can't make this private in a struct.
100  int code_;
101};
102
103const int kRegister_eax_Code = 0;
104const int kRegister_ecx_Code = 1;
105const int kRegister_edx_Code = 2;
106const int kRegister_ebx_Code = 3;
107const int kRegister_esp_Code = 4;
108const int kRegister_ebp_Code = 5;
109const int kRegister_esi_Code = 6;
110const int kRegister_edi_Code = 7;
111const int kRegister_no_reg_Code = -1;
112
113const Register eax = { kRegister_eax_Code };
114const Register ecx = { kRegister_ecx_Code };
115const Register edx = { kRegister_edx_Code };
116const Register ebx = { kRegister_ebx_Code };
117const Register esp = { kRegister_esp_Code };
118const Register ebp = { kRegister_ebp_Code };
119const Register esi = { kRegister_esi_Code };
120const Register edi = { kRegister_edi_Code };
121const Register no_reg = { kRegister_no_reg_Code };
122
123
124inline const char* Register::AllocationIndexToString(int index) {
125  DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
126  // This is the mapping of allocation indices to registers.
127  const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" };
128  return kNames[index];
129}
130
131
132inline int Register::ToAllocationIndex(Register reg) {
133  DCHECK(reg.is_valid() && !reg.is(esp) && !reg.is(ebp));
134  return (reg.code() >= 6) ? reg.code() - 2 : reg.code();
135}
136
137
138inline Register Register::FromAllocationIndex(int index)  {
139  DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
140  return (index >= 4) ? from_code(index + 2) : from_code(index);
141}
142
143
144struct XMMRegister {
145  static const int kMaxNumAllocatableRegisters = 7;
146  static const int kMaxNumRegisters = 8;
147  static int NumAllocatableRegisters() {
148    return kMaxNumAllocatableRegisters;
149  }
150
151  static int ToAllocationIndex(XMMRegister reg) {
152    DCHECK(reg.code() != 0);
153    return reg.code() - 1;
154  }
155
156  static XMMRegister FromAllocationIndex(int index) {
157    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
158    return from_code(index + 1);
159  }
160
161  static XMMRegister from_code(int code) {
162    XMMRegister result = { code };
163    return result;
164  }
165
166  bool is_valid() const {
167    return 0 <= code_ && code_ < kMaxNumRegisters;
168  }
169
170  int code() const {
171    DCHECK(is_valid());
172    return code_;
173  }
174
175  bool is(XMMRegister reg) const { return code_ == reg.code_; }
176
177  static const char* AllocationIndexToString(int index) {
178    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
179    const char* const names[] = {
180      "xmm1",
181      "xmm2",
182      "xmm3",
183      "xmm4",
184      "xmm5",
185      "xmm6",
186      "xmm7"
187    };
188    return names[index];
189  }
190
191  int code_;
192};
193
194
195typedef XMMRegister DoubleRegister;
196
197
198const XMMRegister xmm0 = { 0 };
199const XMMRegister xmm1 = { 1 };
200const XMMRegister xmm2 = { 2 };
201const XMMRegister xmm3 = { 3 };
202const XMMRegister xmm4 = { 4 };
203const XMMRegister xmm5 = { 5 };
204const XMMRegister xmm6 = { 6 };
205const XMMRegister xmm7 = { 7 };
206const XMMRegister no_xmm_reg = { -1 };
207
208
209enum Condition {
210  // any value < 0 is considered no_condition
211  no_condition  = -1,
212
213  overflow      =  0,
214  no_overflow   =  1,
215  below         =  2,
216  above_equal   =  3,
217  equal         =  4,
218  not_equal     =  5,
219  below_equal   =  6,
220  above         =  7,
221  negative      =  8,
222  positive      =  9,
223  parity_even   = 10,
224  parity_odd    = 11,
225  less          = 12,
226  greater_equal = 13,
227  less_equal    = 14,
228  greater       = 15,
229
230  // aliases
231  carry         = below,
232  not_carry     = above_equal,
233  zero          = equal,
234  not_zero      = not_equal,
235  sign          = negative,
236  not_sign      = positive
237};
238
239
240// Returns the equivalent of !cc.
241// Negation of the default no_condition (-1) results in a non-default
242// no_condition value (-2). As long as tests for no_condition check
243// for condition < 0, this will work as expected.
244inline Condition NegateCondition(Condition cc) {
245  return static_cast<Condition>(cc ^ 1);
246}
247
248
249// Commute a condition such that {a cond b == b cond' a}.
