1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_IA32
8
9#include "src/base/bits.h"
10#include "src/base/division-by-constant.h"
11#include "src/bootstrapper.h"
12#include "src/codegen.h"
13#include "src/cpu-profiler.h"
14#include "src/debug.h"
15#include "src/isolate-inl.h"
16#include "src/runtime.h"
17#include "src/serialize.h"
18
19namespace v8 {
20namespace internal {
21
22// -------------------------------------------------------------------------
23// MacroAssembler implementation.
24
25MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
26    : Assembler(arg_isolate, buffer, size),
27      generating_stub_(false),
28      has_frame_(false) {
29  if (isolate() != NULL) {
30    // TODO(titzer): should we just use a null handle here instead?
31    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
32                                  isolate());
33  }
34}
35
36
37void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
38  DCHECK(!r.IsDouble());
39  if (r.IsInteger8()) {
40    movsx_b(dst, src);
41  } else if (r.IsUInteger8()) {
42    movzx_b(dst, src);
43  } else if (r.IsInteger16()) {
44    movsx_w(dst, src);
45  } else if (r.IsUInteger16()) {
46    movzx_w(dst, src);
47  } else {
48    mov(dst, src);
49  }
50}
51
52
53void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
54  DCHECK(!r.IsDouble());
55  if (r.IsInteger8() || r.IsUInteger8()) {
56    mov_b(dst, src);
57  } else if (r.IsInteger16() || r.IsUInteger16()) {
58    mov_w(dst, src);
59  } else {
60    if (r.IsHeapObject()) {
61      AssertNotSmi(src);
62    } else if (r.IsSmi()) {
63      AssertSmi(src);
64    }
65    mov(dst, src);
66  }
67}
68
69
70void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
71  if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
72    Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
73    mov(destination, value);
74    return;
75  }
76  ExternalReference roots_array_start =
77      ExternalReference::roots_array_start(isolate());
78  mov(destination, Immediate(index));
79  mov(destination, Operand::StaticArray(destination,
80                                        times_pointer_size,
81                                        roots_array_start));
82}
83
84
85void MacroAssembler::StoreRoot(Register source,
86                               Register scratch,
87                               Heap::RootListIndex index) {
88  DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
89  ExternalReference roots_array_start =
90      ExternalReference::roots_array_start(isolate());
91  mov(scratch, Immediate(index));
92  mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
93      source);
94}
95
96
97void MacroAssembler::CompareRoot(Register with,
98                                 Register scratch,
99                                 Heap::RootListIndex index) {
100  ExternalReference roots_array_start =
101      ExternalReference::roots_array_start(isolate());
102  mov(scratch, Immediate(index));
103  cmp(with, Operand::StaticArray(scratch,
104                                times_pointer_size,
105                                roots_array_start));
106}
107
108
109void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
110  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
111  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
112  cmp(with, value);
113}
114
115
116void MacroAssembler::CompareRoot(const Operand& with,
117                                 Heap::RootListIndex index) {
118  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
119  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
120  cmp(with, value);
121}
122
123
124void MacroAssembler::InNewSpace(
125    Register object,
126    Register scratch,
127    Condition cc,
128    Label* condition_met,
129    Label::Distance condition_met_distance) {
130  DCHECK(cc == equal || cc == not_equal);
131  if (scratch.is(object)) {
132    and_(scratch, Immediate(~Page::kPageAlignmentMask));
133  } else {
134    mov(scratch, Immediate(~Page::kPageAlignmentMask));
135    and_(scratch, object);
136  }
137  // Check that we can use a test_b.
138  DCHECK(MemoryChunk::IN_FROM_SPACE < 8);
139  DCHECK(MemoryChunk::IN_TO_SPACE < 8);
140  int mask = (1 << MemoryChunk::IN_FROM_SPACE)
141           | (1 << MemoryChunk::IN_TO_SPACE);
142  // If non-zero, the page belongs to new-space.
143  test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
144         static_cast<uint8_t>(mask));
145  j(cc, condition_met, condition_met_distance);
146}
147
148
149void MacroAssembler::RememberedSetHelper(
150    Register object,  // Only used for debug checks.
151    Register addr,
152    Register scratch,
153    SaveFPRegsMode save_fp,
154    MacroAssembler::RememberedSetFinalAction and_then) {
155  Label done;
156  if (emit_debug_code()) {
157    Label ok;
158    JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
159    int3();
160    bind(&ok);
161  }
162  // Load store buffer top.
163  ExternalReference store_buffer =
164      ExternalReference::store_buffer_top(isolate());
165  mov(scratch, Operand::StaticVariable(store_buffer));
166  // Store pointer to buffer.
167  mov(Operand(scratch, 0), addr);
168  // Increment buffer top.
169  add(scratch, Immediate(kPointerSize));
170  // Write back new top of buffer.
171  mov(Operand::StaticVariable(store_buffer), scratch);
172  // Call stub on end of buffer.
173  // Check for end of buffer.
174  test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
175  if (and_then == kReturnAtEnd) {
176    Label buffer_overflowed;
177    j(not_equal, &buffer_overflowed, Label::kNear);
178    ret(0);
179    bind(&buffer_overflowed);
180  } else {
181    DCHECK(and_then == kFallThroughAtEnd);
182    j(equal, &done, Label::kNear);
183  }
184  StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
185  CallStub(&store_buffer_overflow);
186  if (and_then == kReturnAtEnd) {
187    ret(0);
188  } else {
189    DCHECK(and_then == kFallThroughAtEnd);
190    bind(&done);
191  }
192}
193
194
195void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
196                                        XMMRegister scratch_reg,
197                                        Register result_reg) {
198  Label done;
199  Label conv_failure;
200  xorps(scratch_reg, scratch_reg);
201  cvtsd2si(result_reg, input_reg);
202  test(result_reg, Immediate(0xFFFFFF00));
203  j(zero, &done, Label::kNear);
204  cmp(result_reg, Immediate(0x1));
205  j(overflow, &conv_failure, Label::kNear);
206  mov(result_reg, Immediate(0));
207  setcc(sign, result_reg);
208  sub(result_reg, Immediate(1));
209  and_(result_reg, Immediate(255));
210  jmp(&done, Label::kNear);
211  bind(&conv_failure);
212  Move(result_reg, Immediate(0));
213  ucomisd(input_reg, scratch_reg);
214  j(below, &done, Label::kNear);
215  Move(result_reg, Immediate(255));
216  bind(&done);
217}
218
219
220void MacroAssembler::ClampUint8(Register reg) {
221  Label done;
222  test(reg, Immediate(0xFFFFFF00));
223  j(zero, &done, Label::kNear);
224  setcc(negative, reg);  // 1 if negative, 0 if positive.
225  dec_b(reg);  // 0 if negative, 255 if positive.
226  bind(&done);
227}
228
229
230void MacroAssembler::SlowTruncateToI(Register result_reg,
231                                     Register input_reg,
232                                     int offset) {
233  DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
234  call(stub.GetCode(), RelocInfo::CODE_TARGET);
235}
236
237
238void MacroAssembler::TruncateDoubleToI(Register result_reg,
239                                       XMMRegister input_reg) {
240  Label done;
241  cvttsd2si(result_reg, Operand(input_reg));
242  cmp(result_reg, 0x1);
243  j(no_overflow, &done, Label::kNear);
244
245  sub(esp, Immediate(kDoubleSize));
246  movsd(MemOperand(esp, 0), input_reg);
247  SlowTruncateToI(result_reg, esp, 0);
248  add(esp, Immediate(kDoubleSize));
249  bind(&done);
250}
251
252
253void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg,
254                               XMMRegister scratch,
255                               MinusZeroMode minus_zero_mode,
256                               Label* lost_precision, Label* is_nan,
257                               Label* minus_zero, Label::Distance dst) {
258  DCHECK(!input_reg.is(scratch));
259  cvttsd2si(result_reg, Operand(input_reg));
260  Cvtsi2sd(scratch, Operand(result_reg));
261  ucomisd(scratch, input_reg);
262  j(not_equal, lost_precision, dst);
263  j(parity_even, is_nan, dst);
264  if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
265    Label done;
266    // The integer converted back is equal to the original. We
267    // only have to test if we got -0 as an input.
268    test(result_reg, Operand(result_reg));
269    j(not_zero, &done, Label::kNear);
270    movmskpd(result_reg, input_reg);
271    // Bit 0 contains the sign of the double in input_reg.
272    // If input was positive, we are ok and return 0, otherwise
273    // jump to minus_zero.
274    and_(result_reg, 1);
275    j(not_zero, minus_zero, dst);
276    bind(&done);
277  }
278}
279
280
281void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
282                                           Register input_reg) {
283  Label done, slow_case;
284
285  if (CpuFeatures::IsSupported(SSE3)) {
286    CpuFeatureScope scope(this, SSE3);
287    Label convert;
288    // Use more powerful conversion when sse3 is available.
289    // Load x87 register with heap number.
290    fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
291    // Get exponent alone and check for too-big exponent.
292    mov(result_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
293    and_(result_reg, HeapNumber::kExponentMask);
294    const uint32_t kTooBigExponent =
295        (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
296    cmp(Operand(result_reg), Immediate(kTooBigExponent));
297    j(greater_equal, &slow_case, Label::kNear);
298
299    // Reserve space for 64 bit answer.
300    sub(Operand(esp), Immediate(kDoubleSize));
301    // Do conversion, which cannot fail because we checked the exponent.
302    fisttp_d(Operand(esp, 0));
303    mov(result_reg, Operand(esp, 0));  // Low word of answer is the result.
304    add(Operand(esp), Immediate(kDoubleSize));
305    jmp(&done, Label::kNear);
306
307    // Slow case.
308    bind(&slow_case);
309    if (input_reg.is(result_reg)) {
310      // Input is clobbered. Restore number from fpu stack
311      sub(Operand(esp), Immediate(kDoubleSize));
312      fstp_d(Operand(esp, 0));
313      SlowTruncateToI(result_reg, esp, 0);
314      add(esp, Immediate(kDoubleSize));
315    } else {
316      fstp(0);
317      SlowTruncateToI(result_reg, input_reg);
318    }
319  } else {
320    movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
321    cvttsd2si(result_reg, Operand(xmm0));
322    cmp(result_reg, 0x1);
323    j(no_overflow, &done, Label::kNear);
324    // Check if the input was 0x8000000 (kMinInt).
325    // If no, then we got an overflow and we deoptimize.
326    ExternalReference min_int = ExternalReference::address_of_min_int();
327    ucomisd(xmm0, Operand::StaticVariable(min_int));
328    j(not_equal, &slow_case, Label::kNear);
329    j(parity_even, &slow_case, Label::kNear);  // NaN.
330    jmp(&done, Label::kNear);
331
332    // Slow case.
333    bind(&slow_case);
334    if (input_reg.is(result_reg)) {
335      // Input is clobbered. Restore number from double scratch.
336      sub(esp, Immediate(kDoubleSize));
337      movsd(MemOperand(esp, 0), xmm0);
338      SlowTruncateToI(result_reg, esp, 0);
339      add(esp, Immediate(kDoubleSize));
340    } else {
341      SlowTruncateToI(result_reg, input_reg);
342    }
343  }
344  bind(&done);
345}
346
347
348void MacroAssembler::LoadUint32(XMMRegister dst,
349                                Register src) {
350  Label done;
351  cmp(src, Immediate(0));
352  ExternalReference uint32_bias =
353        ExternalReference::address_of_uint32_bias();
354  Cvtsi2sd(dst, src);
355  j(not_sign, &done, Label::kNear);
356  addsd(dst, Operand::StaticVariable(uint32_bias));
357  bind(&done);
358}
359
360
361void MacroAssembler::RecordWriteArray(
362    Register object,
363    Register value,
364    Register index,
365    SaveFPRegsMode save_fp,
366    RememberedSetAction remembered_set_action,
367    SmiCheck smi_check,
368    PointersToHereCheck pointers_to_here_check_for_value) {
369  // First, check if a write barrier is even needed. The tests below
370  // catch stores of Smis.
371  Label done;
372
373  // Skip barrier if writing a smi.
374  if (smi_check == INLINE_SMI_CHECK) {
375    DCHECK_EQ(0, kSmiTag);
376    test(value, Immediate(kSmiTagMask));
377    j(zero, &done);
378  }
379
380  // Array access: calculate the destination address in the same manner as
381  // KeyedStoreIC::GenerateGeneric.  Multiply a smi by 2 to get an offset
382  // into an array of words.
383  Register dst = index;
384  lea(dst, Operand(object, index, times_half_pointer_size,
385                   FixedArray::kHeaderSize - kHeapObjectTag));
386
387  RecordWrite(object, dst, value, save_fp, remembered_set_action,
388              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
389
390  bind(&done);
391
392  // Clobber clobbered input registers when running with the debug-code flag
393  // turned on to provoke errors.
394  if (emit_debug_code()) {
395    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
396    mov(index, Immediate(bit_cast<int32_t>(kZapValue)));
397  }
398}
399
400
401void MacroAssembler::RecordWriteField(
402    Register object,
403    int offset,
404    Register value,
405    Register dst,
406    SaveFPRegsMode save_fp,
407    RememberedSetAction remembered_set_action,
408    SmiCheck smi_check,
409    PointersToHereCheck pointers_to_here_check_for_value) {
410  // First, check if a write barrier is even needed. The tests below
411  // catch stores of Smis.
412  Label done;
413
414  // Skip barrier if writing a smi.
415  if (smi_check == INLINE_SMI_CHECK) {
416    JumpIfSmi(value, &done, Label::kNear);
417  }
418
419  // Although the object register is tagged, the offset is relative to the start
420  // of the object, so so offset must be a multiple of kPointerSize.
