1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_IA32
8
9#include "src/base/bits.h"
10#include "src/code-factory.h"
11#include "src/code-stubs.h"
12#include "src/codegen.h"
13#include "src/deoptimizer.h"
14#include "src/hydrogen-osr.h"
15#include "src/ia32/lithium-codegen-ia32.h"
16#include "src/ic/ic.h"
17#include "src/ic/stub-cache.h"
18
19namespace v8 {
20namespace internal {
21
22// When invoking builtins, we need to record the safepoint in the middle of
23// the invoke instruction sequence generated by the macro assembler.
24class SafepointGenerator FINAL : public CallWrapper {
25 public:
26  SafepointGenerator(LCodeGen* codegen,
27                     LPointerMap* pointers,
28                     Safepoint::DeoptMode mode)
29      : codegen_(codegen),
30        pointers_(pointers),
31        deopt_mode_(mode) {}
32  virtual ~SafepointGenerator() {}
33
34  virtual void BeforeCall(int call_size) const OVERRIDE {}
35
36  virtual void AfterCall() const OVERRIDE {
37    codegen_->RecordSafepoint(pointers_, deopt_mode_);
38  }
39
40 private:
41  LCodeGen* codegen_;
42  LPointerMap* pointers_;
43  Safepoint::DeoptMode deopt_mode_;
44};
45
46
47#define __ masm()->
48
49bool LCodeGen::GenerateCode() {
50  LPhase phase("Z_Code generation", chunk());
51  DCHECK(is_unused());
52  status_ = GENERATING;
53
54  // Open a frame scope to indicate that there is a frame on the stack.  The
55  // MANUAL indicates that the scope shouldn't actually generate code to set up
56  // the frame (that is done in GeneratePrologue).
57  FrameScope frame_scope(masm_, StackFrame::MANUAL);
58
59  support_aligned_spilled_doubles_ = info()->IsOptimizing();
60
61  dynamic_frame_alignment_ = info()->IsOptimizing() &&
62      ((chunk()->num_double_slots() > 2 &&
63        !chunk()->graph()->is_recursive()) ||
64       !info()->osr_ast_id().IsNone());
65
66  return GeneratePrologue() &&
67      GenerateBody() &&
68      GenerateDeferredCode() &&
69      GenerateJumpTable() &&
70      GenerateSafepointTable();
71}
72
73
74void LCodeGen::FinishCode(Handle<Code> code) {
75  DCHECK(is_done());
76  code->set_stack_slots(GetStackSlotCount());
77  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
78  if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
79  PopulateDeoptimizationData(code);
80  if (!info()->IsStub()) {
81    Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
82  }
83}
84
85
86#ifdef _MSC_VER
87void LCodeGen::MakeSureStackPagesMapped(int offset) {
88  const int kPageSize = 4 * KB;
89  for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
90    __ mov(Operand(esp, offset), eax);
91  }
92}
93#endif
94
95
96void LCodeGen::SaveCallerDoubles() {
97  DCHECK(info()->saves_caller_doubles());
98  DCHECK(NeedsEagerFrame());
99  Comment(";;; Save clobbered callee double registers");
100  int count = 0;
101  BitVector* doubles = chunk()->allocated_double_registers();
102  BitVector::Iterator save_iterator(doubles);
103  while (!save_iterator.Done()) {
104    __ movsd(MemOperand(esp, count * kDoubleSize),
105              XMMRegister::FromAllocationIndex(save_iterator.Current()));
106    save_iterator.Advance();
107    count++;
108  }
109}
110
111
112void LCodeGen::RestoreCallerDoubles() {
113  DCHECK(info()->saves_caller_doubles());
114  DCHECK(NeedsEagerFrame());
115  Comment(";;; Restore clobbered callee double registers");
116  BitVector* doubles = chunk()->allocated_double_registers();
117  BitVector::Iterator save_iterator(doubles);
118  int count = 0;
119  while (!save_iterator.Done()) {
120    __ movsd(XMMRegister::FromAllocationIndex(save_iterator.Current()),
121              MemOperand(esp, count * kDoubleSize));
122    save_iterator.Advance();
123    count++;
124  }
125}
126
127
128bool LCodeGen::GeneratePrologue() {
129  DCHECK(is_generating());
130
131  if (info()->IsOptimizing()) {
132    ProfileEntryHookStub::MaybeCallEntryHook(masm_);
133
134#ifdef DEBUG
135    if (strlen(FLAG_stop_at) > 0 &&
136        info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
137      __ int3();
138    }
139#endif
140
141    // Sloppy mode functions and builtins need to replace the receiver with the
142    // global proxy when called as functions (without an explicit receiver
143    // object).
144    if (info_->this_has_uses() &&
145        info_->strict_mode() == SLOPPY &&
146        !info_->is_native()) {
147      Label ok;
148      // +1 for return address.
149      int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
150      __ mov(ecx, Operand(esp, receiver_offset));
151
152      __ cmp(ecx, isolate()->factory()->undefined_value());
153      __ j(not_equal, &ok, Label::kNear);
154
155      __ mov(ecx, GlobalObjectOperand());
156      __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalProxyOffset));
157
158      __ mov(Operand(esp, receiver_offset), ecx);
159
160      __ bind(&ok);
161    }
162
163    if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
164      // Move state of dynamic frame alignment into edx.
165      __ Move(edx, Immediate(kNoAlignmentPadding));
166
167      Label do_not_pad, align_loop;
168      STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
169      // Align esp + 4 to a multiple of 2 * kPointerSize.
170      __ test(esp, Immediate(kPointerSize));
171      __ j(not_zero, &do_not_pad, Label::kNear);
172      __ push(Immediate(0));
173      __ mov(ebx, esp);
174      __ mov(edx, Immediate(kAlignmentPaddingPushed));
175      // Copy arguments, receiver, and return address.
176      __ mov(ecx, Immediate(scope()->num_parameters() + 2));
177
178      __ bind(&align_loop);
179      __ mov(eax, Operand(ebx, 1 * kPointerSize));
180      __ mov(Operand(ebx, 0), eax);
181      __ add(Operand(ebx), Immediate(kPointerSize));
182      __ dec(ecx);
183      __ j(not_zero, &align_loop, Label::kNear);
184      __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
185      __ bind(&do_not_pad);
186    }
187  }
188
189  info()->set_prologue_offset(masm_->pc_offset());
190  if (NeedsEagerFrame()) {
191    DCHECK(!frame_is_built_);
192    frame_is_built_ = true;
193    if (info()->IsStub()) {
194      __ StubPrologue();
195    } else {
196      __ Prologue(info()->IsCodePreAgingActive());
197    }
198    info()->AddNoFrameRange(0, masm_->pc_offset());
199  }
200
201  if (info()->IsOptimizing() &&
202      dynamic_frame_alignment_ &&
203      FLAG_debug_code) {
204    __ test(esp, Immediate(kPointerSize));
205    __ Assert(zero, kFrameIsExpectedToBeAligned);
206  }
207
208  // Reserve space for the stack slots needed by the code.
209  int slots = GetStackSlotCount();
210  DCHECK(slots != 0 || !info()->IsOptimizing());
211  if (slots > 0) {
212    if (slots == 1) {
213      if (dynamic_frame_alignment_) {
214        __ push(edx);
215      } else {
216        __ push(Immediate(kNoAlignmentPadding));
217      }
218    } else {
219      if (FLAG_debug_code) {
220        __ sub(Operand(esp), Immediate(slots * kPointerSize));
221#ifdef _MSC_VER
222        MakeSureStackPagesMapped(slots * kPointerSize);
223#endif
224        __ push(eax);
225        __ mov(Operand(eax), Immediate(slots));
226        Label loop;
227        __ bind(&loop);
228        __ mov(MemOperand(esp, eax, times_4, 0),
229               Immediate(kSlotsZapValue));
230        __ dec(eax);
231        __ j(not_zero, &loop);
232        __ pop(eax);
233      } else {
234        __ sub(Operand(esp), Immediate(slots * kPointerSize));
235#ifdef _MSC_VER
236        MakeSureStackPagesMapped(slots * kPointerSize);
237#endif
238      }
239
240      if (support_aligned_spilled_doubles_) {
241        Comment(";;; Store dynamic frame alignment tag for spilled doubles");
242        // Store dynamic frame alignment state in the first local.
243        int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
244        if (dynamic_frame_alignment_) {
245          __ mov(Operand(ebp, offset), edx);
246        } else {
247          __ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
248        }
249      }
250    }
251
252    if (info()->saves_caller_doubles()) SaveCallerDoubles();
253  }
254
255  // Possibly allocate a local context.
256  int heap_slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
257  if (heap_slots > 0) {
258    Comment(";;; Allocate local context");
259    bool need_write_barrier = true;
260    // Argument to NewContext is the function, which is still in edi.
261    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
262      FastNewContextStub stub(isolate(), heap_slots);
263      __ CallStub(&stub);
264      // Result of FastNewContextStub is always in new space.
265      need_write_barrier = false;
266    } else {
267      __ push(edi);
268      __ CallRuntime(Runtime::kNewFunctionContext, 1);
269    }
270    RecordSafepoint(Safepoint::kNoLazyDeopt);
271    // Context is returned in eax.  It replaces the context passed to us.
272    // It's saved in the stack and kept live in esi.
273    __ mov(esi, eax);
274    __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
275
276    // Copy parameters into context if necessary.
277    int num_parameters = scope()->num_parameters();
278    for (int i = 0; i < num_parameters; i++) {
279      Variable* var = scope()->parameter(i);
280      if (var->IsContextSlot()) {
281        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
282            (num_parameters - 1 - i) * kPointerSize;
283        // Load parameter from stack.
284        __ mov(eax, Operand(ebp, parameter_offset));
285        // Store it in the context.
286        int context_offset = Context::SlotOffset(var->index());
287        __ mov(Operand(esi, context_offset), eax);
288        // Update the write barrier. This clobbers eax and ebx.
289        if (need_write_barrier) {
290          __ RecordWriteContextSlot(esi,
291                                    context_offset,
292                                    eax,
293                                    ebx,
294                                    kDontSaveFPRegs);
295        } else if (FLAG_debug_code) {
296          Label done;
297          __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
298          __ Abort(kExpectedNewSpaceObject);
299          __ bind(&done);
300        }
301      }
302    }
303    Comment(";;; End allocate local context");
304  }
305
306  // Trace the call.
307  if (FLAG_trace && info()->IsOptimizing()) {
308    // We have not executed any compiled code yet, so esi still holds the
309    // incoming context.
310    __ CallRuntime(Runtime::kTraceEnter, 0);
311  }
312  return !is_aborted();
313}
314
315
316void LCodeGen::GenerateOsrPrologue() {
317  // Generate the OSR entry prologue at the first unknown OSR value, or if there
318  // are none, at the OSR entrypoint instruction.
319  if (osr_pc_offset_ >= 0) return;
320
321  osr_pc_offset_ = masm()->pc_offset();
322
323    // Move state of dynamic frame alignment into edx.
324  __ Move(edx, Immediate(kNoAlignmentPadding));
325
326  if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
327    Label do_not_pad, align_loop;
328    // Align ebp + 4 to a multiple of 2 * kPointerSize.
329    __ test(ebp, Immediate(kPointerSize));
330    __ j(zero, &do_not_pad, Label::kNear);
331    __ push(Immediate(0));
332    __ mov(ebx, esp);
333    __ mov(edx, Immediate(kAlignmentPaddingPushed));
334
335    // Move all parts of the frame over one word. The frame consists of:
336    // unoptimized frame slots, alignment state, context, frame pointer, return
337    // address, receiver, and the arguments.
338    __ mov(ecx, Immediate(scope()->num_parameters() +
339           5 + graph()->osr()->UnoptimizedFrameSlots()));
340
341    __ bind(&align_loop);
342    __ mov(eax, Operand(ebx, 1 * kPointerSize));
343    __ mov(Operand(ebx, 0), eax);
344    __ add(Operand(ebx), Immediate(kPointerSize));
345    __ dec(ecx);
346    __ j(not_zero, &align_loop, Label::kNear);
347    __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
348    __ sub(Operand(ebp), Immediate(kPointerSize));
349    __ bind(&do_not_pad);
350  }
351
352  // Save the first local, which is overwritten by the alignment state.
353  Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
354  __ push(alignment_loc);
355
356  // Set the dynamic frame alignment state.
357  __ mov(alignment_loc, edx);
358
359  // Adjust the frame size, subsuming the unoptimized frame into the
360  // optimized frame.
361  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
362  DCHECK(slots >= 1);
363  __ sub(esp, Immediate((slots - 1) * kPointerSize));
364}
365
366
367void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
368  if (instr->IsCall()) {
369    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
370  }
371  if (!instr->IsLazyBailout() && !instr->IsGap()) {
372    safepoints_.BumpLastLazySafepointIndex();
373  }
374}
375
376
377void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { }
378
379
380bool LCodeGen::GenerateJumpTable() {
381  Label needs_frame;
382  if (jump_table_.length() > 0) {
383    Comment(";;; -------------------- Jump table --------------------");
384  }
385  for (int i = 0; i < jump_table_.length(); i++) {
386    Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
387    __ bind(&table_entry->label);
388    Address entry = table_entry->address;
389    DeoptComment(table_entry->reason);
390    if (table_entry->needs_frame) {
391      DCHECK(!info()->saves_caller_doubles());
392      __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
393      if (needs_frame.is_bound()) {
394        __ jmp(&needs_frame);
395      } else {
396        __ bind(&needs_frame);
397        __ push(MemOperand(ebp, StandardFrameConstants::kContextOffset));
398        // This variant of deopt can only be used with stubs. Since we don't
399        // have a function pointer to install in the stack frame that we're
400        // building, install a special marker there instead.
401        DCHECK(info()->IsStub());
402        __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
403        // Push a PC inside the function so that the deopt code can find where
404        // the deopt comes from. It doesn't have to be the precise return
405        // address of a "calling" LAZY deopt, it only has to be somewhere
406        // inside the code body.
407        Label push_approx_pc;
408        __ call(&push_approx_pc);
409        __ bind(&push_approx_pc);
410        // Push the continuation which was stashed were the ebp should
411        // be. Replace it with the saved ebp.
412        __ push(MemOperand(esp, 3 * kPointerSize));
413        __ mov(MemOperand(esp, 4 * kPointerSize), ebp);
414        __ lea(ebp, MemOperand(esp, 4 * kPointerSize));
415        __ ret(0);  // Call the continuation without clobbering registers.
416      }
417    } else {
418      if (info()->saves_caller_doubles()) RestoreCallerDoubles();
419      __ call(entry, RelocInfo::RUNTIME_ENTRY);
420    }
421  }
422  return !is_aborted();
423}
424
425
426bool LCodeGen::GenerateDeferredCode() {
427  DCHECK(is_generating());
428  if (deferred_.length() > 0) {
429    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
430      LDeferredCode* code = deferred_[i];
431
432      HValue* value =
433          instructions_->at(code->instruction_index())->hydrogen_value();
434      RecordAndWritePosition(
435          chunk()->graph()->SourcePositionToScriptPosition(value->position()));
436
437      Comment(";;; <@%d,#%d> "
438              "-------------------- Deferred %s --------------------",
439              code->instruction_index(),
440              code->instr()->hydrogen_value()->id(),
441              code->instr()->Mnemonic());
442      __ bind(code->entry());
443      if (NeedsDeferredFrame()) {
444        Comment(";;; Build frame");
445        DCHECK(!frame_is_built_);
446        DCHECK(info()->IsStub());
447        frame_is_built_ = true;
448        // Build the frame in such a way that esi isn't trashed.
449        __ push(ebp);  // Caller's frame pointer.
450        __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
451        __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
452        __ lea(ebp, Operand(esp, 2 * kPointerSize));
453        Comment(";;; Deferred code");
454      }
455      code->Generate();
456      if (NeedsDeferredFrame()) {
457        __ bind(code->done());
458        Comment(";;; Destroy frame");
459        DCHECK(frame_is_built_);
460        frame_is_built_ = false;
461        __ mov(esp, ebp);
462        __ pop(ebp);
463      }
464      __ jmp(code->exit());
465    }
466  }
467
468  // Deferred code is the last part of the instruction sequence. Mark
469  // the generated code as done unless we bailed out.
470  if (!is_aborted()) status_ = DONE;
471  return !is_aborted();
472}
473
474
475bool LCodeGen::GenerateSafepointTable() {
476  DCHECK(is_done());
477  if (!info()->IsStub()) {
478    // For lazy deoptimization we need space to patch a call after every call.
479    // Ensure there is always space for such patching, even if the code ends
480    // in a call.
481    int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
482    while (masm()->pc_offset() < target_offset) {
483      masm()->nop();
484    }
485  }
486  safepoints_.Emit(masm(), GetStackSlotCount());
487  return !is_aborted();
488}
489
490
491Register LCodeGen::ToRegister(int index) const {
492  return Register::FromAllocationIndex(index);
493}
494
495
496XMMRegister LCodeGen::ToDoubleRegister(int index) const {
497  return XMMRegister::FromAllocationIndex(index);
498}
499
500
501Register LCodeGen::ToRegister(LOperand* op) const {
502  DCHECK(op->IsRegister());
503  return ToRegister(op->index());
504}
505
506
507XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
508  DCHECK(op->IsDoubleRegister());
509  return ToDoubleRegister(op->index());
510}
511
512
513int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
514  return ToRepresentation(op, Representation::Integer32());
515}
516
517
518int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
519                                   const Representation& r) const {
520  HConstant* constant = chunk_->LookupConstant(op);
521  int32_t value = constant->Integer32Value();
522  if (r.IsInteger32()) return value;
523  DCHECK(r.IsSmiOrTagged());
524  return reinterpret_cast<int32_t>(Smi::FromInt(value));
525}
526
527
528Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
529  HConstant* constant = chunk_->LookupConstant(op);
530  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
531  return constant->handle(isolate());
532}
533
534
535double LCodeGen::ToDouble(LConstantOperand* op) const {
536  HConstant* constant = chunk_->LookupConstant(op);
537  DCHECK(constant->HasDoubleValue());
538  return constant->DoubleValue();
539}
540
541
542ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
543  HConstant* constant = chunk_->LookupConstant(op);
544  DCHECK(constant->HasExternalReferenceValue());
545  return constant->ExternalReferenceValue();
546}
547
548
549bool LCodeGen::IsInteger32(LConstantOperand* op) const {
550  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
551}
552
553
554bool LCodeGen::IsSmi(LConstantOperand* op) const {
555  return chunk_->LookupLiteralRepresentation(op).IsSmi();
556}
557
558
559static int ArgumentsOffsetWithoutFrame(int index) {
560  DCHECK(index < 0);
561  return -(index + 1) * kPointerSize + kPCOnStackSize;
562}
563
564
565Operand LCodeGen::ToOperand(LOperand* op) const {
566  if (op->IsRegister()) return Operand(ToRegister(op));
567  if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op));
568  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
569  if (NeedsEagerFrame()) {
570    return Operand(ebp, StackSlotOffset(op->index()));
571  } else {
572    // Retrieve parameter without eager stack-frame relative to the
573    // stack-pointer.
574    return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
575  }
576}
577
578
579Operand LCodeGen::HighOperand(LOperand* op) {
580  DCHECK(op->IsDoubleStackSlot());
581  if (NeedsEagerFrame()) {
582    return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
583  } else {
584    // Retrieve parameter without eager stack-frame relative to the
585    // stack-pointer.
586    return Operand(
587        esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
588  }
589}
590
591
592void LCodeGen::WriteTranslation(LEnvironment* environment,
593                                Translation* translation) {
594  if (environment == NULL) return;
595
596  // The translation includes one command per value in the environment.
597  int translation_size = environment->translation_size();
598  // The output frame height does not include the parameters.
599  int height = translation_size - environment->parameter_count();
600
601  WriteTranslation(environment->outer(), translation);
602  bool has_closure_id = !info()->closure().is_null() &&
603      !info()->closure().is_identical_to(environment->closure());
604  int closure_id = has_closure_id
605      ? DefineDeoptimizationLiteral(environment->closure())
606      : Translation::kSelfLiteralId;
607  switch (environment->frame_type()) {
608    case JS_FUNCTION:
609      translation->BeginJSFrame(environment->ast_id(), closure_id, height);
610      break;
611    case JS_CONSTRUCT:
612      translation->BeginConstructStubFrame(closure_id, translation_size);
613      break;
614    case JS_GETTER:
615      DCHECK(translation_size == 1);
616      DCHECK(height == 0);
617      translation->BeginGetterStubFrame(closure_id);
618      break;
619    case JS_SETTER:
620      DCHECK(translation_size == 2);
621      DCHECK(height == 0);
622      translation->BeginSetterStubFrame(closure_id);
623      break;
624    case ARGUMENTS_ADAPTOR:
625      translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
626      break;
627    case STUB:
628      translation->BeginCompiledStubFrame();
629      break;
630    default:
631      UNREACHABLE();
632  }
633
634  int object_index = 0;
635  int dematerialized_index = 0;
636  for (int i = 0; i < translation_size; ++i) {
637    LOperand* value = environment->values()->at(i);
638    AddToTranslation(environment,
639                     translation,
640                     value,
641                     environment->HasTaggedValueAt(i),
642                     environment->HasUint32ValueAt(i),
643                     &object_index,
644                     &dematerialized_index);
645  }
646}
647
648
649void LCodeGen::AddToTranslation(LEnvironment* environment,
650                                Translation* translation,
651                                LOperand* op,
652                                bool is_tagged,
653                                bool is_uint32,
654                                int* object_index_pointer,
655                                int* dematerialized_index_pointer) {
656  if (op == LEnvironment::materialization_marker()) {
657    int object_index = (*object_index_pointer)++;
658    if (environment->ObjectIsDuplicateAt(object_index)) {
659      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
660      translation->DuplicateObject(dupe_of);
661      return;
662    }
663    int object_length = environment->ObjectLengthAt(object_index);
664    if (environment->ObjectIsArgumentsAt(object_index)) {
665      translation->BeginArgumentsObject(object_length);
666    } else {
667      translation->BeginCapturedObject(object_length);
668    }
669    int dematerialized_index = *dematerialized_index_pointer;
670    int env_offset = environment->translation_size() + dematerialized_index;
671    *dematerialized_index_pointer += object_length;
672    for (int i = 0; i < object_length; ++i) {
673      LOperand* value = environment->values()->at(env_offset + i);
674      AddToTranslation(environment,
675                       translation,
676                       value,
677                       environment->HasTaggedValueAt(env_offset + i),
678                       environment->HasUint32ValueAt(env_offset + i),
679                       object_index_pointer,
680                       dematerialized_index_pointer);
681    }
682    return;
683  }
684
685  if (op->IsStackSlot()) {
686    if (is_tagged) {
687      translation->StoreStackSlot(op->index());
688    } else if (is_uint32) {
689      translation->StoreUint32StackSlot(op->index());
690    } else {
691      translation->StoreInt32StackSlot(op->index());
692    }
693  } else if (op->IsDoubleStackSlot()) {
694    translation->StoreDoubleStackSlot(op->index());
695  } else if (op->IsRegister()) {
696    Register reg = ToRegister(op);
697    if (is_tagged) {
698      translation->StoreRegister(reg);
699    } else if (is_uint32) {
700      translation->StoreUint32Register(reg);
701    } else {
702      translation->StoreInt32Register(reg);
703    }
704  } else if (op->IsDoubleRegister()) {
705    XMMRegister reg = ToDoubleRegister(op);
706    translation->StoreDoubleRegister(reg);
707  } else if (op->IsConstantOperand()) {
708    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
709    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
710    translation->StoreLiteral(src_index);
711  } else {
712    UNREACHABLE();
713  }
714}
715
716
717void LCodeGen::CallCodeGeneric(Handle<Code> code,
718                               RelocInfo::Mode mode,
719                               LInstruction* instr,
720                               SafepointMode safepoint_mode) {
721  DCHECK(instr != NULL);
722  __ call(code, mode);
723  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
724
725  // Signal that we don't inline smi code before these stubs in the
726  // optimizing code generator.