250inline Condition CommuteCondition(Condition cc) {
251  switch (cc) {
252    case below:
253      return above;
254    case above:
255      return below;
256    case above_equal:
257      return below_equal;
258    case below_equal:
259      return above_equal;
260    case less:
261      return greater;
262    case greater:
263      return less;
264    case greater_equal:
265      return less_equal;
266    case less_equal:
267      return greater_equal;
268    default:
269      return cc;
270  }
271}
272
273
274// -----------------------------------------------------------------------------
275// Machine instruction Immediates
276
277class Immediate BASE_EMBEDDED {
278 public:
279  inline explicit Immediate(int x);
280  inline explicit Immediate(const ExternalReference& ext);
281  inline explicit Immediate(Handle<Object> handle);
282  inline explicit Immediate(Smi* value);
283  inline explicit Immediate(Address addr);
284
285  static Immediate CodeRelativeOffset(Label* label) {
286    return Immediate(label);
287  }
288
289  bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
290  bool is_int8() const {
291    return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
292  }
293  bool is_int16() const {
294    return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
295  }
296
297 private:
298  inline explicit Immediate(Label* value);
299
300  int x_;
301  RelocInfo::Mode rmode_;
302
303  friend class Operand;
304  friend class Assembler;
305  friend class MacroAssembler;
306};
307
308
309// -----------------------------------------------------------------------------
310// Machine instruction Operands
311
312enum ScaleFactor {
313  times_1 = 0,
314  times_2 = 1,
315  times_4 = 2,
316  times_8 = 3,
317  times_int_size = times_4,
318  times_half_pointer_size = times_2,
319  times_pointer_size = times_4,
320  times_twice_pointer_size = times_8
321};
322
323
324class Operand BASE_EMBEDDED {
325 public:
326  // reg
327  INLINE(explicit Operand(Register reg));
328
329  // XMM reg
330  INLINE(explicit Operand(XMMRegister xmm_reg));
331
332  // [disp/r]
333  INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
334
335  // [disp/r]
336  INLINE(explicit Operand(Immediate imm));
337
338  // [base + disp/r]
339  explicit Operand(Register base, int32_t disp,
340                   RelocInfo::Mode rmode = RelocInfo::NONE32);
341
342  // [base + index*scale + disp/r]
343  explicit Operand(Register base,
344                   Register index,
345                   ScaleFactor scale,
346                   int32_t disp,
347                   RelocInfo::Mode rmode = RelocInfo::NONE32);
348
349  // [index*scale + disp/r]
350  explicit Operand(Register index,
351                   ScaleFactor scale,
352                   int32_t disp,
353                   RelocInfo::Mode rmode = RelocInfo::NONE32);
354
355  static Operand StaticVariable(const ExternalReference& ext) {
356    return Operand(reinterpret_cast<int32_t>(ext.address()),
357                   RelocInfo::EXTERNAL_REFERENCE);
358  }
359
360  static Operand StaticArray(Register index,
361                             ScaleFactor scale,
362                             const ExternalReference& arr) {
363    return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
364                   RelocInfo::EXTERNAL_REFERENCE);
365  }
366
367  static Operand ForCell(Handle<Cell> cell) {
368    AllowDeferredHandleDereference embedding_raw_address;
369    return Operand(reinterpret_cast<int32_t>(cell.location()),
370                   RelocInfo::CELL);
371  }
372
373  static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
374    return Operand(base, imm.x_, imm.rmode_);
375  }
376
377  // Returns true if this Operand is a wrapper for the specified register.
378  bool is_reg(Register reg) const;
379
380  // Returns true if this Operand is a wrapper for one register.
381  bool is_reg_only() const;
382
383  // Asserts that this Operand is a wrapper for one register and returns the
384  // register.
385  Register reg() const;
386
387 private:
388  // Set the ModRM byte without an encoded 'reg' register. The
389  // register is encoded later as part of the emit_operand operation.
390  inline void set_modrm(int mod, Register rm);
391
392  inline void set_sib(ScaleFactor scale, Register index, Register base);
393  inline void set_disp8(int8_t disp);
394  inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
395
396  byte buf_[6];
397  // The number of bytes in buf_.
398  unsigned int len_;
399  // Only valid if len_ > 4.
400  RelocInfo::Mode rmode_;
401
402  friend class Assembler;
403  friend class MacroAssembler;
404};
405
406
407// -----------------------------------------------------------------------------
408// A Displacement describes the 32bit immediate field of an instruction which
409// may be used together with a Label in order to refer to a yet unknown code
410// position. Displacements stored in the instruction stream are used to describe
411// the instruction and to chain a list of instructions using the same Label.