421  DCHECK(IsAligned(offset, kPointerSize));
422
423  lea(dst, FieldOperand(object, offset));
424  if (emit_debug_code()) {
425    Label ok;
426    test_b(dst, (1 << kPointerSizeLog2) - 1);
427    j(zero, &ok, Label::kNear);
428    int3();
429    bind(&ok);
430  }
431
432  RecordWrite(object, dst, value, save_fp, remembered_set_action,
433              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
434
435  bind(&done);
436
437  // Clobber clobbered input registers when running with the debug-code flag
438  // turned on to provoke errors.
439  if (emit_debug_code()) {
440    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
441    mov(dst, Immediate(bit_cast<int32_t>(kZapValue)));
442  }
443}
444
445
446void MacroAssembler::RecordWriteForMap(
447    Register object,
448    Handle<Map> map,
449    Register scratch1,
450    Register scratch2,
451    SaveFPRegsMode save_fp) {
452  Label done;
453
454  Register address = scratch1;
455  Register value = scratch2;
456  if (emit_debug_code()) {
457    Label ok;
458    lea(address, FieldOperand(object, HeapObject::kMapOffset));
459    test_b(address, (1 << kPointerSizeLog2) - 1);
460    j(zero, &ok, Label::kNear);
461    int3();
462    bind(&ok);
463  }
464
465  DCHECK(!object.is(value));
466  DCHECK(!object.is(address));
467  DCHECK(!value.is(address));
468  AssertNotSmi(object);
469
470  if (!FLAG_incremental_marking) {
471    return;
472  }
473
474  // Compute the address.
475  lea(address, FieldOperand(object, HeapObject::kMapOffset));
476
477  // A single check of the map's pages interesting flag suffices, since it is
478  // only set during incremental collection, and then it's also guaranteed that
479  // the from object's page's interesting flag is also set.  This optimization
480  // relies on the fact that maps can never be in new space.
481  DCHECK(!isolate()->heap()->InNewSpace(*map));
482  CheckPageFlagForMap(map,
483                      MemoryChunk::kPointersToHereAreInterestingMask,
484                      zero,
485                      &done,
486                      Label::kNear);
487
488  RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
489                       save_fp);
490  CallStub(&stub);
491
492  bind(&done);
493
494  // Count number of write barriers in generated code.
495  isolate()->counters()->write_barriers_static()->Increment();
496  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
497
498  // Clobber clobbered input registers when running with the debug-code flag
499  // turned on to provoke errors.
500  if (emit_debug_code()) {
501    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
502    mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue)));
503    mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue)));
504  }
505}
506
507
508void MacroAssembler::RecordWrite(
509    Register object,
510    Register address,
511    Register value,
512    SaveFPRegsMode fp_mode,
513    RememberedSetAction remembered_set_action,
514    SmiCheck smi_check,
515    PointersToHereCheck pointers_to_here_check_for_value) {
516  DCHECK(!object.is(value));
517  DCHECK(!object.is(address));
518  DCHECK(!value.is(address));
519  AssertNotSmi(object);
520
521  if (remembered_set_action == OMIT_REMEMBERED_SET &&
522      !FLAG_incremental_marking) {
523    return;
524  }
525
526  if (emit_debug_code()) {
527    Label ok;
528    cmp(value, Operand(address, 0));
529    j(equal, &ok, Label::kNear);
530    int3();
531    bind(&ok);
532  }
533
534  // First, check if a write barrier is even needed. The tests below
535  // catch stores of Smis and stores into young gen.
536  Label done;
537
538  if (smi_check == INLINE_SMI_CHECK) {
539    // Skip barrier if writing a smi.
540    JumpIfSmi(value, &done, Label::kNear);
541  }
542
543  if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
544    CheckPageFlag(value,
545                  value,  // Used as scratch.
546                  MemoryChunk::kPointersToHereAreInterestingMask,
547                  zero,
548                  &done,
549                  Label::kNear);
550  }
551  CheckPageFlag(object,
552                value,  // Used as scratch.
553                MemoryChunk::kPointersFromHereAreInterestingMask,
554                zero,
555                &done,
556                Label::kNear);
557
558  RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
559                       fp_mode);
560  CallStub(&stub);
561
562  bind(&done);
563
564  // Count number of write barriers in generated code.
565  isolate()->counters()->write_barriers_static()->Increment();
566  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
567
568  // Clobber clobbered registers when running with the debug-code flag
569  // turned on to provoke errors.
570  if (emit_debug_code()) {
571    mov(address, Immediate(bit_cast<int32_t>(kZapValue)));
572    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
573  }
574}
575
576
577void MacroAssembler::DebugBreak() {
578  Move(eax, Immediate(0));
579  mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
580  CEntryStub ces(isolate(), 1);
581  call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
582}
583
584
585void MacroAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) {
586  xorps(dst, dst);
587  cvtsi2sd(dst, src);
588}
589
590
591bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
592  static const int kMaxImmediateBits = 17;
593  if (!RelocInfo::IsNone(x.rmode_)) return false;
594  return !is_intn(x.x_, kMaxImmediateBits);
595}
596
597
598void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
599  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
600    Move(dst, Immediate(x.x_ ^ jit_cookie()));
601    xor_(dst, jit_cookie());
602  } else {
603    Move(dst, x);
604  }
605}
606
607
608void MacroAssembler::SafePush(const Immediate& x) {
609  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
610    push(Immediate(x.x_ ^ jit_cookie()));
611    xor_(Operand(esp, 0), Immediate(jit_cookie()));
612  } else {
613    push(x);
614  }
615}
616
617
618void MacroAssembler::CmpObjectType(Register heap_object,
619                                   InstanceType type,
620                                   Register map) {
621  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
622  CmpInstanceType(map, type);
623}
624
625
626void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
627  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
628       static_cast<int8_t>(type));
629}
630
631
632void MacroAssembler::CheckFastElements(Register map,
633                                       Label* fail,
634                                       Label::Distance distance) {
635  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
636  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
637  STATIC_ASSERT(FAST_ELEMENTS == 2);
638  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
639  cmpb(FieldOperand(map, Map::kBitField2Offset),
640       Map::kMaximumBitField2FastHoleyElementValue);
641  j(above, fail, distance);
642}
643
644
645void MacroAssembler::CheckFastObjectElements(Register map,
646                                             Label* fail,
647                                             Label::Distance distance) {
648  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
649  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
650  STATIC_ASSERT(FAST_ELEMENTS == 2);
651  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
652  cmpb(FieldOperand(map, Map::kBitField2Offset),
653       Map::kMaximumBitField2FastHoleySmiElementValue);
654  j(below_equal, fail, distance);
655  cmpb(FieldOperand(map, Map::kBitField2Offset),
656       Map::kMaximumBitField2FastHoleyElementValue);
657  j(above, fail, distance);
658}
659
660
661void MacroAssembler::CheckFastSmiElements(Register map,
662                                          Label* fail,
663                                          Label::Distance distance) {
664  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
665  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
666  cmpb(FieldOperand(map, Map::kBitField2Offset),
667       Map::kMaximumBitField2FastHoleySmiElementValue);
668  j(above, fail, distance);
669}
670
671
672void MacroAssembler::StoreNumberToDoubleElements(
673    Register maybe_number,
674    Register elements,
675    Register key,
676    Register scratch1,
677    XMMRegister scratch2,
678    Label* fail,
679    int elements_offset) {
680  Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
681  JumpIfSmi(maybe_number, &smi_value, Label::kNear);
682
683  CheckMap(maybe_number,
684           isolate()->factory()->heap_number_map(),
685           fail,
686           DONT_DO_SMI_CHECK);
687
688  // Double value, canonicalize NaN.
689  uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
690  cmp(FieldOperand(maybe_number, offset),
691      Immediate(kNaNOrInfinityLowerBoundUpper32));
692  j(greater_equal, &maybe_nan, Label::kNear);
693
694  bind(&not_nan);
695  ExternalReference canonical_nan_reference =
696      ExternalReference::address_of_canonical_non_hole_nan();
697  movsd(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
698  bind(&have_double_value);
699  movsd(FieldOperand(elements, key, times_4,
700                     FixedDoubleArray::kHeaderSize - elements_offset),
701        scratch2);
702  jmp(&done);
703
704  bind(&maybe_nan);
705  // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
706  // it's an Infinity, and the non-NaN code path applies.
707  j(greater, &is_nan, Label::kNear);
708  cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
709  j(zero, &not_nan);
710  bind(&is_nan);
711  movsd(scratch2, Operand::StaticVariable(canonical_nan_reference));
712  jmp(&have_double_value, Label::kNear);
713
714  bind(&smi_value);
715  // Value is a smi. Convert to a double and store.
716  // Preserve original value.
717  mov(scratch1, maybe_number);
718  SmiUntag(scratch1);
719  Cvtsi2sd(scratch2, scratch1);
720  movsd(FieldOperand(elements, key, times_4,
721                     FixedDoubleArray::kHeaderSize - elements_offset),
722        scratch2);
723  bind(&done);
724}
725
726
727void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
728  cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
729}
730
731
732void MacroAssembler::CheckMap(Register obj,
733                              Handle<Map> map,
734                              Label* fail,
735                              SmiCheckType smi_check_type) {
736  if (smi_check_type == DO_SMI_CHECK) {
737    JumpIfSmi(obj, fail);
738  }
739
740  CompareMap(obj, map);
741  j(not_equal, fail);
742}
743
744
745void MacroAssembler::DispatchMap(Register obj,
746                                 Register unused,
747                                 Handle<Map> map,
748                                 Handle<Code> success,
749                                 SmiCheckType smi_check_type) {
750  Label fail;
751  if (smi_check_type == DO_SMI_CHECK) {
752    JumpIfSmi(obj, &fail);
753  }
754  cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
755  j(equal, success);
756
757  bind(&fail);
758}
759
760
761Condition MacroAssembler::IsObjectStringType(Register heap_object,
762                                             Register map,
763                                             Register instance_type) {
764  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
765  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
766  STATIC_ASSERT(kNotStringTag != 0);
767  test(instance_type, Immediate(kIsNotStringMask));
768  return zero;
769}
770
771
772Condition MacroAssembler::IsObjectNameType(Register heap_object,
773                                           Register map,
774                                           Register instance_type) {
775  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
776  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
777  cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
778  return below_equal;
779}
780
781
782void MacroAssembler::IsObjectJSObjectType(Register heap_object,
783                                          Register map,
784                                          Register scratch,
785                                          Label* fail) {
786  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
787  IsInstanceJSObjectType(map, scratch, fail);
788}
789
790
791void MacroAssembler::IsInstanceJSObjectType(Register map,
792                                            Register scratch,
793                                            Label* fail) {
794  movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
795  sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
796  cmp(scratch,
797      LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
798  j(above, fail);
799}
800
801
802void MacroAssembler::FCmp() {
803  fucomip();
804  fstp(0);
805}
806
807
808void MacroAssembler::AssertNumber(Register object) {
809  if (emit_debug_code()) {
810    Label ok;
811    JumpIfSmi(object, &ok);
812    cmp(FieldOperand(object, HeapObject::kMapOffset),
813        isolate()->factory()->heap_number_map());
814    Check(equal, kOperandNotANumber);
815    bind(&ok);
816  }
817}
818
819
820void MacroAssembler::AssertSmi(Register object) {
821  if (emit_debug_code()) {
822    test(object, Immediate(kSmiTagMask));
823    Check(equal, kOperandIsNotASmi);
824  }
825}
826
827
828void MacroAssembler::AssertString(Register object) {
829  if (emit_debug_code()) {
830    test(object, Immediate(kSmiTagMask));
831    Check(not_equal, kOperandIsASmiAndNotAString);
832    push(object);
833    mov(object, FieldOperand(object, HeapObject::kMapOffset));
834    CmpInstanceType(object, FIRST_NONSTRING_TYPE);
835    pop(object);
836    Check(below, kOperandIsNotAString);
837  }
838}
839
840
841void MacroAssembler::AssertName(Register object) {
842  if (emit_debug_code()) {
843    test(object, Immediate(kSmiTagMask));
844    Check(not_equal, kOperandIsASmiAndNotAName);
845    push(object);
846    mov(object, FieldOperand(object, HeapObject::kMapOffset));
847    CmpInstanceType(object, LAST_NAME_TYPE);
848    pop(object);
849    Check(below_equal, kOperandIsNotAName);
850  }
851}
852
853
854void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
855  if (emit_debug_code()) {
856    Label done_checking;
857    AssertNotSmi(object);
858    cmp(object, isolate()->factory()->undefined_value());
859    j(equal, &done_checking);
860    cmp(FieldOperand(object, 0),
861        Immediate(isolate()->factory()->allocation_site_map()));
862    Assert(equal, kExpectedUndefinedOrCell);
863    bind(&done_checking);
864  }
865}
866
867
868void MacroAssembler::AssertNotSmi(Register object) {
869  if (emit_debug_code()) {
870    test(object, Immediate(kSmiTagMask));
871    Check(not_equal, kOperandIsASmi);
872  }
873}
874
875
876void MacroAssembler::StubPrologue() {
877  push(ebp);  // Caller's frame pointer.
878  mov(ebp, esp);
879  push(esi);  // Callee's context.
880  push(Immediate(Smi::FromInt(StackFrame::STUB)));
881}
882
883
884void MacroAssembler::Prologue(bool code_pre_aging) {
885  PredictableCodeSizeScope predictible_code_size_scope(this,
886      kNoCodeAgeSequenceLength);
887  if (code_pre_aging) {
888      // Pre-age the code.
889    call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
890        RelocInfo::CODE_AGE_SEQUENCE);
891    Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
892  } else {
893    push(ebp);  // Caller's frame pointer.