727  if (code->kind() == Code::BINARY_OP_IC ||
728      code->kind() == Code::COMPARE_IC) {
729    __ nop();
730  }
731}
732
733
734void LCodeGen::CallCode(Handle<Code> code,
735                        RelocInfo::Mode mode,
736                        LInstruction* instr) {
737  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
738}
739
740
741void LCodeGen::CallRuntime(const Runtime::Function* fun,
742                           int argc,
743                           LInstruction* instr,
744                           SaveFPRegsMode save_doubles) {
745  DCHECK(instr != NULL);
746  DCHECK(instr->HasPointerMap());
747
748  __ CallRuntime(fun, argc, save_doubles);
749
750  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
751
752  DCHECK(info()->is_calling());
753}
754
755
756void LCodeGen::LoadContextFromDeferred(LOperand* context) {
757  if (context->IsRegister()) {
758    if (!ToRegister(context).is(esi)) {
759      __ mov(esi, ToRegister(context));
760    }
761  } else if (context->IsStackSlot()) {
762    __ mov(esi, ToOperand(context));
763  } else if (context->IsConstantOperand()) {
764    HConstant* constant =
765        chunk_->LookupConstant(LConstantOperand::cast(context));
766    __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
767  } else {
768    UNREACHABLE();
769  }
770}
771
772void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
773                                       int argc,
774                                       LInstruction* instr,
775                                       LOperand* context) {
776  LoadContextFromDeferred(context);
777
778  __ CallRuntimeSaveDoubles(id);
779  RecordSafepointWithRegisters(
780      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
781
782  DCHECK(info()->is_calling());
783}
784
785
786void LCodeGen::RegisterEnvironmentForDeoptimization(
787    LEnvironment* environment, Safepoint::DeoptMode mode) {
788  environment->set_has_been_used();
789  if (!environment->HasBeenRegistered()) {
790    // Physical stack frame layout:
791    // -x ............. -4  0 ..................................... y
792    // [incoming arguments] [spill slots] [pushed outgoing arguments]
793
794    // Layout of the environment:
795    // 0 ..................................................... size-1
796    // [parameters] [locals] [expression stack including arguments]
797
798    // Layout of the translation:
799    // 0 ........................................................ size - 1 + 4
800    // [expression stack including arguments] [locals] [4 words] [parameters]
801    // |>------------  translation_size ------------<|
802
803    int frame_count = 0;
804    int jsframe_count = 0;
805    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
806      ++frame_count;
807      if (e->frame_type() == JS_FUNCTION) {
808        ++jsframe_count;
809      }
810    }
811    Translation translation(&translations_, frame_count, jsframe_count, zone());
812    WriteTranslation(environment, &translation);
813    int deoptimization_index = deoptimizations_.length();
814    int pc_offset = masm()->pc_offset();
815    environment->Register(deoptimization_index,
816                          translation.index(),
817                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
818    deoptimizations_.Add(environment, zone());
819  }
820}
821
822
823void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
824                            const char* detail,
825                            Deoptimizer::BailoutType bailout_type) {
826  LEnvironment* environment = instr->environment();
827  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
828  DCHECK(environment->HasBeenRegistered());
829  int id = environment->deoptimization_index();
830  DCHECK(info()->IsOptimizing() || info()->IsStub());
831  Address entry =
832      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
833  if (entry == NULL) {
834    Abort(kBailoutWasNotPrepared);
835    return;
836  }
837
838  if (DeoptEveryNTimes()) {
839    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
840    Label no_deopt;
841    __ pushfd();
842    __ push(eax);
843    __ mov(eax, Operand::StaticVariable(count));
844    __ sub(eax, Immediate(1));
845    __ j(not_zero, &no_deopt, Label::kNear);
846    if (FLAG_trap_on_deopt) __ int3();
847    __ mov(eax, Immediate(FLAG_deopt_every_n_times));
848    __ mov(Operand::StaticVariable(count), eax);
849    __ pop(eax);
850    __ popfd();
851    DCHECK(frame_is_built_);
852    __ call(entry, RelocInfo::RUNTIME_ENTRY);
853    __ bind(&no_deopt);
854    __ mov(Operand::StaticVariable(count), eax);
855    __ pop(eax);
856    __ popfd();
857  }
858
859  if (info()->ShouldTrapOnDeopt()) {
860    Label done;
861    if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
862    __ int3();
863    __ bind(&done);
864  }
865
866  Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
867                             instr->Mnemonic(), detail);
868  DCHECK(info()->IsStub() || frame_is_built_);
869  if (cc == no_condition && frame_is_built_) {
870    DeoptComment(reason);
871    __ call(entry, RelocInfo::RUNTIME_ENTRY);
872  } else {
873    Deoptimizer::JumpTableEntry table_entry(entry, reason, bailout_type,
874                                            !frame_is_built_);
875    // We often have several deopts to the same entry, reuse the last
876    // jump entry if this is the case.
877    if (jump_table_.is_empty() ||
878        !table_entry.IsEquivalentTo(jump_table_.last())) {
879      jump_table_.Add(table_entry, zone());
880    }
881    if (cc == no_condition) {
882      __ jmp(&jump_table_.last().label);
883    } else {
884      __ j(cc, &jump_table_.last().label);
885    }
886  }
887}
888
889
890void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
891                            const char* detail) {
892  Deoptimizer::BailoutType bailout_type = info()->IsStub()
893      ? Deoptimizer::LAZY
894      : Deoptimizer::EAGER;
895  DeoptimizeIf(cc, instr, detail, bailout_type);
896}
897
898
899void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
900  int length = deoptimizations_.length();
901  if (length == 0) return;
902  Handle<DeoptimizationInputData> data =
903      DeoptimizationInputData::New(isolate(), length, TENURED);
904
905  Handle<ByteArray> translations =
906      translations_.CreateByteArray(isolate()->factory());
907  data->SetTranslationByteArray(*translations);
908  data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
909  data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
910  if (info_->IsOptimizing()) {
911    // Reference to shared function info does not change between phases.
912    AllowDeferredHandleDereference allow_handle_dereference;
913    data->SetSharedFunctionInfo(*info_->shared_info());
914  } else {
915    data->SetSharedFunctionInfo(Smi::FromInt(0));
916  }
917
918  Handle<FixedArray> literals =
919      factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
920  { AllowDeferredHandleDereference copy_handles;
921    for (int i = 0; i < deoptimization_literals_.length(); i++) {
922      literals->set(i, *deoptimization_literals_[i]);
923    }
924    data->SetLiteralArray(*literals);
925  }
926
927  data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
928  data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
929
930  // Populate the deoptimization entries.
931  for (int i = 0; i < length; i++) {
932    LEnvironment* env = deoptimizations_[i];
933    data->SetAstId(i, env->ast_id());
934    data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
935    data->SetArgumentsStackHeight(i,
936                                  Smi::FromInt(env->arguments_stack_height()));
937    data->SetPc(i, Smi::FromInt(env->pc_offset()));
938  }
939  code->set_deoptimization_data(*data);
940}
941
942
943int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
944  int result = deoptimization_literals_.length();
945  for (int i = 0; i < deoptimization_literals_.length(); ++i) {
946    if (deoptimization_literals_[i].is_identical_to(literal)) return i;
947  }
948  deoptimization_literals_.Add(literal, zone());
949  return result;
950}
951
952
953void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
954  DCHECK(deoptimization_literals_.length() == 0);
955
956  const ZoneList<Handle<JSFunction> >* inlined_closures =
957      chunk()->inlined_closures();
958
959  for (int i = 0, length = inlined_closures->length();
960       i < length;
961       i++) {
962    DefineDeoptimizationLiteral(inlined_closures->at(i));
963  }
964
965  inlined_function_count_ = deoptimization_literals_.length();
966}
967
968
969void LCodeGen::RecordSafepointWithLazyDeopt(
970    LInstruction* instr, SafepointMode safepoint_mode) {
971  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
972    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
973  } else {
974    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
975    RecordSafepointWithRegisters(
976        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
977  }
978}
979
980
981void LCodeGen::RecordSafepoint(
982    LPointerMap* pointers,
983    Safepoint::Kind kind,
984    int arguments,
985    Safepoint::DeoptMode deopt_mode) {
986  DCHECK(kind == expected_safepoint_kind_);
987  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
988  Safepoint safepoint =
989      safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
990  for (int i = 0; i < operands->length(); i++) {
991    LOperand* pointer = operands->at(i);
992    if (pointer->IsStackSlot()) {
993      safepoint.DefinePointerSlot(pointer->index(), zone());
994    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
995      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
996    }
997  }
998}
999
1000
1001void LCodeGen::RecordSafepoint(LPointerMap* pointers,
1002                               Safepoint::DeoptMode mode) {
1003  RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
1004}
1005
1006
1007void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
1008  LPointerMap empty_pointers(zone());
1009  RecordSafepoint(&empty_pointers, mode);
1010}
1011
1012
1013void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
1014                                            int arguments,
1015                                            Safepoint::DeoptMode mode) {
1016  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
1017}
1018
1019
1020void LCodeGen::RecordAndWritePosition(int position) {
1021  if (position == RelocInfo::kNoPosition) return;
1022  masm()->positions_recorder()->RecordPosition(position);
1023  masm()->positions_recorder()->WriteRecordedPositions();
1024}
1025
1026
1027static const char* LabelType(LLabel* label) {
1028  if (label->is_loop_header()) return " (loop header)";
1029  if (label->is_osr_entry()) return " (OSR entry)";
1030  return "";
1031}
1032
1033
1034void LCodeGen::DoLabel(LLabel* label) {
1035  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
1036          current_instruction_,
1037          label->hydrogen_value()->id(),
1038          label->block_id(),
1039          LabelType(label));
1040  __ bind(label->label());
1041  current_block_ = label->block_id();
1042  DoGap(label);
1043}
1044
1045
1046void LCodeGen::DoParallelMove(LParallelMove* move) {
1047  resolver_.Resolve(move);
1048}
1049
1050
1051void LCodeGen::DoGap(LGap* gap) {
1052  for (int i = LGap::FIRST_INNER_POSITION;
1053       i <= LGap::LAST_INNER_POSITION;
1054       i++) {
1055    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1056    LParallelMove* move = gap->GetParallelMove(inner_pos);
1057    if (move != NULL) DoParallelMove(move);
1058  }
1059}
1060
1061
1062void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
1063  DoGap(instr);
1064}
1065
1066
1067void LCodeGen::DoParameter(LParameter* instr) {
1068  // Nothing to do.
1069}
1070
1071
1072void LCodeGen::DoCallStub(LCallStub* instr) {
1073  DCHECK(ToRegister(instr->context()).is(esi));
1074  DCHECK(ToRegister(instr->result()).is(eax));
1075  switch (instr->hydrogen()->major_key()) {
1076    case CodeStub::RegExpExec: {
1077      RegExpExecStub stub(isolate());
1078      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1079      break;
1080    }
1081    case CodeStub::SubString: {
1082      SubStringStub stub(isolate());
1083      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1084      break;
1085    }
1086    case CodeStub::StringCompare: {
1087      StringCompareStub stub(isolate());
1088      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1089      break;
1090    }
1091    default:
1092      UNREACHABLE();
1093  }
1094}
1095
1096
1097void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
1098  GenerateOsrPrologue();
1099}
1100
1101
1102void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
1103  Register dividend = ToRegister(instr->dividend());
1104  int32_t divisor = instr->divisor();
1105  DCHECK(dividend.is(ToRegister(instr->result())));
1106
1107  // Theoretically, a variation of the branch-free code for integer division by
1108  // a power of 2 (calculating the remainder via an additional multiplication
1109  // (which gets simplified to an 'and') and subtraction) should be faster, and
1110  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
1111  // indicate that positive dividends are heavily favored, so the branching
1112  // version performs better.
1113  HMod* hmod = instr->hydrogen();
1114  int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1115  Label dividend_is_not_negative, done;
1116  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
1117    __ test(dividend, dividend);
1118    __ j(not_sign, &dividend_is_not_negative, Label::kNear);
1119    // Note that this is correct even for kMinInt operands.
1120    __ neg(dividend);
1121    __ and_(dividend, mask);
1122    __ neg(dividend);
1123    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1124      DeoptimizeIf(zero, instr, "minus zero");
1125    }
1126    __ jmp(&done, Label::kNear);
1127  }
1128
1129  __ bind(&dividend_is_not_negative);
1130  __ and_(dividend, mask);
1131  __ bind(&done);
1132}
1133
1134
1135void LCodeGen::DoModByConstI(LModByConstI* instr) {
1136  Register dividend = ToRegister(instr->dividend());
1137  int32_t divisor = instr->divisor();
1138  DCHECK(ToRegister(instr->result()).is(eax));
1139
1140  if (divisor == 0) {
1141    DeoptimizeIf(no_condition, instr, "division by zero");
1142    return;
1143  }
1144
1145  __ TruncatingDiv(dividend, Abs(divisor));
1146  __ imul(edx, edx, Abs(divisor));
1147  __ mov(eax, dividend);
1148  __ sub(eax, edx);
1149
1150  // Check for negative zero.
1151  HMod* hmod = instr->hydrogen();
1152  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1153    Label remainder_not_zero;
1154    __ j(not_zero, &remainder_not_zero, Label::kNear);
1155    __ cmp(dividend, Immediate(0));
1156    DeoptimizeIf(less, instr, "minus zero");
1157    __ bind(&remainder_not_zero);
1158  }
1159}
1160
1161
1162void LCodeGen::DoModI(LModI* instr) {
1163  HMod* hmod = instr->hydrogen();
1164
1165  Register left_reg = ToRegister(instr->left());
1166  DCHECK(left_reg.is(eax));
1167  Register right_reg = ToRegister(instr->right());
1168  DCHECK(!right_reg.is(eax));
1169  DCHECK(!right_reg.is(edx));
1170  Register result_reg = ToRegister(instr->result());
1171  DCHECK(result_reg.is(edx));
1172
1173  Label done;
1174  // Check for x % 0, idiv would signal a divide error. We have to
1175  // deopt in this case because we can't return a NaN.
1176  if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1177    __ test(right_reg, Operand(right_reg));
1178    DeoptimizeIf(zero, instr, "division by zero");
1179  }
1180
1181  // Check for kMinInt % -1, idiv would signal a divide error. We
1182  // have to deopt if we care about -0, because we can't return that.
1183  if (hmod->CheckFlag(HValue::kCanOverflow)) {
1184    Label no_overflow_possible;
1185    __ cmp(left_reg, kMinInt);
1186    __ j(not_equal, &no_overflow_possible, Label::kNear);
1187    __ cmp(right_reg, -1);
1188    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1189      DeoptimizeIf(equal, instr, "minus zero");
1190    } else {
1191      __ j(not_equal, &no_overflow_possible, Label::kNear);
1192      __ Move(result_reg, Immediate(0));
1193      __ jmp(&done, Label::kNear);
1194    }
1195    __ bind(&no_overflow_possible);
1196  }
1197
1198  // Sign extend dividend in eax into edx:eax.
1199  __ cdq();
1200
1201  // If we care about -0, test if the dividend is <0 and the result is 0.
1202  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1203    Label positive_left;
1204    __ test(left_reg, Operand(left_reg));
1205    __ j(not_sign, &positive_left, Label::kNear);
1206    __ idiv(right_reg);
1207    __ test(result_reg, Operand(result_reg));
1208    DeoptimizeIf(zero, instr, "minus zero");
1209    __ jmp(&done, Label::kNear);
1210    __ bind(&positive_left);
1211  }
1212  __ idiv(right_reg);
1213  __ bind(&done);
1214}
1215
1216
1217void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1218  Register dividend = ToRegister(instr->dividend());
1219  int32_t divisor = instr->divisor();
1220  Register result = ToRegister(instr->result());
1221  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1222  DCHECK(!result.is(dividend));
1223
1224  // Check for (0 / -x) that will produce negative zero.
1225  HDiv* hdiv = instr->hydrogen();
1226  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1227    __ test(dividend, dividend);
1228    DeoptimizeIf(zero, instr, "minus zero");
1229  }
1230  // Check for (kMinInt / -1).
1231  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1232    __ cmp(dividend, kMinInt);
1233    DeoptimizeIf(zero, instr, "overflow");
1234  }
1235  // Deoptimize if remainder will not be 0.
1236  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1237      divisor != 1 && divisor != -1) {
1238    int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1239    __ test(dividend, Immediate(mask));
1240    DeoptimizeIf(not_zero, instr, "lost precision");
1241  }
1242  __ Move(result, dividend);
1243  int32_t shift = WhichPowerOf2Abs(divisor);
1244  if (shift > 0) {
1245    // The arithmetic shift is always OK, the 'if' is an optimization only.
1246    if (shift > 1) __ sar(result, 31);
1247    __ shr(result, 32 - shift);
1248    __ add(result, dividend);
1249    __ sar(result, shift);
1250  }
1251  if (divisor < 0) __ neg(result);
1252}
1253
1254
1255void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1256  Register dividend = ToRegister(instr->dividend());
1257  int32_t divisor = instr->divisor();
1258  DCHECK(ToRegister(instr->result()).is(edx));
1259
1260  if (divisor == 0) {
1261    DeoptimizeIf(no_condition, instr, "division by zero");
1262    return;
1263  }
1264
1265  // Check for (0 / -x) that will produce negative zero.
1266  HDiv* hdiv = instr->hydrogen();
1267  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1268    __ test(dividend, dividend);
1269    DeoptimizeIf(zero, instr, "minus zero");
1270  }
1271
1272  __ TruncatingDiv(dividend, Abs(divisor));
1273  if (divisor < 0) __ neg(edx);
1274
1275  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1276    __ mov(eax, edx);
1277    __ imul(eax, eax, divisor);
1278    __ sub(eax, dividend);
1279    DeoptimizeIf(not_equal, instr, "lost precision");
1280  }
1281}
1282
1283
1284// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1285void LCodeGen::DoDivI(LDivI* instr) {
1286  HBinaryOperation* hdiv = instr->hydrogen();
1287  Register dividend = ToRegister(instr->dividend());
1288  Register divisor = ToRegister(instr->divisor());
1289  Register remainder = ToRegister(instr->temp());
1290  DCHECK(dividend.is(eax));
1291  DCHECK(remainder.is(edx));
1292  DCHECK(ToRegister(instr->result()).is(eax));
1293  DCHECK(!divisor.is(eax));
1294  DCHECK(!divisor.is(edx));
1295
1296  // Check for x / 0.
1297  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1298    __ test(divisor, divisor);
1299    DeoptimizeIf(zero, instr, "division by zero");
1300  }
1301
1302  // Check for (0 / -x) that will produce negative zero.
1303  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1304    Label dividend_not_zero;
1305    __ test(dividend, dividend);
1306    __ j(not_zero, &dividend_not_zero, Label::kNear);
1307    __ test(divisor, divisor);
1308    DeoptimizeIf(sign, instr, "minus zero");
1309    __ bind(&dividend_not_zero);
1310  }
1311
1312  // Check for (kMinInt / -1).
1313  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1314    Label dividend_not_min_int;
1315    __ cmp(dividend, kMinInt);
1316    __ j(not_zero, &dividend_not_min_int, Label::kNear);
1317    __ cmp(divisor, -1);
1318    DeoptimizeIf(zero, instr, "overflow");
1319    __ bind(&dividend_not_min_int);
1320  }
1321
1322  // Sign extend to edx (= remainder).
1323  __ cdq();
1324  __ idiv(divisor);
1325
1326  if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1327    // Deoptimize if remainder is not 0.
1328    __ test(remainder, remainder);
1329    DeoptimizeIf(not_zero, instr, "lost precision");
1330  }
1331}
1332
1333
1334void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1335  Register dividend = ToRegister(instr->dividend());
1336  int32_t divisor = instr->divisor();
1337  DCHECK(dividend.is(ToRegister(instr->result())));
1338
1339  // If the divisor is positive, things are easy: There can be no deopts and we
1340  // can simply do an arithmetic right shift.
1341  if (divisor == 1) return;
1342  int32_t shift = WhichPowerOf2Abs(divisor);
1343  if (divisor > 1) {
1344    __ sar(dividend, shift);
1345    return;
1346  }
1347
1348  // If the divisor is negative, we have to negate and handle edge cases.
1349  __ neg(dividend);
1350  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1351    DeoptimizeIf(zero, instr, "minus zero");
1352  }
1353
1354  // Dividing by -1 is basically negation, unless we overflow.
1355  if (divisor == -1) {
1356    if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1357      DeoptimizeIf(overflow, instr, "overflow");
1358    }
1359    return;
1360  }
1361
1362  // If the negation could not overflow, simply shifting is OK.
1363  if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1364    __ sar(dividend, shift);
1365    return;
1366  }
1367
1368  Label not_kmin_int, done;
1369  __ j(no_overflow, &not_kmin_int, Label::kNear);
1370  __ mov(dividend, Immediate(kMinInt / divisor));
1371  __ jmp(&done, Label::kNear);
1372  __ bind(&not_kmin_int);
1373  __ sar(dividend, shift);
1374  __ bind(&done);
1375}
1376
1377
1378void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1379  Register dividend = ToRegister(instr->dividend());
1380  int32_t divisor = instr->divisor();
1381  DCHECK(ToRegister(instr->result()).is(edx));
1382
1383  if (divisor == 0) {
1384    DeoptimizeIf(no_condition, instr, "division by zero");
1385    return;
1386  }
1387
1388  // Check for (0 / -x) that will produce negative zero.
1389  HMathFloorOfDiv* hdiv = instr->hydrogen();
1390  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1391    __ test(dividend, dividend);
1392    DeoptimizeIf(zero, instr, "minus zero");
1393  }
1394
1395  // Easy case: We need no dynamic check for the dividend and the flooring
1396  // division is the same as the truncating division.
1397  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1398      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1399    __ TruncatingDiv(dividend, Abs(divisor));
1400    if (divisor < 0) __ neg(edx);
1401    return;
1402  }
1403
1404  // In the general case we may need to adjust before and after the truncating
1405  // division to get a flooring division.
1406  Register temp = ToRegister(instr->temp3());
1407  DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
1408  Label needs_adjustment, done;
1409  __ cmp(dividend, Immediate(0));
1410  __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1411  __ TruncatingDiv(dividend, Abs(divisor));
1412  if (divisor < 0) __ neg(edx);
1413  __ jmp(&done, Label::kNear);
1414  __ bind(&needs_adjustment);
1415  __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1416  __ TruncatingDiv(temp, Abs(divisor));
1417  if (divisor < 0) __ neg(edx);
1418  __ dec(edx);
1419  __ bind(&done);
1420}
1421
1422
1423// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1424void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1425  HBinaryOperation* hdiv = instr->hydrogen();
1426  Register dividend = ToRegister(instr->dividend());
1427  Register divisor = ToRegister(instr->divisor());
1428  Register remainder = ToRegister(instr->temp());
1429  Register result = ToRegister(instr->result());
1430  DCHECK(dividend.is(eax));
1431  DCHECK(remainder.is(edx));
1432  DCHECK(result.is(eax));
1433  DCHECK(!divisor.is(eax));
1434  DCHECK(!divisor.is(edx));
1435
1436  // Check for x / 0.
1437  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1438    __ test(divisor, divisor);
1439    DeoptimizeIf(zero, instr, "division by zero");
1440  }
1441
1442  // Check for (0 / -x) that will produce negative zero.
1443  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1444    Label dividend_not_zero;
1445    __ test(dividend, dividend);
1446    __ j(not_zero, &dividend_not_zero, Label::kNear);
1447    __ test(divisor, divisor);
1448    DeoptimizeIf(sign, instr, "minus zero");
1449    __ bind(&dividend_not_zero);
1450  }
1451
1452  // Check for (kMinInt / -1).
1453  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1454    Label dividend_not_min_int;
1455    __ cmp(dividend, kMinInt);
1456    __ j(not_zero, &dividend_not_min_int, Label::kNear);
1457    __ cmp(divisor, -1);
1458    DeoptimizeIf(zero, instr, "overflow");
1459    __ bind(&dividend_not_min_int);
1460  }
1461
1462  // Sign extend to edx (= remainder).
1463  __ cdq();
1464  __ idiv(divisor);
1465
1466  Label done;
1467  __ test(remainder, remainder);
1468  __ j(zero, &done, Label::kNear);
1469  __ xor_(remainder, divisor);
1470  __ sar(remainder, 31);
1471  __ add(result, remainder);
1472  __ bind(&done);
1473}
1474
1475
1476void LCodeGen::DoMulI(LMulI* instr) {
1477  Register left = ToRegister(instr->left());
1478  LOperand* right = instr->right();
1479
1480  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1481    __ mov(ToRegister(instr->temp()), left);
1482  }
1483
1484  if (right->IsConstantOperand()) {
1485    // Try strength reductions on the multiplication.