412// A Displacement contains 2 different fields:
413//
414// next field: position of next displacement in the chain (0 = end of list)
415// type field: instruction type
416//
417// A next value of null (0) indicates the end of a chain (note that there can
418// be no displacement at position zero, because there is always at least one
419// instruction byte before the displacement).
420//
421// Displacement _data field layout
422//
423// |31.....2|1......0|
424// [  next  |  type  |
425
426class Displacement BASE_EMBEDDED {
427 public:
428  enum Type {
429    UNCONDITIONAL_JUMP,
430    CODE_RELATIVE,
431    OTHER
432  };
433
434  int data() const { return data_; }
435  Type type() const { return TypeField::decode(data_); }
436  void next(Label* L) const {
437    int n = NextField::decode(data_);
438    n > 0 ? L->link_to(n) : L->Unuse();
439  }
440  void link_to(Label* L) { init(L, type()); }
441
442  explicit Displacement(int data) { data_ = data; }
443
444  Displacement(Label* L, Type type) { init(L, type); }
445
446  void print() {
447    PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
448                       NextField::decode(data_));
449  }
450
451 private:
452  int data_;
453
454  class TypeField: public BitField<Type, 0, 2> {};
455  class NextField: public BitField<int,  2, 32-2> {};
456
457  void init(Label* L, Type type);
458};
459
460
461class Assembler : public AssemblerBase {
462 private:
463  // We check before assembling an instruction that there is sufficient
464  // space to write an instruction and its relocation information.
465  // The relocation writer's position must be kGap bytes above the end of
466  // the generated instructions. This leaves enough space for the
467  // longest possible ia32 instruction, 15 bytes, and the longest possible
468  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
469  // (There is a 15 byte limit on ia32 instruction length that rules out some
470  // otherwise valid instructions.)
471  // This allows for a single, fast space check per instruction.
472  static const int kGap = 32;
473
474 public:
475  // Create an assembler. Instructions and relocation information are emitted
476  // into a buffer, with the instructions starting from the beginning and the
477  // relocation information starting from the end of the buffer. See CodeDesc
478  // for a detailed comment on the layout (globals.h).
479  //
480  // If the provided buffer is NULL, the assembler allocates and grows its own
481  // buffer, and buffer_size determines the initial buffer size. The buffer is
482  // owned by the assembler and deallocated upon destruction of the assembler.
483  //
484  // If the provided buffer is not NULL, the assembler uses the provided buffer
485  // for code generation and assumes its size to be buffer_size. If the buffer
486  // is too small, a fatal error occurs. No deallocation of the buffer is done
487  // upon destruction of the assembler.
488  // TODO(vitalyr): the assembler does not need an isolate.
489  Assembler(Isolate* isolate, void* buffer, int buffer_size);
490  virtual ~Assembler() { }
491
492  // GetCode emits any pending (non-emitted) code and fills the descriptor
493  // desc. GetCode() is idempotent; it returns the same result if no other
494  // Assembler functions are invoked in between GetCode() calls.
495  void GetCode(CodeDesc* desc);
496
497  // Read/Modify the code target in the branch/call instruction at pc.
498  inline static Address target_address_at(Address pc,
499                                          ConstantPoolArray* constant_pool);
500  inline static void set_target_address_at(Address pc,
501                                           ConstantPoolArray* constant_pool,
502                                           Address target,
503                                           ICacheFlushMode icache_flush_mode =
504                                               FLUSH_ICACHE_IF_NEEDED);
505  static inline Address target_address_at(Address pc, Code* code) {
506    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
507    return target_address_at(pc, constant_pool);
508  }
509  static inline void set_target_address_at(Address pc,
510                                           Code* code,
511                                           Address target,
512                                           ICacheFlushMode icache_flush_mode =
513                                               FLUSH_ICACHE_IF_NEEDED) {
514    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
515    set_target_address_at(pc, constant_pool, target);
516  }
517
518  // Return the code target address at a call site from the return address
519  // of that call in the instruction stream.
520  inline static Address target_address_from_return_address(Address pc);
521
522  // Return the code target address of the patch debug break slot
523  inline static Address break_address_from_return_address(Address pc);
524
525  // This sets the branch destination (which is in the instruction on x86).
526  // This is for calls and branches within generated code.
527  inline static void deserialization_set_special_target_at(
528      Address instruction_payload, Code* code, Address target) {
529    set_target_address_at(instruction_payload, code, target);
530  }
531
532  static const int kSpecialTargetSize = kPointerSize;
533
534  // Distance between the address of the code target in the call instruction
535  // and the return address
536  static const int kCallTargetAddressOffset = kPointerSize;
537  // Distance between start of patched return sequence and the emitted address
538  // to jump to.
539  static const int kPatchReturnSequenceAddressOffset = 1;  // JMP imm32.