894    mov(ebp, esp);
895    push(esi);  // Callee's context.
896    push(edi);  // Callee's JS function.
897  }
898}
899
900
901void MacroAssembler::EnterFrame(StackFrame::Type type) {
902  push(ebp);
903  mov(ebp, esp);
904  push(esi);
905  push(Immediate(Smi::FromInt(type)));
906  push(Immediate(CodeObject()));
907  if (emit_debug_code()) {
908    cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
909    Check(not_equal, kCodeObjectNotProperlyPatched);
910  }
911}
912
913
914void MacroAssembler::LeaveFrame(StackFrame::Type type) {
915  if (emit_debug_code()) {
916    cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
917        Immediate(Smi::FromInt(type)));
918    Check(equal, kStackFrameTypesMustMatch);
919  }
920  leave();
921}
922
923
924void MacroAssembler::EnterExitFramePrologue() {
925  // Set up the frame structure on the stack.
926  DCHECK(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
927  DCHECK(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
928  DCHECK(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
929  push(ebp);
930  mov(ebp, esp);
931
932  // Reserve room for entry stack pointer and push the code object.
933  DCHECK(ExitFrameConstants::kSPOffset  == -1 * kPointerSize);
934  push(Immediate(0));  // Saved entry sp, patched before call.
935  push(Immediate(CodeObject()));  // Accessed from ExitFrame::code_slot.
936
937  // Save the frame pointer and the context in top.
938  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
939  ExternalReference context_address(Isolate::kContextAddress, isolate());
940  mov(Operand::StaticVariable(c_entry_fp_address), ebp);
941  mov(Operand::StaticVariable(context_address), esi);
942}
943
944
945void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
946  // Optionally save all XMM registers.
947  if (save_doubles) {
948    int space = XMMRegister::kMaxNumRegisters * kDoubleSize +
949                argc * kPointerSize;
950    sub(esp, Immediate(space));
951    const int offset = -2 * kPointerSize;
952    for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
953      XMMRegister reg = XMMRegister::from_code(i);
954      movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
955    }
956  } else {
957    sub(esp, Immediate(argc * kPointerSize));
958  }
959
960  // Get the required frame alignment for the OS.
961  const int kFrameAlignment = base::OS::ActivationFrameAlignment();
962  if (kFrameAlignment > 0) {
963    DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
964    and_(esp, -kFrameAlignment);
965  }
966
967  // Patch the saved entry sp.
968  mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
969}
970
971
972void MacroAssembler::EnterExitFrame(bool save_doubles) {
973  EnterExitFramePrologue();
974
975  // Set up argc and argv in callee-saved registers.
976  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
977  mov(edi, eax);
978  lea(esi, Operand(ebp, eax, times_4, offset));
979
980  // Reserve space for argc, argv and isolate.
981  EnterExitFrameEpilogue(3, save_doubles);
982}
983
984
985void MacroAssembler::EnterApiExitFrame(int argc) {
986  EnterExitFramePrologue();
987  EnterExitFrameEpilogue(argc, false);
988}
989
990
991void MacroAssembler::LeaveExitFrame(bool save_doubles) {
992  // Optionally restore all XMM registers.
993  if (save_doubles) {
994    const int offset = -2 * kPointerSize;
995    for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
996      XMMRegister reg = XMMRegister::from_code(i);
997      movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
998    }
999  }
1000
1001  // Get the return address from the stack and restore the frame pointer.
1002  mov(ecx, Operand(ebp, 1 * kPointerSize));
1003  mov(ebp, Operand(ebp, 0 * kPointerSize));
1004
1005  // Pop the arguments and the receiver from the caller stack.
1006  lea(esp, Operand(esi, 1 * kPointerSize));
1007
1008  // Push the return address to get ready to return.
1009  push(ecx);
1010
1011  LeaveExitFrameEpilogue(true);
1012}
1013
1014
1015void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
1016  // Restore current context from top and clear it in debug mode.
1017  ExternalReference context_address(Isolate::kContextAddress, isolate());
1018  if (restore_context) {
1019    mov(esi, Operand::StaticVariable(context_address));
1020  }
1021#ifdef DEBUG
1022  mov(Operand::StaticVariable(context_address), Immediate(0));
1023#endif
1024
1025  // Clear the top frame.
1026  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
1027                                       isolate());
1028  mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
1029}
1030
1031
1032void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
1033  mov(esp, ebp);
1034  pop(ebp);
1035
1036  LeaveExitFrameEpilogue(restore_context);
1037}
1038
1039
1040void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1041                                    int handler_index) {
1042  // Adjust this code if not the case.
1043  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1044  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1045  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1046  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1047  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1048  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1049
1050  // We will build up the handler from the bottom by pushing on the stack.
1051  // First push the frame pointer and context.
1052  if (kind == StackHandler::JS_ENTRY) {
1053    // The frame pointer does not point to a JS frame so we save NULL for
1054    // ebp. We expect the code throwing an exception to check ebp before
1055    // dereferencing it to restore the context.
1056    push(Immediate(0));  // NULL frame pointer.
1057    push(Immediate(Smi::FromInt(0)));  // No context.
1058  } else {
1059    push(ebp);
1060    push(esi);
1061  }
1062  // Push the state and the code object.
1063  unsigned state =
1064      StackHandler::IndexField::encode(handler_index) |
1065      StackHandler::KindField::encode(kind);
1066  push(Immediate(state));
1067  Push(CodeObject());
1068
1069  // Link the current handler as the next handler.
1070  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1071  push(Operand::StaticVariable(handler_address));
1072  // Set this new handler as the current one.
1073  mov(Operand::StaticVariable(handler_address), esp);
1074}
1075
1076
1077void MacroAssembler::PopTryHandler() {
1078  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1079  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1080  pop(Operand::StaticVariable(handler_address));
1081  add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
1082}
1083
1084
1085void MacroAssembler::JumpToHandlerEntry() {
1086  // Compute the handler entry address and jump to it.  The handler table is
1087  // a fixed array of (smi-tagged) code offsets.
1088  // eax = exception, edi = code object, edx = state.
1089  mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
1090  shr(edx, StackHandler::kKindWidth);
1091  mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
1092  SmiUntag(edx);
1093  lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
1094  jmp(edi);
1095}
1096
1097
1098void MacroAssembler::Throw(Register value) {
1099  // Adjust this code if not the case.
1100  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1101  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1102  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1103  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1104  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1105  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1106
1107  // The exception is expected in eax.
1108  if (!value.is(eax)) {
1109    mov(eax, value);
1110  }
1111  // Drop the stack pointer to the top of the top handler.
1112  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1113  mov(esp, Operand::StaticVariable(handler_address));
1114  // Restore the next handler.
1115  pop(Operand::StaticVariable(handler_address));
1116
1117  // Remove the code object and state, compute the handler address in edi.
1118  pop(edi);  // Code object.
1119  pop(edx);  // Index and state.
1120
1121  // Restore the context and frame pointer.
1122  pop(esi);  // Context.
1123  pop(ebp);  // Frame pointer.
1124
1125  // If the handler is a JS frame, restore the context to the frame.
1126  // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
1127  // ebp or esi.
1128  Label skip;
1129  test(esi, esi);
1130  j(zero, &skip, Label::kNear);
1131  mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1132  bind(&skip);
1133
1134  JumpToHandlerEntry();
1135}
1136
1137
1138void MacroAssembler::ThrowUncatchable(Register value) {
1139  // Adjust this code if not the case.
1140  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1141  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1142  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1143  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1144  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1145  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1146
1147  // The exception is expected in eax.
1148  if (!value.is(eax)) {
1149    mov(eax, value);
1150  }
1151  // Drop the stack pointer to the top of the top stack handler.
1152  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1153  mov(esp, Operand::StaticVariable(handler_address));
1154
1155  // Unwind the handlers until the top ENTRY handler is found.
1156  Label fetch_next, check_kind;
1157  jmp(&check_kind, Label::kNear);
1158  bind(&fetch_next);
1159  mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
1160
1161  bind(&check_kind);
1162  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1163  test(Operand(esp, StackHandlerConstants::kStateOffset),
1164       Immediate(StackHandler::KindField::kMask));
1165  j(not_zero, &fetch_next);
1166
1167  // Set the top handler address to next handler past the top ENTRY handler.
1168  pop(Operand::StaticVariable(handler_address));
1169
1170  // Remove the code object and state, compute the handler address in edi.
1171  pop(edi);  // Code object.
1172  pop(edx);  // Index and state.
1173
1174  // Clear the context pointer and frame pointer (0 was saved in the handler).
1175  pop(esi);
1176  pop(ebp);
1177
1178  JumpToHandlerEntry();
1179}
1180
1181
1182void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1183                                            Register scratch1,
1184                                            Register scratch2,
1185                                            Label* miss) {
1186  Label same_contexts;
1187
1188  DCHECK(!holder_reg.is(scratch1));
1189  DCHECK(!holder_reg.is(scratch2));
1190  DCHECK(!scratch1.is(scratch2));
1191
1192  // Load current lexical context from the stack frame.
1193  mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
1194
1195  // When generating debug code, make sure the lexical context is set.
1196  if (emit_debug_code()) {
1197    cmp(scratch1, Immediate(0));
1198    Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
1199  }
1200  // Load the native context of the current context.
1201  int offset =
1202      Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1203  mov(scratch1, FieldOperand(scratch1, offset));
1204  mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
1205
1206  // Check the context is a native context.
1207  if (emit_debug_code()) {
1208    // Read the first word and compare to native_context_map.
1209    cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
1210        isolate()->factory()->native_context_map());
1211    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1212  }
1213
1214  // Check if both contexts are the same.
1215  cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1216  j(equal, &same_contexts);
1217
1218  // Compare security tokens, save holder_reg on the stack so we can use it
1219  // as a temporary register.
1220  //
1221  // Check that the security token in the calling global object is
1222  // compatible with the security token in the receiving global
1223  // object.
1224  mov(scratch2,
1225      FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1226
1227  // Check the context is a native context.
1228  if (emit_debug_code()) {
1229    cmp(scratch2, isolate()->factory()->null_value());
1230    Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
1231
1232    // Read the first word and compare to native_context_map(),
1233    cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
1234        isolate()->factory()->native_context_map());
1235    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1236  }
1237
1238  int token_offset = Context::kHeaderSize +
1239                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
1240  mov(scratch1, FieldOperand(scratch1, token_offset));
1241  cmp(scratch1, FieldOperand(scratch2, token_offset));
1242  j(not_equal, miss);
1243
1244  bind(&same_contexts);
1245}
1246
1247
1248// Compute the hash code from the untagged key.  This must be kept in sync with
1249// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
1250// code-stub-hydrogen.cc
1251//
1252// Note: r0 will contain hash code
1253void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
1254  // Xor original key with a seed.
1255  if (serializer_enabled()) {
1256    ExternalReference roots_array_start =
1257        ExternalReference::roots_array_start(isolate());
1258    mov(scratch, Immediate(Heap::kHashSeedRootIndex));
1259    mov(scratch,
1260        Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
1261    SmiUntag(scratch);
1262    xor_(r0, scratch);
1263  } else {
1264    int32_t seed = isolate()->heap()->HashSeed();
1265    xor_(r0, Immediate(seed));
1266  }
1267
1268  // hash = ~hash + (hash << 15);
1269  mov(scratch, r0);
1270  not_(r0);
1271  shl(scratch, 15);
1272  add(r0, scratch);
1273  // hash = hash ^ (hash >> 12);
1274  mov(scratch, r0);
1275  shr(scratch, 12);
1276  xor_(r0, scratch);
1277  // hash = hash + (hash << 2);
1278  lea(r0, Operand(r0, r0, times_4, 0));
1279  // hash = hash ^ (hash >> 4);
1280  mov(scratch, r0);
1281  shr(scratch, 4);
1282  xor_(r0, scratch);
1283  // hash = hash * 2057;
1284  imul(r0, r0, 2057);
1285  // hash = hash ^ (hash >> 16);
1286  mov(scratch, r0);
1287  shr(scratch, 16);
1288  xor_(r0, scratch);
1289}
1290
1291
1292
1293void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1294                                              Register elements,
1295                                              Register key,
1296                                              Register r0,
1297                                              Register r1,
1298                                              Register r2,
1299                                              Register result) {
1300  // Register use:
1301  //
1302  // elements - holds the slow-case elements of the receiver and is unchanged.
1303  //
1304  // key      - holds the smi key on entry and is unchanged.
1305  //
1306  // Scratch registers:
1307  //
1308  // r0 - holds the untagged key on entry and holds the hash once computed.
1309  //
1310  // r1 - used to hold the capacity mask of the dictionary
1311  //
1312  // r2 - used for the index into the dictionary.
1313  //
1314  // result - holds the result on exit if the load succeeds and we fall through.
1315
1316  Label done;
1317
1318  GetNumberHash(r0, r1);
1319
1320  // Compute capacity mask.
1321  mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
1322  shr(r1, kSmiTagSize);  // convert smi to int
1323  dec(r1);
1324
1325  // Generate an unrolled loop that performs a few probes before giving up.
1326  for (int i = 0; i < kNumberDictionaryProbes; i++) {
1327    // Use r2 for index calculations and keep the hash intact in r0.
1328    mov(r2, r0);
1329    // Compute the masked index: (hash + i + i * i) & mask.
1330    if (i > 0) {
1331      add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
1332    }
1333    and_(r2, r1);
1334
1335    // Scale the index by multiplying by the entry size.
1336    DCHECK(SeededNumberDictionary::kEntrySize == 3);
1337    lea(r2, Operand(r2, r2, times_2, 0));  // r2 = r2 * 3
1338
1339    // Check if the key matches.