1486    // All replacement instructions are at most as long as the imul
1487    // and have better latency.
1488    int constant = ToInteger32(LConstantOperand::cast(right));
1489    if (constant == -1) {
1490      __ neg(left);
1491    } else if (constant == 0) {
1492      __ xor_(left, Operand(left));
1493    } else if (constant == 2) {
1494      __ add(left, Operand(left));
1495    } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1496      // If we know that the multiplication can't overflow, it's safe to
1497      // use instructions that don't set the overflow flag for the
1498      // multiplication.
1499      switch (constant) {
1500        case 1:
1501          // Do nothing.
1502          break;
1503        case 3:
1504          __ lea(left, Operand(left, left, times_2, 0));
1505          break;
1506        case 4:
1507          __ shl(left, 2);
1508          break;
1509        case 5:
1510          __ lea(left, Operand(left, left, times_4, 0));
1511          break;
1512        case 8:
1513          __ shl(left, 3);
1514          break;
1515        case 9:
1516          __ lea(left, Operand(left, left, times_8, 0));
1517          break;
1518        case 16:
1519          __ shl(left, 4);
1520          break;
1521        default:
1522          __ imul(left, left, constant);
1523          break;
1524      }
1525    } else {
1526      __ imul(left, left, constant);
1527    }
1528  } else {
1529    if (instr->hydrogen()->representation().IsSmi()) {
1530      __ SmiUntag(left);
1531    }
1532    __ imul(left, ToOperand(right));
1533  }
1534
1535  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1536    DeoptimizeIf(overflow, instr, "overflow");
1537  }
1538
1539  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1540    // Bail out if the result is supposed to be negative zero.
1541    Label done;
1542    __ test(left, Operand(left));
1543    __ j(not_zero, &done, Label::kNear);
1544    if (right->IsConstantOperand()) {
1545      if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1546        DeoptimizeIf(no_condition, instr, "minus zero");
1547      } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1548        __ cmp(ToRegister(instr->temp()), Immediate(0));
1549        DeoptimizeIf(less, instr, "minus zero");
1550      }
1551    } else {
1552      // Test the non-zero operand for negative sign.
1553      __ or_(ToRegister(instr->temp()), ToOperand(right));
1554      DeoptimizeIf(sign, instr, "minus zero");
1555    }
1556    __ bind(&done);
1557  }
1558}
1559
1560
1561void LCodeGen::DoBitI(LBitI* instr) {
1562  LOperand* left = instr->left();
1563  LOperand* right = instr->right();
1564  DCHECK(left->Equals(instr->result()));
1565  DCHECK(left->IsRegister());
1566
1567  if (right->IsConstantOperand()) {
1568    int32_t right_operand =
1569        ToRepresentation(LConstantOperand::cast(right),
1570                         instr->hydrogen()->representation());
1571    switch (instr->op()) {
1572      case Token::BIT_AND:
1573        __ and_(ToRegister(left), right_operand);
1574        break;
1575      case Token::BIT_OR:
1576        __ or_(ToRegister(left), right_operand);
1577        break;
1578      case Token::BIT_XOR:
1579        if (right_operand == int32_t(~0)) {
1580          __ not_(ToRegister(left));
1581        } else {
1582          __ xor_(ToRegister(left), right_operand);
1583        }
1584        break;
1585      default:
1586        UNREACHABLE();
1587        break;
1588    }
1589  } else {
1590    switch (instr->op()) {
1591      case Token::BIT_AND:
1592        __ and_(ToRegister(left), ToOperand(right));
1593        break;
1594      case Token::BIT_OR:
1595        __ or_(ToRegister(left), ToOperand(right));
1596        break;
1597      case Token::BIT_XOR:
1598        __ xor_(ToRegister(left), ToOperand(right));
1599        break;
1600      default:
1601        UNREACHABLE();
1602        break;
1603    }
1604  }
1605}
1606
1607
1608void LCodeGen::DoShiftI(LShiftI* instr) {
1609  LOperand* left = instr->left();
1610  LOperand* right = instr->right();
1611  DCHECK(left->Equals(instr->result()));
1612  DCHECK(left->IsRegister());
1613  if (right->IsRegister()) {
1614    DCHECK(ToRegister(right).is(ecx));
1615
1616    switch (instr->op()) {
1617      case Token::ROR:
1618        __ ror_cl(ToRegister(left));
1619        break;
1620      case Token::SAR:
1621        __ sar_cl(ToRegister(left));
1622        break;
1623      case Token::SHR:
1624        __ shr_cl(ToRegister(left));
1625        if (instr->can_deopt()) {
1626          __ test(ToRegister(left), ToRegister(left));
1627          DeoptimizeIf(sign, instr, "negative value");
1628        }
1629        break;
1630      case Token::SHL:
1631        __ shl_cl(ToRegister(left));
1632        break;
1633      default:
1634        UNREACHABLE();
1635        break;
1636    }
1637  } else {
1638    int value = ToInteger32(LConstantOperand::cast(right));
1639    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1640    switch (instr->op()) {
1641      case Token::ROR:
1642        if (shift_count == 0 && instr->can_deopt()) {
1643          __ test(ToRegister(left), ToRegister(left));
1644          DeoptimizeIf(sign, instr, "negative value");
1645        } else {
1646          __ ror(ToRegister(left), shift_count);
1647        }
1648        break;
1649      case Token::SAR:
1650        if (shift_count != 0) {
1651          __ sar(ToRegister(left), shift_count);
1652        }
1653        break;
1654      case Token::SHR:
1655        if (shift_count != 0) {
1656          __ shr(ToRegister(left), shift_count);
1657        } else if (instr->can_deopt()) {
1658          __ test(ToRegister(left), ToRegister(left));
1659          DeoptimizeIf(sign, instr, "negative value");
1660        }
1661        break;
1662      case Token::SHL:
1663        if (shift_count != 0) {
1664          if (instr->hydrogen_value()->representation().IsSmi() &&
1665              instr->can_deopt()) {
1666            if (shift_count != 1) {
1667              __ shl(ToRegister(left), shift_count - 1);
1668            }
1669            __ SmiTag(ToRegister(left));
1670            DeoptimizeIf(overflow, instr, "overflow");
1671          } else {
1672            __ shl(ToRegister(left), shift_count);
1673          }
1674        }
1675        break;
1676      default:
1677        UNREACHABLE();
1678        break;
1679    }
1680  }
1681}
1682
1683
1684void LCodeGen::DoSubI(LSubI* instr) {
1685  LOperand* left = instr->left();
1686  LOperand* right = instr->right();
1687  DCHECK(left->Equals(instr->result()));
1688
1689  if (right->IsConstantOperand()) {
1690    __ sub(ToOperand(left),
1691           ToImmediate(right, instr->hydrogen()->representation()));
1692  } else {
1693    __ sub(ToRegister(left), ToOperand(right));
1694  }
1695  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1696    DeoptimizeIf(overflow, instr, "overflow");
1697  }
1698}
1699
1700
1701void LCodeGen::DoConstantI(LConstantI* instr) {
1702  __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1703}
1704
1705
1706void LCodeGen::DoConstantS(LConstantS* instr) {
1707  __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1708}
1709
1710
1711void LCodeGen::DoConstantD(LConstantD* instr) {
1712  double v = instr->value();
1713  uint64_t int_val = bit_cast<uint64_t, double>(v);
1714  int32_t lower = static_cast<int32_t>(int_val);
1715  int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
1716  DCHECK(instr->result()->IsDoubleRegister());
1717
1718  XMMRegister res = ToDoubleRegister(instr->result());
1719  if (int_val == 0) {
1720    __ xorps(res, res);
1721  } else {
1722    Register temp = ToRegister(instr->temp());
1723    if (CpuFeatures::IsSupported(SSE4_1)) {
1724      CpuFeatureScope scope2(masm(), SSE4_1);
1725      if (lower != 0) {
1726        __ Move(temp, Immediate(lower));
1727        __ movd(res, Operand(temp));
1728        __ Move(temp, Immediate(upper));
1729        __ pinsrd(res, Operand(temp), 1);
1730      } else {
1731        __ xorps(res, res);
1732        __ Move(temp, Immediate(upper));
1733        __ pinsrd(res, Operand(temp), 1);
1734      }
1735    } else {
1736      __ Move(temp, Immediate(upper));
1737      __ movd(res, Operand(temp));
1738      __ psllq(res, 32);
1739      if (lower != 0) {
1740        XMMRegister xmm_scratch = double_scratch0();
1741        __ Move(temp, Immediate(lower));
1742        __ movd(xmm_scratch, Operand(temp));
1743        __ orps(res, xmm_scratch);
1744      }
1745    }
1746  }
1747}
1748
1749
1750void LCodeGen::DoConstantE(LConstantE* instr) {
1751  __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
1752}
1753
1754
1755void LCodeGen::DoConstantT(LConstantT* instr) {
1756  Register reg = ToRegister(instr->result());
1757  Handle<Object> object = instr->value(isolate());
1758  AllowDeferredHandleDereference smi_check;
1759  __ LoadObject(reg, object);
1760}
1761
1762
1763void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1764  Register result = ToRegister(instr->result());
1765  Register map = ToRegister(instr->value());
1766  __ EnumLength(result, map);
1767}
1768
1769
1770void LCodeGen::DoDateField(LDateField* instr) {
1771  Register object = ToRegister(instr->date());
1772  Register result = ToRegister(instr->result());
1773  Register scratch = ToRegister(instr->temp());
1774  Smi* index = instr->index();
1775  Label runtime, done;
1776  DCHECK(object.is(result));
1777  DCHECK(object.is(eax));
1778
1779  __ test(object, Immediate(kSmiTagMask));
1780  DeoptimizeIf(zero, instr, "Smi");
1781  __ CmpObjectType(object, JS_DATE_TYPE, scratch);
1782  DeoptimizeIf(not_equal, instr, "not a date object");
1783
1784  if (index->value() == 0) {
1785    __ mov(result, FieldOperand(object, JSDate::kValueOffset));
1786  } else {
1787    if (index->value() < JSDate::kFirstUncachedField) {
1788      ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1789      __ mov(scratch, Operand::StaticVariable(stamp));
1790      __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
1791      __ j(not_equal, &runtime, Label::kNear);
1792      __ mov(result, FieldOperand(object, JSDate::kValueOffset +
1793                                          kPointerSize * index->value()));
1794      __ jmp(&done, Label::kNear);
1795    }
1796    __ bind(&runtime);
1797    __ PrepareCallCFunction(2, scratch);
1798    __ mov(Operand(esp, 0), object);
1799    __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
1800    __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1801    __ bind(&done);
1802  }
1803}
1804
1805
1806Operand LCodeGen::BuildSeqStringOperand(Register string,
1807                                        LOperand* index,
1808                                        String::Encoding encoding) {
1809  if (index->IsConstantOperand()) {
1810    int offset = ToRepresentation(LConstantOperand::cast(index),
1811                                  Representation::Integer32());
1812    if (encoding == String::TWO_BYTE_ENCODING) {
1813      offset *= kUC16Size;
1814    }
1815    STATIC_ASSERT(kCharSize == 1);
1816    return FieldOperand(string, SeqString::kHeaderSize + offset);
1817  }
1818  return FieldOperand(
1819      string, ToRegister(index),
1820      encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1821      SeqString::kHeaderSize);
1822}
1823
1824
1825void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1826  String::Encoding encoding = instr->hydrogen()->encoding();
1827  Register result = ToRegister(instr->result());
1828  Register string = ToRegister(instr->string());
1829
1830  if (FLAG_debug_code) {
1831    __ push(string);
1832    __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
1833    __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
1834
1835    __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
1836    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1837    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1838    __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
1839                             ? one_byte_seq_type : two_byte_seq_type));
1840    __ Check(equal, kUnexpectedStringType);
1841    __ pop(string);
1842  }
1843
1844  Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1845  if (encoding == String::ONE_BYTE_ENCODING) {
1846    __ movzx_b(result, operand);
1847  } else {
1848    __ movzx_w(result, operand);
1849  }
1850}
1851
1852
1853void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1854  String::Encoding encoding = instr->hydrogen()->encoding();
1855  Register string = ToRegister(instr->string());
1856
1857  if (FLAG_debug_code) {
1858    Register value = ToRegister(instr->value());
1859    Register index = ToRegister(instr->index());
1860    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1861    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1862    int encoding_mask =
1863        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1864        ? one_byte_seq_type : two_byte_seq_type;
1865    __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1866  }
1867
1868  Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1869  if (instr->value()->IsConstantOperand()) {
1870    int value = ToRepresentation(LConstantOperand::cast(instr->value()),
1871                                 Representation::Integer32());
1872    DCHECK_LE(0, value);
1873    if (encoding == String::ONE_BYTE_ENCODING) {
1874      DCHECK_LE(value, String::kMaxOneByteCharCode);
1875      __ mov_b(operand, static_cast<int8_t>(value));
1876    } else {
1877      DCHECK_LE(value, String::kMaxUtf16CodeUnit);
1878      __ mov_w(operand, static_cast<int16_t>(value));
1879    }
1880  } else {
1881    Register value = ToRegister(instr->value());
1882    if (encoding == String::ONE_BYTE_ENCODING) {
1883      __ mov_b(operand, value);
1884    } else {
1885      __ mov_w(operand, value);
1886    }
1887  }
1888}
1889
1890
1891void LCodeGen::DoAddI(LAddI* instr) {
1892  LOperand* left = instr->left();
1893  LOperand* right = instr->right();
1894
1895  if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
1896    if (right->IsConstantOperand()) {
1897      int32_t offset = ToRepresentation(LConstantOperand::cast(right),
1898                                        instr->hydrogen()->representation());
1899      __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
1900    } else {
1901      Operand address(ToRegister(left), ToRegister(right), times_1, 0);
1902      __ lea(ToRegister(instr->result()), address);
1903    }
1904  } else {
1905    if (right->IsConstantOperand()) {
1906      __ add(ToOperand(left),
1907             ToImmediate(right, instr->hydrogen()->representation()));
1908    } else {
1909      __ add(ToRegister(left), ToOperand(right));
1910    }
1911    if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1912      DeoptimizeIf(overflow, instr, "overflow");
1913    }
1914  }
1915}
1916
1917
1918void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1919  LOperand* left = instr->left();
1920  LOperand* right = instr->right();
1921  DCHECK(left->Equals(instr->result()));
1922  HMathMinMax::Operation operation = instr->hydrogen()->operation();
1923  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1924    Label return_left;
1925    Condition condition = (operation == HMathMinMax::kMathMin)
1926        ? less_equal
1927        : greater_equal;
1928    if (right->IsConstantOperand()) {
1929      Operand left_op = ToOperand(left);
1930      Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
1931                                        instr->hydrogen()->representation());
1932      __ cmp(left_op, immediate);
1933      __ j(condition, &return_left, Label::kNear);
1934      __ mov(left_op, immediate);
1935    } else {
1936      Register left_reg = ToRegister(left);
1937      Operand right_op = ToOperand(right);
1938      __ cmp(left_reg, right_op);
1939      __ j(condition, &return_left, Label::kNear);
1940      __ mov(left_reg, right_op);
1941    }
1942    __ bind(&return_left);
1943  } else {
1944    DCHECK(instr->hydrogen()->representation().IsDouble());
1945    Label check_nan_left, check_zero, return_left, return_right;
1946    Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
1947    XMMRegister left_reg = ToDoubleRegister(left);
1948    XMMRegister right_reg = ToDoubleRegister(right);
1949    __ ucomisd(left_reg, right_reg);
1950    __ j(parity_even, &check_nan_left, Label::kNear);  // At least one NaN.
1951    __ j(equal, &check_zero, Label::kNear);  // left == right.
1952    __ j(condition, &return_left, Label::kNear);
1953    __ jmp(&return_right, Label::kNear);
1954
1955    __ bind(&check_zero);
1956    XMMRegister xmm_scratch = double_scratch0();
1957    __ xorps(xmm_scratch, xmm_scratch);
1958    __ ucomisd(left_reg, xmm_scratch);
1959    __ j(not_equal, &return_left, Label::kNear);  // left == right != 0.
1960    // At this point, both left and right are either 0 or -0.
1961    if (operation == HMathMinMax::kMathMin) {
1962      __ orpd(left_reg, right_reg);
1963    } else {
1964      // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
1965      __ addsd(left_reg, right_reg);
1966    }
1967    __ jmp(&return_left, Label::kNear);
1968
1969    __ bind(&check_nan_left);
1970    __ ucomisd(left_reg, left_reg);  // NaN check.
1971    __ j(parity_even, &return_left, Label::kNear);  // left == NaN.
1972    __ bind(&return_right);
1973    __ movaps(left_reg, right_reg);
1974
1975    __ bind(&return_left);
1976  }
1977}
1978
1979
1980void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1981  XMMRegister left = ToDoubleRegister(instr->left());
1982  XMMRegister right = ToDoubleRegister(instr->right());
1983  XMMRegister result = ToDoubleRegister(instr->result());
1984  switch (instr->op()) {
1985    case Token::ADD:
1986      __ addsd(left, right);
1987      break;
1988    case Token::SUB:
1989      __ subsd(left, right);
1990      break;
1991    case Token::MUL:
1992      __ mulsd(left, right);
1993      break;
1994    case Token::DIV:
1995      __ divsd(left, right);
1996      // Don't delete this mov. It may improve performance on some CPUs,
1997      // when there is a mulsd depending on the result
1998      __ movaps(left, left);
1999      break;
2000    case Token::MOD: {
2001      // Pass two doubles as arguments on the stack.
2002      __ PrepareCallCFunction(4, eax);
2003      __ movsd(Operand(esp, 0 * kDoubleSize), left);
2004      __ movsd(Operand(esp, 1 * kDoubleSize), right);
2005      __ CallCFunction(
2006          ExternalReference::mod_two_doubles_operation(isolate()),
2007          4);
2008
2009      // Return value is in st(0) on ia32.
2010      // Store it into the result register.
2011      __ sub(Operand(esp), Immediate(kDoubleSize));
2012      __ fstp_d(Operand(esp, 0));
2013      __ movsd(result, Operand(esp, 0));
2014      __ add(Operand(esp), Immediate(kDoubleSize));
2015      break;
2016    }
2017    default:
2018      UNREACHABLE();
2019      break;
2020  }
2021}
2022
2023
2024void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2025  DCHECK(ToRegister(instr->context()).is(esi));
2026  DCHECK(ToRegister(instr->left()).is(edx));
2027  DCHECK(ToRegister(instr->right()).is(eax));
2028  DCHECK(ToRegister(instr->result()).is(eax));
2029
2030  Handle<Code> code =
2031      CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
2032  CallCode(code, RelocInfo::CODE_TARGET, instr);
2033}
2034
2035
2036template<class InstrType>
2037void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
2038  int left_block = instr->TrueDestination(chunk_);
2039  int right_block = instr->FalseDestination(chunk_);
2040
2041  int next_block = GetNextEmittedBlock();
2042
2043  if (right_block == left_block || cc == no_condition) {
2044    EmitGoto(left_block);
2045  } else if (left_block == next_block) {
2046    __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
2047  } else if (right_block == next_block) {
2048    __ j(cc, chunk_->GetAssemblyLabel(left_block));
2049  } else {
2050    __ j(cc, chunk_->GetAssemblyLabel(left_block));
2051    __ jmp(chunk_->GetAssemblyLabel(right_block));
2052  }
2053}
2054
2055
2056template<class InstrType>
2057void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
2058  int false_block = instr->FalseDestination(chunk_);
2059  if (cc == no_condition) {
2060    __ jmp(chunk_->GetAssemblyLabel(false_block));
2061  } else {
2062    __ j(cc, chunk_->GetAssemblyLabel(false_block));
2063  }
2064}
2065
2066
2067void LCodeGen::DoBranch(LBranch* instr) {
2068  Representation r = instr->hydrogen()->value()->representation();
2069  if (r.IsSmiOrInteger32()) {
2070    Register reg = ToRegister(instr->value());
2071    __ test(reg, Operand(reg));
2072    EmitBranch(instr, not_zero);
2073  } else if (r.IsDouble()) {
2074    DCHECK(!info()->IsStub());
2075    XMMRegister reg = ToDoubleRegister(instr->value());
2076    XMMRegister xmm_scratch = double_scratch0();
2077    __ xorps(xmm_scratch, xmm_scratch);
2078    __ ucomisd(reg, xmm_scratch);
2079    EmitBranch(instr, not_equal);
2080  } else {
2081    DCHECK(r.IsTagged());
2082    Register reg = ToRegister(instr->value());
2083    HType type = instr->hydrogen()->value()->type();
2084    if (type.IsBoolean()) {
2085      DCHECK(!info()->IsStub());
2086      __ cmp(reg, factory()->true_value());
2087      EmitBranch(instr, equal);
2088    } else if (type.IsSmi()) {
2089      DCHECK(!info()->IsStub());
2090      __ test(reg, Operand(reg));
2091      EmitBranch(instr, not_equal);
2092    } else if (type.IsJSArray()) {
2093      DCHECK(!info()->IsStub());
2094      EmitBranch(instr, no_condition);
2095    } else if (type.IsHeapNumber()) {
2096      DCHECK(!info()->IsStub());
2097      XMMRegister xmm_scratch = double_scratch0();
2098      __ xorps(xmm_scratch, xmm_scratch);
2099      __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2100      EmitBranch(instr, not_equal);
2101    } else if (type.IsString()) {
2102      DCHECK(!info()->IsStub());
2103      __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2104      EmitBranch(instr, not_equal);
2105    } else {
2106      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2107      if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2108
2109      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2110        // undefined -> false.
2111        __ cmp(reg, factory()->undefined_value());
2112        __ j(equal, instr->FalseLabel(chunk_));
2113      }
2114      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2115        // true -> true.
2116        __ cmp(reg, factory()->true_value());
2117        __ j(equal, instr->TrueLabel(chunk_));
2118        // false -> false.
2119        __ cmp(reg, factory()->false_value());
2120        __ j(equal, instr->FalseLabel(chunk_));
2121      }
2122      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2123        // 'null' -> false.
2124        __ cmp(reg, factory()->null_value());
2125        __ j(equal, instr->FalseLabel(chunk_));
2126      }
2127
2128      if (expected.Contains(ToBooleanStub::SMI)) {
2129        // Smis: 0 -> false, all other -> true.
2130        __ test(reg, Operand(reg));
2131        __ j(equal, instr->FalseLabel(chunk_));
2132        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2133      } else if (expected.NeedsMap()) {
2134        // If we need a map later and have a Smi -> deopt.
2135        __ test(reg, Immediate(kSmiTagMask));
2136        DeoptimizeIf(zero, instr, "Smi");
2137      }
2138
2139      Register map = no_reg;  // Keep the compiler happy.
2140      if (expected.NeedsMap()) {
2141        map = ToRegister(instr->temp());
2142        DCHECK(!map.is(reg));
2143        __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
2144
2145        if (expected.CanBeUndetectable()) {
2146          // Undetectable -> false.
2147          __ test_b(FieldOperand(map, Map::kBitFieldOffset),
2148                    1 << Map::kIsUndetectable);
2149          __ j(not_zero, instr->FalseLabel(chunk_));
2150        }
2151      }
2152
2153      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2154        // spec object -> true.
2155        __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2156        __ j(above_equal, instr->TrueLabel(chunk_));
2157      }
2158
2159      if (expected.Contains(ToBooleanStub::STRING)) {
2160        // String value -> false iff empty.
2161        Label not_string;
2162        __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2163        __ j(above_equal, &not_string, Label::kNear);
2164        __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2165        __ j(not_zero, instr->TrueLabel(chunk_));
2166        __ jmp(instr->FalseLabel(chunk_));
2167        __ bind(&not_string);
2168      }
2169
2170      if (expected.Contains(ToBooleanStub::SYMBOL)) {
2171        // Symbol value -> true.
2172        __ CmpInstanceType(map, SYMBOL_TYPE);
2173        __ j(equal, instr->TrueLabel(chunk_));
2174      }
2175
2176      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2177        // heap number -> false iff +0, -0, or NaN.
2178        Label not_heap_number;
2179        __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
2180               factory()->heap_number_map());
2181        __ j(not_equal, &not_heap_number, Label::kNear);
2182        XMMRegister xmm_scratch = double_scratch0();
2183        __ xorps(xmm_scratch, xmm_scratch);
2184        __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2185        __ j(zero, instr->FalseLabel(chunk_));
2186        __ jmp(instr->TrueLabel(chunk_));
2187        __ bind(&not_heap_number);
2188      }
2189
2190      if (!expected.IsGeneric()) {
2191        // We've seen something for the first time -> deopt.