540
541  // Distance between start of patched debug break slot and the emitted address
542  // to jump to.
543  static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.
544
545  static const int kCallInstructionLength = 5;
546  static const int kPatchDebugBreakSlotReturnOffset = kPointerSize;
547  static const int kJSReturnSequenceLength = 6;
548
549  // The debug break slot must be able to contain a call instruction.
550  static const int kDebugBreakSlotLength = kCallInstructionLength;
551
552  // One byte opcode for test al, 0xXX.
553  static const byte kTestAlByte = 0xA8;
554  // One byte opcode for nop.
555  static const byte kNopByte = 0x90;
556
557  // One byte opcode for a short unconditional jump.
558  static const byte kJmpShortOpcode = 0xEB;
559  // One byte prefix for a short conditional jump.
560  static const byte kJccShortPrefix = 0x70;
561  static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
562  static const byte kJcShortOpcode = kJccShortPrefix | carry;
563  static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
564  static const byte kJzShortOpcode = kJccShortPrefix | zero;
565
566
567  // ---------------------------------------------------------------------------
568  // Code generation
569  //
570  // - function names correspond one-to-one to ia32 instruction mnemonics
571  // - unless specified otherwise, instructions operate on 32bit operands
572  // - instructions on 8bit (byte) operands/registers have a trailing '_b'
573  // - instructions on 16bit (word) operands/registers have a trailing '_w'
574  // - naming conflicts with C++ keywords are resolved via a trailing '_'
575
576  // NOTE ON INTERFACE: Currently, the interface is not very consistent
577  // in the sense that some operations (e.g. mov()) can be called in more
578  // the one way to generate the same instruction: The Register argument
579  // can in some cases be replaced with an Operand(Register) argument.
580  // This should be cleaned up and made more orthogonal. The questions
581  // is: should we always use Operands instead of Registers where an
582  // Operand is possible, or should we have a Register (overloaded) form
583  // instead? We must be careful to make sure that the selected instruction
584  // is obvious from the parameters to avoid hard-to-find code generation
585  // bugs.
586
587  // Insert the smallest number of nop instructions
588  // possible to align the pc offset to a multiple
589  // of m. m must be a power of 2.
590  void Align(int m);
591  void Nop(int bytes = 1);
592  // Aligns code to something that's optimal for a jump target for the platform.
593  void CodeTargetAlign();
594
595  // Stack
596  void pushad();
597  void popad();
598
599  void pushfd();
600  void popfd();
601
602  void push(const Immediate& x);
603  void push_imm32(int32_t imm32);
604  void push(Register src);
605  void push(const Operand& src);
606
607  void pop(Register dst);
608  void pop(const Operand& dst);
609
610  void enter(const Immediate& size);
611  void leave();
612
613  // Moves
614  void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
615  void mov_b(Register dst, const Operand& src);
616  void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
617  void mov_b(const Operand& dst, int8_t imm8);
618  void mov_b(const Operand& dst, Register src);
619
620  void mov_w(Register dst, const Operand& src);
621  void mov_w(const Operand& dst, Register src);
622  void mov_w(const Operand& dst, int16_t imm16);
623
624  void mov(Register dst, int32_t imm32);
625  void mov(Register dst, const Immediate& x);
626  void mov(Register dst, Handle<Object> handle);
627  void mov(Register dst, const Operand& src);
628  void mov(Register dst, Register src);
629  void mov(const Operand& dst, const Immediate& x);
630  void mov(const Operand& dst, Handle<Object> handle);
631  void mov(const Operand& dst, Register src);
632
633  void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
634  void movsx_b(Register dst, const Operand& src);
635
636  void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
637  void movsx_w(Register dst, const Operand& src);
638
639  void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
640  void movzx_b(Register dst, const Operand& src);
641
642  void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
643  void movzx_w(Register dst, const Operand& src);
644
645  // Conditional moves
646  void cmov(Condition cc, Register dst, Register src) {
647    cmov(cc, dst, Operand(src));
648  }
649  void cmov(Condition cc, Register dst, const Operand& src);
650
651  // Flag management.
652  void cld();
653
654  // Repetitive string instructions.