1340    cmp(key, FieldOperand(elements,
1341                          r2,
1342                          times_pointer_size,
1343                          SeededNumberDictionary::kElementsStartOffset));
1344    if (i != (kNumberDictionaryProbes - 1)) {
1345      j(equal, &done);
1346    } else {
1347      j(not_equal, miss);
1348    }
1349  }
1350
1351  bind(&done);
1352  // Check that the value is a normal propety.
1353  const int kDetailsOffset =
1354      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1355  DCHECK_EQ(NORMAL, 0);
1356  test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
1357       Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
1358  j(not_zero, miss);
1359
1360  // Get the value at the masked, scaled index.
1361  const int kValueOffset =
1362      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1363  mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
1364}
1365
1366
1367void MacroAssembler::LoadAllocationTopHelper(Register result,
1368                                             Register scratch,
1369                                             AllocationFlags flags) {
1370  ExternalReference allocation_top =
1371      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1372
1373  // Just return if allocation top is already known.
1374  if ((flags & RESULT_CONTAINS_TOP) != 0) {
1375    // No use of scratch if allocation top is provided.
1376    DCHECK(scratch.is(no_reg));
1377#ifdef DEBUG
1378    // Assert that result actually contains top on entry.
1379    cmp(result, Operand::StaticVariable(allocation_top));
1380    Check(equal, kUnexpectedAllocationTop);
1381#endif
1382    return;
1383  }
1384
1385  // Move address of new object to result. Use scratch register if available.
1386  if (scratch.is(no_reg)) {
1387    mov(result, Operand::StaticVariable(allocation_top));
1388  } else {
1389    mov(scratch, Immediate(allocation_top));
1390    mov(result, Operand(scratch, 0));
1391  }
1392}
1393
1394
1395void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
1396                                               Register scratch,
1397                                               AllocationFlags flags) {
1398  if (emit_debug_code()) {
1399    test(result_end, Immediate(kObjectAlignmentMask));
1400    Check(zero, kUnalignedAllocationInNewSpace);
1401  }
1402
1403  ExternalReference allocation_top =
1404      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1405
1406  // Update new top. Use scratch if available.
1407  if (scratch.is(no_reg)) {
1408    mov(Operand::StaticVariable(allocation_top), result_end);
1409  } else {
1410    mov(Operand(scratch, 0), result_end);
1411  }
1412}
1413
1414
1415void MacroAssembler::Allocate(int object_size,
1416                              Register result,
1417                              Register result_end,
1418                              Register scratch,
1419                              Label* gc_required,
1420                              AllocationFlags flags) {
1421  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1422  DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
1423  if (!FLAG_inline_new) {
1424    if (emit_debug_code()) {
1425      // Trash the registers to simulate an allocation failure.
1426      mov(result, Immediate(0x7091));
1427      if (result_end.is_valid()) {
1428        mov(result_end, Immediate(0x7191));
1429      }
1430      if (scratch.is_valid()) {
1431        mov(scratch, Immediate(0x7291));
1432      }
1433    }
1434    jmp(gc_required);
1435    return;
1436  }
1437  DCHECK(!result.is(result_end));
1438
1439  // Load address of new object into result.
1440  LoadAllocationTopHelper(result, scratch, flags);
1441
1442  ExternalReference allocation_limit =
1443      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1444
1445  // Align the next allocation. Storing the filler map without checking top is
1446  // safe in new-space because the limit of the heap is aligned there.
1447  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1448    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1449    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1450    Label aligned;
1451    test(result, Immediate(kDoubleAlignmentMask));
1452    j(zero, &aligned, Label::kNear);
1453    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1454      cmp(result, Operand::StaticVariable(allocation_limit));
1455      j(above_equal, gc_required);
1456    }
1457    mov(Operand(result, 0),
1458        Immediate(isolate()->factory()->one_pointer_filler_map()));
1459    add(result, Immediate(kDoubleSize / 2));
1460    bind(&aligned);
1461  }
1462
1463  // Calculate new top and bail out if space is exhausted.
1464  Register top_reg = result_end.is_valid() ? result_end : result;
1465  if (!top_reg.is(result)) {
1466    mov(top_reg, result);
1467  }
1468  add(top_reg, Immediate(object_size));
1469  j(carry, gc_required);
1470  cmp(top_reg, Operand::StaticVariable(allocation_limit));
1471  j(above, gc_required);
1472
1473  // Update allocation top.
1474  UpdateAllocationTopHelper(top_reg, scratch, flags);
1475
1476  // Tag result if requested.
1477  bool tag_result = (flags & TAG_OBJECT) != 0;
1478  if (top_reg.is(result)) {
1479    if (tag_result) {
1480      sub(result, Immediate(object_size - kHeapObjectTag));
1481    } else {
1482      sub(result, Immediate(object_size));
1483    }
1484  } else if (tag_result) {
1485    DCHECK(kHeapObjectTag == 1);
1486    inc(result);
1487  }
1488}
1489
1490
1491void MacroAssembler::Allocate(int header_size,
1492                              ScaleFactor element_size,
1493                              Register element_count,
1494                              RegisterValueType element_count_type,
1495                              Register result,
1496                              Register result_end,
1497                              Register scratch,
1498                              Label* gc_required,
1499                              AllocationFlags flags) {
1500  DCHECK((flags & SIZE_IN_WORDS) == 0);
1501  if (!FLAG_inline_new) {
1502    if (emit_debug_code()) {
1503      // Trash the registers to simulate an allocation failure.
1504      mov(result, Immediate(0x7091));
1505      mov(result_end, Immediate(0x7191));
1506      if (scratch.is_valid()) {
1507        mov(scratch, Immediate(0x7291));
1508      }
1509      // Register element_count is not modified by the function.
1510    }
1511    jmp(gc_required);
1512    return;
1513  }
1514  DCHECK(!result.is(result_end));
1515
1516  // Load address of new object into result.
1517  LoadAllocationTopHelper(result, scratch, flags);
1518
1519  ExternalReference allocation_limit =
1520      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1521
1522  // Align the next allocation. Storing the filler map without checking top is
1523  // safe in new-space because the limit of the heap is aligned there.
1524  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1525    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1526    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1527    Label aligned;
1528    test(result, Immediate(kDoubleAlignmentMask));
1529    j(zero, &aligned, Label::kNear);
1530    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1531      cmp(result, Operand::StaticVariable(allocation_limit));
1532      j(above_equal, gc_required);
1533    }
1534    mov(Operand(result, 0),
1535        Immediate(isolate()->factory()->one_pointer_filler_map()));
1536    add(result, Immediate(kDoubleSize / 2));
1537    bind(&aligned);
1538  }
1539
1540  // Calculate new top and bail out if space is exhausted.
1541  // We assume that element_count*element_size + header_size does not
1542  // overflow.
1543  if (element_count_type == REGISTER_VALUE_IS_SMI) {
1544    STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
1545    STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
1546    STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
1547    DCHECK(element_size >= times_2);
1548    DCHECK(kSmiTagSize == 1);
1549    element_size = static_cast<ScaleFactor>(element_size - 1);
1550  } else {
1551    DCHECK(element_count_type == REGISTER_VALUE_IS_INT32);
1552  }
1553  lea(result_end, Operand(element_count, element_size, header_size));
1554  add(result_end, result);
1555  j(carry, gc_required);
1556  cmp(result_end, Operand::StaticVariable(allocation_limit));
1557  j(above, gc_required);
1558
1559  if ((flags & TAG_OBJECT) != 0) {
1560    DCHECK(kHeapObjectTag == 1);
1561    inc(result);
1562  }
1563
1564  // Update allocation top.
1565  UpdateAllocationTopHelper(result_end, scratch, flags);
1566}
1567
1568
1569void MacroAssembler::Allocate(Register object_size,
1570                              Register result,
1571                              Register result_end,
1572                              Register scratch,
1573                              Label* gc_required,
1574                              AllocationFlags flags) {
1575  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1576  if (!FLAG_inline_new) {
1577    if (emit_debug_code()) {
1578      // Trash the registers to simulate an allocation failure.
1579      mov(result, Immediate(0x7091));
1580      mov(result_end, Immediate(0x7191));
1581      if (scratch.is_valid()) {
1582        mov(scratch, Immediate(0x7291));
1583      }
1584      // object_size is left unchanged by this function.
1585    }
1586    jmp(gc_required);
1587    return;
1588  }
1589  DCHECK(!result.is(result_end));
1590
1591  // Load address of new object into result.
1592  LoadAllocationTopHelper(result, scratch, flags);
1593
1594  ExternalReference allocation_limit =
1595      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1596
1597  // Align the next allocation. Storing the filler map without checking top is
1598  // safe in new-space because the limit of the heap is aligned there.
1599  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1600    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1601    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1602    Label aligned;
1603    test(result, Immediate(kDoubleAlignmentMask));
1604    j(zero, &aligned, Label::kNear);
1605    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1606      cmp(result, Operand::StaticVariable(allocation_limit));
1607      j(above_equal, gc_required);
1608    }
1609    mov(Operand(result, 0),
1610        Immediate(isolate()->factory()->one_pointer_filler_map()));
1611    add(result, Immediate(kDoubleSize / 2));
1612    bind(&aligned);
1613  }
1614
1615  // Calculate new top and bail out if space is exhausted.
1616  if (!object_size.is(result_end)) {
1617    mov(result_end, object_size);
1618  }
1619  add(result_end, result);
1620  j(carry, gc_required);
1621  cmp(result_end, Operand::StaticVariable(allocation_limit));
1622  j(above, gc_required);
1623
1624  // Tag result if requested.
1625  if ((flags & TAG_OBJECT) != 0) {
1626    DCHECK(kHeapObjectTag == 1);
1627    inc(result);
1628  }
1629
1630  // Update allocation top.
1631  UpdateAllocationTopHelper(result_end, scratch, flags);
1632}
1633
1634
1635void MacroAssembler::UndoAllocationInNewSpace(Register object) {
1636  ExternalReference new_space_allocation_top =
1637      ExternalReference::new_space_allocation_top_address(isolate());
1638
1639  // Make sure the object has no tag before resetting top.
1640  and_(object, Immediate(~kHeapObjectTagMask));
1641#ifdef DEBUG
1642  cmp(object, Operand::StaticVariable(new_space_allocation_top));
1643  Check(below, kUndoAllocationOfNonAllocatedMemory);
1644#endif
1645  mov(Operand::StaticVariable(new_space_allocation_top), object);
1646}
1647
1648
1649void MacroAssembler::AllocateHeapNumber(Register result,
1650                                        Register scratch1,
1651                                        Register scratch2,
1652                                        Label* gc_required,
1653                                        MutableMode mode) {
1654  // Allocate heap number in new space.
1655  Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
1656           TAG_OBJECT);
1657
1658  Handle<Map> map = mode == MUTABLE
1659      ? isolate()->factory()->mutable_heap_number_map()
1660      : isolate()->factory()->heap_number_map();
1661
1662  // Set the map.
1663  mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map));
1664}
1665
1666
1667void MacroAssembler::AllocateTwoByteString(Register result,
1668                                           Register length,
1669                                           Register scratch1,
1670                                           Register scratch2,
1671                                           Register scratch3,
1672                                           Label* gc_required) {
1673  // Calculate the number of bytes needed for the characters in the string while
1674  // observing object alignment.
1675  DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1676  DCHECK(kShortSize == 2);
1677  // scratch1 = length * 2 + kObjectAlignmentMask.
1678  lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
1679  and_(scratch1, Immediate(~kObjectAlignmentMask));
1680
1681  // Allocate two byte string in new space.
1682  Allocate(SeqTwoByteString::kHeaderSize,
1683           times_1,
1684           scratch1,
1685           REGISTER_VALUE_IS_INT32,
1686           result,
1687           scratch2,
1688           scratch3,
1689           gc_required,
1690           TAG_OBJECT);
1691
1692  // Set the map, length and hash field.
1693  mov(FieldOperand(result, HeapObject::kMapOffset),
1694      Immediate(isolate()->factory()->string_map()));
1695  mov(scratch1, length);
1696  SmiTag(scratch1);
1697  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1698  mov(FieldOperand(result, String::kHashFieldOffset),
1699      Immediate(String::kEmptyHashField));
1700}
1701
1702
1703void MacroAssembler::AllocateOneByteString(Register result, Register length,
1704                                           Register scratch1, Register scratch2,
1705                                           Register scratch3,
1706                                           Label* gc_required) {
1707  // Calculate the number of bytes needed for the characters in the string while
1708  // observing object alignment.
1709  DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1710  mov(scratch1, length);
1711  DCHECK(kCharSize == 1);
1712  add(scratch1, Immediate(kObjectAlignmentMask));
1713  and_(scratch1, Immediate(~kObjectAlignmentMask));
1714
1715  // Allocate one-byte string in new space.
1716  Allocate(SeqOneByteString::kHeaderSize,
1717           times_1,
1718           scratch1,
1719           REGISTER_VALUE_IS_INT32,
1720           result,
1721           scratch2,
1722           scratch3,
1723           gc_required,
1724           TAG_OBJECT);
1725
1726  // Set the map, length and hash field.
1727  mov(FieldOperand(result, HeapObject::kMapOffset),
1728      Immediate(isolate()->factory()->one_byte_string_map()));
1729  mov(scratch1, length);
1730  SmiTag(scratch1);
1731  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1732  mov(FieldOperand(result, String::kHashFieldOffset),
1733      Immediate(String::kEmptyHashField));
1734}
1735
1736
1737void MacroAssembler::AllocateOneByteString(Register result, int length,
1738                                           Register scratch1, Register scratch2,
1739                                           Label* gc_required) {
1740  DCHECK(length > 0);
1741
1742  // Allocate one-byte string in new space.