2192        // This can only happen if we are not generic already.
2193        DeoptimizeIf(no_condition, instr, "unexpected object");
2194      }
2195    }
2196  }
2197}
2198
2199
2200void LCodeGen::EmitGoto(int block) {
2201  if (!IsNextEmittedBlock(block)) {
2202    __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2203  }
2204}
2205
2206
2207void LCodeGen::DoGoto(LGoto* instr) {
2208  EmitGoto(instr->block_id());
2209}
2210
2211
2212Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2213  Condition cond = no_condition;
2214  switch (op) {
2215    case Token::EQ:
2216    case Token::EQ_STRICT:
2217      cond = equal;
2218      break;
2219    case Token::NE:
2220    case Token::NE_STRICT:
2221      cond = not_equal;
2222      break;
2223    case Token::LT:
2224      cond = is_unsigned ? below : less;
2225      break;
2226    case Token::GT:
2227      cond = is_unsigned ? above : greater;
2228      break;
2229    case Token::LTE:
2230      cond = is_unsigned ? below_equal : less_equal;
2231      break;
2232    case Token::GTE:
2233      cond = is_unsigned ? above_equal : greater_equal;
2234      break;
2235    case Token::IN:
2236    case Token::INSTANCEOF:
2237    default:
2238      UNREACHABLE();
2239  }
2240  return cond;
2241}
2242
2243
2244void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2245  LOperand* left = instr->left();
2246  LOperand* right = instr->right();
2247  bool is_unsigned =
2248      instr->is_double() ||
2249      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2250      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2251  Condition cc = TokenToCondition(instr->op(), is_unsigned);
2252
2253  if (left->IsConstantOperand() && right->IsConstantOperand()) {
2254    // We can statically evaluate the comparison.
2255    double left_val = ToDouble(LConstantOperand::cast(left));
2256    double right_val = ToDouble(LConstantOperand::cast(right));
2257    int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2258        instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2259    EmitGoto(next_block);
2260  } else {
2261    if (instr->is_double()) {
2262      __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
2263      // Don't base result on EFLAGS when a NaN is involved. Instead
2264      // jump to the false block.
2265      __ j(parity_even, instr->FalseLabel(chunk_));
2266    } else {
2267      if (right->IsConstantOperand()) {
2268        __ cmp(ToOperand(left),
2269               ToImmediate(right, instr->hydrogen()->representation()));
2270      } else if (left->IsConstantOperand()) {
2271        __ cmp(ToOperand(right),
2272               ToImmediate(left, instr->hydrogen()->representation()));
2273        // We commuted the operands, so commute the condition.
2274        cc = CommuteCondition(cc);
2275      } else {
2276        __ cmp(ToRegister(left), ToOperand(right));
2277      }
2278    }
2279    EmitBranch(instr, cc);
2280  }
2281}
2282
2283
2284void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2285  Register left = ToRegister(instr->left());
2286
2287  if (instr->right()->IsConstantOperand()) {
2288    Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2289    __ CmpObject(left, right);
2290  } else {
2291    Operand right = ToOperand(instr->right());
2292    __ cmp(left, right);
2293  }
2294  EmitBranch(instr, equal);
2295}
2296
2297
2298void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2299  if (instr->hydrogen()->representation().IsTagged()) {
2300    Register input_reg = ToRegister(instr->object());
2301    __ cmp(input_reg, factory()->the_hole_value());
2302    EmitBranch(instr, equal);
2303    return;
2304  }
2305
2306  XMMRegister input_reg = ToDoubleRegister(instr->object());
2307  __ ucomisd(input_reg, input_reg);
2308  EmitFalseBranch(instr, parity_odd);
2309
2310  __ sub(esp, Immediate(kDoubleSize));
2311  __ movsd(MemOperand(esp, 0), input_reg);
2312
2313  __ add(esp, Immediate(kDoubleSize));
2314  int offset = sizeof(kHoleNanUpper32);
2315  __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
2316  EmitBranch(instr, equal);
2317}
2318
2319
2320void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2321  Representation rep = instr->hydrogen()->value()->representation();
2322  DCHECK(!rep.IsInteger32());
2323  Register scratch = ToRegister(instr->temp());
2324
2325  if (rep.IsDouble()) {
2326    XMMRegister value = ToDoubleRegister(instr->value());
2327    XMMRegister xmm_scratch = double_scratch0();
2328    __ xorps(xmm_scratch, xmm_scratch);
2329    __ ucomisd(xmm_scratch, value);
2330    EmitFalseBranch(instr, not_equal);
2331    __ movmskpd(scratch, value);
2332    __ test(scratch, Immediate(1));
2333    EmitBranch(instr, not_zero);
2334  } else {
2335    Register value = ToRegister(instr->value());
2336    Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
2337    __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
2338    __ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
2339           Immediate(0x1));
2340    EmitFalseBranch(instr, no_overflow);
2341    __ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
2342           Immediate(0x00000000));
2343    EmitBranch(instr, equal);
2344  }
2345}
2346
2347
2348Condition LCodeGen::EmitIsObject(Register input,
2349                                 Register temp1,
2350                                 Label* is_not_object,
2351                                 Label* is_object) {
2352  __ JumpIfSmi(input, is_not_object);
2353
2354  __ cmp(input, isolate()->factory()->null_value());
2355  __ j(equal, is_object);
2356
2357  __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
2358  // Undetectable objects behave like undefined.
2359  __ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
2360            1 << Map::kIsUndetectable);
2361  __ j(not_zero, is_not_object);
2362
2363  __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
2364  __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
2365  __ j(below, is_not_object);
2366  __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
2367  return below_equal;
2368}
2369
2370
2371void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
2372  Register reg = ToRegister(instr->value());
2373  Register temp = ToRegister(instr->temp());
2374
2375  Condition true_cond = EmitIsObject(
2376      reg, temp, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
2377
2378  EmitBranch(instr, true_cond);
2379}
2380
2381
2382Condition LCodeGen::EmitIsString(Register input,
2383                                 Register temp1,
2384                                 Label* is_not_string,
2385                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
2386  if (check_needed == INLINE_SMI_CHECK) {
2387    __ JumpIfSmi(input, is_not_string);
2388  }
2389
2390  Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
2391
2392  return cond;
2393}
2394
2395
2396void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2397  Register reg = ToRegister(instr->value());
2398  Register temp = ToRegister(instr->temp());
2399
2400  SmiCheck check_needed =
2401      instr->hydrogen()->value()->type().IsHeapObject()
2402          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2403
2404  Condition true_cond = EmitIsString(
2405      reg, temp, instr->FalseLabel(chunk_), check_needed);
2406
2407  EmitBranch(instr, true_cond);
2408}
2409
2410
2411void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2412  Operand input = ToOperand(instr->value());
2413
2414  __ test(input, Immediate(kSmiTagMask));
2415  EmitBranch(instr, zero);
2416}
2417
2418
2419void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2420  Register input = ToRegister(instr->value());
2421  Register temp = ToRegister(instr->temp());
2422
2423  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2424    STATIC_ASSERT(kSmiTag == 0);
2425    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2426  }
2427  __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
2428  __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
2429            1 << Map::kIsUndetectable);
2430  EmitBranch(instr, not_zero);
2431}
2432
2433
2434static Condition ComputeCompareCondition(Token::Value op) {
2435  switch (op) {
2436    case Token::EQ_STRICT:
2437    case Token::EQ:
2438      return equal;
2439    case Token::LT:
2440      return less;
2441    case Token::GT:
2442      return greater;
2443    case Token::LTE:
2444      return less_equal;
2445    case Token::GTE:
2446      return greater_equal;
2447    default:
2448      UNREACHABLE();
2449      return no_condition;
2450  }
2451}
2452
2453
2454void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2455  Token::Value op = instr->op();
2456
2457  Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2458  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2459
2460  Condition condition = ComputeCompareCondition(op);
2461  __ test(eax, Operand(eax));
2462
2463  EmitBranch(instr, condition);
2464}
2465
2466
2467static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2468  InstanceType from = instr->from();
2469  InstanceType to = instr->to();
2470  if (from == FIRST_TYPE) return to;
2471  DCHECK(from == to || to == LAST_TYPE);
2472  return from;
2473}
2474
2475
2476static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2477  InstanceType from = instr->from();
2478  InstanceType to = instr->to();
2479  if (from == to) return equal;
2480  if (to == LAST_TYPE) return above_equal;
2481  if (from == FIRST_TYPE) return below_equal;
2482  UNREACHABLE();
2483  return equal;
2484}
2485
2486
2487void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2488  Register input = ToRegister(instr->value());
2489  Register temp = ToRegister(instr->temp());
2490
2491  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2492    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2493  }
2494
2495  __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
2496  EmitBranch(instr, BranchCondition(instr->hydrogen()));
2497}
2498
2499
2500void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2501  Register input = ToRegister(instr->value());
2502  Register result = ToRegister(instr->result());
2503
2504  __ AssertString(input);
2505
2506  __ mov(result, FieldOperand(input, String::kHashFieldOffset));
2507  __ IndexFromHash(result, result);
2508}
2509
2510
2511void LCodeGen::DoHasCachedArrayIndexAndBranch(
2512    LHasCachedArrayIndexAndBranch* instr) {
2513  Register input = ToRegister(instr->value());
2514
2515  __ test(FieldOperand(input, String::kHashFieldOffset),
2516          Immediate(String::kContainsCachedArrayIndexMask));
2517  EmitBranch(instr, equal);
2518}
2519
2520
2521// Branches to a label or falls through with the answer in the z flag.  Trashes
2522// the temp registers, but not the input.
2523void LCodeGen::EmitClassOfTest(Label* is_true,
2524                               Label* is_false,
2525                               Handle<String>class_name,
2526                               Register input,
2527                               Register temp,
2528                               Register temp2) {
2529  DCHECK(!input.is(temp));
2530  DCHECK(!input.is(temp2));
2531  DCHECK(!temp.is(temp2));
2532  __ JumpIfSmi(input, is_false);
2533
2534  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2535    // Assuming the following assertions, we can use the same compares to test
2536    // for both being a function type and being in the object type range.
2537    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2538    STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2539                  FIRST_SPEC_OBJECT_TYPE + 1);
2540    STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2541                  LAST_SPEC_OBJECT_TYPE - 1);
2542    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2543    __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
2544    __ j(below, is_false);
2545    __ j(equal, is_true);
2546    __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
2547    __ j(equal, is_true);
2548  } else {
2549    // Faster code path to avoid two compares: subtract lower bound from the
2550    // actual type and do a signed compare with the width of the type range.
2551    __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
2552    __ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
2553    __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2554    __ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
2555                                     FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2556    __ j(above, is_false);
2557  }
2558
2559  // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2560  // Check if the constructor in the map is a function.
2561  __ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
2562  // Objects with a non-function constructor have class 'Object'.
2563  __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
2564  if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2565    __ j(not_equal, is_true);
2566  } else {
2567    __ j(not_equal, is_false);
2568  }
2569
2570  // temp now contains the constructor function. Grab the
2571  // instance class name from there.
2572  __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2573  __ mov(temp, FieldOperand(temp,
2574                            SharedFunctionInfo::kInstanceClassNameOffset));
2575  // The class name we are testing against is internalized since it's a literal.
2576  // The name in the constructor is internalized because of the way the context
2577  // is booted.  This routine isn't expected to work for random API-created
2578  // classes and it doesn't have to because you can't access it with natives
2579  // syntax.  Since both sides are internalized it is sufficient to use an
2580  // identity comparison.
2581  __ cmp(temp, class_name);
2582  // End with the answer in the z flag.
2583}
2584
2585
2586void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2587  Register input = ToRegister(instr->value());
2588  Register temp = ToRegister(instr->temp());
2589  Register temp2 = ToRegister(instr->temp2());
2590
2591  Handle<String> class_name = instr->hydrogen()->class_name();
2592
2593  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2594      class_name, input, temp, temp2);
2595
2596  EmitBranch(instr, equal);
2597}
2598
2599
2600void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2601  Register reg = ToRegister(instr->value());
2602  __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2603  EmitBranch(instr, equal);
2604}
2605
2606
2607void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2608  // Object and function are in fixed registers defined by the stub.
2609  DCHECK(ToRegister(instr->context()).is(esi));
2610  InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
2611  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2612
2613  Label true_value, done;
2614  __ test(eax, Operand(eax));
2615  __ j(zero, &true_value, Label::kNear);
2616  __ mov(ToRegister(instr->result()), factory()->false_value());
2617  __ jmp(&done, Label::kNear);
2618  __ bind(&true_value);
2619  __ mov(ToRegister(instr->result()), factory()->true_value());
2620  __ bind(&done);
2621}
2622
2623
2624void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2625  class DeferredInstanceOfKnownGlobal FINAL : public LDeferredCode {
2626   public:
2627    DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2628                                  LInstanceOfKnownGlobal* instr)
2629        : LDeferredCode(codegen), instr_(instr) { }
2630    virtual void Generate() OVERRIDE {
2631      codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2632    }
2633    virtual LInstruction* instr() OVERRIDE { return instr_; }
2634    Label* map_check() { return &map_check_; }
2635   private:
2636    LInstanceOfKnownGlobal* instr_;
2637    Label map_check_;
2638  };
2639
2640  DeferredInstanceOfKnownGlobal* deferred;
2641  deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
2642
2643  Label done, false_result;
2644  Register object = ToRegister(instr->value());
2645  Register temp = ToRegister(instr->temp());
2646
2647  // A Smi is not an instance of anything.
2648  __ JumpIfSmi(object, &false_result, Label::kNear);
2649
2650  // This is the inlined call site instanceof cache. The two occurences of the
2651  // hole value will be patched to the last map/result pair generated by the
2652  // instanceof stub.
2653  Label cache_miss;
2654  Register map = ToRegister(instr->temp());
2655  __ mov(map, FieldOperand(object, HeapObject::kMapOffset));
2656  __ bind(deferred->map_check());  // Label for calculating code patching.
2657  Handle<Cell> cache_cell = factory()->NewCell(factory()->the_hole_value());
2658  __ cmp(map, Operand::ForCell(cache_cell));  // Patched to cached map.
2659  __ j(not_equal, &cache_miss, Label::kNear);
2660  __ mov(eax, factory()->the_hole_value());  // Patched to either true or false.
2661  __ jmp(&done, Label::kNear);
2662
2663  // The inlined call site cache did not match. Check for null and string
2664  // before calling the deferred code.
2665  __ bind(&cache_miss);
2666  // Null is not an instance of anything.
2667  __ cmp(object, factory()->null_value());
2668  __ j(equal, &false_result, Label::kNear);
2669
2670  // String values are not instances of anything.
2671  Condition is_string = masm_->IsObjectStringType(object, temp, temp);
2672  __ j(is_string, &false_result, Label::kNear);
2673
2674  // Go to the deferred code.
2675  __ jmp(deferred->entry());
2676
2677  __ bind(&false_result);
2678  __ mov(ToRegister(instr->result()), factory()->false_value());
2679
2680  // Here result has either true or false. Deferred code also produces true or
2681  // false object.
2682  __ bind(deferred->exit());
2683  __ bind(&done);
2684}
2685
2686
2687void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2688                                               Label* map_check) {
2689  PushSafepointRegistersScope scope(this);
2690
2691  InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2692  flags = static_cast<InstanceofStub::Flags>(
2693      flags | InstanceofStub::kArgsInRegisters);
2694  flags = static_cast<InstanceofStub::Flags>(
2695      flags | InstanceofStub::kCallSiteInlineCheck);
2696  flags = static_cast<InstanceofStub::Flags>(
2697      flags | InstanceofStub::kReturnTrueFalseObject);
2698  InstanceofStub stub(isolate(), flags);
2699
2700  // Get the temp register reserved by the instruction. This needs to be a
2701  // register which is pushed last by PushSafepointRegisters as top of the
2702  // stack is used to pass the offset to the location of the map check to
2703  // the stub.
2704  Register temp = ToRegister(instr->temp());
2705  DCHECK(MacroAssembler::SafepointRegisterStackIndex(temp) == 0);
2706  __ LoadHeapObject(InstanceofStub::right(), instr->function());
2707  static const int kAdditionalDelta = 13;
2708  int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
2709  __ mov(temp, Immediate(delta));
2710  __ StoreToSafepointRegisterSlot(temp, temp);
2711  CallCodeGeneric(stub.GetCode(),
2712                  RelocInfo::CODE_TARGET,
2713                  instr,
2714                  RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2715  // Get the deoptimization index of the LLazyBailout-environment that
2716  // corresponds to this instruction.
2717  LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
2718  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2719
2720  // Put the result value into the eax slot and restore all registers.
2721  __ StoreToSafepointRegisterSlot(eax, eax);
2722}
2723
2724
2725void LCodeGen::DoCmpT(LCmpT* instr) {
2726  Token::Value op = instr->op();
2727
2728  Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2729  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2730
2731  Condition condition = ComputeCompareCondition(op);
2732  Label true_value, done;
2733  __ test(eax, Operand(eax));
2734  __ j(condition, &true_value, Label::kNear);
2735  __ mov(ToRegister(instr->result()), factory()->false_value());
2736  __ jmp(&done, Label::kNear);
2737  __ bind(&true_value);
2738  __ mov(ToRegister(instr->result()), factory()->true_value());
2739  __ bind(&done);
2740}
2741
2742
2743void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) {
2744  int extra_value_count = dynamic_frame_alignment ? 2 : 1;
2745
2746  if (instr->has_constant_parameter_count()) {
2747    int parameter_count = ToInteger32(instr->constant_parameter_count());
2748    if (dynamic_frame_alignment && FLAG_debug_code) {
2749      __ cmp(Operand(esp,
2750                     (parameter_count + extra_value_count) * kPointerSize),
2751             Immediate(kAlignmentZapValue));
2752      __ Assert(equal, kExpectedAlignmentMarker);
2753    }
2754    __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
2755  } else {
2756    Register reg = ToRegister(instr->parameter_count());
2757    // The argument count parameter is a smi
2758    __ SmiUntag(reg);
2759    Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
2760    if (dynamic_frame_alignment && FLAG_debug_code) {
2761      DCHECK(extra_value_count == 2);
2762      __ cmp(Operand(esp, reg, times_pointer_size,
2763                     extra_value_count * kPointerSize),
2764             Immediate(kAlignmentZapValue));
2765      __ Assert(equal, kExpectedAlignmentMarker);
2766    }
2767
2768    // emit code to restore stack based on instr->parameter_count()
2769    __ pop(return_addr_reg);  // save return address
2770    if (dynamic_frame_alignment) {
2771      __ inc(reg);  // 1 more for alignment
2772    }
2773    __ shl(reg, kPointerSizeLog2);
2774    __ add(esp, reg);
2775    __ jmp(return_addr_reg);
2776  }
2777}
2778
2779
2780void LCodeGen::DoReturn(LReturn* instr) {
2781  if (FLAG_trace && info()->IsOptimizing()) {
2782    // Preserve the return value on the stack and rely on the runtime call
2783    // to return the value in the same register.  We're leaving the code
2784    // managed by the register allocator and tearing down the frame, it's
2785    // safe to write to the context register.
2786    __ push(eax);
2787    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2788    __ CallRuntime(Runtime::kTraceExit, 1);
2789  }
2790  if (info()->saves_caller_doubles()) RestoreCallerDoubles();
2791  if (dynamic_frame_alignment_) {
2792    // Fetch the state of the dynamic frame alignment.
2793    __ mov(edx, Operand(ebp,
2794      JavaScriptFrameConstants::kDynamicAlignmentStateOffset));
2795  }
2796  int no_frame_start = -1;
2797  if (NeedsEagerFrame()) {
2798    __ mov(esp, ebp);
2799    __ pop(ebp);
2800    no_frame_start = masm_->pc_offset();
2801  }
2802  if (dynamic_frame_alignment_) {
2803    Label no_padding;
2804    __ cmp(edx, Immediate(kNoAlignmentPadding));
2805    __ j(equal, &no_padding, Label::kNear);
2806
2807    EmitReturn(instr, true);
2808    __ bind(&no_padding);
2809  }
2810
2811  EmitReturn(instr, false);
2812  if (no_frame_start != -1) {
2813    info()->AddNoFrameRange(no_frame_start, masm_->pc_offset());
2814  }
2815}
2816
2817
2818void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2819  Register result = ToRegister(instr->result());
2820  __ mov(result, Operand::ForCell(instr->hydrogen()->cell().handle()));
2821  if (instr->hydrogen()->RequiresHoleCheck()) {
2822    __ cmp(result, factory()->the_hole_value());
2823    DeoptimizeIf(equal, instr, "hole");
2824  }
2825}
2826
2827
2828template <class T>
2829void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2830  DCHECK(FLAG_vector_ics);
2831  Register vector = ToRegister(instr->temp_vector());
2832  DCHECK(vector.is(VectorLoadICDescriptor::VectorRegister()));
2833  __ mov(vector, instr->hydrogen()->feedback_vector());
2834  // No need to allocate this register.
2835  DCHECK(VectorLoadICDescriptor::SlotRegister().is(eax));
2836  __ mov(VectorLoadICDescriptor::SlotRegister(),
2837         Immediate(Smi::FromInt(instr->hydrogen()->slot())));
2838}
2839
2840
2841void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2842  DCHECK(ToRegister(instr->context()).is(esi));
2843  DCHECK(ToRegister(instr->global_object())
2844             .is(LoadDescriptor::ReceiverRegister()));
2845  DCHECK(ToRegister(instr->result()).is(eax));
2846
2847  __ mov(LoadDescriptor::NameRegister(), instr->name());
2848  if (FLAG_vector_ics) {
2849    EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2850  }
2851  ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
2852  Handle<Code> ic = CodeFactory::LoadIC(isolate(), mode).code();
2853  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2854}
2855
2856
2857void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2858  Register value = ToRegister(instr->value());
2859  Handle<PropertyCell> cell_handle = instr->hydrogen()->cell().handle();
2860
2861  // If the cell we are storing to contains the hole it could have
2862  // been deleted from the property dictionary. In that case, we need
2863  // to update the property details in the property dictionary to mark
2864  // it as no longer deleted. We deoptimize in that case.
2865  if (instr->hydrogen()->RequiresHoleCheck()) {
2866    __ cmp(Operand::ForCell(cell_handle), factory()->the_hole_value());
2867    DeoptimizeIf(equal, instr, "hole");
2868  }
2869
2870  // Store the value.
2871  __ mov(Operand::ForCell(cell_handle), value);
2872  // Cells are always rescanned, so no write barrier here.