655  void rep_movs();
656  void rep_stos();
657  void stos();
658
659  // Exchange
660  void xchg(Register dst, Register src);
661  void xchg(Register dst, const Operand& src);
662
663  // Arithmetics
664  void adc(Register dst, int32_t imm32);
665  void adc(Register dst, const Operand& src);
666
667  void add(Register dst, Register src) { add(dst, Operand(src)); }
668  void add(Register dst, const Operand& src);
669  void add(const Operand& dst, Register src);
670  void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
671  void add(const Operand& dst, const Immediate& x);
672
673  void and_(Register dst, int32_t imm32);
674  void and_(Register dst, const Immediate& x);
675  void and_(Register dst, Register src) { and_(dst, Operand(src)); }
676  void and_(Register dst, const Operand& src);
677  void and_(const Operand& dst, Register src);
678  void and_(const Operand& dst, const Immediate& x);
679
680  void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
681  void cmpb(const Operand& op, int8_t imm8);
682  void cmpb(Register reg, const Operand& op);
683  void cmpb(const Operand& op, Register reg);
684  void cmpb_al(const Operand& op);
685  void cmpw_ax(const Operand& op);
686  void cmpw(const Operand& op, Immediate imm16);
687  void cmp(Register reg, int32_t imm32);
688  void cmp(Register reg, Handle<Object> handle);
689  void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
690  void cmp(Register reg, const Operand& op);
691  void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
692  void cmp(const Operand& op, const Immediate& imm);
693  void cmp(const Operand& op, Handle<Object> handle);
694
695  void dec_b(Register dst);
696  void dec_b(const Operand& dst);
697
698  void dec(Register dst);
699  void dec(const Operand& dst);
700
701  void cdq();
702
703  void idiv(Register src) { idiv(Operand(src)); }
704  void idiv(const Operand& src);
705  void div(Register src) { div(Operand(src)); }
706  void div(const Operand& src);
707
708  // Signed multiply instructions.
709  void imul(Register src);                               // edx:eax = eax * src.
710  void imul(Register dst, Register src) { imul(dst, Operand(src)); }
711  void imul(Register dst, const Operand& src);           // dst = dst * src.
712  void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
713  void imul(Register dst, const Operand& src, int32_t imm32);
714
715  void inc(Register dst);
716  void inc(const Operand& dst);
717
718  void lea(Register dst, const Operand& src);
719
720  // Unsigned multiply instruction.
721  void mul(Register src);                                // edx:eax = eax * reg.
722
723  void neg(Register dst);
724  void neg(const Operand& dst);
725
726  void not_(Register dst);
727  void not_(const Operand& dst);
728
729  void or_(Register dst, int32_t imm32);
730  void or_(Register dst, Register src) { or_(dst, Operand(src)); }
731  void or_(Register dst, const Operand& src);
732  void or_(const Operand& dst, Register src);
733  void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
734  void or_(const Operand& dst, const Immediate& x);
735
736  void rcl(Register dst, uint8_t imm8);
737  void rcr(Register dst, uint8_t imm8);
738  void ror(Register dst, uint8_t imm8);
739  void ror_cl(Register dst);
740
741  void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
742  void sar(const Operand& dst, uint8_t imm8);
743  void sar_cl(Register dst) { sar_cl(Operand(dst)); }
744  void sar_cl(const Operand& dst);
745
746  void sbb(Register dst, const Operand& src);
747
748  void shld(Register dst, Register src) { shld(dst, Operand(src)); }
749  void shld(Register dst, const Operand& src);
750
751  void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
752  void shl(const Operand& dst, uint8_t imm8);
753  void shl_cl(Register dst) { shl_cl(Operand(dst)); }
754  void shl_cl(const Operand& dst);
755
756  void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
757  void shrd(Register dst, const Operand& src);
758
759  void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
760  void shr(const Operand& dst, uint8_t imm8);
761  void shr_cl(Register dst) { shr_cl(Operand(dst)); }
762  void shr_cl(const Operand& dst);
763
764  void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
765  void sub(const Operand& dst, const Immediate& x);
766  void sub(Register dst, Register src) { sub(dst, Operand(src)); }
767  void sub(Register dst, const Operand& src);
768  void sub(const Operand& dst, Register src);
769
770  void test(Register reg, const Immediate& imm);
771  void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
772  void test(Register reg, const Operand& op);
773  void test_b(Register reg, const Operand& op);
774  void test(const Operand& op, const Immediate& imm);
775  void test_b(Register reg, uint8_t imm8);
776  void test_b(const Operand& op, uint8_t imm8);
777
778  void xor_(Register dst, int32_t imm32);
779  void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
780  void xor_(Register dst, const Operand& src);
781  void xor_(const Operand& dst, Register src);
782  void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
783  void xor_(const Operand& dst, const Immediate& x);
784
785  // Bit operations.