1743  Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
1744           gc_required, TAG_OBJECT);
1745
1746  // Set the map, length and hash field.
1747  mov(FieldOperand(result, HeapObject::kMapOffset),
1748      Immediate(isolate()->factory()->one_byte_string_map()));
1749  mov(FieldOperand(result, String::kLengthOffset),
1750      Immediate(Smi::FromInt(length)));
1751  mov(FieldOperand(result, String::kHashFieldOffset),
1752      Immediate(String::kEmptyHashField));
1753}
1754
1755
1756void MacroAssembler::AllocateTwoByteConsString(Register result,
1757                                        Register scratch1,
1758                                        Register scratch2,
1759                                        Label* gc_required) {
1760  // Allocate heap number in new space.
1761  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
1762           TAG_OBJECT);
1763
1764  // Set the map. The other fields are left uninitialized.
1765  mov(FieldOperand(result, HeapObject::kMapOffset),
1766      Immediate(isolate()->factory()->cons_string_map()));
1767}
1768
1769
1770void MacroAssembler::AllocateOneByteConsString(Register result,
1771                                               Register scratch1,
1772                                               Register scratch2,
1773                                               Label* gc_required) {
1774  Allocate(ConsString::kSize,
1775           result,
1776           scratch1,
1777           scratch2,
1778           gc_required,
1779           TAG_OBJECT);
1780
1781  // Set the map. The other fields are left uninitialized.
1782  mov(FieldOperand(result, HeapObject::kMapOffset),
1783      Immediate(isolate()->factory()->cons_one_byte_string_map()));
1784}
1785
1786
1787void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1788                                          Register scratch1,
1789                                          Register scratch2,
1790                                          Label* gc_required) {
1791  // Allocate heap number in new space.
1792  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1793           TAG_OBJECT);
1794
1795  // Set the map. The other fields are left uninitialized.
1796  mov(FieldOperand(result, HeapObject::kMapOffset),
1797      Immediate(isolate()->factory()->sliced_string_map()));
1798}
1799
1800
1801void MacroAssembler::AllocateOneByteSlicedString(Register result,
1802                                                 Register scratch1,
1803                                                 Register scratch2,
1804                                                 Label* gc_required) {
1805  // Allocate heap number in new space.
1806  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1807           TAG_OBJECT);
1808
1809  // Set the map. The other fields are left uninitialized.
1810  mov(FieldOperand(result, HeapObject::kMapOffset),
1811      Immediate(isolate()->factory()->sliced_one_byte_string_map()));
1812}
1813
1814
1815// Copy memory, byte-by-byte, from source to destination.  Not optimized for
1816// long or aligned copies.  The contents of scratch and length are destroyed.
1817// Source and destination are incremented by length.
1818// Many variants of movsb, loop unrolling, word moves, and indexed operands
1819// have been tried here already, and this is fastest.
1820// A simpler loop is faster on small copies, but 30% slower on large ones.
1821// The cld() instruction must have been emitted, to set the direction flag(),
1822// before calling this function.
1823void MacroAssembler::CopyBytes(Register source,
1824                               Register destination,
1825                               Register length,
1826                               Register scratch) {
1827  Label short_loop, len4, len8, len12, done, short_string;
1828  DCHECK(source.is(esi));
1829  DCHECK(destination.is(edi));
1830  DCHECK(length.is(ecx));
1831  cmp(length, Immediate(4));
1832  j(below, &short_string, Label::kNear);
1833
1834  // Because source is 4-byte aligned in our uses of this function,
1835  // we keep source aligned for the rep_movs call by copying the odd bytes
1836  // at the end of the ranges.
1837  mov(scratch, Operand(source, length, times_1, -4));
1838  mov(Operand(destination, length, times_1, -4), scratch);
1839
1840  cmp(length, Immediate(8));
1841  j(below_equal, &len4, Label::kNear);
1842  cmp(length, Immediate(12));
1843  j(below_equal, &len8, Label::kNear);
1844  cmp(length, Immediate(16));
1845  j(below_equal, &len12, Label::kNear);
1846
1847  mov(scratch, ecx);
1848  shr(ecx, 2);
1849  rep_movs();
1850  and_(scratch, Immediate(0x3));
1851  add(destination, scratch);
1852  jmp(&done, Label::kNear);
1853
1854  bind(&len12);
1855  mov(scratch, Operand(source, 8));
1856  mov(Operand(destination, 8), scratch);
1857  bind(&len8);
1858  mov(scratch, Operand(source, 4));
1859  mov(Operand(destination, 4), scratch);
1860  bind(&len4);
1861  mov(scratch, Operand(source, 0));
1862  mov(Operand(destination, 0), scratch);
1863  add(destination, length);
1864  jmp(&done, Label::kNear);
1865
1866  bind(&short_string);
1867  test(length, length);
1868  j(zero, &done, Label::kNear);
1869
1870  bind(&short_loop);
1871  mov_b(scratch, Operand(source, 0));
1872  mov_b(Operand(destination, 0), scratch);
1873  inc(source);
1874  inc(destination);
1875  dec(length);
1876  j(not_zero, &short_loop);
1877
1878  bind(&done);
1879}
1880
1881
1882void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
1883                                                Register end_offset,
1884                                                Register filler) {
1885  Label loop, entry;
1886  jmp(&entry);
1887  bind(&loop);
1888  mov(Operand(start_offset, 0), filler);
1889  add(start_offset, Immediate(kPointerSize));
1890  bind(&entry);
1891  cmp(start_offset, end_offset);
1892  j(less, &loop);
1893}
1894
1895
1896void MacroAssembler::BooleanBitTest(Register object,
1897                                    int field_offset,
1898                                    int bit_index) {
1899  bit_index += kSmiTagSize + kSmiShiftSize;
1900  DCHECK(base::bits::IsPowerOfTwo32(kBitsPerByte));
1901  int byte_index = bit_index / kBitsPerByte;
1902  int byte_bit_index = bit_index & (kBitsPerByte - 1);
1903  test_b(FieldOperand(object, field_offset + byte_index),
1904         static_cast<byte>(1 << byte_bit_index));
1905}
1906
1907
1908
1909void MacroAssembler::NegativeZeroTest(Register result,
1910                                      Register op,
1911                                      Label* then_label) {
1912  Label ok;
1913  test(result, result);
1914  j(not_zero, &ok);
1915  test(op, op);
1916  j(sign, then_label);
1917  bind(&ok);
1918}
1919
1920
1921void MacroAssembler::NegativeZeroTest(Register result,
1922                                      Register op1,
1923                                      Register op2,
1924                                      Register scratch,
1925                                      Label* then_label) {
1926  Label ok;
1927  test(result, result);
1928  j(not_zero, &ok);
1929  mov(scratch, op1);
1930  or_(scratch, op2);
1931  j(sign, then_label);
1932  bind(&ok);
1933}
1934
1935
1936void MacroAssembler::TryGetFunctionPrototype(Register function,
1937                                             Register result,
1938                                             Register scratch,
1939                                             Label* miss,
1940                                             bool miss_on_bound_function) {
1941  Label non_instance;
1942  if (miss_on_bound_function) {
1943    // Check that the receiver isn't a smi.
1944    JumpIfSmi(function, miss);
1945
1946    // Check that the function really is a function.
1947    CmpObjectType(function, JS_FUNCTION_TYPE, result);
1948    j(not_equal, miss);
1949
1950    // If a bound function, go to miss label.
1951    mov(scratch,
1952        FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
1953    BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
1954                   SharedFunctionInfo::kBoundFunction);
1955    j(not_zero, miss);
1956
1957    // Make sure that the function has an instance prototype.
1958    movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
1959    test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
1960    j(not_zero, &non_instance);
1961  }
1962
1963  // Get the prototype or initial map from the function.
1964  mov(result,
1965      FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1966
1967  // If the prototype or initial map is the hole, don't return it and
1968  // simply miss the cache instead. This will allow us to allocate a
1969  // prototype object on-demand in the runtime system.
1970  cmp(result, Immediate(isolate()->factory()->the_hole_value()));
1971  j(equal, miss);
1972
1973  // If the function does not have an initial map, we're done.
1974  Label done;
1975  CmpObjectType(result, MAP_TYPE, scratch);
1976  j(not_equal, &done);
1977
1978  // Get the prototype from the initial map.
1979  mov(result, FieldOperand(result, Map::kPrototypeOffset));
1980
1981  if (miss_on_bound_function) {
1982    jmp(&done);
1983
1984    // Non-instance prototype: Fetch prototype from constructor field
1985    // in initial map.
1986    bind(&non_instance);
1987    mov(result, FieldOperand(result, Map::kConstructorOffset));
1988  }
1989
1990  // All done.
1991  bind(&done);
1992}
1993
1994
1995void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1996  DCHECK(AllowThisStubCall(stub));  // Calls are not allowed in some stubs.
1997  call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1998}
1999
2000
2001void MacroAssembler::TailCallStub(CodeStub* stub) {
2002  jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
2003}
2004
2005
2006void MacroAssembler::StubReturn(int argc) {
2007  DCHECK(argc >= 1 && generating_stub());
2008  ret((argc - 1) * kPointerSize);
2009}
2010
2011
2012bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
2013  return has_frame_ || !stub->SometimesSetsUpAFrame();
2014}
2015
2016
2017void MacroAssembler::IndexFromHash(Register hash, Register index) {
2018  // The assert checks that the constants for the maximum number of digits
2019  // for an array index cached in the hash field and the number of bits
2020  // reserved for it does not conflict.
2021  DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
2022         (1 << String::kArrayIndexValueBits));
2023  if (!index.is(hash)) {
2024    mov(index, hash);
2025  }
2026  DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
2027}
2028
2029
2030void MacroAssembler::CallRuntime(const Runtime::Function* f,
2031                                 int num_arguments,
2032                                 SaveFPRegsMode save_doubles) {
2033  // If the expected number of arguments of the runtime function is
2034  // constant, we check that the actual number of arguments match the
2035  // expectation.
2036  CHECK(f->nargs < 0 || f->nargs == num_arguments);
2037
2038  // TODO(1236192): Most runtime routines don't need the number of
2039  // arguments passed in because it is constant. At some point we
2040  // should remove this need and make the runtime routine entry code
2041  // smarter.
2042  Move(eax, Immediate(num_arguments));
2043  mov(ebx, Immediate(ExternalReference(f, isolate())));
2044  CEntryStub ces(isolate(), 1, save_doubles);
2045  CallStub(&ces);
2046}
2047
2048
2049void MacroAssembler::CallExternalReference(ExternalReference ref,
2050                                           int num_arguments) {
2051  mov(eax, Immediate(num_arguments));
2052  mov(ebx, Immediate(ref));
2053
2054  CEntryStub stub(isolate(), 1);
2055  CallStub(&stub);
2056}
2057
2058
2059void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2060                                               int num_arguments,
2061                                               int result_size) {
2062  // TODO(1236192): Most runtime routines don't need the number of
2063  // arguments passed in because it is constant. At some point we
2064  // should remove this need and make the runtime routine entry code
2065  // smarter.
2066  Move(eax, Immediate(num_arguments));
2067  JumpToExternalReference(ext);
2068}
2069
2070
2071void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2072                                     int num_arguments,
2073                                     int result_size) {
2074  TailCallExternalReference(ExternalReference(fid, isolate()),
2075                            num_arguments,
2076                            result_size);
2077}
2078
2079
2080Operand ApiParameterOperand(int index) {
2081  return Operand(esp, index * kPointerSize);
2082}
2083
2084
2085void MacroAssembler::PrepareCallApiFunction(int argc) {
2086  EnterApiExitFrame(argc);
2087  if (emit_debug_code()) {
2088    mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
2089  }
2090}
2091
2092
2093void MacroAssembler::CallApiFunctionAndReturn(
2094    Register function_address,
2095    ExternalReference thunk_ref,
2096    Operand thunk_last_arg,
2097    int stack_space,
2098    Operand return_value_operand,
2099    Operand* context_restore_operand) {
2100  ExternalReference next_address =
2101      ExternalReference::handle_scope_next_address(isolate());
2102  ExternalReference limit_address =
2103      ExternalReference::handle_scope_limit_address(isolate());
2104  ExternalReference level_address =
2105      ExternalReference::handle_scope_level_address(isolate());
2106
2107  DCHECK(edx.is(function_address));
2108  // Allocate HandleScope in callee-save registers.
2109  mov(ebx, Operand::StaticVariable(next_address));
2110  mov(edi, Operand::StaticVariable(limit_address));
2111  add(Operand::StaticVariable(level_address), Immediate(1));
2112
2113  if (FLAG_log_timer_events) {
2114    FrameScope frame(this, StackFrame::MANUAL);
2115    PushSafepointRegisters();
2116    PrepareCallCFunction(1, eax);
2117    mov(Operand(esp, 0),
2118        Immediate(ExternalReference::isolate_address(isolate())));
2119    CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2120    PopSafepointRegisters();
2121  }
2122
2123
2124  Label profiler_disabled;
2125  Label end_profiler_check;
2126  mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
2127  cmpb(Operand(eax, 0), 0);
2128  j(zero, &profiler_disabled);
2129
2130  // Additional parameter is the address of the actual getter function.
2131  mov(thunk_last_arg, function_address);
2132  // Call the api function.
2133  mov(eax, Immediate(thunk_ref));
2134  call(eax);
2135  jmp(&end_profiler_check);
2136
2137  bind(&profiler_disabled);
2138  // Call the api function.