2873}
2874
2875
2876void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2877  Register context = ToRegister(instr->context());
2878  Register result = ToRegister(instr->result());
2879  __ mov(result, ContextOperand(context, instr->slot_index()));
2880
2881  if (instr->hydrogen()->RequiresHoleCheck()) {
2882    __ cmp(result, factory()->the_hole_value());
2883    if (instr->hydrogen()->DeoptimizesOnHole()) {
2884      DeoptimizeIf(equal, instr, "hole");
2885    } else {
2886      Label is_not_hole;
2887      __ j(not_equal, &is_not_hole, Label::kNear);
2888      __ mov(result, factory()->undefined_value());
2889      __ bind(&is_not_hole);
2890    }
2891  }
2892}
2893
2894
2895void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2896  Register context = ToRegister(instr->context());
2897  Register value = ToRegister(instr->value());
2898
2899  Label skip_assignment;
2900
2901  Operand target = ContextOperand(context, instr->slot_index());
2902  if (instr->hydrogen()->RequiresHoleCheck()) {
2903    __ cmp(target, factory()->the_hole_value());
2904    if (instr->hydrogen()->DeoptimizesOnHole()) {
2905      DeoptimizeIf(equal, instr, "hole");
2906    } else {
2907      __ j(not_equal, &skip_assignment, Label::kNear);
2908    }
2909  }
2910
2911  __ mov(target, value);
2912  if (instr->hydrogen()->NeedsWriteBarrier()) {
2913    SmiCheck check_needed =
2914        instr->hydrogen()->value()->type().IsHeapObject()
2915            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2916    Register temp = ToRegister(instr->temp());
2917    int offset = Context::SlotOffset(instr->slot_index());
2918    __ RecordWriteContextSlot(context,
2919                              offset,
2920                              value,
2921                              temp,
2922                              kSaveFPRegs,
2923                              EMIT_REMEMBERED_SET,
2924                              check_needed);
2925  }
2926
2927  __ bind(&skip_assignment);
2928}
2929
2930
2931void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2932  HObjectAccess access = instr->hydrogen()->access();
2933  int offset = access.offset();
2934
2935  if (access.IsExternalMemory()) {
2936    Register result = ToRegister(instr->result());
2937    MemOperand operand = instr->object()->IsConstantOperand()
2938        ? MemOperand::StaticVariable(ToExternalReference(
2939                LConstantOperand::cast(instr->object())))
2940        : MemOperand(ToRegister(instr->object()), offset);
2941    __ Load(result, operand, access.representation());
2942    return;
2943  }
2944
2945  Register object = ToRegister(instr->object());
2946  if (instr->hydrogen()->representation().IsDouble()) {
2947    XMMRegister result = ToDoubleRegister(instr->result());
2948    __ movsd(result, FieldOperand(object, offset));
2949    return;
2950  }
2951
2952  Register result = ToRegister(instr->result());
2953  if (!access.IsInobject()) {
2954    __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
2955    object = result;
2956  }
2957  __ Load(result, FieldOperand(object, offset), access.representation());
2958}
2959
2960
2961void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
2962  DCHECK(!operand->IsDoubleRegister());
2963  if (operand->IsConstantOperand()) {
2964    Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
2965    AllowDeferredHandleDereference smi_check;
2966    if (object->IsSmi()) {
2967      __ Push(Handle<Smi>::cast(object));
2968    } else {
2969      __ PushHeapObject(Handle<HeapObject>::cast(object));
2970    }
2971  } else if (operand->IsRegister()) {
2972    __ push(ToRegister(operand));
2973  } else {
2974    __ push(ToOperand(operand));
2975  }
2976}
2977
2978
2979void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2980  DCHECK(ToRegister(instr->context()).is(esi));
2981  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2982  DCHECK(ToRegister(instr->result()).is(eax));
2983
2984  __ mov(LoadDescriptor::NameRegister(), instr->name());
2985  if (FLAG_vector_ics) {
2986    EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
2987  }
2988  Handle<Code> ic = CodeFactory::LoadIC(isolate(), NOT_CONTEXTUAL).code();
2989  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2990}
2991
2992
2993void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2994  Register function = ToRegister(instr->function());
2995  Register temp = ToRegister(instr->temp());
2996  Register result = ToRegister(instr->result());
2997
2998  // Get the prototype or initial map from the function.
2999  __ mov(result,
3000         FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3001
3002  // Check that the function has a prototype or an initial map.
3003  __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
3004  DeoptimizeIf(equal, instr, "hole");
3005
3006  // If the function does not have an initial map, we're done.
3007  Label done;
3008  __ CmpObjectType(result, MAP_TYPE, temp);
3009  __ j(not_equal, &done, Label::kNear);
3010
3011  // Get the prototype from the initial map.
3012  __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
3013
3014  // All done.
3015  __ bind(&done);
3016}
3017
3018
3019void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3020  Register result = ToRegister(instr->result());
3021  __ LoadRoot(result, instr->index());
3022}
3023
3024
3025void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
3026  Register arguments = ToRegister(instr->arguments());
3027  Register result = ToRegister(instr->result());
3028  if (instr->length()->IsConstantOperand() &&
3029      instr->index()->IsConstantOperand()) {
3030    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3031    int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
3032    int index = (const_length - const_index) + 1;
3033    __ mov(result, Operand(arguments, index * kPointerSize));
3034  } else {
3035    Register length = ToRegister(instr->length());
3036    Operand index = ToOperand(instr->index());
3037    // There are two words between the frame pointer and the last argument.
3038    // Subtracting from length accounts for one of them add one more.
3039    __ sub(length, index);
3040    __ mov(result, Operand(arguments, length, times_4, kPointerSize));
3041  }
3042}
3043
3044
3045void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
3046  ElementsKind elements_kind = instr->elements_kind();
3047  LOperand* key = instr->key();
3048  if (!key->IsConstantOperand() &&
3049      ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
3050                                  elements_kind)) {
3051    __ SmiUntag(ToRegister(key));
3052  }
3053  Operand operand(BuildFastArrayOperand(
3054      instr->elements(),
3055      key,
3056      instr->hydrogen()->key()->representation(),
3057      elements_kind,
3058      instr->base_offset()));
3059  if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
3060      elements_kind == FLOAT32_ELEMENTS) {
3061    XMMRegister result(ToDoubleRegister(instr->result()));
3062    __ movss(result, operand);
3063    __ cvtss2sd(result, result);
3064  } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
3065             elements_kind == FLOAT64_ELEMENTS) {
3066    __ movsd(ToDoubleRegister(instr->result()), operand);
3067  } else {
3068    Register result(ToRegister(instr->result()));
3069    switch (elements_kind) {
3070      case EXTERNAL_INT8_ELEMENTS:
3071      case INT8_ELEMENTS:
3072        __ movsx_b(result, operand);
3073        break;
3074      case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3075      case EXTERNAL_UINT8_ELEMENTS:
3076      case UINT8_ELEMENTS:
3077      case UINT8_CLAMPED_ELEMENTS:
3078        __ movzx_b(result, operand);
3079        break;
3080      case EXTERNAL_INT16_ELEMENTS:
3081      case INT16_ELEMENTS:
3082        __ movsx_w(result, operand);
3083        break;
3084      case EXTERNAL_UINT16_ELEMENTS:
3085      case UINT16_ELEMENTS:
3086        __ movzx_w(result, operand);
3087        break;
3088      case EXTERNAL_INT32_ELEMENTS:
3089      case INT32_ELEMENTS:
3090        __ mov(result, operand);
3091        break;
3092      case EXTERNAL_UINT32_ELEMENTS:
3093      case UINT32_ELEMENTS:
3094        __ mov(result, operand);
3095        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3096          __ test(result, Operand(result));
3097          DeoptimizeIf(negative, instr, "negative value");
3098        }
3099        break;
3100      case EXTERNAL_FLOAT32_ELEMENTS:
3101      case EXTERNAL_FLOAT64_ELEMENTS:
3102      case FLOAT32_ELEMENTS:
3103      case FLOAT64_ELEMENTS:
3104      case FAST_SMI_ELEMENTS:
3105      case FAST_ELEMENTS:
3106      case FAST_DOUBLE_ELEMENTS:
3107      case FAST_HOLEY_SMI_ELEMENTS:
3108      case FAST_HOLEY_ELEMENTS:
3109      case FAST_HOLEY_DOUBLE_ELEMENTS:
3110      case DICTIONARY_ELEMENTS:
3111      case SLOPPY_ARGUMENTS_ELEMENTS:
3112        UNREACHABLE();
3113        break;
3114    }
3115  }
3116}
3117
3118
3119void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3120  if (instr->hydrogen()->RequiresHoleCheck()) {
3121    Operand hole_check_operand = BuildFastArrayOperand(
3122        instr->elements(), instr->key(),
3123        instr->hydrogen()->key()->representation(),
3124        FAST_DOUBLE_ELEMENTS,
3125        instr->base_offset() + sizeof(kHoleNanLower32));
3126    __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
3127    DeoptimizeIf(equal, instr, "hole");
3128  }
3129
3130  Operand double_load_operand = BuildFastArrayOperand(
3131      instr->elements(),
3132      instr->key(),
3133      instr->hydrogen()->key()->representation(),
3134      FAST_DOUBLE_ELEMENTS,
3135      instr->base_offset());
3136  XMMRegister result = ToDoubleRegister(instr->result());
3137  __ movsd(result, double_load_operand);
3138}
3139
3140
3141void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3142  Register result = ToRegister(instr->result());
3143
3144  // Load the result.
3145  __ mov(result,
3146         BuildFastArrayOperand(instr->elements(), instr->key(),
3147                               instr->hydrogen()->key()->representation(),
3148                               FAST_ELEMENTS, instr->base_offset()));
3149
3150  // Check for the hole value.
3151  if (instr->hydrogen()->RequiresHoleCheck()) {
3152    if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3153      __ test(result, Immediate(kSmiTagMask));
3154      DeoptimizeIf(not_equal, instr, "not a Smi");
3155    } else {
3156      __ cmp(result, factory()->the_hole_value());
3157      DeoptimizeIf(equal, instr, "hole");
3158    }
3159  }
3160}
3161
3162
3163void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3164  if (instr->is_typed_elements()) {
3165    DoLoadKeyedExternalArray(instr);
3166  } else if (instr->hydrogen()->representation().IsDouble()) {
3167    DoLoadKeyedFixedDoubleArray(instr);
3168  } else {
3169    DoLoadKeyedFixedArray(instr);
3170  }
3171}
3172
3173
3174Operand LCodeGen::BuildFastArrayOperand(
3175    LOperand* elements_pointer,
3176    LOperand* key,
3177    Representation key_representation,
3178    ElementsKind elements_kind,
3179    uint32_t base_offset) {
3180  Register elements_pointer_reg = ToRegister(elements_pointer);
3181  int element_shift_size = ElementsKindToShiftSize(elements_kind);
3182  int shift_size = element_shift_size;
3183  if (key->IsConstantOperand()) {
3184    int constant_value = ToInteger32(LConstantOperand::cast(key));
3185    if (constant_value & 0xF0000000) {
3186      Abort(kArrayIndexConstantValueTooBig);
3187    }
3188    return Operand(elements_pointer_reg,
3189                   ((constant_value) << shift_size)
3190                       + base_offset);
3191  } else {
3192    // Take the tag bit into account while computing the shift size.
3193    if (key_representation.IsSmi() && (shift_size >= 1)) {
3194      shift_size -= kSmiTagSize;
3195    }
3196    ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
3197    return Operand(elements_pointer_reg,
3198                   ToRegister(key),
3199                   scale_factor,
3200                   base_offset);
3201  }
3202}
3203
3204
3205void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3206  DCHECK(ToRegister(instr->context()).is(esi));
3207  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3208  DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3209
3210  if (FLAG_vector_ics) {
3211    EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3212  }
3213
3214  Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
3215  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3216}
3217
3218
3219void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3220  Register result = ToRegister(instr->result());
3221
3222  if (instr->hydrogen()->from_inlined()) {
3223    __ lea(result, Operand(esp, -2 * kPointerSize));
3224  } else {
3225    // Check for arguments adapter frame.
3226    Label done, adapted;
3227    __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3228    __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
3229    __ cmp(Operand(result),
3230           Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3231    __ j(equal, &adapted, Label::kNear);
3232
3233    // No arguments adaptor frame.
3234    __ mov(result, Operand(ebp));
3235    __ jmp(&done, Label::kNear);
3236
3237    // Arguments adaptor frame present.
3238    __ bind(&adapted);
3239    __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3240
3241    // Result is the frame pointer for the frame if not adapted and for the real
3242    // frame below the adaptor frame if adapted.
3243    __ bind(&done);
3244  }
3245}
3246
3247
3248void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3249  Operand elem = ToOperand(instr->elements());
3250  Register result = ToRegister(instr->result());
3251
3252  Label done;
3253
3254  // If no arguments adaptor frame the number of arguments is fixed.
3255  __ cmp(ebp, elem);
3256  __ mov(result, Immediate(scope()->num_parameters()));
3257  __ j(equal, &done, Label::kNear);
3258
3259  // Arguments adaptor frame present. Get argument length from there.
3260  __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3261  __ mov(result, Operand(result,
3262                         ArgumentsAdaptorFrameConstants::kLengthOffset));
3263  __ SmiUntag(result);
3264
3265  // Argument length is in result register.
3266  __ bind(&done);
3267}
3268
3269
3270void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3271  Register receiver = ToRegister(instr->receiver());
3272  Register function = ToRegister(instr->function());
3273
3274  // If the receiver is null or undefined, we have to pass the global
3275  // object as a receiver to normal functions. Values have to be
3276  // passed unchanged to builtins and strict-mode functions.
3277  Label receiver_ok, global_object;
3278  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3279  Register scratch = ToRegister(instr->temp());
3280
3281  if (!instr->hydrogen()->known_function()) {
3282    // Do not transform the receiver to object for strict mode
3283    // functions.
3284    __ mov(scratch,
3285           FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3286    __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
3287              1 << SharedFunctionInfo::kStrictModeBitWithinByte);
3288    __ j(not_equal, &receiver_ok, dist);
3289
3290    // Do not transform the receiver to object for builtins.
3291    __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
3292              1 << SharedFunctionInfo::kNativeBitWithinByte);
3293    __ j(not_equal, &receiver_ok, dist);
3294  }
3295
3296  // Normal function. Replace undefined or null with global receiver.
3297  __ cmp(receiver, factory()->null_value());
3298  __ j(equal, &global_object, Label::kNear);
3299  __ cmp(receiver, factory()->undefined_value());
3300  __ j(equal, &global_object, Label::kNear);
3301
3302  // The receiver should be a JS object.
3303  __ test(receiver, Immediate(kSmiTagMask));
3304  DeoptimizeIf(equal, instr, "Smi");
3305  __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
3306  DeoptimizeIf(below, instr, "not a JavaScript object");
3307
3308  __ jmp(&receiver_ok, Label::kNear);
3309  __ bind(&global_object);
3310  __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
3311  const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
3312  __ mov(receiver, Operand(receiver, global_offset));
3313  const int proxy_offset = GlobalObject::kGlobalProxyOffset;
3314  __ mov(receiver, FieldOperand(receiver, proxy_offset));
3315  __ bind(&receiver_ok);
3316}
3317
3318
3319void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3320  Register receiver = ToRegister(instr->receiver());
3321  Register function = ToRegister(instr->function());
3322  Register length = ToRegister(instr->length());
3323  Register elements = ToRegister(instr->elements());
3324  DCHECK(receiver.is(eax));  // Used for parameter count.
3325  DCHECK(function.is(edi));  // Required by InvokeFunction.
3326  DCHECK(ToRegister(instr->result()).is(eax));
3327
3328  // Copy the arguments to this function possibly from the
3329  // adaptor frame below it.
3330  const uint32_t kArgumentsLimit = 1 * KB;
3331  __ cmp(length, kArgumentsLimit);
3332  DeoptimizeIf(above, instr, "too many arguments");
3333
3334  __ push(receiver);
3335  __ mov(receiver, length);
3336
3337  // Loop through the arguments pushing them onto the execution
3338  // stack.
3339  Label invoke, loop;
3340  // length is a small non-negative integer, due to the test above.
3341  __ test(length, Operand(length));
3342  __ j(zero, &invoke, Label::kNear);
3343  __ bind(&loop);
3344  __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
3345  __ dec(length);
3346  __ j(not_zero, &loop);
3347
3348  // Invoke the function.
3349  __ bind(&invoke);
3350  DCHECK(instr->HasPointerMap());
3351  LPointerMap* pointers = instr->pointer_map();
3352  SafepointGenerator safepoint_generator(
3353      this, pointers, Safepoint::kLazyDeopt);
3354  ParameterCount actual(eax);
3355  __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
3356}
3357
3358
3359void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
3360  __ int3();
3361}
3362
3363
3364void LCodeGen::DoPushArgument(LPushArgument* instr) {
3365  LOperand* argument = instr->value();
3366  EmitPushTaggedOperand(argument);
3367}
3368
3369
3370void LCodeGen::DoDrop(LDrop* instr) {
3371  __ Drop(instr->count());
3372}
3373
3374
3375void LCodeGen::DoThisFunction(LThisFunction* instr) {
3376  Register result = ToRegister(instr->result());
3377  __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
3378}
3379
3380
3381void LCodeGen::DoContext(LContext* instr) {
3382  Register result = ToRegister(instr->result());
3383  if (info()->IsOptimizing()) {
3384    __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
3385  } else {
3386    // If there is no frame, the context must be in esi.
3387    DCHECK(result.is(esi));
3388  }
3389}
3390
3391
3392void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3393  DCHECK(ToRegister(instr->context()).is(esi));
3394  __ push(esi);  // The context is the first argument.
3395  __ push(Immediate(instr->hydrogen()->pairs()));
3396  __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
3397  CallRuntime(Runtime::kDeclareGlobals, 3, instr);
3398}
3399
3400
3401void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3402                                 int formal_parameter_count,
3403                                 int arity,
3404                                 LInstruction* instr,
3405                                 EDIState edi_state) {
3406  bool dont_adapt_arguments =
3407      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3408  bool can_invoke_directly =
3409      dont_adapt_arguments || formal_parameter_count == arity;
3410
3411  if (can_invoke_directly) {
3412    if (edi_state == EDI_UNINITIALIZED) {
3413      __ LoadHeapObject(edi, function);
3414    }
3415
3416    // Change context.
3417    __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
3418
3419    // Set eax to arguments count if adaption is not needed. Assumes that eax
3420    // is available to write to at this point.
3421    if (dont_adapt_arguments) {
3422      __ mov(eax, arity);
3423    }
3424
3425    // Invoke function directly.
3426    if (function.is_identical_to(info()->closure())) {
3427      __ CallSelf();
3428    } else {
3429      __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
3430    }
3431    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3432  } else {
3433    // We need to adapt arguments.
3434    LPointerMap* pointers = instr->pointer_map();
3435    SafepointGenerator generator(
3436        this, pointers, Safepoint::kLazyDeopt);
3437    ParameterCount count(arity);
3438    ParameterCount expected(formal_parameter_count);
3439    __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
3440  }
3441}
3442
3443
3444void LCodeGen::DoTailCallThroughMegamorphicCache(
3445    LTailCallThroughMegamorphicCache* instr) {
3446  Register receiver = ToRegister(instr->receiver());
3447  Register name = ToRegister(instr->name());
3448  DCHECK(receiver.is(LoadDescriptor::ReceiverRegister()));
3449  DCHECK(name.is(LoadDescriptor::NameRegister()));
3450
3451  Register scratch = ebx;
3452  Register extra = eax;
3453  DCHECK(!scratch.is(receiver) && !scratch.is(name));
3454  DCHECK(!extra.is(receiver) && !extra.is(name));
3455
3456  // Important for the tail-call.
3457  bool must_teardown_frame = NeedsEagerFrame();
3458
3459  // The probe will tail call to a handler if found.
3460  isolate()->stub_cache()->GenerateProbe(masm(), instr->hydrogen()->flags(),
3461                                         must_teardown_frame, receiver, name,
3462                                         scratch, extra);
3463
3464  // Tail call to miss if we ended up here.
3465  if (must_teardown_frame) __ leave();
3466  LoadIC::GenerateMiss(masm());
3467}
3468
3469
3470void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3471  DCHECK(ToRegister(instr->result()).is(eax));
3472
3473  LPointerMap* pointers = instr->pointer_map();
3474  SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3475
3476  if (instr->target()->IsConstantOperand()) {
3477    LConstantOperand* target = LConstantOperand::cast(instr->target());
3478    Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3479    generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3480    __ call(code, RelocInfo::CODE_TARGET);
3481  } else {
3482    DCHECK(instr->target()->IsRegister());
3483    Register target = ToRegister(instr->target());
3484    generator.BeforeCall(__ CallSize(Operand(target)));
3485    __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3486    __ call(target);
3487  }
3488  generator.AfterCall();
3489}
3490
3491
3492void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3493  DCHECK(ToRegister(instr->function()).is(edi));
3494  DCHECK(ToRegister(instr->result()).is(eax));
3495
3496  if (instr->hydrogen()->pass_argument_count()) {
3497    __ mov(eax, instr->arity());
3498  }
3499
3500  // Change context.
3501  __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
3502
3503  bool is_self_call = false;
3504  if (instr->hydrogen()->function()->IsConstant()) {
3505    HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
3506    Handle<JSFunction> jsfun =
3507      Handle<JSFunction>::cast(fun_const->handle(isolate()));
3508    is_self_call = jsfun.is_identical_to(info()->closure());
3509  }
3510
3511  if (is_self_call) {
3512    __ CallSelf();
3513  } else {
3514    __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
3515  }
3516
3517  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3518}
3519
3520
3521void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3522  Register input_reg = ToRegister(instr->value());
3523  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3524         factory()->heap_number_map());
3525  DeoptimizeIf(not_equal, instr, "not a heap number");
3526
3527  Label slow, allocated, done;
3528  Register tmp = input_reg.is(eax) ? ecx : eax;
3529  Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
3530
3531  // Preserve the value of all registers.
3532  PushSafepointRegistersScope scope(this);
3533
3534  __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3535  // Check the sign of the argument. If the argument is positive, just
3536  // return it. We do not need to patch the stack since |input| and
3537  // |result| are the same register and |input| will be restored
3538  // unchanged by popping safepoint registers.
3539  __ test(tmp, Immediate(HeapNumber::kSignMask));
3540  __ j(zero, &done, Label::kNear);
3541
3542  __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
3543  __ jmp(&allocated, Label::kNear);
3544
3545  // Slow case: Call the runtime system to do the number allocation.
3546  __ bind(&slow);
3547  CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0,
3548                          instr, instr->context());
3549  // Set the pointer to the new heap number in tmp.
3550  if (!tmp.is(eax)) __ mov(tmp, eax);
3551  // Restore input_reg after call to runtime.
3552  __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3553
3554  __ bind(&allocated);
3555  __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3556  __ and_(tmp2, ~HeapNumber::kSignMask);
3557  __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
3558  __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
3559  __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
3560  __ StoreToSafepointRegisterSlot(input_reg, tmp);
3561
3562  __ bind(&done);
3563}
3564
3565
3566void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3567  Register input_reg = ToRegister(instr->value());
3568  __ test(input_reg, Operand(input_reg));
3569  Label is_positive;
3570  __ j(not_sign, &is_positive, Label::kNear);
3571  __ neg(input_reg);  // Sets flags.
3572  DeoptimizeIf(negative, instr, "overflow");
3573  __ bind(&is_positive);
3574}
3575
3576
3577void LCodeGen::DoMathAbs(LMathAbs* instr) {
3578  // Class for deferred case.
3579  class DeferredMathAbsTaggedHeapNumber FINAL : public LDeferredCode {
3580   public:
3581    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
3582                                    LMathAbs* instr)
3583        : LDeferredCode(codegen), instr_(instr) { }
3584    virtual void Generate() OVERRIDE {
3585      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3586    }
3587    virtual LInstruction* instr() OVERRIDE { return instr_; }
3588   private:
3589    LMathAbs* instr_;
3590  };
3591
3592  DCHECK(instr->value()->Equals(instr->result()));
3593  Representation r = instr->hydrogen()->value()->representation();
3594
3595  if (r.IsDouble()) {
3596    XMMRegister scratch = double_scratch0();
3597    XMMRegister input_reg = ToDoubleRegister(instr->value());
3598    __ xorps(scratch, scratch);
3599    __ subsd(scratch, input_reg);
3600    __ andps(input_reg, scratch);
3601  } else if (r.IsSmiOrInteger32()) {
3602    EmitIntegerMathAbs(instr);
3603  } else {  // Tagged case.
3604    DeferredMathAbsTaggedHeapNumber* deferred =
3605        new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3606    Register input_reg = ToRegister(instr->value());
3607    // Smi check.
3608    __ JumpIfNotSmi(input_reg, deferred->entry());
3609    EmitIntegerMathAbs(instr);
3610    __ bind(deferred->exit());
3611  }
3612}
3613
3614
3615void LCodeGen::DoMathFloor(LMathFloor* instr) {
3616  XMMRegister xmm_scratch = double_scratch0();
3617  Register output_reg = ToRegister(instr->result());
3618  XMMRegister input_reg = ToDoubleRegister(instr->value());
3619
3620  if (CpuFeatures::IsSupported(SSE4_1)) {
3621    CpuFeatureScope scope(masm(), SSE4_1);
3622    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3623      // Deoptimize on negative zero.
3624      Label non_zero;
3625      __ xorps(xmm_scratch, xmm_scratch);  // Zero the register.
3626      __ ucomisd(input_reg, xmm_scratch);
3627      __ j(not_equal, &non_zero, Label::kNear);
3628      __ movmskpd(output_reg, input_reg);
3629      __ test(output_reg, Immediate(1));
3630      DeoptimizeIf(not_zero, instr, "minus zero");
3631      __ bind(&non_zero);
3632    }
3633    __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown);
3634    __ cvttsd2si(output_reg, Operand(xmm_scratch));
3635    // Overflow is signalled with minint.
3636    __ cmp(output_reg, 0x1);
3637    DeoptimizeIf(overflow, instr, "overflow");
3638  } else {
3639    Label negative_sign, done;
3640    // Deoptimize on unordered.