786  void bt(const Operand& dst, Register src);
787  void bts(Register dst, Register src) { bts(Operand(dst), src); }
788  void bts(const Operand& dst, Register src);
789  void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
790  void bsr(Register dst, const Operand& src);
791
792  // Miscellaneous
793  void hlt();
794  void int3();
795  void nop();
796  void ret(int imm16);
797
798  // Label operations & relative jumps (PPUM Appendix D)
799  //
800  // Takes a branch opcode (cc) and a label (L) and generates
801  // either a backward branch or a forward branch and links it
802  // to the label fixup chain. Usage:
803  //
804  // Label L;    // unbound label
805  // j(cc, &L);  // forward branch to unbound label
806  // bind(&L);   // bind label to the current pc
807  // j(cc, &L);  // backward branch to bound label
808  // bind(&L);   // illegal: a label may be bound only once
809  //
810  // Note: The same Label can be used for forward and backward branches
811  // but it may be bound only once.
812
813  void bind(Label* L);  // binds an unbound label L to the current code position
814
815  // Calls
816  void call(Label* L);
817  void call(byte* entry, RelocInfo::Mode rmode);
818  int CallSize(const Operand& adr);
819  void call(Register reg) { call(Operand(reg)); }
820  void call(const Operand& adr);
821  int CallSize(Handle<Code> code, RelocInfo::Mode mode);
822  void call(Handle<Code> code,
823            RelocInfo::Mode rmode,
824            TypeFeedbackId id = TypeFeedbackId::None());
825
826  // Jumps
827  // unconditional jump to L
828  void jmp(Label* L, Label::Distance distance = Label::kFar);
829  void jmp(byte* entry, RelocInfo::Mode rmode);
830  void jmp(Register reg) { jmp(Operand(reg)); }
831  void jmp(const Operand& adr);
832  void jmp(Handle<Code> code, RelocInfo::Mode rmode);
833
834  // Conditional jumps
835  void j(Condition cc,
836         Label* L,
837         Label::Distance distance = Label::kFar);
838  void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
839  void j(Condition cc, Handle<Code> code);
840
841  // Floating-point operations
842  void fld(int i);
843  void fstp(int i);
844
845  void fld1();
846  void fldz();
847  void fldpi();
848  void fldln2();
849
850  void fld_s(const Operand& adr);
851  void fld_d(const Operand& adr);
852
853  void fstp_s(const Operand& adr);
854  void fst_s(const Operand& adr);
855  void fstp_d(const Operand& adr);
856  void fst_d(const Operand& adr);
857
858  void fild_s(const Operand& adr);
859  void fild_d(const Operand& adr);
860
861  void fist_s(const Operand& adr);
862
863  void fistp_s(const Operand& adr);
864  void fistp_d(const Operand& adr);
865
866  // The fisttp instructions require SSE3.
867  void fisttp_s(const Operand& adr);
868  void fisttp_d(const Operand& adr);
869
870  void fabs();
871  void fchs();
872  void fcos();
873  void fsin();
874  void fptan();
875  void fyl2x();
876  void f2xm1();
877  void fscale();
878  void fninit();
879
880  void fadd(int i);
881  void fadd_i(int i);
882  void fsub(int i);
883  void fsub_i(int i);
884  void fmul(int i);
885  void fmul_i(int i);
886  void fdiv(int i);
887  void fdiv_i(int i);
888
889  void fisub_s(const Operand& adr);
890
891  void faddp(int i = 1);
892  void fsubp(int i = 1);
893  void fsubrp(int i = 1);
894  void fmulp(int i = 1);
895  void fdivp(int i = 1);
896  void fprem();
897  void fprem1();
898
899  void fxch(int i = 1);
900  void fincstp();
901  void ffree(int i = 0);
902
903  void ftst();
904  void fucomp(int i);
905  void fucompp();
906  void fucomi(int i);
907  void fucomip();
908  void fcompp();
909  void fnstsw_ax();
910  void fwait();
911  void fnclex();
912
913  void frndint();
914
915  void sahf();
916  void setcc(Condition cc, Register reg);
917
918  void cpuid();
919
920  // SSE instructions
921  void movaps(XMMRegister dst, XMMRegister src);
922  void shufps(XMMRegister dst, XMMRegister src, byte imm8);
923
924  void andps(XMMRegister dst, const Operand& src);
925  void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
926  void xorps(XMMRegister dst, const Operand& src);
927  void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
928  void orps(XMMRegister dst, const Operand& src);
929  void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
930
931  void addps(XMMRegister dst, const Operand& src);
932  void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
933  void subps(XMMRegister dst, const Operand& src);
934  void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
935  void mulps(XMMRegister dst, const Operand& src);
936  void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
937  void divps(XMMRegister dst, const Operand& src);