2139  call(function_address);
2140  bind(&end_profiler_check);
2141
2142  if (FLAG_log_timer_events) {
2143    FrameScope frame(this, StackFrame::MANUAL);
2144    PushSafepointRegisters();
2145    PrepareCallCFunction(1, eax);
2146    mov(Operand(esp, 0),
2147        Immediate(ExternalReference::isolate_address(isolate())));
2148    CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2149    PopSafepointRegisters();
2150  }
2151
2152  Label prologue;
2153  // Load the value from ReturnValue
2154  mov(eax, return_value_operand);
2155
2156  Label promote_scheduled_exception;
2157  Label exception_handled;
2158  Label delete_allocated_handles;
2159  Label leave_exit_frame;
2160
2161  bind(&prologue);
2162  // No more valid handles (the result handle was the last one). Restore
2163  // previous handle scope.
2164  mov(Operand::StaticVariable(next_address), ebx);
2165  sub(Operand::StaticVariable(level_address), Immediate(1));
2166  Assert(above_equal, kInvalidHandleScopeLevel);
2167  cmp(edi, Operand::StaticVariable(limit_address));
2168  j(not_equal, &delete_allocated_handles);
2169  bind(&leave_exit_frame);
2170
2171  // Check if the function scheduled an exception.
2172  ExternalReference scheduled_exception_address =
2173      ExternalReference::scheduled_exception_address(isolate());
2174  cmp(Operand::StaticVariable(scheduled_exception_address),
2175      Immediate(isolate()->factory()->the_hole_value()));
2176  j(not_equal, &promote_scheduled_exception);
2177  bind(&exception_handled);
2178
2179#if ENABLE_EXTRA_CHECKS
2180  // Check if the function returned a valid JavaScript value.
2181  Label ok;
2182  Register return_value = eax;
2183  Register map = ecx;
2184
2185  JumpIfSmi(return_value, &ok, Label::kNear);
2186  mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
2187
2188  CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2189  j(below, &ok, Label::kNear);
2190
2191  CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2192  j(above_equal, &ok, Label::kNear);
2193
2194  cmp(map, isolate()->factory()->heap_number_map());
2195  j(equal, &ok, Label::kNear);
2196
2197  cmp(return_value, isolate()->factory()->undefined_value());
2198  j(equal, &ok, Label::kNear);
2199
2200  cmp(return_value, isolate()->factory()->true_value());
2201  j(equal, &ok, Label::kNear);
2202
2203  cmp(return_value, isolate()->factory()->false_value());
2204  j(equal, &ok, Label::kNear);
2205
2206  cmp(return_value, isolate()->factory()->null_value());
2207  j(equal, &ok, Label::kNear);
2208
2209  Abort(kAPICallReturnedInvalidObject);
2210
2211  bind(&ok);
2212#endif
2213
2214  bool restore_context = context_restore_operand != NULL;
2215  if (restore_context) {
2216    mov(esi, *context_restore_operand);
2217  }
2218  LeaveApiExitFrame(!restore_context);
2219  ret(stack_space * kPointerSize);
2220
2221  bind(&promote_scheduled_exception);
2222  {
2223    FrameScope frame(this, StackFrame::INTERNAL);
2224    CallRuntime(Runtime::kPromoteScheduledException, 0);
2225  }
2226  jmp(&exception_handled);
2227
2228  // HandleScope limit has changed. Delete allocated extensions.
2229  ExternalReference delete_extensions =
2230      ExternalReference::delete_handle_scope_extensions(isolate());
2231  bind(&delete_allocated_handles);
2232  mov(Operand::StaticVariable(limit_address), edi);
2233  mov(edi, eax);
2234  mov(Operand(esp, 0),
2235      Immediate(ExternalReference::isolate_address(isolate())));
2236  mov(eax, Immediate(delete_extensions));
2237  call(eax);
2238  mov(eax, edi);
2239  jmp(&leave_exit_frame);
2240}
2241
2242
2243void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
2244  // Set the entry point and jump to the C entry runtime stub.
2245  mov(ebx, Immediate(ext));
2246  CEntryStub ces(isolate(), 1);
2247  jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
2248}
2249
2250
2251void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2252                                    const ParameterCount& actual,
2253                                    Handle<Code> code_constant,
2254                                    const Operand& code_operand,
2255                                    Label* done,
2256                                    bool* definitely_mismatches,
2257                                    InvokeFlag flag,
2258                                    Label::Distance done_near,
2259                                    const CallWrapper& call_wrapper) {
2260  bool definitely_matches = false;
2261  *definitely_mismatches = false;
2262  Label invoke;
2263  if (expected.is_immediate()) {
2264    DCHECK(actual.is_immediate());
2265    if (expected.immediate() == actual.immediate()) {
2266      definitely_matches = true;
2267    } else {
2268      mov(eax, actual.immediate());
2269      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
2270      if (expected.immediate() == sentinel) {
2271        // Don't worry about adapting arguments for builtins that
2272        // don't want that done. Skip adaption code by making it look
2273        // like we have a match between expected and actual number of
2274        // arguments.
2275        definitely_matches = true;
2276      } else {
2277        *definitely_mismatches = true;
2278        mov(ebx, expected.immediate());
2279      }
2280    }
2281  } else {
2282    if (actual.is_immediate()) {
2283      // Expected is in register, actual is immediate. This is the
2284      // case when we invoke function values without going through the
2285      // IC mechanism.
2286      cmp(expected.reg(), actual.immediate());
2287      j(equal, &invoke);
2288      DCHECK(expected.reg().is(ebx));
2289      mov(eax, actual.immediate());
2290    } else if (!expected.reg().is(actual.reg())) {
2291      // Both expected and actual are in (different) registers. This
2292      // is the case when we invoke functions using call and apply.
2293      cmp(expected.reg(), actual.reg());
2294      j(equal, &invoke);
2295      DCHECK(actual.reg().is(eax));
2296      DCHECK(expected.reg().is(ebx));
2297    }
2298  }
2299
2300  if (!definitely_matches) {
2301    Handle<Code> adaptor =
2302        isolate()->builtins()->ArgumentsAdaptorTrampoline();
2303    if (!code_constant.is_null()) {
2304      mov(edx, Immediate(code_constant));
2305      add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2306    } else if (!code_operand.is_reg(edx)) {
2307      mov(edx, code_operand);
2308    }
2309
2310    if (flag == CALL_FUNCTION) {
2311      call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
2312      call(adaptor, RelocInfo::CODE_TARGET);
2313      call_wrapper.AfterCall();
2314      if (!*definitely_mismatches) {
2315        jmp(done, done_near);
2316      }
2317    } else {
2318      jmp(adaptor, RelocInfo::CODE_TARGET);
2319    }
2320    bind(&invoke);
2321  }
2322}
2323
2324
2325void MacroAssembler::InvokeCode(const Operand& code,
2326                                const ParameterCount& expected,
2327                                const ParameterCount& actual,
2328                                InvokeFlag flag,
2329                                const CallWrapper& call_wrapper) {
2330  // You can't call a function without a valid frame.
2331  DCHECK(flag == JUMP_FUNCTION || has_frame());
2332
2333  Label done;
2334  bool definitely_mismatches = false;
2335  InvokePrologue(expected, actual, Handle<Code>::null(), code,
2336                 &done, &definitely_mismatches, flag, Label::kNear,
2337                 call_wrapper);
2338  if (!definitely_mismatches) {
2339    if (flag == CALL_FUNCTION) {
2340      call_wrapper.BeforeCall(CallSize(code));
2341      call(code);
2342      call_wrapper.AfterCall();
2343    } else {
2344      DCHECK(flag == JUMP_FUNCTION);
2345      jmp(code);
2346    }
2347    bind(&done);
2348  }
2349}
2350
2351
2352void MacroAssembler::InvokeFunction(Register fun,
2353                                    const ParameterCount& actual,
2354                                    InvokeFlag flag,
2355                                    const CallWrapper& call_wrapper) {
2356  // You can't call a function without a valid frame.
2357  DCHECK(flag == JUMP_FUNCTION || has_frame());
2358
2359  DCHECK(fun.is(edi));
2360  mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2361  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2362  mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2363  SmiUntag(ebx);
2364
2365  ParameterCount expected(ebx);
2366  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2367             expected, actual, flag, call_wrapper);
2368}
2369
2370
2371void MacroAssembler::InvokeFunction(Register fun,
2372                                    const ParameterCount& expected,
2373                                    const ParameterCount& actual,
2374                                    InvokeFlag flag,
2375                                    const CallWrapper& call_wrapper) {
2376  // You can't call a function without a valid frame.
2377  DCHECK(flag == JUMP_FUNCTION || has_frame());
2378
2379  DCHECK(fun.is(edi));
2380  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2381
2382  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2383             expected, actual, flag, call_wrapper);
2384}
2385
2386
2387void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2388                                    const ParameterCount& expected,
2389                                    const ParameterCount& actual,
2390                                    InvokeFlag flag,
2391                                    const CallWrapper& call_wrapper) {
2392  LoadHeapObject(edi, function);
2393  InvokeFunction(edi, expected, actual, flag, call_wrapper);
2394}
2395
2396
2397void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
2398                                   InvokeFlag flag,
2399                                   const CallWrapper& call_wrapper) {
2400  // You can't call a builtin without a valid frame.
2401  DCHECK(flag == JUMP_FUNCTION || has_frame());
2402
2403  // Rely on the assertion to check that the number of provided
2404  // arguments match the expected number of arguments. Fake a
2405  // parameter count to avoid emitting code to do the check.
2406  ParameterCount expected(0);
2407  GetBuiltinFunction(edi, id);
2408  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2409             expected, expected, flag, call_wrapper);
2410}
2411
2412
2413void MacroAssembler::GetBuiltinFunction(Register target,
2414                                        Builtins::JavaScript id) {
2415  // Load the JavaScript builtin function from the builtins object.
2416  mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2417  mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
2418  mov(target, FieldOperand(target,
2419                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2420}
2421
2422
2423void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2424  DCHECK(!target.is(edi));
2425  // Load the JavaScript builtin function from the builtins object.
2426  GetBuiltinFunction(edi, id);
2427  // Load the code entry point from the function into the target register.
2428  mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2429}
2430
2431
2432void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2433  if (context_chain_length > 0) {
2434    // Move up the chain of contexts to the context containing the slot.
2435    mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2436    for (int i = 1; i < context_chain_length; i++) {
2437      mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2438    }
2439  } else {
2440    // Slot is in the current function context.  Move it into the
2441    // destination register in case we store into it (the write barrier
2442    // cannot be allowed to destroy the context in esi).
2443    mov(dst, esi);
2444  }
2445
2446  // We should not have found a with context by walking the context chain
2447  // (i.e., the static scope chain and runtime context chain do not agree).
2448  // A variable occurring in such a scope should have slot type LOOKUP and
2449  // not CONTEXT.
2450  if (emit_debug_code()) {
2451    cmp(FieldOperand(dst, HeapObject::kMapOffset),
2452        isolate()->factory()->with_context_map());
2453    Check(not_equal, kVariableResolvedToWithContext);
2454  }
2455}
2456
2457
2458void MacroAssembler::LoadTransitionedArrayMapConditional(
2459    ElementsKind expected_kind,
2460    ElementsKind transitioned_kind,
2461    Register map_in_out,
2462    Register scratch,
2463    Label* no_map_match) {
2464  // Load the global or builtins object from the current context.
2465  mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2466  mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
2467
2468  // Check that the function's map is the same as the expected cached map.
2469  mov(scratch, Operand(scratch,
2470                       Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
2471
2472  size_t offset = expected_kind * kPointerSize +
2473      FixedArrayBase::kHeaderSize;
2474  cmp(map_in_out, FieldOperand(scratch, offset));
2475  j(not_equal, no_map_match);
2476
2477  // Use the transitioned cached map.
2478  offset = transitioned_kind * kPointerSize +
2479      FixedArrayBase::kHeaderSize;
2480  mov(map_in_out, FieldOperand(scratch, offset));
2481}
2482
2483
2484void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2485  // Load the global or builtins object from the current context.
2486  mov(function,
2487      Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2488  // Load the native context from the global or builtins object.
2489  mov(function,
2490      FieldOperand(function, GlobalObject::kNativeContextOffset));
2491  // Load the function from the native context.
2492  mov(function, Operand(function, Context::SlotOffset(index)));
2493}
2494
2495
2496void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2497                                                  Register map) {
2498  // Load the initial map.  The global functions all have initial maps.
2499  mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2500  if (emit_debug_code()) {
2501    Label ok, fail;
2502    CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
2503    jmp(&ok);
2504    bind(&fail);
2505    Abort(kGlobalFunctionsMustHaveInitialMap);
2506    bind(&ok);
2507  }
2508}
2509
2510
2511// Store the value in register src in the safepoint register stack
2512// slot for register dst.
2513void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2514  mov(SafepointRegisterSlot(dst), src);
2515}
2516
2517
2518void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
2519  mov(SafepointRegisterSlot(dst), src);
2520}
2521
2522
2523void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2524  mov(dst, SafepointRegisterSlot(src));
2525}
2526
2527
2528Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2529  return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2530}
2531
2532
2533int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
2534  // The registers are pushed starting with the lowest encoding,
2535  // which means that lowest encodings are furthest away from
2536  // the stack pointer.