3641    __ xorps(xmm_scratch, xmm_scratch);  // Zero the register.
3642    __ ucomisd(input_reg, xmm_scratch);
3643    DeoptimizeIf(parity_even, instr, "NaN");
3644    __ j(below, &negative_sign, Label::kNear);
3645
3646    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3647      // Check for negative zero.
3648      Label positive_sign;
3649      __ j(above, &positive_sign, Label::kNear);
3650      __ movmskpd(output_reg, input_reg);
3651      __ test(output_reg, Immediate(1));
3652      DeoptimizeIf(not_zero, instr, "minus zero");
3653      __ Move(output_reg, Immediate(0));
3654      __ jmp(&done, Label::kNear);
3655      __ bind(&positive_sign);
3656    }
3657
3658    // Use truncating instruction (OK because input is positive).
3659    __ cvttsd2si(output_reg, Operand(input_reg));
3660    // Overflow is signalled with minint.
3661    __ cmp(output_reg, 0x1);
3662    DeoptimizeIf(overflow, instr, "overflow");
3663    __ jmp(&done, Label::kNear);
3664
3665    // Non-zero negative reaches here.
3666    __ bind(&negative_sign);
3667    // Truncate, then compare and compensate.
3668    __ cvttsd2si(output_reg, Operand(input_reg));
3669    __ Cvtsi2sd(xmm_scratch, output_reg);
3670    __ ucomisd(input_reg, xmm_scratch);
3671    __ j(equal, &done, Label::kNear);
3672    __ sub(output_reg, Immediate(1));
3673    DeoptimizeIf(overflow, instr, "overflow");
3674
3675    __ bind(&done);
3676  }
3677}
3678
3679
3680void LCodeGen::DoMathRound(LMathRound* instr) {
3681  Register output_reg = ToRegister(instr->result());
3682  XMMRegister input_reg = ToDoubleRegister(instr->value());
3683  XMMRegister xmm_scratch = double_scratch0();
3684  XMMRegister input_temp = ToDoubleRegister(instr->temp());
3685  ExternalReference one_half = ExternalReference::address_of_one_half();
3686  ExternalReference minus_one_half =
3687      ExternalReference::address_of_minus_one_half();
3688
3689  Label done, round_to_zero, below_one_half, do_not_compensate;
3690  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3691
3692  __ movsd(xmm_scratch, Operand::StaticVariable(one_half));
3693  __ ucomisd(xmm_scratch, input_reg);
3694  __ j(above, &below_one_half, Label::kNear);
3695
3696  // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
3697  __ addsd(xmm_scratch, input_reg);
3698  __ cvttsd2si(output_reg, Operand(xmm_scratch));
3699  // Overflow is signalled with minint.
3700  __ cmp(output_reg, 0x1);
3701  DeoptimizeIf(overflow, instr, "overflow");
3702  __ jmp(&done, dist);
3703
3704  __ bind(&below_one_half);
3705  __ movsd(xmm_scratch, Operand::StaticVariable(minus_one_half));
3706  __ ucomisd(xmm_scratch, input_reg);
3707  __ j(below_equal, &round_to_zero, Label::kNear);
3708
3709  // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
3710  // compare and compensate.
3711  __ movaps(input_temp, input_reg);  // Do not alter input_reg.
3712  __ subsd(input_temp, xmm_scratch);
3713  __ cvttsd2si(output_reg, Operand(input_temp));
3714  // Catch minint due to overflow, and to prevent overflow when compensating.
3715  __ cmp(output_reg, 0x1);
3716  DeoptimizeIf(overflow, instr, "overflow");
3717
3718  __ Cvtsi2sd(xmm_scratch, output_reg);
3719  __ ucomisd(xmm_scratch, input_temp);
3720  __ j(equal, &done, dist);
3721  __ sub(output_reg, Immediate(1));
3722  // No overflow because we already ruled out minint.
3723  __ jmp(&done, dist);
3724
3725  __ bind(&round_to_zero);
3726  // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
3727  // we can ignore the difference between a result of -0 and +0.
3728  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3729    // If the sign is positive, we return +0.
3730    __ movmskpd(output_reg, input_reg);
3731    __ test(output_reg, Immediate(1));
3732    DeoptimizeIf(not_zero, instr, "minus zero");
3733  }
3734  __ Move(output_reg, Immediate(0));
3735  __ bind(&done);
3736}
3737
3738
3739void LCodeGen::DoMathFround(LMathFround* instr) {
3740  XMMRegister input_reg = ToDoubleRegister(instr->value());
3741  XMMRegister output_reg = ToDoubleRegister(instr->result());
3742  __ cvtsd2ss(output_reg, input_reg);
3743  __ cvtss2sd(output_reg, output_reg);
3744}
3745
3746
3747void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3748  Operand input = ToOperand(instr->value());
3749  XMMRegister output = ToDoubleRegister(instr->result());
3750  __ sqrtsd(output, input);
3751}
3752
3753
3754void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3755  XMMRegister xmm_scratch = double_scratch0();
3756  XMMRegister input_reg = ToDoubleRegister(instr->value());
3757  Register scratch = ToRegister(instr->temp());
3758  DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
3759
3760  // Note that according to ECMA-262 15.8.2.13:
3761  // Math.pow(-Infinity, 0.5) == Infinity
3762  // Math.sqrt(-Infinity) == NaN
3763  Label done, sqrt;
3764  // Check base for -Infinity.  According to IEEE-754, single-precision
3765  // -Infinity has the highest 9 bits set and the lowest 23 bits cleared.
3766  __ mov(scratch, 0xFF800000);
3767  __ movd(xmm_scratch, scratch);
3768  __ cvtss2sd(xmm_scratch, xmm_scratch);
3769  __ ucomisd(input_reg, xmm_scratch);
3770  // Comparing -Infinity with NaN results in "unordered", which sets the
3771  // zero flag as if both were equal.  However, it also sets the carry flag.
3772  __ j(not_equal, &sqrt, Label::kNear);
3773  __ j(carry, &sqrt, Label::kNear);
3774  // If input is -Infinity, return Infinity.
3775  __ xorps(input_reg, input_reg);
3776  __ subsd(input_reg, xmm_scratch);
3777  __ jmp(&done, Label::kNear);
3778
3779  // Square root.
3780  __ bind(&sqrt);
3781  __ xorps(xmm_scratch, xmm_scratch);
3782  __ addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
3783  __ sqrtsd(input_reg, input_reg);
3784  __ bind(&done);
3785}
3786
3787
3788void LCodeGen::DoPower(LPower* instr) {
3789  Representation exponent_type = instr->hydrogen()->right()->representation();
3790  // Having marked this as a call, we can use any registers.
3791  // Just make sure that the input/output registers are the expected ones.
3792  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3793  DCHECK(!instr->right()->IsDoubleRegister() ||
3794         ToDoubleRegister(instr->right()).is(xmm1));
3795  DCHECK(!instr->right()->IsRegister() ||
3796         ToRegister(instr->right()).is(tagged_exponent));
3797  DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
3798  DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
3799
3800  if (exponent_type.IsSmi()) {
3801    MathPowStub stub(isolate(), MathPowStub::TAGGED);
3802    __ CallStub(&stub);
3803  } else if (exponent_type.IsTagged()) {
3804    Label no_deopt;
3805    __ JumpIfSmi(tagged_exponent, &no_deopt);
3806    DCHECK(!ecx.is(tagged_exponent));
3807    __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, ecx);
3808    DeoptimizeIf(not_equal, instr, "not a heap number");
3809    __ bind(&no_deopt);
3810    MathPowStub stub(isolate(), MathPowStub::TAGGED);
3811    __ CallStub(&stub);
3812  } else if (exponent_type.IsInteger32()) {
3813    MathPowStub stub(isolate(), MathPowStub::INTEGER);
3814    __ CallStub(&stub);
3815  } else {
3816    DCHECK(exponent_type.IsDouble());
3817    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3818    __ CallStub(&stub);
3819  }
3820}
3821
3822
3823void LCodeGen::DoMathLog(LMathLog* instr) {
3824  DCHECK(instr->value()->Equals(instr->result()));
3825  XMMRegister input_reg = ToDoubleRegister(instr->value());
3826  XMMRegister xmm_scratch = double_scratch0();
3827  Label positive, done, zero;
3828  __ xorps(xmm_scratch, xmm_scratch);
3829  __ ucomisd(input_reg, xmm_scratch);
3830  __ j(above, &positive, Label::kNear);
3831  __ j(not_carry, &zero, Label::kNear);
3832  ExternalReference nan =
3833      ExternalReference::address_of_canonical_non_hole_nan();
3834  __ movsd(input_reg, Operand::StaticVariable(nan));
3835  __ jmp(&done, Label::kNear);
3836  __ bind(&zero);
3837  ExternalReference ninf =
3838      ExternalReference::address_of_negative_infinity();
3839  __ movsd(input_reg, Operand::StaticVariable(ninf));
3840  __ jmp(&done, Label::kNear);
3841  __ bind(&positive);
3842  __ fldln2();
3843  __ sub(Operand(esp), Immediate(kDoubleSize));
3844  __ movsd(Operand(esp, 0), input_reg);
3845  __ fld_d(Operand(esp, 0));
3846  __ fyl2x();
3847  __ fstp_d(Operand(esp, 0));
3848  __ movsd(input_reg, Operand(esp, 0));
3849  __ add(Operand(esp), Immediate(kDoubleSize));
3850  __ bind(&done);
3851}
3852
3853
3854void LCodeGen::DoMathClz32(LMathClz32* instr) {
3855  Register input = ToRegister(instr->value());
3856  Register result = ToRegister(instr->result());
3857  Label not_zero_input;
3858  __ bsr(result, input);
3859
3860  __ j(not_zero, &not_zero_input);
3861  __ Move(result, Immediate(63));  // 63^31 == 32
3862
3863  __ bind(&not_zero_input);
3864  __ xor_(result, Immediate(31));  // for x in [0..31], 31^x == 31-x.
3865}
3866
3867
3868void LCodeGen::DoMathExp(LMathExp* instr) {
3869  XMMRegister input = ToDoubleRegister(instr->value());
3870  XMMRegister result = ToDoubleRegister(instr->result());
3871  XMMRegister temp0 = double_scratch0();
3872  Register temp1 = ToRegister(instr->temp1());
3873  Register temp2 = ToRegister(instr->temp2());
3874
3875  MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2);
3876}
3877
3878
3879void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3880  DCHECK(ToRegister(instr->context()).is(esi));
3881  DCHECK(ToRegister(instr->function()).is(edi));
3882  DCHECK(instr->HasPointerMap());
3883
3884  Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3885  if (known_function.is_null()) {
3886    LPointerMap* pointers = instr->pointer_map();
3887    SafepointGenerator generator(
3888        this, pointers, Safepoint::kLazyDeopt);
3889    ParameterCount count(instr->arity());
3890    __ InvokeFunction(edi, count, CALL_FUNCTION, generator);
3891  } else {
3892    CallKnownFunction(known_function,
3893                      instr->hydrogen()->formal_parameter_count(),
3894                      instr->arity(),
3895                      instr,
3896                      EDI_CONTAINS_TARGET);
3897  }
3898}
3899
3900
3901void LCodeGen::DoCallFunction(LCallFunction* instr) {
3902  DCHECK(ToRegister(instr->context()).is(esi));
3903  DCHECK(ToRegister(instr->function()).is(edi));
3904  DCHECK(ToRegister(instr->result()).is(eax));
3905
3906  int arity = instr->arity();
3907  CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
3908  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3909}
3910
3911
3912void LCodeGen::DoCallNew(LCallNew* instr) {
3913  DCHECK(ToRegister(instr->context()).is(esi));
3914  DCHECK(ToRegister(instr->constructor()).is(edi));
3915  DCHECK(ToRegister(instr->result()).is(eax));
3916
3917  // No cell in ebx for construct type feedback in optimized code
3918  __ mov(ebx, isolate()->factory()->undefined_value());
3919  CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
3920  __ Move(eax, Immediate(instr->arity()));
3921  CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3922}
3923
3924
3925void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3926  DCHECK(ToRegister(instr->context()).is(esi));
3927  DCHECK(ToRegister(instr->constructor()).is(edi));
3928  DCHECK(ToRegister(instr->result()).is(eax));
3929
3930  __ Move(eax, Immediate(instr->arity()));
3931  __ mov(ebx, isolate()->factory()->undefined_value());
3932  ElementsKind kind = instr->hydrogen()->elements_kind();
3933  AllocationSiteOverrideMode override_mode =
3934      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3935          ? DISABLE_ALLOCATION_SITES
3936          : DONT_OVERRIDE;
3937
3938  if (instr->arity() == 0) {
3939    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3940    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3941  } else if (instr->arity() == 1) {
3942    Label done;
3943    if (IsFastPackedElementsKind(kind)) {
3944      Label packed_case;
3945      // We might need a change here
3946      // look at the first argument
3947      __ mov(ecx, Operand(esp, 0));
3948      __ test(ecx, ecx);
3949      __ j(zero, &packed_case, Label::kNear);
3950
3951      ElementsKind holey_kind = GetHoleyElementsKind(kind);
3952      ArraySingleArgumentConstructorStub stub(isolate(),
3953                                              holey_kind,
3954                                              override_mode);
3955      CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3956      __ jmp(&done, Label::kNear);
3957      __ bind(&packed_case);
3958    }
3959
3960    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3961    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3962    __ bind(&done);
3963  } else {
3964    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3965    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3966  }
3967}
3968
3969
3970void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3971  DCHECK(ToRegister(instr->context()).is(esi));
3972  CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
3973}
3974
3975
3976void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3977  Register function = ToRegister(instr->function());
3978  Register code_object = ToRegister(instr->code_object());
3979  __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
3980  __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3981}
3982
3983
3984void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3985  Register result = ToRegister(instr->result());
3986  Register base = ToRegister(instr->base_object());
3987  if (instr->offset()->IsConstantOperand()) {
3988    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3989    __ lea(result, Operand(base, ToInteger32(offset)));
3990  } else {
3991    Register offset = ToRegister(instr->offset());
3992    __ lea(result, Operand(base, offset, times_1, 0));
3993  }
3994}
3995
3996
3997void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3998  Representation representation = instr->hydrogen()->field_representation();
3999
4000  HObjectAccess access = instr->hydrogen()->access();
4001  int offset = access.offset();
4002
4003  if (access.IsExternalMemory()) {
4004    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4005    MemOperand operand = instr->object()->IsConstantOperand()
4006        ? MemOperand::StaticVariable(
4007            ToExternalReference(LConstantOperand::cast(instr->object())))
4008        : MemOperand(ToRegister(instr->object()), offset);
4009    if (instr->value()->IsConstantOperand()) {
4010      LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4011      __ mov(operand, Immediate(ToInteger32(operand_value)));
4012    } else {
4013      Register value = ToRegister(instr->value());
4014      __ Store(value, operand, representation);
4015    }
4016    return;
4017  }
4018
4019  Register object = ToRegister(instr->object());
4020  __ AssertNotSmi(object);
4021
4022  DCHECK(!representation.IsSmi() ||
4023         !instr->value()->IsConstantOperand() ||
4024         IsSmi(LConstantOperand::cast(instr->value())));
4025  if (representation.IsDouble()) {
4026    DCHECK(access.IsInobject());
4027    DCHECK(!instr->hydrogen()->has_transition());
4028    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4029    XMMRegister value = ToDoubleRegister(instr->value());
4030    __ movsd(FieldOperand(object, offset), value);
4031    return;
4032  }
4033
4034  if (instr->hydrogen()->has_transition()) {
4035    Handle<Map> transition = instr->hydrogen()->transition_map();
4036    AddDeprecationDependency(transition);
4037    __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
4038    if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
4039      Register temp = ToRegister(instr->temp());
4040      Register temp_map = ToRegister(instr->temp_map());
4041      // Update the write barrier for the map field.
4042      __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
4043    }
4044  }
4045
4046  // Do the store.
4047  Register write_register = object;
4048  if (!access.IsInobject()) {
4049    write_register = ToRegister(instr->temp());
4050    __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
4051  }
4052
4053  MemOperand operand = FieldOperand(write_register, offset);
4054  if (instr->value()->IsConstantOperand()) {
4055    LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4056    if (operand_value->IsRegister()) {
4057      Register value = ToRegister(operand_value);
4058      __ Store(value, operand, representation);
4059    } else if (representation.IsInteger32()) {
4060      Immediate immediate = ToImmediate(operand_value, representation);
4061      DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4062      __ mov(operand, immediate);
4063    } else {
4064      Handle<Object> handle_value = ToHandle(operand_value);
4065      DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4066      __ mov(operand, handle_value);
4067    }
4068  } else {
4069    Register value = ToRegister(instr->value());
4070    __ Store(value, operand, representation);
4071  }
4072
4073  if (instr->hydrogen()->NeedsWriteBarrier()) {
4074    Register value = ToRegister(instr->value());
4075    Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
4076    // Update the write barrier for the object for in-object properties.
4077    __ RecordWriteField(write_register,
4078                        offset,
4079                        value,
4080                        temp,
4081                        kSaveFPRegs,
4082                        EMIT_REMEMBERED_SET,
4083                        instr->hydrogen()->SmiCheckForWriteBarrier(),
4084                        instr->hydrogen()->PointersToHereCheckForValue());
4085  }
4086}
4087
4088
4089void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
4090  DCHECK(ToRegister(instr->context()).is(esi));
4091  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4092  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4093
4094  __ mov(StoreDescriptor::NameRegister(), instr->name());
4095  Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
4096  CallCode(ic, RelocInfo::CODE_TARGET, instr);
4097}
4098
4099
4100void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
4101  Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
4102  if (instr->index()->IsConstantOperand()) {
4103    __ cmp(ToOperand(instr->length()),
4104           ToImmediate(LConstantOperand::cast(instr->index()),
4105                       instr->hydrogen()->length()->representation()));
4106    cc = CommuteCondition(cc);
4107  } else if (instr->length()->IsConstantOperand()) {
4108    __ cmp(ToOperand(instr->index()),
4109           ToImmediate(LConstantOperand::cast(instr->length()),
4110                       instr->hydrogen()->index()->representation()));
4111  } else {
4112    __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
4113  }
4114  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4115    Label done;
4116    __ j(NegateCondition(cc), &done, Label::kNear);
4117    __ int3();
4118    __ bind(&done);
4119  } else {
4120    DeoptimizeIf(cc, instr, "out of bounds");
4121  }
4122}
4123
4124
4125void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4126  ElementsKind elements_kind = instr->elements_kind();
4127  LOperand* key = instr->key();
4128  if (!key->IsConstantOperand() &&
4129      ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
4130                                  elements_kind)) {
4131    __ SmiUntag(ToRegister(key));
4132  }
4133  Operand operand(BuildFastArrayOperand(
4134      instr->elements(),
4135      key,
4136      instr->hydrogen()->key()->representation(),
4137      elements_kind,
4138      instr->base_offset()));
4139  if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
4140      elements_kind == FLOAT32_ELEMENTS) {
4141    XMMRegister xmm_scratch = double_scratch0();
4142    __ cvtsd2ss(xmm_scratch, ToDoubleRegister(instr->value()));
4143    __ movss(operand, xmm_scratch);
4144  } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
4145             elements_kind == FLOAT64_ELEMENTS) {
4146    __ movsd(operand, ToDoubleRegister(instr->value()));
4147  } else {
4148    Register value = ToRegister(instr->value());
4149    switch (elements_kind) {
4150      case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
4151      case EXTERNAL_UINT8_ELEMENTS:
4152      case EXTERNAL_INT8_ELEMENTS:
4153      case UINT8_ELEMENTS:
4154      case INT8_ELEMENTS:
4155      case UINT8_CLAMPED_ELEMENTS:
4156        __ mov_b(operand, value);
4157        break;
4158      case EXTERNAL_INT16_ELEMENTS:
4159      case EXTERNAL_UINT16_ELEMENTS:
4160      case UINT16_ELEMENTS:
4161      case INT16_ELEMENTS:
4162        __ mov_w(operand, value);
4163        break;
4164      case EXTERNAL_INT32_ELEMENTS:
4165      case EXTERNAL_UINT32_ELEMENTS:
4166      case UINT32_ELEMENTS:
4167      case INT32_ELEMENTS:
4168        __ mov(operand, value);
4169        break;
4170      case EXTERNAL_FLOAT32_ELEMENTS:
4171      case EXTERNAL_FLOAT64_ELEMENTS:
4172      case FLOAT32_ELEMENTS:
4173      case FLOAT64_ELEMENTS:
4174      case FAST_SMI_ELEMENTS:
4175      case FAST_ELEMENTS:
4176      case FAST_DOUBLE_ELEMENTS:
4177      case FAST_HOLEY_SMI_ELEMENTS:
4178      case FAST_HOLEY_ELEMENTS:
4179      case FAST_HOLEY_DOUBLE_ELEMENTS:
4180      case DICTIONARY_ELEMENTS:
4181      case SLOPPY_ARGUMENTS_ELEMENTS:
4182        UNREACHABLE();
4183        break;
4184    }
4185  }
4186}
4187
4188
4189void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4190  ExternalReference canonical_nan_reference =
4191      ExternalReference::address_of_canonical_non_hole_nan();
4192  Operand double_store_operand = BuildFastArrayOperand(
4193      instr->elements(),
4194      instr->key(),
4195      instr->hydrogen()->key()->representation(),
4196      FAST_DOUBLE_ELEMENTS,
4197      instr->base_offset());
4198
4199  XMMRegister value = ToDoubleRegister(instr->value());
4200
4201  if (instr->NeedsCanonicalization()) {
4202    Label have_value;
4203
4204    __ ucomisd(value, value);
4205    __ j(parity_odd, &have_value, Label::kNear);  // NaN.
4206
4207    __ movsd(value, Operand::StaticVariable(canonical_nan_reference));
4208    __ bind(&have_value);
4209  }
4210
4211  __ movsd(double_store_operand, value);
4212}
4213
4214
4215void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4216  Register elements = ToRegister(instr->elements());
4217  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4218
4219  Operand operand = BuildFastArrayOperand(
4220      instr->elements(),
4221      instr->key(),
4222      instr->hydrogen()->key()->representation(),
4223      FAST_ELEMENTS,
4224      instr->base_offset());
4225  if (instr->value()->IsRegister()) {
4226    __ mov(operand, ToRegister(instr->value()));
4227  } else {
4228    LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4229    if (IsSmi(operand_value)) {
4230      Immediate immediate = ToImmediate(operand_value, Representation::Smi());
4231      __ mov(operand, immediate);
4232    } else {
4233      DCHECK(!IsInteger32(operand_value));
4234      Handle<Object> handle_value = ToHandle(operand_value);
4235      __ mov(operand, handle_value);
4236    }
4237  }
4238
4239  if (instr->hydrogen()->NeedsWriteBarrier()) {
4240    DCHECK(instr->value()->IsRegister());
4241    Register value = ToRegister(instr->value());
4242    DCHECK(!instr->key()->IsConstantOperand());
4243    SmiCheck check_needed =
4244        instr->hydrogen()->value()->type().IsHeapObject()
4245          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4246    // Compute address of modified element and store it into key register.
4247    __ lea(key, operand);
4248    __ RecordWrite(elements,
4249                   key,
4250                   value,
4251                   kSaveFPRegs,
4252                   EMIT_REMEMBERED_SET,
4253                   check_needed,
4254                   instr->hydrogen()->PointersToHereCheckForValue());
4255  }
4256}
4257
4258
4259void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4260  // By cases...external, fast-double, fast
4261  if (instr->is_typed_elements()) {
4262    DoStoreKeyedExternalArray(instr);
4263  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4264    DoStoreKeyedFixedDoubleArray(instr);
4265  } else {
4266    DoStoreKeyedFixedArray(instr);
4267  }
4268}
4269
4270
4271void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4272  DCHECK(ToRegister(instr->context()).is(esi));
4273  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4274  DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4275  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4276
4277  Handle<Code> ic =
4278      CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code();
4279  CallCode(ic, RelocInfo::CODE_TARGET, instr);
4280}
4281
4282
4283void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4284  Register object = ToRegister(instr->object());
4285  Register temp = ToRegister(instr->temp());
4286  Label no_memento_found;
4287  __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4288  DeoptimizeIf(equal, instr, "memento found");
4289  __ bind(&no_memento_found);
4290}
4291
4292
4293void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4294  Register object_reg = ToRegister(instr->object());
4295
4296  Handle<Map> from_map = instr->original_map();
4297  Handle<Map> to_map = instr->transitioned_map();
4298  ElementsKind from_kind = instr->from_kind();
4299  ElementsKind to_kind = instr->to_kind();
4300
4301  Label not_applicable;
4302  bool is_simple_map_transition =
4303      IsSimpleMapChangeTransition(from_kind, to_kind);
4304  Label::Distance branch_distance =
4305      is_simple_map_transition ? Label::kNear : Label::kFar;
4306  __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4307  __ j(not_equal, &not_applicable, branch_distance);
4308  if (is_simple_map_transition) {
4309    Register new_map_reg = ToRegister(instr->new_map_temp());
4310    __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
4311           Immediate(to_map));
4312    // Write barrier.