938  void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
939
940  // SSE2 instructions
941  void cvttss2si(Register dst, const Operand& src);
942  void cvttss2si(Register dst, XMMRegister src) {
943    cvttss2si(dst, Operand(src));
944  }
945  void cvttsd2si(Register dst, const Operand& src);
946  void cvttsd2si(Register dst, XMMRegister src) {
947    cvttsd2si(dst, Operand(src));
948  }
949  void cvtsd2si(Register dst, XMMRegister src);
950
951  void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
952  void cvtsi2sd(XMMRegister dst, const Operand& src);
953  void cvtss2sd(XMMRegister dst, XMMRegister src);
954  void cvtsd2ss(XMMRegister dst, XMMRegister src);
955
956  void addsd(XMMRegister dst, XMMRegister src);
957  void addsd(XMMRegister dst, const Operand& src);
958  void subsd(XMMRegister dst, XMMRegister src);
959  void subsd(XMMRegister dst, const Operand& src);
960  void mulsd(XMMRegister dst, XMMRegister src);
961  void mulsd(XMMRegister dst, const Operand& src);
962  void divsd(XMMRegister dst, XMMRegister src);
963  void xorpd(XMMRegister dst, XMMRegister src);
964  void sqrtsd(XMMRegister dst, XMMRegister src);
965  void sqrtsd(XMMRegister dst, const Operand& src);
966
967  void andpd(XMMRegister dst, XMMRegister src);
968  void orpd(XMMRegister dst, XMMRegister src);
969
970  void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
971  void ucomisd(XMMRegister dst, const Operand& src);
972
973  enum RoundingMode {
974    kRoundToNearest = 0x0,
975    kRoundDown      = 0x1,
976    kRoundUp        = 0x2,
977    kRoundToZero    = 0x3
978  };
979
980  void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
981
982  void movmskpd(Register dst, XMMRegister src);
983  void movmskps(Register dst, XMMRegister src);
984
985  void cmpltsd(XMMRegister dst, XMMRegister src);
986  void pcmpeqd(XMMRegister dst, XMMRegister src);
987
988  void movdqa(XMMRegister dst, const Operand& src);
989  void movdqa(const Operand& dst, XMMRegister src);
990  void movdqu(XMMRegister dst, const Operand& src);
991  void movdqu(const Operand& dst, XMMRegister src);
992  void movdq(bool aligned, XMMRegister dst, const Operand& src) {
993    if (aligned) {
994      movdqa(dst, src);
995    } else {
996      movdqu(dst, src);
997    }
998  }
999
1000  void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1001  void movd(XMMRegister dst, const Operand& src);
1002  void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1003  void movd(const Operand& dst, XMMRegister src);
1004  void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1005  void movsd(XMMRegister dst, const Operand& src);
1006  void movsd(const Operand& dst, XMMRegister src);
1007
1008
1009  void movss(XMMRegister dst, const Operand& src);
1010  void movss(const Operand& dst, XMMRegister src);
1011  void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1012  void extractps(Register dst, XMMRegister src, byte imm8);
1013
1014  void pand(XMMRegister dst, XMMRegister src);
1015  void pxor(XMMRegister dst, XMMRegister src);
1016  void por(XMMRegister dst, XMMRegister src);
1017  void ptest(XMMRegister dst, XMMRegister src);
1018
1019  void psllq(XMMRegister reg, int8_t shift);
1020  void psllq(XMMRegister dst, XMMRegister src);
1021  void psrlq(XMMRegister reg, int8_t shift);
1022  void psrlq(XMMRegister dst, XMMRegister src);
1023  void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
1024  void pextrd(Register dst, XMMRegister src, int8_t offset) {
1025    pextrd(Operand(dst), src, offset);
1026  }
1027  void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
1028  void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1029    pinsrd(dst, Operand(src), offset);
1030  }
1031  void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1032
1033  // Parallel XMM operations.
1034  void movntdqa(XMMRegister dst, const Operand& src);
1035  void movntdq(const Operand& dst, XMMRegister src);
1036  // Prefetch src position into cache level.
1037  // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1038  // non-temporal
1039  void prefetch(const Operand& src, int level);
1040  // TODO(lrn): Need SFENCE for movnt?
1041
1042  // Debugging
1043  void Print();
1044
1045  // Check the code size generated from label to here.
1046  int SizeOfCodeGeneratedSince(Label* label) {
1047    return pc_offset() - label->pos();
1048  }
1049
1050  // Mark address of the ExitJSFrame code.
1051  void RecordJSReturn();
1052
1053  // Mark address of a debug break slot.
1054  void RecordDebugBreakSlot();
1055
1056  // Record a comment relocation entry that can be used by a disassembler.
1057  // Use --code-comments to enable, or provide "force = true" flag to always
1058  // write a comment.