2537  DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
2538  return kNumSafepointRegisters - reg_code - 1;
2539}
2540
2541
2542void MacroAssembler::LoadHeapObject(Register result,
2543                                    Handle<HeapObject> object) {
2544  AllowDeferredHandleDereference embedding_raw_address;
2545  if (isolate()->heap()->InNewSpace(*object)) {
2546    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2547    mov(result, Operand::ForCell(cell));
2548  } else {
2549    mov(result, object);
2550  }
2551}
2552
2553
2554void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
2555  AllowDeferredHandleDereference using_raw_address;
2556  if (isolate()->heap()->InNewSpace(*object)) {
2557    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2558    cmp(reg, Operand::ForCell(cell));
2559  } else {
2560    cmp(reg, object);
2561  }
2562}
2563
2564
2565void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2566  AllowDeferredHandleDereference using_raw_address;
2567  if (isolate()->heap()->InNewSpace(*object)) {
2568    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2569    push(Operand::ForCell(cell));
2570  } else {
2571    Push(object);
2572  }
2573}
2574
2575
2576void MacroAssembler::Ret() {
2577  ret(0);
2578}
2579
2580
2581void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2582  if (is_uint16(bytes_dropped)) {
2583    ret(bytes_dropped);
2584  } else {
2585    pop(scratch);
2586    add(esp, Immediate(bytes_dropped));
2587    push(scratch);
2588    ret(0);
2589  }
2590}
2591
2592
2593void MacroAssembler::Drop(int stack_elements) {
2594  if (stack_elements > 0) {
2595    add(esp, Immediate(stack_elements * kPointerSize));
2596  }
2597}
2598
2599
2600void MacroAssembler::Move(Register dst, Register src) {
2601  if (!dst.is(src)) {
2602    mov(dst, src);
2603  }
2604}
2605
2606
2607void MacroAssembler::Move(Register dst, const Immediate& x) {
2608  if (x.is_zero()) {
2609    xor_(dst, dst);  // Shorter than mov of 32-bit immediate 0.
2610  } else {
2611    mov(dst, x);
2612  }
2613}
2614
2615
2616void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
2617  mov(dst, x);
2618}
2619
2620
2621void MacroAssembler::Move(XMMRegister dst, double val) {
2622  // TODO(titzer): recognize double constants with ExternalReferences.
2623  uint64_t int_val = bit_cast<uint64_t, double>(val);
2624  if (int_val == 0) {
2625    xorps(dst, dst);
2626  } else {
2627    int32_t lower = static_cast<int32_t>(int_val);
2628    int32_t upper = static_cast<int32_t>(int_val >> kBitsPerInt);
2629    push(Immediate(upper));
2630    push(Immediate(lower));
2631    movsd(dst, Operand(esp, 0));
2632    add(esp, Immediate(kDoubleSize));
2633  }
2634}
2635
2636
2637void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2638  if (FLAG_native_code_counters && counter->Enabled()) {
2639    mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
2640  }
2641}
2642
2643
2644void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2645  DCHECK(value > 0);
2646  if (FLAG_native_code_counters && counter->Enabled()) {
2647    Operand operand = Operand::StaticVariable(ExternalReference(counter));
2648    if (value == 1) {
2649      inc(operand);
2650    } else {
2651      add(operand, Immediate(value));
2652    }
2653  }
2654}
2655
2656
2657void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2658  DCHECK(value > 0);
2659  if (FLAG_native_code_counters && counter->Enabled()) {
2660    Operand operand = Operand::StaticVariable(ExternalReference(counter));
2661    if (value == 1) {
2662      dec(operand);
2663    } else {
2664      sub(operand, Immediate(value));
2665    }
2666  }
2667}
2668
2669
2670void MacroAssembler::IncrementCounter(Condition cc,
2671                                      StatsCounter* counter,
2672                                      int value) {
2673  DCHECK(value > 0);
2674  if (FLAG_native_code_counters && counter->Enabled()) {
2675    Label skip;
2676    j(NegateCondition(cc), &skip);
2677    pushfd();
2678    IncrementCounter(counter, value);
2679    popfd();
2680    bind(&skip);
2681  }
2682}
2683
2684
2685void MacroAssembler::DecrementCounter(Condition cc,
2686                                      StatsCounter* counter,
2687                                      int value) {
2688  DCHECK(value > 0);
2689  if (FLAG_native_code_counters && counter->Enabled()) {
2690    Label skip;
2691    j(NegateCondition(cc), &skip);
2692    pushfd();
2693    DecrementCounter(counter, value);
2694    popfd();
2695    bind(&skip);
2696  }
2697}
2698
2699
2700void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
2701  if (emit_debug_code()) Check(cc, reason);
2702}
2703
2704
2705void MacroAssembler::AssertFastElements(Register elements) {
2706  if (emit_debug_code()) {
2707    Factory* factory = isolate()->factory();
2708    Label ok;
2709    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2710        Immediate(factory->fixed_array_map()));
2711    j(equal, &ok);
2712    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2713        Immediate(factory->fixed_double_array_map()));
2714    j(equal, &ok);
2715    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2716        Immediate(factory->fixed_cow_array_map()));
2717    j(equal, &ok);
2718    Abort(kJSObjectWithFastElementsMapHasSlowElements);
2719    bind(&ok);
2720  }
2721}
2722
2723
2724void MacroAssembler::Check(Condition cc, BailoutReason reason) {
2725  Label L;
2726  j(cc, &L);
2727  Abort(reason);
2728  // will not return here
2729  bind(&L);
2730}
2731
2732
2733void MacroAssembler::CheckStackAlignment() {
2734  int frame_alignment = base::OS::ActivationFrameAlignment();
2735  int frame_alignment_mask = frame_alignment - 1;
2736  if (frame_alignment > kPointerSize) {
2737    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2738    Label alignment_as_expected;
2739    test(esp, Immediate(frame_alignment_mask));
2740    j(zero, &alignment_as_expected);
2741    // Abort if stack is not aligned.
2742    int3();
2743    bind(&alignment_as_expected);
2744  }
2745}
2746
2747
2748void MacroAssembler::Abort(BailoutReason reason) {
2749#ifdef DEBUG
2750  const char* msg = GetBailoutReason(reason);
2751  if (msg != NULL) {
2752    RecordComment("Abort message: ");
2753    RecordComment(msg);
2754  }
2755
2756  if (FLAG_trap_on_abort) {
2757    int3();
2758    return;
2759  }
2760#endif
2761
2762  push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason))));
2763  // Disable stub call restrictions to always allow calls to abort.
2764  if (!has_frame_) {
2765    // We don't actually want to generate a pile of code for this, so just
2766    // claim there is a stack frame, without generating one.
2767    FrameScope scope(this, StackFrame::NONE);
2768    CallRuntime(Runtime::kAbort, 1);
2769  } else {
2770    CallRuntime(Runtime::kAbort, 1);
2771  }
2772  // will not return here
2773  int3();
2774}
2775
2776
2777void MacroAssembler::LoadInstanceDescriptors(Register map,
2778                                             Register descriptors) {
2779  mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
2780}
2781
2782
2783void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
2784  mov(dst, FieldOperand(map, Map::kBitField3Offset));
2785  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
2786}
2787
2788
2789void MacroAssembler::LoadPowerOf2(XMMRegister dst,
2790                                  Register scratch,
2791                                  int power) {
2792  DCHECK(is_uintn(power + HeapNumber::kExponentBias,
2793                  HeapNumber::kExponentBits));
2794  mov(scratch, Immediate(power + HeapNumber::kExponentBias));
2795  movd(dst, scratch);
2796  psllq(dst, HeapNumber::kMantissaBits);
2797}
2798
2799
2800void MacroAssembler::LookupNumberStringCache(Register object,
2801                                             Register result,
2802                                             Register scratch1,
2803                                             Register scratch2,
2804                                             Label* not_found) {
2805  // Use of registers. Register result is used as a temporary.
2806  Register number_string_cache = result;
2807  Register mask = scratch1;
2808  Register scratch = scratch2;
2809
2810  // Load the number string cache.
2811  LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2812  // Make the hash mask from the length of the number string cache. It
2813  // contains two elements (number and string) for each cache entry.
2814  mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
2815  shr(mask, kSmiTagSize + 1);  // Untag length and divide it by two.
2816  sub(mask, Immediate(1));  // Make mask.
2817
2818  // Calculate the entry in the number string cache. The hash value in the
2819  // number string cache for smis is just the smi value, and the hash for
2820  // doubles is the xor of the upper and lower words. See
2821  // Heap::GetNumberStringCache.
2822  Label smi_hash_calculated;
2823  Label load_result_from_cache;
2824  Label not_smi;
2825  STATIC_ASSERT(kSmiTag == 0);
2826  JumpIfNotSmi(object, &not_smi, Label::kNear);
2827  mov(scratch, object);
2828  SmiUntag(scratch);
2829  jmp(&smi_hash_calculated, Label::kNear);
2830  bind(&not_smi);
2831  cmp(FieldOperand(object, HeapObject::kMapOffset),
2832      isolate()->factory()->heap_number_map());
2833  j(not_equal, not_found);
2834  STATIC_ASSERT(8 == kDoubleSize);
2835  mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
2836  xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
2837  // Object is heap number and hash is now in scratch. Calculate cache index.
2838  and_(scratch, mask);
2839  Register index = scratch;
2840  Register probe = mask;
2841  mov(probe,
2842      FieldOperand(number_string_cache,
2843                   index,
2844                   times_twice_pointer_size,
2845                   FixedArray::kHeaderSize));
2846  JumpIfSmi(probe, not_found);
2847  movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
2848  ucomisd(xmm0, FieldOperand(probe, HeapNumber::kValueOffset));
2849  j(parity_even, not_found);  // Bail out if NaN is involved.
2850  j(not_equal, not_found);  // The cache did not contain this value.
2851  jmp(&load_result_from_cache, Label::kNear);
2852
2853  bind(&smi_hash_calculated);
2854  // Object is smi and hash is now in scratch. Calculate cache index.
2855  and_(scratch, mask);
2856  // Check if the entry is the smi we are looking for.
2857  cmp(object,
2858      FieldOperand(number_string_cache,
2859                   index,
2860                   times_twice_pointer_size,
2861                   FixedArray::kHeaderSize));
2862  j(not_equal, not_found);
2863
2864  // Get the result from the cache.
2865  bind(&load_result_from_cache);
2866  mov(result,
2867      FieldOperand(number_string_cache,
2868                   index,
2869                   times_twice_pointer_size,
2870                   FixedArray::kHeaderSize + kPointerSize));
2871  IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
2872}
2873
2874
2875void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
2876    Register instance_type, Register scratch, Label* failure) {
2877  if (!scratch.is(instance_type)) {
2878    mov(scratch, instance_type);
2879  }
2880  and_(scratch,
2881       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
2882  cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
2883  j(not_equal, failure);
2884}
2885
2886
2887void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1,
2888                                                           Register object2,
2889                                                           Register scratch1,
2890                                                           Register scratch2,
2891                                                           Label* failure) {
2892  // Check that both objects are not smis.
2893  STATIC_ASSERT(kSmiTag == 0);
2894  mov(scratch1, object1);
2895  and_(scratch1, object2);
2896  JumpIfSmi(scratch1, failure);
2897
2898  // Load instance type for both strings.
2899  mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
2900  mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
2901  movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
2902  movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
2903
2904  // Check that both are flat one-byte strings.
2905  const int kFlatOneByteStringMask =
2906      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2907  const int kFlatOneByteStringTag =
2908      kStringTag | kOneByteStringTag | kSeqStringTag;
2909  // Interleave bits from both instance types and compare them in one check.
2910  DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
2911  and_(scratch1, kFlatOneByteStringMask);
2912  and_(scratch2, kFlatOneByteStringMask);
2913  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2914  cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << 3));
2915  j(not_equal, failure);
2916}
2917
2918
2919void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
2920                                                     Label* not_unique_name,
2921                                                     Label::Distance distance) {
2922  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2923  Label succeed;
2924  test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
2925  j(zero, &succeed);
2926  cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
2927  j(not_equal, not_unique_name, distance);
2928
2929  bind(&succeed);
2930}
2931
2932
2933void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
2934                                               Register index,
2935                                               Register value,
2936                                               uint32_t encoding_mask) {
2937  Label is_object;
2938  JumpIfNotSmi(string, &is_object, Label::kNear);
2939  Abort(kNonObject);
2940  bind(&is_object);
2941
2942  push(value);
2943  mov(value, FieldOperand(string, HeapObject::kMapOffset));
2944  movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
2945
2946  and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
2947  cmp(value, Immediate(encoding_mask));
2948  pop(value);
2949  Check(equal, kUnexpectedStringType);
2950
2951  // The index is assumed to be untagged coming in, tag it to compare with the
2952  // string length without using a temp register, it is restored at the end of
2953  // this function.
2954  SmiTag(index);
2955  Check(no_overflow, kIndexIsTooLarge);
2956
2957  cmp(index, FieldOperand(string, String::kLengthOffset));
2958  Check(less, kIndexIsTooLarge);
2959
2960  cmp(index, Immediate(Smi::FromInt(0)));
2961  Check(greater_equal, kIndexIsNegative);
2962
2963  // Restore the index
2964  SmiUntag(index);
2965}
2966
2967
2968void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
2969  int frame_alignment = base::OS::ActivationFrameAlignment();
2970  if (frame_alignment != 0) {
2971    // Make stack end at alignment and make room for num_arguments words
2972    // and the original value of esp.
2973    mov(scratch, esp);
2974    sub(esp, Immediate((num_arguments + 1) * kPointerSize));
2975    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2976    and_(esp, -frame_alignment);
2977    mov(Operand(esp, num_arguments * kPointerSize), scratch);
2978  } else {
2979    sub(esp, Immediate(num_arguments * kPointerSize));
2980  }
2981}
2982
2983
2984void MacroAssembler::CallCFunction(ExternalReference function,
2985                                   int num_arguments) {
2986  // Trashing eax is ok as it will be the return value.
2987  mov(eax, Immediate(function));
2988  CallCFunction(eax, num_arguments);
2989}
2990
2991
2992void MacroAssembler::CallCFunction(Register function,
2993                                   int num_arguments) {
2994  DCHECK(has_frame());
2995  // Check stack alignment.