4313    DCHECK_NE(instr->temp(), NULL);
4314    __ RecordWriteForMap(object_reg, to_map, new_map_reg,
4315                         ToRegister(instr->temp()),
4316                         kDontSaveFPRegs);
4317  } else {
4318    DCHECK(ToRegister(instr->context()).is(esi));
4319    DCHECK(object_reg.is(eax));
4320    PushSafepointRegistersScope scope(this);
4321    __ mov(ebx, to_map);
4322    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4323    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4324    __ CallStub(&stub);
4325    RecordSafepointWithLazyDeopt(instr,
4326        RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4327  }
4328  __ bind(&not_applicable);
4329}
4330
4331
4332void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4333  class DeferredStringCharCodeAt FINAL : public LDeferredCode {
4334   public:
4335    DeferredStringCharCodeAt(LCodeGen* codegen,
4336                             LStringCharCodeAt* instr)
4337        : LDeferredCode(codegen), instr_(instr) { }
4338    virtual void Generate() OVERRIDE {
4339      codegen()->DoDeferredStringCharCodeAt(instr_);
4340    }
4341    virtual LInstruction* instr() OVERRIDE { return instr_; }
4342   private:
4343    LStringCharCodeAt* instr_;
4344  };
4345
4346  DeferredStringCharCodeAt* deferred =
4347      new(zone()) DeferredStringCharCodeAt(this, instr);
4348
4349  StringCharLoadGenerator::Generate(masm(),
4350                                    factory(),
4351                                    ToRegister(instr->string()),
4352                                    ToRegister(instr->index()),
4353                                    ToRegister(instr->result()),
4354                                    deferred->entry());
4355  __ bind(deferred->exit());
4356}
4357
4358
4359void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4360  Register string = ToRegister(instr->string());
4361  Register result = ToRegister(instr->result());
4362
4363  // TODO(3095996): Get rid of this. For now, we need to make the
4364  // result register contain a valid pointer because it is already
4365  // contained in the register pointer map.
4366  __ Move(result, Immediate(0));
4367
4368  PushSafepointRegistersScope scope(this);
4369  __ push(string);
4370  // Push the index as a smi. This is safe because of the checks in
4371  // DoStringCharCodeAt above.
4372  STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4373  if (instr->index()->IsConstantOperand()) {
4374    Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
4375                                      Representation::Smi());
4376    __ push(immediate);
4377  } else {
4378    Register index = ToRegister(instr->index());
4379    __ SmiTag(index);
4380    __ push(index);
4381  }
4382  CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2,
4383                          instr, instr->context());
4384  __ AssertSmi(eax);
4385  __ SmiUntag(eax);
4386  __ StoreToSafepointRegisterSlot(result, eax);
4387}
4388
4389
4390void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4391  class DeferredStringCharFromCode FINAL : public LDeferredCode {
4392   public:
4393    DeferredStringCharFromCode(LCodeGen* codegen,
4394                               LStringCharFromCode* instr)
4395        : LDeferredCode(codegen), instr_(instr) { }
4396    virtual void Generate() OVERRIDE {
4397      codegen()->DoDeferredStringCharFromCode(instr_);
4398    }
4399    virtual LInstruction* instr() OVERRIDE { return instr_; }
4400   private:
4401    LStringCharFromCode* instr_;
4402  };
4403
4404  DeferredStringCharFromCode* deferred =
4405      new(zone()) DeferredStringCharFromCode(this, instr);
4406
4407  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4408  Register char_code = ToRegister(instr->char_code());
4409  Register result = ToRegister(instr->result());
4410  DCHECK(!char_code.is(result));
4411
4412  __ cmp(char_code, String::kMaxOneByteCharCode);
4413  __ j(above, deferred->entry());
4414  __ Move(result, Immediate(factory()->single_character_string_cache()));
4415  __ mov(result, FieldOperand(result,
4416                              char_code, times_pointer_size,
4417                              FixedArray::kHeaderSize));
4418  __ cmp(result, factory()->undefined_value());
4419  __ j(equal, deferred->entry());
4420  __ bind(deferred->exit());
4421}
4422
4423
4424void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4425  Register char_code = ToRegister(instr->char_code());
4426  Register result = ToRegister(instr->result());
4427
4428  // TODO(3095996): Get rid of this. For now, we need to make the
4429  // result register contain a valid pointer because it is already
4430  // contained in the register pointer map.
4431  __ Move(result, Immediate(0));
4432
4433  PushSafepointRegistersScope scope(this);
4434  __ SmiTag(char_code);
4435  __ push(char_code);
4436  CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
4437  __ StoreToSafepointRegisterSlot(result, eax);
4438}
4439
4440
4441void LCodeGen::DoStringAdd(LStringAdd* instr) {
4442  DCHECK(ToRegister(instr->context()).is(esi));
4443  DCHECK(ToRegister(instr->left()).is(edx));
4444  DCHECK(ToRegister(instr->right()).is(eax));
4445  StringAddStub stub(isolate(),
4446                     instr->hydrogen()->flags(),
4447                     instr->hydrogen()->pretenure_flag());
4448  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4449}
4450
4451
4452void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4453  LOperand* input = instr->value();
4454  LOperand* output = instr->result();
4455  DCHECK(input->IsRegister() || input->IsStackSlot());
4456  DCHECK(output->IsDoubleRegister());
4457  __ Cvtsi2sd(ToDoubleRegister(output), ToOperand(input));
4458}
4459
4460
4461void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4462  LOperand* input = instr->value();
4463  LOperand* output = instr->result();
4464  __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
4465}
4466
4467
4468void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4469  class DeferredNumberTagI FINAL : public LDeferredCode {
4470   public:
4471    DeferredNumberTagI(LCodeGen* codegen,
4472                       LNumberTagI* instr)
4473        : LDeferredCode(codegen), instr_(instr) { }
4474    virtual void Generate() OVERRIDE {
4475      codegen()->DoDeferredNumberTagIU(
4476          instr_, instr_->value(), instr_->temp(), SIGNED_INT32);
4477    }
4478    virtual LInstruction* instr() OVERRIDE { return instr_; }
4479   private:
4480    LNumberTagI* instr_;
4481  };
4482
4483  LOperand* input = instr->value();
4484  DCHECK(input->IsRegister() && input->Equals(instr->result()));
4485  Register reg = ToRegister(input);
4486
4487  DeferredNumberTagI* deferred =
4488      new(zone()) DeferredNumberTagI(this, instr);
4489  __ SmiTag(reg);
4490  __ j(overflow, deferred->entry());
4491  __ bind(deferred->exit());
4492}
4493
4494
4495void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4496  class DeferredNumberTagU FINAL : public LDeferredCode {
4497   public:
4498    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4499        : LDeferredCode(codegen), instr_(instr) { }
4500    virtual void Generate() OVERRIDE {
4501      codegen()->DoDeferredNumberTagIU(
4502          instr_, instr_->value(), instr_->temp(), UNSIGNED_INT32);
4503    }
4504    virtual LInstruction* instr() OVERRIDE { return instr_; }
4505   private:
4506    LNumberTagU* instr_;
4507  };
4508
4509  LOperand* input = instr->value();
4510  DCHECK(input->IsRegister() && input->Equals(instr->result()));
4511  Register reg = ToRegister(input);
4512
4513  DeferredNumberTagU* deferred =
4514      new(zone()) DeferredNumberTagU(this, instr);
4515  __ cmp(reg, Immediate(Smi::kMaxValue));
4516  __ j(above, deferred->entry());
4517  __ SmiTag(reg);
4518  __ bind(deferred->exit());
4519}
4520
4521
4522void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4523                                     LOperand* value,
4524                                     LOperand* temp,
4525                                     IntegerSignedness signedness) {
4526  Label done, slow;
4527  Register reg = ToRegister(value);
4528  Register tmp = ToRegister(temp);
4529  XMMRegister xmm_scratch = double_scratch0();
4530
4531  if (signedness == SIGNED_INT32) {
4532    // There was overflow, so bits 30 and 31 of the original integer
4533    // disagree. Try to allocate a heap number in new space and store
4534    // the value in there. If that fails, call the runtime system.
4535    __ SmiUntag(reg);
4536    __ xor_(reg, 0x80000000);
4537    __ Cvtsi2sd(xmm_scratch, Operand(reg));
4538  } else {
4539    __ LoadUint32(xmm_scratch, reg);
4540  }
4541
4542  if (FLAG_inline_new) {
4543    __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
4544    __ jmp(&done, Label::kNear);
4545  }
4546
4547  // Slow case: Call the runtime system to do the number allocation.
4548  __ bind(&slow);
4549  {
4550    // TODO(3095996): Put a valid pointer value in the stack slot where the
4551    // result register is stored, as this register is in the pointer map, but
4552    // contains an integer value.
4553    __ Move(reg, Immediate(0));
4554
4555    // Preserve the value of all registers.
4556    PushSafepointRegistersScope scope(this);
4557
4558    // NumberTagI and NumberTagD use the context from the frame, rather than
4559    // the environment's HContext or HInlinedContext value.
4560    // They only call Runtime::kAllocateHeapNumber.
4561    // The corresponding HChange instructions are added in a phase that does
4562    // not have easy access to the local context.
4563    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4564    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4565    RecordSafepointWithRegisters(
4566        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4567    __ StoreToSafepointRegisterSlot(reg, eax);
4568  }
4569
4570  // Done. Put the value in xmm_scratch into the value of the allocated heap
4571  // number.
4572  __ bind(&done);
4573  __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), xmm_scratch);
4574}
4575
4576
4577void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4578  class DeferredNumberTagD FINAL : public LDeferredCode {
4579   public:
4580    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4581        : LDeferredCode(codegen), instr_(instr) { }
4582    virtual void Generate() OVERRIDE {
4583      codegen()->DoDeferredNumberTagD(instr_);
4584    }
4585    virtual LInstruction* instr() OVERRIDE { return instr_; }
4586   private:
4587    LNumberTagD* instr_;
4588  };
4589
4590  Register reg = ToRegister(instr->result());
4591
4592  DeferredNumberTagD* deferred =
4593      new(zone()) DeferredNumberTagD(this, instr);
4594  if (FLAG_inline_new) {
4595    Register tmp = ToRegister(instr->temp());
4596    __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
4597  } else {
4598    __ jmp(deferred->entry());
4599  }
4600  __ bind(deferred->exit());
4601  XMMRegister input_reg = ToDoubleRegister(instr->value());
4602  __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
4603}
4604
4605
4606void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4607  // TODO(3095996): Get rid of this. For now, we need to make the
4608  // result register contain a valid pointer because it is already
4609  // contained in the register pointer map.
4610  Register reg = ToRegister(instr->result());
4611  __ Move(reg, Immediate(0));
4612
4613  PushSafepointRegistersScope scope(this);
4614  // NumberTagI and NumberTagD use the context from the frame, rather than
4615  // the environment's HContext or HInlinedContext value.
4616  // They only call Runtime::kAllocateHeapNumber.
4617  // The corresponding HChange instructions are added in a phase that does
4618  // not have easy access to the local context.
4619  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4620  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4621  RecordSafepointWithRegisters(
4622      instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4623  __ StoreToSafepointRegisterSlot(reg, eax);
4624}
4625
4626
4627void LCodeGen::DoSmiTag(LSmiTag* instr) {
4628  HChange* hchange = instr->hydrogen();
4629  Register input = ToRegister(instr->value());
4630  if (hchange->CheckFlag(HValue::kCanOverflow) &&
4631      hchange->value()->CheckFlag(HValue::kUint32)) {
4632    __ test(input, Immediate(0xc0000000));
4633    DeoptimizeIf(not_zero, instr, "overflow");
4634  }
4635  __ SmiTag(input);
4636  if (hchange->CheckFlag(HValue::kCanOverflow) &&
4637      !hchange->value()->CheckFlag(HValue::kUint32)) {
4638    DeoptimizeIf(overflow, instr, "overflow");
4639  }
4640}
4641
4642
4643void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4644  LOperand* input = instr->value();
4645  Register result = ToRegister(input);
4646  DCHECK(input->IsRegister() && input->Equals(instr->result()));
4647  if (instr->needs_check()) {
4648    __ test(result, Immediate(kSmiTagMask));
4649    DeoptimizeIf(not_zero, instr, "not a Smi");
4650  } else {
4651    __ AssertSmi(result);
4652  }
4653  __ SmiUntag(result);
4654}
4655
4656
4657void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4658                                Register temp_reg, XMMRegister result_reg,
4659                                NumberUntagDMode mode) {
4660  bool can_convert_undefined_to_nan =
4661      instr->hydrogen()->can_convert_undefined_to_nan();
4662  bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4663
4664  Label convert, load_smi, done;
4665
4666  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4667    // Smi check.
4668    __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
4669
4670    // Heap number map check.
4671    __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4672           factory()->heap_number_map());
4673    if (can_convert_undefined_to_nan) {
4674      __ j(not_equal, &convert, Label::kNear);
4675    } else {
4676      DeoptimizeIf(not_equal, instr, "not a heap number");
4677    }
4678
4679    // Heap number to XMM conversion.
4680    __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
4681
4682    if (deoptimize_on_minus_zero) {
4683      XMMRegister xmm_scratch = double_scratch0();
4684      __ xorps(xmm_scratch, xmm_scratch);
4685      __ ucomisd(result_reg, xmm_scratch);
4686      __ j(not_zero, &done, Label::kNear);
4687      __ movmskpd(temp_reg, result_reg);
4688      __ test_b(temp_reg, 1);
4689      DeoptimizeIf(not_zero, instr, "minus zero");
4690    }
4691    __ jmp(&done, Label::kNear);
4692
4693    if (can_convert_undefined_to_nan) {
4694      __ bind(&convert);
4695
4696      // Convert undefined (and hole) to NaN.
4697      __ cmp(input_reg, factory()->undefined_value());
4698      DeoptimizeIf(not_equal, instr, "not a heap number/undefined");
4699
4700      ExternalReference nan =
4701          ExternalReference::address_of_canonical_non_hole_nan();
4702      __ movsd(result_reg, Operand::StaticVariable(nan));
4703      __ jmp(&done, Label::kNear);
4704    }
4705  } else {
4706    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4707  }
4708
4709  __ bind(&load_smi);
4710  // Smi to XMM conversion. Clobbering a temp is faster than re-tagging the
4711  // input register since we avoid dependencies.
4712  __ mov(temp_reg, input_reg);
4713  __ SmiUntag(temp_reg);  // Untag smi before converting to float.
4714  __ Cvtsi2sd(result_reg, Operand(temp_reg));
4715  __ bind(&done);
4716}
4717
4718
4719void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4720  Register input_reg = ToRegister(instr->value());
4721
4722  // The input was optimistically untagged; revert it.
4723  STATIC_ASSERT(kSmiTagSize == 1);
4724  __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
4725
4726  if (instr->truncating()) {
4727    Label no_heap_number, check_bools, check_false;
4728
4729    // Heap number map check.
4730    __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4731           factory()->heap_number_map());
4732    __ j(not_equal, &no_heap_number, Label::kNear);
4733    __ TruncateHeapNumberToI(input_reg, input_reg);
4734    __ jmp(done);
4735
4736    __ bind(&no_heap_number);
4737    // Check for Oddballs. Undefined/False is converted to zero and True to one
4738    // for truncating conversions.
4739    __ cmp(input_reg, factory()->undefined_value());
4740    __ j(not_equal, &check_bools, Label::kNear);
4741    __ Move(input_reg, Immediate(0));
4742    __ jmp(done);
4743
4744    __ bind(&check_bools);
4745    __ cmp(input_reg, factory()->true_value());
4746    __ j(not_equal, &check_false, Label::kNear);
4747    __ Move(input_reg, Immediate(1));
4748    __ jmp(done);
4749
4750    __ bind(&check_false);
4751    __ cmp(input_reg, factory()->false_value());
4752    DeoptimizeIf(not_equal, instr, "not a heap number/undefined/true/false");
4753    __ Move(input_reg, Immediate(0));
4754  } else {
4755    XMMRegister scratch = ToDoubleRegister(instr->temp());
4756    DCHECK(!scratch.is(xmm0));
4757    __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4758           isolate()->factory()->heap_number_map());
4759    DeoptimizeIf(not_equal, instr, "not a heap number");
4760    __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
4761    __ cvttsd2si(input_reg, Operand(xmm0));
4762    __ Cvtsi2sd(scratch, Operand(input_reg));
4763    __ ucomisd(xmm0, scratch);
4764    DeoptimizeIf(not_equal, instr, "lost precision");
4765    DeoptimizeIf(parity_even, instr, "NaN");
4766    if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
4767      __ test(input_reg, Operand(input_reg));
4768      __ j(not_zero, done);
4769      __ movmskpd(input_reg, xmm0);
4770      __ and_(input_reg, 1);
4771      DeoptimizeIf(not_zero, instr, "minus zero");
4772    }
4773  }
4774}
4775
4776
4777void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4778  class DeferredTaggedToI FINAL : public LDeferredCode {
4779   public:
4780    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4781        : LDeferredCode(codegen), instr_(instr) { }
4782    virtual void Generate() OVERRIDE {
4783      codegen()->DoDeferredTaggedToI(instr_, done());
4784    }
4785    virtual LInstruction* instr() OVERRIDE { return instr_; }
4786   private:
4787    LTaggedToI* instr_;
4788  };
4789
4790  LOperand* input = instr->value();
4791  DCHECK(input->IsRegister());
4792  Register input_reg = ToRegister(input);
4793  DCHECK(input_reg.is(ToRegister(instr->result())));
4794
4795  if (instr->hydrogen()->value()->representation().IsSmi()) {
4796    __ SmiUntag(input_reg);
4797  } else {
4798    DeferredTaggedToI* deferred =
4799        new(zone()) DeferredTaggedToI(this, instr);
4800    // Optimistically untag the input.
4801    // If the input is a HeapObject, SmiUntag will set the carry flag.
4802    STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
4803    __ SmiUntag(input_reg);
4804    // Branch to deferred code if the input was tagged.
4805    // The deferred code will take care of restoring the tag.
4806    __ j(carry, deferred->entry());
4807    __ bind(deferred->exit());
4808  }
4809}
4810
4811
4812void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4813  LOperand* input = instr->value();
4814  DCHECK(input->IsRegister());
4815  LOperand* temp = instr->temp();
4816  DCHECK(temp->IsRegister());
4817  LOperand* result = instr->result();
4818  DCHECK(result->IsDoubleRegister());
4819
4820  Register input_reg = ToRegister(input);
4821  Register temp_reg = ToRegister(temp);
4822
4823  HValue* value = instr->hydrogen()->value();
4824  NumberUntagDMode mode = value->representation().IsSmi()
4825      ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4826
4827  XMMRegister result_reg = ToDoubleRegister(result);
4828  EmitNumberUntagD(instr, input_reg, temp_reg, result_reg, mode);
4829}
4830
4831
4832void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4833  LOperand* input = instr->value();
4834  DCHECK(input->IsDoubleRegister());
4835  LOperand* result = instr->result();
4836  DCHECK(result->IsRegister());
4837  Register result_reg = ToRegister(result);
4838
4839  if (instr->truncating()) {
4840    XMMRegister input_reg = ToDoubleRegister(input);
4841    __ TruncateDoubleToI(result_reg, input_reg);
4842  } else {
4843    Label lost_precision, is_nan, minus_zero, done;
4844    XMMRegister input_reg = ToDoubleRegister(input);
4845    XMMRegister xmm_scratch = double_scratch0();
4846    Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4847    __ DoubleToI(result_reg, input_reg, xmm_scratch,
4848                 instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
4849                 &is_nan, &minus_zero, dist);
4850    __ jmp(&done, dist);
4851    __ bind(&lost_precision);
4852    DeoptimizeIf(no_condition, instr, "lost precision");
4853    __ bind(&is_nan);
4854    DeoptimizeIf(no_condition, instr, "NaN");
4855    __ bind(&minus_zero);
4856    DeoptimizeIf(no_condition, instr, "minus zero");
4857    __ bind(&done);
4858  }
4859}
4860
4861
4862void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4863  LOperand* input = instr->value();
4864  DCHECK(input->IsDoubleRegister());
4865  LOperand* result = instr->result();
4866  DCHECK(result->IsRegister());
4867  Register result_reg = ToRegister(result);
4868
4869  Label lost_precision, is_nan, minus_zero, done;
4870  XMMRegister input_reg = ToDoubleRegister(input);
4871  XMMRegister xmm_scratch = double_scratch0();
4872  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4873  __ DoubleToI(result_reg, input_reg, xmm_scratch,
4874               instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
4875               &minus_zero, dist);
4876  __ jmp(&done, dist);
4877  __ bind(&lost_precision);
4878  DeoptimizeIf(no_condition, instr, "lost precision");
4879  __ bind(&is_nan);
4880  DeoptimizeIf(no_condition, instr, "NaN");
4881  __ bind(&minus_zero);
4882  DeoptimizeIf(no_condition, instr, "minus zero");
4883  __ bind(&done);
4884  __ SmiTag(result_reg);
4885  DeoptimizeIf(overflow, instr, "overflow");
4886}
4887
4888
4889void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4890  LOperand* input = instr->value();
4891  __ test(ToOperand(input), Immediate(kSmiTagMask));
4892  DeoptimizeIf(not_zero, instr, "not a Smi");
4893}
4894
4895
4896void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4897  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4898    LOperand* input = instr->value();
4899    __ test(ToOperand(input), Immediate(kSmiTagMask));
4900    DeoptimizeIf(zero, instr, "Smi");
4901  }
4902}
4903
4904
4905void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4906  Register input = ToRegister(instr->value());
4907  Register temp = ToRegister(instr->temp());
4908
4909  __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
4910
4911  if (instr->hydrogen()->is_interval_check()) {
4912    InstanceType first;
4913    InstanceType last;
4914    instr->hydrogen()->GetCheckInterval(&first, &last);
4915
4916    __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
4917            static_cast<int8_t>(first));
4918
4919    // If there is only one type in the interval check for equality.
4920    if (first == last) {
4921      DeoptimizeIf(not_equal, instr, "wrong instance type");
4922    } else {
4923      DeoptimizeIf(below, instr, "wrong instance type");
4924      // Omit check for the last type.