1059  void RecordComment(const char* msg, bool force = false);
1060
1061  // Writes a single byte or word of data in the code stream.  Used for
1062  // inline tables, e.g., jump-tables.
1063  void db(uint8_t data);
1064  void dd(uint32_t data);
1065
1066  // Check if there is less than kGap bytes available in the buffer.
1067  // If this is the case, we need to grow the buffer before emitting
1068  // an instruction or relocation information.
1069  inline bool buffer_overflow() const {
1070    return pc_ >= reloc_info_writer.pos() - kGap;
1071  }
1072
1073  // Get the number of bytes available in the buffer.
1074  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1075
1076  static bool IsNop(Address addr);
1077
1078  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1079
1080  int relocation_writer_size() {
1081    return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1082  }
1083
1084  // Avoid overflows for displacements etc.
1085  static const int kMaximalBufferSize = 512*MB;
1086
1087  byte byte_at(int pos) { return buffer_[pos]; }
1088  void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1089
1090  // Allocate a constant pool of the correct size for the generated code.
1091  Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1092
1093  // Generate the constant pool for the generated code.
1094  void PopulateConstantPool(ConstantPoolArray* constant_pool);
1095
1096 protected:
1097  void emit_sse_operand(XMMRegister reg, const Operand& adr);
1098  void emit_sse_operand(XMMRegister dst, XMMRegister src);
1099  void emit_sse_operand(Register dst, XMMRegister src);
1100  void emit_sse_operand(XMMRegister dst, Register src);
1101
1102  byte* addr_at(int pos) { return buffer_ + pos; }
1103
1104
1105 private:
1106  uint32_t long_at(int pos)  {
1107    return *reinterpret_cast<uint32_t*>(addr_at(pos));
1108  }
1109  void long_at_put(int pos, uint32_t x)  {
1110    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1111  }
1112
1113  // code emission
1114  void GrowBuffer();
1115  inline void emit(uint32_t x);
1116  inline void emit(Handle<Object> handle);
1117  inline void emit(uint32_t x,
1118                   RelocInfo::Mode rmode,
1119                   TypeFeedbackId id = TypeFeedbackId::None());
1120  inline void emit(Handle<Code> code,
1121                   RelocInfo::Mode rmode,
1122                   TypeFeedbackId id = TypeFeedbackId::None());
1123  inline void emit(const Immediate& x);
1124  inline void emit_w(const Immediate& x);
1125
1126  // Emit the code-object-relative offset of the label's position
1127  inline void emit_code_relative_offset(Label* label);
1128
1129  // instruction generation
1130  void emit_arith_b(int op1, int op2, Register dst, int imm8);
1131
1132  // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1133  // with a given destination expression and an immediate operand.  It attempts
1134  // to use the shortest encoding possible.
1135  // sel specifies the /n in the modrm byte (see the Intel PRM).
1136  void emit_arith(int sel, Operand dst, const Immediate& x);
1137
1138  void emit_operand(Register reg, const Operand& adr);
1139
1140  void emit_farith(int b1, int b2, int i);
1141
1142  // labels
1143  void print(Label* L);
1144  void bind_to(Label* L, int pos);
1145
1146  // displacements
1147  inline Displacement disp_at(Label* L);
1148  inline void disp_at_put(Label* L, Displacement disp);
1149  inline void emit_disp(Label* L, Displacement::Type type);
1150  inline void emit_near_disp(Label* L);
1151
1152  // record reloc info for current pc_
1153  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1154
1155  friend class CodePatcher;
1156  friend class EnsureSpace;
1157
1158  // code generation
1159  RelocInfoWriter reloc_info_writer;
1160
1161  PositionsRecorder positions_recorder_;
1162  friend class PositionsRecorder;
1163};
1164
1165
1166// Helper class that ensures that there is enough space for generating
1167// instructions and relocation information.  The constructor makes
1168// sure that there is enough space and (in debug mode) the destructor
1169// checks that we did not generate too much.
1170class EnsureSpace BASE_EMBEDDED {
1171 public:
1172  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1173    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1174#ifdef DEBUG
1175    space_before_ = assembler_->available_space();
1176#endif
1177  }
1178
1179#ifdef DEBUG
1180  ~EnsureSpace() {
1181    int bytes_generated = space_before_ - assembler_->available_space();
1182    DCHECK(bytes_generated < assembler_->kGap);
1183  }
1184#endif
1185
1186 private:
1187  Assembler* assembler_;
1188#ifdef DEBUG
1189  int space_before_;
1190#endif
1191};
1192
1193} }  // namespace v8::internal
1194
1195#endif  // V8_IA32_ASSEMBLER_IA32_H_
1196