2996  if (emit_debug_code()) {
2997    CheckStackAlignment();
2998  }
2999
3000  call(function);
3001  if (base::OS::ActivationFrameAlignment() != 0) {
3002    mov(esp, Operand(esp, num_arguments * kPointerSize));
3003  } else {
3004    add(esp, Immediate(num_arguments * kPointerSize));
3005  }
3006}
3007
3008
3009#ifdef DEBUG
3010bool AreAliased(Register reg1,
3011                Register reg2,
3012                Register reg3,
3013                Register reg4,
3014                Register reg5,
3015                Register reg6,
3016                Register reg7,
3017                Register reg8) {
3018  int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
3019      reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
3020      reg7.is_valid() + reg8.is_valid();
3021
3022  RegList regs = 0;
3023  if (reg1.is_valid()) regs |= reg1.bit();
3024  if (reg2.is_valid()) regs |= reg2.bit();
3025  if (reg3.is_valid()) regs |= reg3.bit();
3026  if (reg4.is_valid()) regs |= reg4.bit();
3027  if (reg5.is_valid()) regs |= reg5.bit();
3028  if (reg6.is_valid()) regs |= reg6.bit();
3029  if (reg7.is_valid()) regs |= reg7.bit();
3030  if (reg8.is_valid()) regs |= reg8.bit();
3031  int n_of_non_aliasing_regs = NumRegs(regs);
3032
3033  return n_of_valid_regs != n_of_non_aliasing_regs;
3034}
3035#endif
3036
3037
3038CodePatcher::CodePatcher(byte* address, int size)
3039    : address_(address),
3040      size_(size),
3041      masm_(NULL, address, size + Assembler::kGap) {
3042  // Create a new macro assembler pointing to the address of the code to patch.
3043  // The size is adjusted with kGap on order for the assembler to generate size
3044  // bytes of instructions without failing with buffer size constraints.
3045  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3046}
3047
3048
3049CodePatcher::~CodePatcher() {
3050  // Indicate that code has changed.
3051  CpuFeatures::FlushICache(address_, size_);
3052
3053  // Check that the code was patched as expected.
3054  DCHECK(masm_.pc_ == address_ + size_);
3055  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3056}
3057
3058
3059void MacroAssembler::CheckPageFlag(
3060    Register object,
3061    Register scratch,
3062    int mask,
3063    Condition cc,
3064    Label* condition_met,
3065    Label::Distance condition_met_distance) {
3066  DCHECK(cc == zero || cc == not_zero);
3067  if (scratch.is(object)) {
3068    and_(scratch, Immediate(~Page::kPageAlignmentMask));
3069  } else {
3070    mov(scratch, Immediate(~Page::kPageAlignmentMask));
3071    and_(scratch, object);
3072  }
3073  if (mask < (1 << kBitsPerByte)) {
3074    test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
3075           static_cast<uint8_t>(mask));
3076  } else {
3077    test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
3078  }
3079  j(cc, condition_met, condition_met_distance);
3080}
3081
3082
3083void MacroAssembler::CheckPageFlagForMap(
3084    Handle<Map> map,
3085    int mask,
3086    Condition cc,
3087    Label* condition_met,
3088    Label::Distance condition_met_distance) {
3089  DCHECK(cc == zero || cc == not_zero);
3090  Page* page = Page::FromAddress(map->address());
3091  DCHECK(!serializer_enabled());  // Serializer cannot match page_flags.
3092  ExternalReference reference(ExternalReference::page_flags(page));
3093  // The inlined static address check of the page's flags relies
3094  // on maps never being compacted.
3095  DCHECK(!isolate()->heap()->mark_compact_collector()->
3096         IsOnEvacuationCandidate(*map));
3097  if (mask < (1 << kBitsPerByte)) {
3098    test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
3099  } else {
3100    test(Operand::StaticVariable(reference), Immediate(mask));
3101  }
3102  j(cc, condition_met, condition_met_distance);
3103}
3104
3105
3106void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
3107                                        Register scratch,
3108                                        Label* if_deprecated) {
3109  if (map->CanBeDeprecated()) {
3110    mov(scratch, map);
3111    mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
3112    and_(scratch, Immediate(Map::Deprecated::kMask));
3113    j(not_zero, if_deprecated);
3114  }
3115}
3116
3117
3118void MacroAssembler::JumpIfBlack(Register object,
3119                                 Register scratch0,
3120                                 Register scratch1,
3121                                 Label* on_black,
3122                                 Label::Distance on_black_near) {
3123  HasColor(object, scratch0, scratch1,
3124           on_black, on_black_near,
3125           1, 0);  // kBlackBitPattern.
3126  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3127}
3128
3129
3130void MacroAssembler::HasColor(Register object,
3131                              Register bitmap_scratch,
3132                              Register mask_scratch,
3133                              Label* has_color,
3134                              Label::Distance has_color_distance,
3135                              int first_bit,
3136                              int second_bit) {
3137  DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
3138
3139  GetMarkBits(object, bitmap_scratch, mask_scratch);
3140
3141  Label other_color, word_boundary;
3142  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3143  j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
3144  add(mask_scratch, mask_scratch);  // Shift left 1 by adding.
3145  j(zero, &word_boundary, Label::kNear);
3146  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3147  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3148  jmp(&other_color, Label::kNear);
3149
3150  bind(&word_boundary);
3151  test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
3152
3153  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3154  bind(&other_color);
3155}
3156
3157
3158void MacroAssembler::GetMarkBits(Register addr_reg,
3159                                 Register bitmap_reg,
3160                                 Register mask_reg) {
3161  DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
3162  mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
3163  and_(bitmap_reg, addr_reg);
3164  mov(ecx, addr_reg);
3165  int shift =
3166      Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
3167  shr(ecx, shift);
3168  and_(ecx,
3169       (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
3170
3171  add(bitmap_reg, ecx);
3172  mov(ecx, addr_reg);
3173  shr(ecx, kPointerSizeLog2);
3174  and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
3175  mov(mask_reg, Immediate(1));
3176  shl_cl(mask_reg);
3177}
3178
3179
3180void MacroAssembler::EnsureNotWhite(
3181    Register value,
3182    Register bitmap_scratch,
3183    Register mask_scratch,
3184    Label* value_is_white_and_not_data,
3185    Label::Distance distance) {
3186  DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
3187  GetMarkBits(value, bitmap_scratch, mask_scratch);
3188
3189  // If the value is black or grey we don't need to do anything.
3190  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3191  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3192  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
3193  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3194
3195  Label done;
3196
3197  // Since both black and grey have a 1 in the first position and white does
3198  // not have a 1 there we only need to check one bit.
3199  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3200  j(not_zero, &done, Label::kNear);
3201
3202  if (emit_debug_code()) {
3203    // Check for impossible bit pattern.
3204    Label ok;
3205    push(mask_scratch);
3206    // shl.  May overflow making the check conservative.
3207    add(mask_scratch, mask_scratch);
3208    test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3209    j(zero, &ok, Label::kNear);
3210    int3();
3211    bind(&ok);
3212    pop(mask_scratch);
3213  }
3214
3215  // Value is white.  We check whether it is data that doesn't need scanning.
3216  // Currently only checks for HeapNumber and non-cons strings.
3217  Register map = ecx;  // Holds map while checking type.
3218  Register length = ecx;  // Holds length of object after checking type.
3219  Label not_heap_number;
3220  Label is_data_object;
3221
3222  // Check for heap-number
3223  mov(map, FieldOperand(value, HeapObject::kMapOffset));
3224  cmp(map, isolate()->factory()->heap_number_map());
3225  j(not_equal, &not_heap_number, Label::kNear);
3226  mov(length, Immediate(HeapNumber::kSize));
3227  jmp(&is_data_object, Label::kNear);
3228
3229  bind(&not_heap_number);
3230  // Check for strings.
3231  DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3232  DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3233  // If it's a string and it's not a cons string then it's an object containing
3234  // no GC pointers.
3235  Register instance_type = ecx;
3236  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
3237  test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
3238  j(not_zero, value_is_white_and_not_data);
3239  // It's a non-indirect (non-cons and non-slice) string.
3240  // If it's external, the length is just ExternalString::kSize.
3241  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
3242  Label not_external;
3243  // External strings are the only ones with the kExternalStringTag bit
3244  // set.
3245  DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
3246  DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
3247  test_b(instance_type, kExternalStringTag);
3248  j(zero, &not_external, Label::kNear);
3249  mov(length, Immediate(ExternalString::kSize));
3250  jmp(&is_data_object, Label::kNear);
3251
3252  bind(&not_external);
3253  // Sequential string, either Latin1 or UC16.
3254  DCHECK(kOneByteStringTag == 0x04);
3255  and_(length, Immediate(kStringEncodingMask));
3256  xor_(length, Immediate(kStringEncodingMask));
3257  add(length, Immediate(0x04));
3258  // Value now either 4 (if Latin1) or 8 (if UC16), i.e., char-size shifted
3259  // by 2. If we multiply the string length as smi by this, it still
3260  // won't overflow a 32-bit value.
3261  DCHECK_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
3262  DCHECK(SeqOneByteString::kMaxSize <=
3263         static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
3264  imul(length, FieldOperand(value, String::kLengthOffset));
3265  shr(length, 2 + kSmiTagSize + kSmiShiftSize);
3266  add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
3267  and_(length, Immediate(~kObjectAlignmentMask));
3268
3269  bind(&is_data_object);
3270  // Value is a data object, and it is white.  Mark it black.  Since we know
3271  // that the object is white we can make it black by flipping one bit.
3272  or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
3273
3274  and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
3275  add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
3276      length);
3277  if (emit_debug_code()) {
3278    mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3279    cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
3280    Check(less_equal, kLiveBytesCountOverflowChunkSize);
3281  }
3282
3283  bind(&done);
3284}
3285
3286
3287void MacroAssembler::EnumLength(Register dst, Register map) {
3288  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3289  mov(dst, FieldOperand(map, Map::kBitField3Offset));
3290  and_(dst, Immediate(Map::EnumLengthBits::kMask));
3291  SmiTag(dst);
3292}
3293
3294
3295void MacroAssembler::CheckEnumCache(Label* call_runtime) {
3296  Label next, start;
3297  mov(ecx, eax);
3298
3299  // Check if the enum length field is properly initialized, indicating that
3300  // there is an enum cache.
3301  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3302
3303  EnumLength(edx, ebx);
3304  cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
3305  j(equal, call_runtime);
3306
3307  jmp(&start);
3308
3309  bind(&next);
3310  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3311
3312  // For all objects but the receiver, check that the cache is empty.
3313  EnumLength(edx, ebx);
3314  cmp(edx, Immediate(Smi::FromInt(0)));
3315  j(not_equal, call_runtime);
3316
3317  bind(&start);
3318
3319  // Check that there are no elements. Register rcx contains the current JS
3320  // object we've reached through the prototype chain.
3321  Label no_elements;
3322  mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
3323  cmp(ecx, isolate()->factory()->empty_fixed_array());
3324  j(equal, &no_elements);
3325
3326  // Second chance, the object may be using the empty slow element dictionary.
3327  cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
3328  j(not_equal, call_runtime);
3329
3330  bind(&no_elements);
3331  mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
3332  cmp(ecx, isolate()->factory()->null_value());
3333  j(not_equal, &next);
3334}
3335
3336
3337void MacroAssembler::TestJSArrayForAllocationMemento(
3338    Register receiver_reg,
3339    Register scratch_reg,
3340    Label* no_memento_found) {
3341  ExternalReference new_space_start =
3342      ExternalReference::new_space_start(isolate());
3343  ExternalReference new_space_allocation_top =
3344      ExternalReference::new_space_allocation_top_address(isolate());
3345
3346  lea(scratch_reg, Operand(receiver_reg,
3347      JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
3348  cmp(scratch_reg, Immediate(new_space_start));
3349  j(less, no_memento_found);
3350  cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
3351  j(greater, no_memento_found);
3352  cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
3353      Immediate(isolate()->factory()->allocation_memento_map()));
3354}
3355
3356
3357void MacroAssembler::JumpIfDictionaryInPrototypeChain(
3358    Register object,
3359    Register scratch0,
3360    Register scratch1,
3361    Label* found) {
3362  DCHECK(!scratch1.is(scratch0));
3363  Factory* factory = isolate()->factory();
3364  Register current = scratch0;
3365  Label loop_again;
3366
3367  // scratch contained elements pointer.
3368  mov(current, object);
3369
3370  // Loop based on the map going up the prototype chain.
3371  bind(&loop_again);
3372  mov(current, FieldOperand(current, HeapObject::kMapOffset));
3373  mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
3374  DecodeField<Map::ElementsKindBits>(scratch1);
3375  cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
3376  j(equal, found);
3377  mov(current, FieldOperand(current, Map::kPrototypeOffset));
3378  cmp(current, Immediate(factory->null_value()));
3379  j(not_equal, &loop_again);
3380}
3381
3382
3383void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
3384  DCHECK(!dividend.is(eax));
3385  DCHECK(!dividend.is(edx));
3386  base::MagicNumbersForDivision<uint32_t> mag =
3387      base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
3388  mov(eax, Immediate(mag.multiplier));
3389  imul(dividend);
3390  bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
3391  if (divisor > 0 && neg) add(edx, dividend);
3392  if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend);
3393  if (mag.shift > 0) sar(edx, mag.shift);
3394  mov(eax, dividend);
3395  shr(eax, 31);
3396  add(edx, eax);
3397}
3398
3399
3400} }  // namespace v8::internal
3401
3402#endif  // V8_TARGET_ARCH_IA32
3403