4925      if (last != LAST_TYPE) {
4926        __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
4927                static_cast<int8_t>(last));
4928        DeoptimizeIf(above, instr, "wrong instance type");
4929      }
4930    }
4931  } else {
4932    uint8_t mask;
4933    uint8_t tag;
4934    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4935
4936    if (base::bits::IsPowerOfTwo32(mask)) {
4937      DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4938      __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
4939      DeoptimizeIf(tag == 0 ? not_zero : zero, instr, "wrong instance type");
4940    } else {
4941      __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
4942      __ and_(temp, mask);
4943      __ cmp(temp, tag);
4944      DeoptimizeIf(not_equal, instr, "wrong instance type");
4945    }
4946  }
4947}
4948
4949
4950void LCodeGen::DoCheckValue(LCheckValue* instr) {
4951  Handle<HeapObject> object = instr->hydrogen()->object().handle();
4952  if (instr->hydrogen()->object_in_new_space()) {
4953    Register reg = ToRegister(instr->value());
4954    Handle<Cell> cell = isolate()->factory()->NewCell(object);
4955    __ cmp(reg, Operand::ForCell(cell));
4956  } else {
4957    Operand operand = ToOperand(instr->value());
4958    __ cmp(operand, object);
4959  }
4960  DeoptimizeIf(not_equal, instr, "value mismatch");
4961}
4962
4963
4964void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4965  {
4966    PushSafepointRegistersScope scope(this);
4967    __ push(object);
4968    __ xor_(esi, esi);
4969    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4970    RecordSafepointWithRegisters(
4971        instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4972
4973    __ test(eax, Immediate(kSmiTagMask));
4974  }
4975  DeoptimizeIf(zero, instr, "instance migration failed");
4976}
4977
4978
4979void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4980  class DeferredCheckMaps FINAL : public LDeferredCode {
4981   public:
4982    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr,  Register object)
4983        : LDeferredCode(codegen), instr_(instr), object_(object) {
4984      SetExit(check_maps());
4985    }
4986    virtual void Generate() OVERRIDE {
4987      codegen()->DoDeferredInstanceMigration(instr_, object_);
4988    }
4989    Label* check_maps() { return &check_maps_; }
4990    virtual LInstruction* instr() OVERRIDE { return instr_; }
4991   private:
4992    LCheckMaps* instr_;
4993    Label check_maps_;
4994    Register object_;
4995  };
4996
4997  if (instr->hydrogen()->IsStabilityCheck()) {
4998    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4999    for (int i = 0; i < maps->size(); ++i) {
5000      AddStabilityDependency(maps->at(i).handle());
5001    }
5002    return;
5003  }
5004
5005  LOperand* input = instr->value();
5006  DCHECK(input->IsRegister());
5007  Register reg = ToRegister(input);
5008
5009  DeferredCheckMaps* deferred = NULL;
5010  if (instr->hydrogen()->HasMigrationTarget()) {
5011    deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5012    __ bind(deferred->check_maps());
5013  }
5014
5015  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5016  Label success;
5017  for (int i = 0; i < maps->size() - 1; i++) {
5018    Handle<Map> map = maps->at(i).handle();
5019    __ CompareMap(reg, map);
5020    __ j(equal, &success, Label::kNear);
5021  }
5022
5023  Handle<Map> map = maps->at(maps->size() - 1).handle();
5024  __ CompareMap(reg, map);
5025  if (instr->hydrogen()->HasMigrationTarget()) {
5026    __ j(not_equal, deferred->entry());
5027  } else {
5028    DeoptimizeIf(not_equal, instr, "wrong map");
5029  }
5030
5031  __ bind(&success);
5032}
5033
5034
5035void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5036  XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
5037  XMMRegister xmm_scratch = double_scratch0();
5038  Register result_reg = ToRegister(instr->result());
5039  __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
5040}
5041
5042
5043void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5044  DCHECK(instr->unclamped()->Equals(instr->result()));
5045  Register value_reg = ToRegister(instr->result());
5046  __ ClampUint8(value_reg);
5047}
5048
5049
5050void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5051  DCHECK(instr->unclamped()->Equals(instr->result()));
5052  Register input_reg = ToRegister(instr->unclamped());
5053  XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
5054  XMMRegister xmm_scratch = double_scratch0();
5055  Label is_smi, done, heap_number;
5056
5057  __ JumpIfSmi(input_reg, &is_smi);
5058
5059  // Check for heap number
5060  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5061         factory()->heap_number_map());
5062  __ j(equal, &heap_number, Label::kNear);
5063
5064  // Check for undefined. Undefined is converted to zero for clamping
5065  // conversions.
5066  __ cmp(input_reg, factory()->undefined_value());
5067  DeoptimizeIf(not_equal, instr, "not a heap number/undefined");
5068  __ mov(input_reg, 0);
5069  __ jmp(&done, Label::kNear);
5070
5071  // Heap number
5072  __ bind(&heap_number);
5073  __ movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
5074  __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
5075  __ jmp(&done, Label::kNear);
5076
5077  // smi
5078  __ bind(&is_smi);
5079  __ SmiUntag(input_reg);
5080  __ ClampUint8(input_reg);
5081  __ bind(&done);
5082}
5083
5084
5085void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5086  XMMRegister value_reg = ToDoubleRegister(instr->value());
5087  Register result_reg = ToRegister(instr->result());
5088  if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5089    if (CpuFeatures::IsSupported(SSE4_1)) {
5090      CpuFeatureScope scope2(masm(), SSE4_1);
5091      __ pextrd(result_reg, value_reg, 1);
5092    } else {
5093      XMMRegister xmm_scratch = double_scratch0();
5094      __ pshufd(xmm_scratch, value_reg, 1);
5095      __ movd(result_reg, xmm_scratch);
5096    }
5097  } else {
5098    __ movd(result_reg, value_reg);
5099  }
5100}
5101
5102
5103void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5104  Register hi_reg = ToRegister(instr->hi());
5105  Register lo_reg = ToRegister(instr->lo());
5106  XMMRegister result_reg = ToDoubleRegister(instr->result());
5107
5108  if (CpuFeatures::IsSupported(SSE4_1)) {
5109    CpuFeatureScope scope2(masm(), SSE4_1);
5110    __ movd(result_reg, lo_reg);
5111    __ pinsrd(result_reg, hi_reg, 1);
5112  } else {
5113    XMMRegister xmm_scratch = double_scratch0();
5114    __ movd(result_reg, hi_reg);
5115    __ psllq(result_reg, 32);
5116    __ movd(xmm_scratch, lo_reg);
5117    __ orps(result_reg, xmm_scratch);
5118  }
5119}
5120
5121
5122void LCodeGen::DoAllocate(LAllocate* instr) {
5123  class DeferredAllocate FINAL : public LDeferredCode {
5124   public:
5125    DeferredAllocate(LCodeGen* codegen,  LAllocate* instr)
5126        : LDeferredCode(codegen), instr_(instr) { }
5127    virtual void Generate() OVERRIDE {
5128      codegen()->DoDeferredAllocate(instr_);
5129    }
5130    virtual LInstruction* instr() OVERRIDE { return instr_; }
5131   private:
5132    LAllocate* instr_;
5133  };
5134
5135  DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
5136
5137  Register result = ToRegister(instr->result());
5138  Register temp = ToRegister(instr->temp());
5139
5140  // Allocate memory for the object.
5141  AllocationFlags flags = TAG_OBJECT;
5142  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5143    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5144  }
5145  if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5146    DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
5147    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5148    flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
5149  } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5150    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5151    flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
5152  }
5153
5154  if (instr->size()->IsConstantOperand()) {
5155    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5156    if (size <= Page::kMaxRegularHeapObjectSize) {
5157      __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5158    } else {
5159      __ jmp(deferred->entry());
5160    }
5161  } else {
5162    Register size = ToRegister(instr->size());
5163    __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5164  }
5165
5166  __ bind(deferred->exit());
5167
5168  if (instr->hydrogen()->MustPrefillWithFiller()) {
5169    if (instr->size()->IsConstantOperand()) {
5170      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5171      __ mov(temp, (size / kPointerSize) - 1);
5172    } else {
5173      temp = ToRegister(instr->size());
5174      __ shr(temp, kPointerSizeLog2);
5175      __ dec(temp);
5176    }
5177    Label loop;
5178    __ bind(&loop);
5179    __ mov(FieldOperand(result, temp, times_pointer_size, 0),
5180        isolate()->factory()->one_pointer_filler_map());
5181    __ dec(temp);
5182    __ j(not_zero, &loop);
5183  }
5184}
5185
5186
5187void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5188  Register result = ToRegister(instr->result());
5189
5190  // TODO(3095996): Get rid of this. For now, we need to make the
5191  // result register contain a valid pointer because it is already
5192  // contained in the register pointer map.
5193  __ Move(result, Immediate(Smi::FromInt(0)));
5194
5195  PushSafepointRegistersScope scope(this);
5196  if (instr->size()->IsRegister()) {
5197    Register size = ToRegister(instr->size());
5198    DCHECK(!size.is(result));
5199    __ SmiTag(ToRegister(instr->size()));
5200    __ push(size);
5201  } else {
5202    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5203    if (size >= 0 && size <= Smi::kMaxValue) {
5204      __ push(Immediate(Smi::FromInt(size)));
5205    } else {
5206      // We should never get here at runtime => abort
5207      __ int3();
5208      return;
5209    }
5210  }
5211
5212  int flags = AllocateDoubleAlignFlag::encode(
5213      instr->hydrogen()->MustAllocateDoubleAligned());
5214  if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5215    DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
5216    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5217    flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
5218  } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5219    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5220    flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
5221  } else {
5222    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5223  }
5224  __ push(Immediate(Smi::FromInt(flags)));
5225
5226  CallRuntimeFromDeferred(
5227      Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5228  __ StoreToSafepointRegisterSlot(result, eax);
5229}
5230
5231
5232void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5233  DCHECK(ToRegister(instr->value()).is(eax));
5234  __ push(eax);
5235  CallRuntime(Runtime::kToFastProperties, 1, instr);
5236}
5237
5238
5239void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5240  DCHECK(ToRegister(instr->context()).is(esi));
5241  Label materialized;
5242  // Registers will be used as follows:
5243  // ecx = literals array.
5244  // ebx = regexp literal.
5245  // eax = regexp literal clone.
5246  // esi = context.
5247  int literal_offset =
5248      FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5249  __ LoadHeapObject(ecx, instr->hydrogen()->literals());
5250  __ mov(ebx, FieldOperand(ecx, literal_offset));
5251  __ cmp(ebx, factory()->undefined_value());
5252  __ j(not_equal, &materialized, Label::kNear);
5253
5254  // Create regexp literal using runtime function
5255  // Result will be in eax.
5256  __ push(ecx);
5257  __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
5258  __ push(Immediate(instr->hydrogen()->pattern()));
5259  __ push(Immediate(instr->hydrogen()->flags()));
5260  CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
5261  __ mov(ebx, eax);
5262
5263  __ bind(&materialized);
5264  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5265  Label allocated, runtime_allocate;
5266  __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
5267  __ jmp(&allocated, Label::kNear);
5268
5269  __ bind(&runtime_allocate);
5270  __ push(ebx);
5271  __ push(Immediate(Smi::FromInt(size)));
5272  CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
5273  __ pop(ebx);
5274
5275  __ bind(&allocated);
5276  // Copy the content into the newly allocated memory.
5277  // (Unroll copy loop once for better throughput).
5278  for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
5279    __ mov(edx, FieldOperand(ebx, i));
5280    __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
5281    __ mov(FieldOperand(eax, i), edx);
5282    __ mov(FieldOperand(eax, i + kPointerSize), ecx);
5283  }
5284  if ((size % (2 * kPointerSize)) != 0) {
5285    __ mov(edx, FieldOperand(ebx, size - kPointerSize));
5286    __ mov(FieldOperand(eax, size - kPointerSize), edx);
5287  }
5288}
5289
5290
5291void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
5292  DCHECK(ToRegister(instr->context()).is(esi));
5293  // Use the fast case closure allocation code that allocates in new
5294  // space for nested functions that don't need literals cloning.
5295  bool pretenure = instr->hydrogen()->pretenure();
5296  if (!pretenure && instr->hydrogen()->has_no_literals()) {
5297    FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(),
5298                            instr->hydrogen()->kind());
5299    __ mov(ebx, Immediate(instr->hydrogen()->shared_info()));
5300    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5301  } else {
5302    __ push(esi);
5303    __ push(Immediate(instr->hydrogen()->shared_info()));
5304    __ push(Immediate(pretenure ? factory()->true_value()
5305                                : factory()->false_value()));
5306    CallRuntime(Runtime::kNewClosure, 3, instr);
5307  }
5308}
5309
5310
5311void LCodeGen::DoTypeof(LTypeof* instr) {
5312  DCHECK(ToRegister(instr->context()).is(esi));
5313  LOperand* input = instr->value();
5314  EmitPushTaggedOperand(input);
5315  CallRuntime(Runtime::kTypeof, 1, instr);
5316}
5317
5318
5319void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5320  Register input = ToRegister(instr->value());
5321  Condition final_branch_condition = EmitTypeofIs(instr, input);
5322  if (final_branch_condition != no_condition) {
5323    EmitBranch(instr, final_branch_condition);
5324  }
5325}
5326
5327
5328Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5329  Label* true_label = instr->TrueLabel(chunk_);
5330  Label* false_label = instr->FalseLabel(chunk_);
5331  Handle<String> type_name = instr->type_literal();
5332  int left_block = instr->TrueDestination(chunk_);
5333  int right_block = instr->FalseDestination(chunk_);
5334  int next_block = GetNextEmittedBlock();
5335
5336  Label::Distance true_distance = left_block == next_block ? Label::kNear
5337                                                           : Label::kFar;
5338  Label::Distance false_distance = right_block == next_block ? Label::kNear
5339                                                             : Label::kFar;
5340  Condition final_branch_condition = no_condition;
5341  if (String::Equals(type_name, factory()->number_string())) {
5342    __ JumpIfSmi(input, true_label, true_distance);
5343    __ cmp(FieldOperand(input, HeapObject::kMapOffset),
5344           factory()->heap_number_map());
5345    final_branch_condition = equal;
5346
5347  } else if (String::Equals(type_name, factory()->string_string())) {
5348    __ JumpIfSmi(input, false_label, false_distance);
5349    __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5350    __ j(above_equal, false_label, false_distance);
5351    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5352              1 << Map::kIsUndetectable);
5353    final_branch_condition = zero;
5354
5355  } else if (String::Equals(type_name, factory()->symbol_string())) {
5356    __ JumpIfSmi(input, false_label, false_distance);
5357    __ CmpObjectType(input, SYMBOL_TYPE, input);
5358    final_branch_condition = equal;
5359
5360  } else if (String::Equals(type_name, factory()->boolean_string())) {
5361    __ cmp(input, factory()->true_value());
5362    __ j(equal, true_label, true_distance);
5363    __ cmp(input, factory()->false_value());
5364    final_branch_condition = equal;
5365
5366  } else if (String::Equals(type_name, factory()->undefined_string())) {
5367    __ cmp(input, factory()->undefined_value());
5368    __ j(equal, true_label, true_distance);
5369    __ JumpIfSmi(input, false_label, false_distance);
5370    // Check for undetectable objects => true.
5371    __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
5372    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5373              1 << Map::kIsUndetectable);
5374    final_branch_condition = not_zero;
5375
5376  } else if (String::Equals(type_name, factory()->function_string())) {
5377    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5378    __ JumpIfSmi(input, false_label, false_distance);
5379    __ CmpObjectType(input, JS_FUNCTION_TYPE, input);
5380    __ j(equal, true_label, true_distance);
5381    __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
5382    final_branch_condition = equal;
5383
5384  } else if (String::Equals(type_name, factory()->object_string())) {
5385    __ JumpIfSmi(input, false_label, false_distance);
5386    __ cmp(input, factory()->null_value());
5387    __ j(equal, true_label, true_distance);
5388    __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
5389    __ j(below, false_label, false_distance);
5390    __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5391    __ j(above, false_label, false_distance);
5392    // Check for undetectable objects => false.
5393    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5394              1 << Map::kIsUndetectable);
5395    final_branch_condition = zero;
5396
5397  } else {
5398    __ jmp(false_label, false_distance);
5399  }
5400  return final_branch_condition;
5401}
5402
5403
5404void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
5405  Register temp = ToRegister(instr->temp());
5406
5407  EmitIsConstructCall(temp);
5408  EmitBranch(instr, equal);
5409}
5410
5411
5412void LCodeGen::EmitIsConstructCall(Register temp) {
5413  // Get the frame pointer for the calling frame.
5414  __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
5415
5416  // Skip the arguments adaptor frame if it exists.
5417  Label check_frame_marker;
5418  __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
5419         Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
5420  __ j(not_equal, &check_frame_marker, Label::kNear);
5421  __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
5422
5423  // Check the marker in the calling frame.
5424  __ bind(&check_frame_marker);
5425  __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
5426         Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
5427}
5428
5429
5430void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5431  if (!info()->IsStub()) {
5432    // Ensure that we have enough space after the previous lazy-bailout
5433    // instruction for patching the code here.
5434    int current_pc = masm()->pc_offset();
5435    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5436      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5437      __ Nop(padding_size);
5438    }
5439  }
5440  last_lazy_deopt_pc_ = masm()->pc_offset();
5441}
5442
5443
5444void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5445  last_lazy_deopt_pc_ = masm()->pc_offset();
5446  DCHECK(instr->HasEnvironment());
5447  LEnvironment* env = instr->environment();
5448  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5449  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5450}
5451
5452
5453void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5454  Deoptimizer::BailoutType type = instr->hydrogen()->type();
5455  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5456  // needed return address), even though the implementation of LAZY and EAGER is
5457  // now identical. When LAZY is eventually completely folded into EAGER, remove
5458  // the special case below.
5459  if (info()->IsStub() && type == Deoptimizer::EAGER) {
5460    type = Deoptimizer::LAZY;
5461  }
5462  DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
5463}
5464
5465
5466void LCodeGen::DoDummy(LDummy* instr) {
5467  // Nothing to see here, move on!
5468}
5469
5470
5471void LCodeGen::DoDummyUse(LDummyUse* instr) {
5472  // Nothing to see here, move on!
5473}
5474
5475
5476void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5477  PushSafepointRegistersScope scope(this);
5478  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
5479  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5480  RecordSafepointWithLazyDeopt(
5481      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5482  DCHECK(instr->HasEnvironment());
5483  LEnvironment* env = instr->environment();
5484  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5485}
5486
5487
5488void LCodeGen::DoStackCheck(LStackCheck* instr) {
5489  class DeferredStackCheck FINAL : public LDeferredCode {
5490   public:
5491    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5492        : LDeferredCode(codegen), instr_(instr) { }
5493    virtual void Generate() OVERRIDE {
5494      codegen()->DoDeferredStackCheck(instr_);
5495    }
5496    virtual LInstruction* instr() OVERRIDE { return instr_; }
5497   private:
5498    LStackCheck* instr_;
5499  };
5500
5501  DCHECK(instr->HasEnvironment());
5502  LEnvironment* env = instr->environment();
5503  // There is no LLazyBailout instruction for stack-checks. We have to
5504  // prepare for lazy deoptimization explicitly here.
5505  if (instr->hydrogen()->is_function_entry()) {
5506    // Perform stack overflow check.
5507    Label done;
5508    ExternalReference stack_limit =
5509        ExternalReference::address_of_stack_limit(isolate());
5510    __ cmp(esp, Operand::StaticVariable(stack_limit));
5511    __ j(above_equal, &done, Label::kNear);
5512
5513    DCHECK(instr->context()->IsRegister());
5514    DCHECK(ToRegister(instr->context()).is(esi));
5515    CallCode(isolate()->builtins()->StackCheck(),
5516             RelocInfo::CODE_TARGET,
5517             instr);
5518    __ bind(&done);
5519  } else {
5520    DCHECK(instr->hydrogen()->is_backwards_branch());
5521    // Perform stack overflow check if this goto needs it before jumping.
5522    DeferredStackCheck* deferred_stack_check =
5523        new(zone()) DeferredStackCheck(this, instr);
5524    ExternalReference stack_limit =
5525        ExternalReference::address_of_stack_limit(isolate());
5526    __ cmp(esp, Operand::StaticVariable(stack_limit));
5527    __ j(below, deferred_stack_check->entry());
5528    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5529    __ bind(instr->done_label());
5530    deferred_stack_check->SetExit(instr->done_label());
5531    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5532    // Don't record a deoptimization index for the safepoint here.
5533    // This will be done explicitly when emitting call and the safepoint in
5534    // the deferred code.
5535  }
5536}
5537
5538
5539void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5540  // This is a pseudo-instruction that ensures that the environment here is
5541  // properly registered for deoptimization and records the assembler's PC
5542  // offset.
5543  LEnvironment* environment = instr->environment();
5544
5545  // If the environment were already registered, we would have no way of
5546  // backpatching it with the spill slot operands.
5547  DCHECK(!environment->HasBeenRegistered());
5548  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5549
5550  GenerateOsrPrologue();
5551}
5552
5553
5554void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5555  DCHECK(ToRegister(instr->context()).is(esi));
5556  __ cmp(eax, isolate()->factory()->undefined_value());
5557  DeoptimizeIf(equal, instr, "undefined");
5558
5559  __ cmp(eax, isolate()->factory()->null_value());
5560  DeoptimizeIf(equal, instr, "null");
5561
5562  __ test(eax, Immediate(kSmiTagMask));
5563  DeoptimizeIf(zero, instr, "Smi");
5564
5565  STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5566  __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
5567  DeoptimizeIf(below_equal, instr, "wrong instance type");
5568
5569  Label use_cache, call_runtime;
5570  __ CheckEnumCache(&call_runtime);
5571
5572  __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
5573  __ jmp(&use_cache, Label::kNear);
5574
5575  // Get the set of properties to enumerate.
5576  __ bind(&call_runtime);
5577  __ push(eax);
5578  CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5579
5580  __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
5581         isolate()->factory()->meta_map());
5582  DeoptimizeIf(not_equal, instr, "wrong map");
5583  __ bind(&use_cache);
5584}
5585
5586
5587void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5588  Register map = ToRegister(instr->map());
5589  Register result = ToRegister(instr->result());
5590  Label load_cache, done;
5591  __ EnumLength(result, map);
5592  __ cmp(result, Immediate(Smi::FromInt(0)));
5593  __ j(not_equal, &load_cache, Label::kNear);
5594  __ mov(result, isolate()->factory()->empty_fixed_array());
5595  __ jmp(&done, Label::kNear);
5596
5597  __ bind(&load_cache);
5598  __ LoadInstanceDescriptors(map, result);
5599  __ mov(result,
5600         FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5601  __ mov(result,
5602         FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5603  __ bind(&done);
5604  __ test(result, result);
5605  DeoptimizeIf(equal, instr, "no cache");
5606}
5607
5608
5609void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5610  Register object = ToRegister(instr->value());
5611  __ cmp(ToRegister(instr->map()),
5612         FieldOperand(object, HeapObject::kMapOffset));
5613  DeoptimizeIf(not_equal, instr, "wrong map");
5614}
5615
5616
5617void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5618                                           Register object,
5619                                           Register index) {
5620  PushSafepointRegistersScope scope(this);
5621  __ push(object);
5622  __ push(index);
5623  __ xor_(esi, esi);
5624  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5625  RecordSafepointWithRegisters(
5626      instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5627  __ StoreToSafepointRegisterSlot(object, eax);
5628}
5629
5630
5631void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5632  class DeferredLoadMutableDouble FINAL : public LDeferredCode {
5633   public:
5634    DeferredLoadMutableDouble(LCodeGen* codegen,
5635                              LLoadFieldByIndex* instr,
5636                              Register object,
5637                              Register index)
5638        : LDeferredCode(codegen),
5639          instr_(instr),
5640          object_(object),
5641          index_(index) {
5642    }
5643    virtual void Generate() OVERRIDE {
5644      codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5645    }
5646    virtual LInstruction* instr() OVERRIDE { return instr_; }
5647   private:
5648    LLoadFieldByIndex* instr_;
5649    Register object_;
5650    Register index_;
5651  };
5652
5653  Register object = ToRegister(instr->object());
5654  Register index = ToRegister(instr->index());
5655
5656  DeferredLoadMutableDouble* deferred;
5657  deferred = new(zone()) DeferredLoadMutableDouble(
5658      this, instr, object, index);
5659
5660  Label out_of_object, done;
5661  __ test(index, Immediate(Smi::FromInt(1)));
5662  __ j(not_zero, deferred->entry());
5663
5664  __ sar(index, 1);
5665
5666  __ cmp(index, Immediate(0));
5667  __ j(less, &out_of_object, Label::kNear);
5668  __ mov(object, FieldOperand(object,
5669                              index,
5670                              times_half_pointer_size,
5671                              JSObject::kHeaderSize));
5672  __ jmp(&done, Label::kNear);
5673
5674  __ bind(&out_of_object);
5675  __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
5676  __ neg(index);
5677  // Index is now equal to out of object property index plus 1.
5678  __ mov(object, FieldOperand(object,
5679                              index,
5680                              times_half_pointer_size,
5681                              FixedArray::kHeaderSize - kPointerSize));
5682  __ bind(deferred->exit());
5683  __ bind(&done);
5684}
5685
5686
5687void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5688  Register context = ToRegister(instr->context());
5689  __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context);
5690}
5691
5692
5693void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5694  Handle<ScopeInfo> scope_info = instr->scope_info();
5695  __ Push(scope_info);
5696  __ push(ToRegister(instr->function()));
5697  CallRuntime(Runtime::kPushBlockContext, 2, instr);
5698  RecordSafepoint(Safepoint::kNoLazyDeopt);
5699}
5700
5701
5702#undef __
5703
5704} }  // namespace v8::internal
5705
5706#endif  // V8_TARGET_ARCH_IA32
5707